WO2014141921A1 - Laminate for use in touch panel and manufacturing method of laminate for use in touch panel - Google Patents

Laminate for use in touch panel and manufacturing method of laminate for use in touch panel Download PDF

Info

Publication number
WO2014141921A1
WO2014141921A1 PCT/JP2014/055298 JP2014055298W WO2014141921A1 WO 2014141921 A1 WO2014141921 A1 WO 2014141921A1 JP 2014055298 W JP2014055298 W JP 2014055298W WO 2014141921 A1 WO2014141921 A1 WO 2014141921A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
touch panel
transparent electrode
film
Prior art date
Application number
PCT/JP2014/055298
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 英明
漢那 慎一
後藤 英範
直樹 塚本
健司 勝田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014141921A1 publication Critical patent/WO2014141921A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a laminate for a touch panel and a method for producing a laminate for a touch panel.
  • Patent Document 1 a light-transmitting hard coat layer having a value obtained by multiplying the film thickness and the internal haze is 4 or more and the 10-point average roughness of the surface is 2 ⁇ m or less is attached to the glass surface. It is described that scattering of glass can be prevented.
  • Patent Document 2 discloses an adhesive sheet in which a hard coat layer, a transparent substrate film having a thickness of 25 to 70 ⁇ m, an adhesive layer, a polyester film having a thickness of 5 to 25 ⁇ m, and an adhesive layer are laminated in this order. It is described that glass scattering can be prevented by sticking to the surface of a glass plate.
  • Patent Document 3 describes a glass reinforced by a float process and having a Young's modulus of 71 to 74 GPa and a Poisson's ratio of 0.22 to 0.24. However, it does not describe that when glass is chemically strengthened, the glass can be prevented from scattering when it is damaged by external impact.
  • Patent Document 1 and Patent Document 2 By sticking a hard coat layer or an adhesive sheet to the surface of a glass plate as in Patent Document 1 and Patent Document 2, it is possible to prevent glass fragments from being scattered when damaged by receiving a certain external impact. However, as a result of investigations by the present inventors, it was found that this is insufficient.
  • the problem to be solved by the present invention is to provide a laminate for a touch panel that can prevent scattering of glass fragments when it is damaged by an external impact, and a method for manufacturing the same.
  • the present inventors have laminated a glass substrate, a transparent electrode layer, a protective layer, and a polymer layer in this order, and the glass substrate has potassium ions in the glass.
  • the present invention has been reached.
  • the present invention which is a specific means for solving the above problems, has the following configuration.
  • a glass substrate [1] a glass substrate; A transparent electrode layer; A protective layer covering the transparent electrode layer; A polymer layer; In this order, A laminate for a touch panel, wherein the glass substrate is subjected to a chemical strengthening treatment in which a part or all of ions having an ion radius smaller than that of potassium ions in the glass are replaced with potassium ions.
  • the touch panel laminate according to [1] further comprising a hard coat layer on the surface of the polymer layer opposite to the surface on which the protective layer is formed.
  • the laminate for a touch panel according to [2] having an easy adhesion layer between at least one of the protective layer and the polymer layer and between the polymer layer and the hard coat layer.
  • the refractive index difference between the refractive index of the easy adhesion layer between the protective layer and the polymer layer and the refractive index of the protective layer and the polymer layer adjacent to the easy adhesion layer is 0.
  • the refractive index difference between the refractive index of the easy adhesion layer between the polymer layer and the hard coat layer and the refractive index of the polymer layer and the hard coat layer adjacent to the easy adhesion layer is as follows: The laminate for a touch panel according to any one of [3] to [11], which is 0.02 or less. [13] The laminate for a touch panel according to any one of [1] to [12], wherein the polymer layer includes polyethylene terephthalate, polycarbonate, or a cycloolefin polymer. [14] The laminate for a touch panel according to any one of [1] to [13], wherein the retardation of the polymer layer is 3000 to 12000 nm.
  • the hydrolysis condensate of the alkoxysilane contained in the hard coat layer is any one of [5] to [19], which is a hydrolysis condensate of an epoxy group-containing alkoxysilane and an epoxy group-free alkoxysilane.
  • Laminate for touch panel [21] The touch panel laminate according to any one of [5] to [20], wherein the hard coat layer is formed by hydrolyzing alkoxysilane and condensing the hydrolyzed alkoxysilane.
  • [31] (1) The touch panel laminate according to any one of [1] to [30], which has a decorative layer.
  • the present invention it is possible to provide a laminated body for a touch panel that can prevent scattering of glass fragments when damaged by receiving an external impact, and a method for manufacturing the same.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the laminate for a touch panel of the present invention has a glass substrate, a transparent electrode layer, a protective layer covering the transparent electrode layer, and a polymer layer in this order, and the glass substrate is more than potassium ions in the glass. It is characterized in that it is subjected to a chemical strengthening treatment in which part or all of ions having a small ion radius are replaced with potassium ions.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminate for a touch panel of the present invention.
  • the laminate for a touch panel of the present invention comprises, from the outermost surface side (viewing side), the glass substrate 100, the transparent electrode layer 101, the protective layer 102 formed so as to cover the transparent electrode layer 101, and the polymer layer 103 in this order. Have in.
  • An easy adhesion layer 104 may be provided between the protective layer 102 and the polymer layer 103 as necessary.
  • the laminated body for touchscreens of this invention may have the hard-coat layer 105 in the surface on the opposite side to the surface by the side of the protective layer 102 of the polymer layer 103 as needed,
  • An easy-adhesion layer 106 may be provided between the polymer layer 103.
  • a decoration layer 107 may be provided at the end of the surface of the glass substrate 1 opposite to the surface on the viewing side.
  • an antireflection layer (not shown) may be provided between the transparent electrode layer 101 and the protective layer 102, and on the opposite side of the surface of the glass substrate 100 where the transparent conductive layer 101 is formed. You may have a hard-coat layer (not shown).
  • the thickness of the laminate for a touch panel of the present invention is preferably 0.3 to 1 mm, more preferably 0.5 to 1 mm, and further preferably 0.7 to 1 mm.
  • each member which comprises the laminated body for touchscreens of this invention is demonstrated.
  • the glass substrate used in the laminate for a touch panel of the present invention is subjected to a chemical strengthening treatment in which part or all of ions having an ion radius smaller than that of potassium ions in the glass are replaced with potassium ions.
  • the glass used in the present invention is not particularly limited, but the strain point temperature obtained by a method according to JIS R3103-2 (2001) is preferably 500 ° C. to 520 ° C. Further, it is preferable that the temperature near the temperature at which glass is likely to be deformed, that is, the temperature of the molten salt is 490 to 530 ° C.
  • the glass substrate used in the present invention is chemically strengthened on the surface of SiO 2 —Na 2 O—K 2 O—CaO—MgO—Al 2 O 3 glass, for example, so-called soda lime glass produced by a float process. It is preferable that the compression layer is formed by performing the treatment.
  • the chemical strengthening treatment is performed, for example, by immersing glass in a molten salt.
  • a chemical strengthening treatment sodium ions in the glass and potassium ions in the molten salt are exchanged to form a compressed layer.
  • the compressed layer has a compressive stress value of 200 to 650 MPa.
  • the temperature of the molten salt for immersion is 450 to 550 ° C. and the immersion time is 1 hour or more when chemically strengthening the glass so that the formed compressed layer has the value. 3 hours is preferable.
  • the thickness of the glass substrate is preferably 0.3 to 1.0 mm, and more preferably 0.4 to 0.8 mm. By setting the thickness of the glass substrate to 0.3 mm or more, insufficient strength can be solved.
  • the laminated body for touchscreens of this invention has a transparent electrode layer on a glass substrate, and is arrange
  • the transparent electrode layer preferably has a refractive index of 1.75 to 2.1.
  • the material for the transparent electrode layer is not particularly limited, and a known material can be used.
  • it can be made of a light-transmitting conductive metal oxide film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • metal films include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 .
  • the film thickness of each element can be set to 10 to 200 nm.
  • the transparent electrode pattern is preferably an ITO film.
  • the transparent electrode pattern is preferably an ITO film having a refractive index of 1.75 to 2.1.
  • the thickness of the transparent electrode layer is preferably 10 to 200 nm, more preferably 20 to 150 nm, and even more preferably 30 to 100 nm.
  • the transparent electrode pattern is a first transparent electrode pattern and a second transparent electrode pattern in two directions substantially orthogonal to the row direction and the column direction, respectively.
  • the transparent electrode pattern in the laminate of the present invention may be the second transparent electrode pattern 4 or the pad portion 3 a of the first transparent electrode pattern 3.
  • the reference numeral of the transparent electrode pattern may be represented by “4”.
  • the transparent electrode pattern in the transparent laminate of the present invention is the static electrode of the present invention. It is not limited to the use for the second transparent electrode pattern 4 in the capacitive input device, but may be used as the pad portion 3a of the first transparent electrode pattern 3, for example.
  • the refractive index of the transparent electrode pattern is preferably 1.75 to 2.1.
  • the material for the transparent electrode pattern is not particularly limited, and a known material can be used.
  • ITO Indium Tin Oxide
  • IZO Indium It can be made of a light-transmitting conductive metal oxide film such as Zinc Oxide.
  • metal films include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 .
  • the film thickness of each element is 10-20. It can be 0 nm. Further, since the amorphous ITO film is made into a polycrystalline ITO film by firing, the electrical resistance can be reduced.
  • said 1st transparent electrode pattern 3, the 2nd transparent electrode pattern 4, and the electroconductive element 6 mentioned later use the photosensitive film which has the photocurable resin layer using the said conductive fiber. It can also be manufactured.
  • the transparent electrode pattern is preferably an ITO film.
  • the transparent electrode pattern is preferably an ITO film having a refractive index of 1.75 to 2.1.
  • the laminated body for touch panels of this invention has a protective layer which covers a transparent electrode layer, and it is preferable that a protective layer has a function which prevents the corrosion of a transparent electrode layer.
  • the prevention of corrosion of the transparent electrode layer is preferably carried out by removing the halogen-containing compound, in particular by dehalogenating the photopolymerization initiator.
  • the protective layer preferably contains metal oxide particles, a resin (preferably an alkali-soluble resin), a polymerizable compound, a polymerization initiator, or a polymerization initiation system. Furthermore, an additive etc. are used, but it is not restricted to this.
  • the protective layer may be a transparent resin film or an inorganic film.
  • inorganic films used in JP 2010-86684 A, JP 2010-152809 A, JP 2010-257492 A, and the like can be used, which are described in these documents. From the viewpoint of controlling the refractive index, it is preferable to use an inorganic film having a laminated structure of a low refractive index material and a high refractive index material, or an inorganic film having a mixed film of a low refractive index material and a high refractive index material.
  • the inorganic layer may be a mixed layer of SiO 2 and Nb 2 O 5, and more preferably that case is a mixed film of SiO 2 and Nb 2 O 5 formed by sputtering.
  • the protective layer is preferably a transparent resin film.
  • a method for controlling the refractive index of the transparent resin film is not particularly limited, but a transparent resin film having a desired refractive index is used alone, or a transparent resin film to which fine particles such as metal fine particles and metal oxide fine particles are added is used. Can be used.
  • the resin composition used for the transparent resin film preferably contains metal oxide particles for the purpose of adjusting the refractive index and light transmittance. Since the metal oxide particles have high transparency and light transmittance, a composition having a high refractive index and excellent transparency can be obtained.
  • the metal oxide particles preferably have a refractive index higher than that of a resin composition made of a material excluding the particles. Specifically, the refractive index in light having a wavelength of 400 to 750 nm is used. Particles of 1.50 or more are more preferable, particles having a refractive index of 1.70 or more are further preferable, and particles of 1.90 or more are particularly preferable.
  • the refractive index of light having a wavelength of 400 to 750 nm being 1.50 or more means that the average refractive index of light having a wavelength in the above range is 1.50 or more. It is not necessary that the refractive index of all light having a wavelength is 1.50 or more.
  • the average refractive index is a value obtained by dividing the sum of the measured values of the refractive index for each light having a wavelength in the above range by the number of measurement points.
  • the metal of the metal oxide particles includes semimetals such as B, Si, Ge, As, Sb, and Te.
  • the light-transmitting and high refractive index metal oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb.
  • Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Sb, Bi, and Te are preferable.
  • Titanium oxide, titanium composite oxide, zinc oxide, zirconium oxide, indium / Tin oxide and antimony / tin oxide are more preferable, titanium oxide, titanium composite oxide and zirconium oxide are more preferable, titanium oxide and zirconium oxide are particularly preferable, and titanium dioxide is most preferable. Titanium dioxide is particularly preferably a rutile type having a high refractive index. The surface of these metal oxide particles can be treated with an organic material in order to impart dispersion stability.
  • the average primary particle diameter of the metal oxide particles is preferably 1 to 200 nm, particularly preferably 3 to 80 nm.
  • the average primary particle diameter of the particles refers to an arithmetic average obtained by measuring the particle diameter of 200 arbitrary particles with an electron microscope.
  • the longest side is the diameter.
  • the said metal oxide particle may be used individually by 1 type, and can also use 2 or more types together.
  • the content of the metal oxide particles in the resin composition may be appropriately determined in consideration of the refractive index required for the optical member obtained from the resin composition, light transmittance, and the like.
  • the total solid content is preferably 5 to 80% by mass, more preferably 10 to 70% by mass.
  • the transparent resin film preferably has at least one of ZrO 2 particles and TiO 2 particles from the viewpoint of controlling the refractive index within the range of the refractive index of the antireflection layer, and more preferably ZrO 2 particles.
  • binder or polymer there are no particular restrictions on the resin (referred to as binder or polymer) and other additives used for the transparent resin film unless they are contrary to the spirit of the present invention.
  • an alkali-soluble resin As the resin (referred to as a binder or a polymer) used in the protective layer, an alkali-soluble resin is preferable.
  • the alkali-soluble resin include paragraph [0025] of JP 2011-95716 A and paragraph of JP 2010-237589 A.
  • the polymers described in [0033] to [0052] can be used.
  • the polymerizable compound the polymerizable compounds described in paragraphs [0023] to [0024] of Japanese Patent No. 4098550 can be used.
  • the polymerization initiator or polymerization initiation system the polymerizable compounds described in [0031] to [0042] described in JP2011-95716A can be used.
  • an additive may be used for the protective layer.
  • the additive include surfactants described in paragraph [0017] of Japanese Patent No. 4502784, paragraphs [0060] to [0071] of JP-A-2009-237362, and paragraph [ And the other additives described in paragraphs [0058] to [0071] of JP-A No. 2000-310706.
  • the thickness of the protective layer is preferably 1 to 50 nm, more preferably 2 to 30 nm. Further, the refractive index of the protective layer is preferably 1.5 to 1.53, more preferably 1.5 to 1.52, and particularly preferably 1.51 to 1.52.
  • the laminated body for touchscreens of this invention has a polymer layer.
  • the effect of the present invention is achieved by having a polymer layer and adopting a predetermined stacking order.
  • the material of the polymer film used for the polymer layer is not particularly limited and is arbitrary.
  • examples thereof include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate, polystyrene, polyether ether ketone, polyphenylene sulfide, and cycloolefin polymer.
  • polycarbonate, polyester (particularly, polyethylene terephthalate), or cycloolefin polymer is exemplified as a particularly preferable material.
  • These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching.
  • polyesters typified by polyethylene terephthalate are the most suitable materials because they have a large intrinsic birefringence and relatively large retardation can be obtained relatively easily even when the film thickness is thin.
  • the polyester film in the present invention refers to a film whose main component is polyester, and usually refers to a film in which 98% by mass or more of the resin component is polyester, and preferably 90% by mass of the component constituting the polyester film is polyester. Is a film.
  • the kind in particular of polyester is not restrict
  • PET polyethylene terephthalate
  • the polymer film has a specific birefringence, it is desirable to use an oriented film.
  • the production method is not particularly limited as long as the film characteristics defined in the present invention are satisfied.
  • a non-oriented sheet obtained by melting polycarbonate and extruding it into a sheet is stretched in one direction (or two directions if necessary) at a temperature equal to or higher than the glass transition temperature to obtain an orientation having a specific retardation.
  • a polycarbonate film can be obtained.
  • the non-oriented polycarbonate sheet a commercially available product or a solution prepared by solution film formation can be suitably used.
  • a cycloolefin polymer a well-known cycloolefin polymer can be used and it is preferable to use the cycloolefin polymer which has specific retardation.
  • a non-oriented sheet obtained by melting a cycloolefin polymer and extruding it into a sheet is stretched in one direction (or two directions if necessary) at a temperature equal to or higher than the glass transition temperature, and a specific retardation is obtained.
  • An oriented cycloolefin polymer film having the following can be obtained.
  • the oriented cycloolefin polymer having a specific retardation commercially available ones may be used, and examples thereof include ZEON A FILM ZD14 manufactured by ZEON Corporation.
  • the non-oriented cycloolefin polymer a commercially available product or a solution prepared by solution casting can be suitably used.
  • a non-oriented polyester obtained by melting polyester and extruding into a sheet is subjected to heat treatment after transverse stretching with a tenter at a temperature equal to or higher than the glass transition temperature.
  • the transverse stretching temperature is preferably 80 to 130 ° C., particularly preferably 90 to 120 ° C.
  • the transverse draw ratio is preferably 2.5 to 6.0 times, and particularly preferably 3.0 to 5.5 times. When the draw ratio is too high, the transparency of the resulting film tends to be lowered. On the other hand, if the draw ratio is too low, the draw tension is also small, so the birefringence of the resulting film is small, and the retardation is small, such being undesirable.
  • the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
  • the stretching ratio, stretching temperature, and film thickness can be appropriately set.
  • the higher the stretching ratio, the lower the stretching temperature, and the thicker the film the higher the retardation.
  • the lower the stretching ratio, the higher the stretching temperature, and the thinner the film the lower the retardation.
  • the polymer layer preferably has a surface modification layer.
  • the surface modified layer is a layer formed on the surface layer of the polymer layer, and means a layer having an amorphous degree (non-crystalline degree / crystalline degree) of 5% or more.
  • the surface modification layer has a thickness from the surface of the polymer layer to any depth within the range of 40 to 330 nm.
  • the surface modification layer preferably has a thickness up to any depth within the range of 330 nm, more preferably within the range of 50 to 220 nm, and within the range of 50 to 200 nm. Further preferred.
  • the non-crystallinity indicates the ratio of the non-crystalline part to the total of the non-crystalline part and the crystal part (content ratio of the non-crystalline part).
  • the non-crystal part contains many Gauche crystal molecules, and the crystal part contains many trans-type crystal molecules. For this reason, the content rate of the non-crystal part and the crystal part can be calculated by the content rate of the crystal molecules.
  • the content ratio of the amorphous part and the crystalline part can be calculated by obtaining the spectrum of the surface modified layer by the ATR-IR method. A value obtained by dividing the amorphous degree (1175 cm ⁇ 1 ) by the spectrum of the crystallinity spectrum (1341 cm ⁇ 1 ) was defined as the amorphous degree (non-crystalline degree / crystalline degree).
  • the amorphousness (noncrystallinity / crystallinity) of the surface modification layer of the polymer layer is preferably 5% or more, more preferably 5 to 8.3%, and more preferably 5 to 8%. Further preferred. By setting the amorphous degree of the surface modified layer within the above range, it is possible to improve the oligomer block property and adhesion while preventing yellowing of the polymer layer.
  • the surface modified layer As described above on the surface of the polyester film.
  • the surface of the polyester film is subjected to the above-described treatment. It is more preferable to form such a surface modified layer.
  • a glow discharge treatment may be applied to the surface of the polymer layer in order to impart adhesion to the protective layer or the easy-adhesion layer and the hard coat layer.
  • the glow discharge treatment is a method called vacuum plasma treatment or glow discharge treatment, in which plasma is generated by discharge in a gas (plasma gas) in a low-pressure atmosphere to treat the substrate surface.
  • the low-pressure plasma used in the process of the present invention is a non-equilibrium plasma generated under conditions where the plasma gas pressure is low.
  • the treatment of the present invention is performed by placing a film to be treated in this low-pressure plasma atmosphere.
  • methods such as a method for generating plasma, methods such as direct current glow discharge, high frequency discharge, and microwave discharge can be used.
  • the power source used for discharging may be direct current or alternating current.
  • alternating current a range of about 30 Hz to 20 MHz is preferable.
  • alternating current a commercial frequency of 50 or 60 Hz may be used, or a high frequency of about 10 to 50 kHz may be used.
  • a method using a high frequency of 13.56 MHz is also preferable.
  • an inorganic gas such as oxygen gas, nitrogen gas, water vapor gas, argon gas, helium gas can be used, and in particular, oxygen gas or oxygen gas and argon gas
  • a method is also preferable in which a gas such as the air entering the processing container due to a leak or water vapor coming out of the object to be processed is used as the plasma gas without introducing the gas into the processing container.
  • the specific plasma gas pressure is preferably in the range of about 0.005 to 10 Torr, more preferably about 0.008 to 3 Torr.
  • the plasma output cannot be generally specified depending on the shape and size of the processing container, the shape of the electrode, and the like, but is preferably about 100 to 10,000 W, more preferably about 2000 to 10,000 W.
  • the treatment time of the glow discharge treatment of the present invention is preferably 0.05 to 100 seconds, more preferably about 0.5 to 30 seconds. If the treatment time is less than 0.05, the adhesion improving effect may be insufficient. Conversely, if the treatment time exceeds 100 seconds, problems such as deformation and coloring of the film to be treated may occur.
  • Discharge treatment intensity of the glow discharge treatment of the present invention will depend on the plasma power and treatment time, preferably in the range of 0.01 ⁇ 10kV ⁇ A ⁇ min / m 2, 0.1 ⁇ 7kV ⁇ A ⁇ min / m 2 Gayori preferable. Discharge treatment intensity that is sufficient adhesion improving effect of the 0.01 kV ⁇ A ⁇ min / m 2 or more is obtained, and such deformation and coloration of the processed film by a 10 kV ⁇ A ⁇ min / m 2 or less You can avoid problems.
  • the glow discharge treatment of the present invention it is preferable to heat a polymer layer that is a film to be treated in advance.
  • the surface of the polyester film is preferably subjected to glow discharge treatment at a temperature equal to or higher than Tg and then subjected to glow discharge treatment. That is, during the glow discharge treatment, the surface of the polymer layer is preferably heated to Tg (69 ° C.) or higher.
  • the surface of the polymer layer is more preferably heated within a temperature range of Tg to 200 ° C., and further preferably heated within a temperature range of Tg to 150 ° C.
  • Specific examples of the method for raising the temperature of the film to be processed in a vacuum include heating with an infrared heater and a heating method by contacting with a hot roll.
  • the b * value of the laminate for a touch panel of the present invention is preferably ⁇ 2.0 to 2.0, It is more preferably ⁇ 1.5 to 1.5, and further preferably ⁇ 1.2 to 1.2.
  • the degree of yellowish coloring is represented by a b * value in the CIE 1976 L * a * b * color system.
  • t represents the thickness ( ⁇ m) of the polymer layer.
  • the b * value of the polymer layer is preferably 1.75 or less, more preferably 1.6 or less, and even more preferably 1.45 or less.
  • the thickness of the polymer layer used in the present invention is not particularly limited, but when the thickness of the polymer layer is 10 to 100 ⁇ m, the b * value is preferably 1.2 or less. It is more preferably 0 or less, and further preferably 0.9 or less. Further, when the film thickness of the polymer layer is 100 to 150 ⁇ m, the b * value is preferably 1.45 or less, more preferably 1.3 or less, and further preferably 1.15 or less. . Further, when the film thickness of the polymer layer is 150 to 200 ⁇ m, the b * value is preferably 1.75 or less, more preferably 1.6 or less, and further preferably 1.45 or less. .
  • the amount of change in b * value after the b * value and a glow discharge treatment before the glow discharge treatment is performed is performed ([Delta] b) is 0.3 or less, is 0.2 or less More preferably, it is more preferably 0.1 or less.
  • a small change in the b * value before and after the glow discharge treatment indicates that no yellowing has occurred in the glow discharge treatment.
  • the polymer layer in which yellowing is suppressed can be obtained by setting the change amount of the b * value before and after the glow discharge treatment to be equal to or less than the above upper limit value.
  • the haze value of the laminated body for touchscreens of this invention is 2% or less, It is more preferable that it is 1.5% or less, It is further more preferable that it is 1% or less.
  • the polymer film used in the polymer layer preferably has a retardation of 3000 to 12000 nm (in-plane retardation, hereinafter also referred to as Re), more preferably has a retardation of 4500 to 10000 nm, and preferably 6000 to 8000 nm. More preferably, the phase difference is as follows.
  • Re in-plane retardation
  • the phase difference is as follows.
  • the polymer layer retardation is less than 3000 nm, when the screen is observed through a polarizing plate such as sunglasses, a strong interference color is exhibited. Therefore, the envelope shape is different from the emission spectrum of the light source, and good visibility cannot be ensured.
  • the Re of the polymer film used for the polymer layer is preferably in a range that allows it to function as a ⁇ / 4 plate, from the viewpoint of the visibility of the display image when a polarizing plate such as polarized sunglasses is used.
  • Re of the polymer film used for the polymer layer is preferably 100 to 200 nm, more preferably 120 to 180 nm, and further preferably 130 to 160 nm. If the Re of the polymer film used for the polymer layer falls outside this range, the polarization state of the display image of the liquid crystal display device cannot be made circularly polarized, and the display image when passing through a polarizing plate such as polarized sunglasses is displayed. The visibility is significantly deteriorated depending on the angle of the polarized sunglasses.
  • the ratio of the retardation in the in-plane direction to the thickness direction retardation (Re / Rth) of the polymer layer is preferably 0.200 or more, more preferably 0.500 or more, and further preferably 0.600 or more.
  • the ratio of the retardation in the in-plane direction to the retardation in the thickness direction (Re / Rth) is larger, rainbow unevenness when viewed with polarized sunglasses can be eliminated.
  • the ratio (Re / Rth) of retardation in the in-plane direction and thickness direction retardation of the polymer layer is preferably 1.2 or less, more preferably 1.0 or less. If it is larger than 1.2, the polymer film needs to be stretched more and the strength may be inferior.
  • Retardation (Re ( ⁇ ) and Rth ( ⁇ )) represents retardation in the in-plane direction (nm) and retardation in the thickness direction (nm), respectively, at the wavelength ⁇ .
  • Re ( ⁇ ) is measured by making light having a wavelength of ⁇ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments).
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is Re ( ⁇ ), with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (if there is no slow axis, any in-plane film
  • the light is incident at a wavelength of ⁇ nm from the inclined direction in steps of 10 degrees from the normal direction to 50 degrees on one side with respect to the film normal direction of the rotation axis of KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction perpendicular to nx in the plane
  • nz represents the refractive index in the direction perpendicular to nx and ny.
  • d represents a film thickness.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is from ⁇ 50 degrees to +50 degrees with respect to the normal direction of the film, with Re ( ⁇ ) as the slow axis (indicated by KOBRA 21ADH or WR) in the plane and the tilt axis (rotation axis).
  • Re ( ⁇ ) as the slow axis (indicated by KOBRA 21ADH or WR) in the plane and the tilt axis (rotation axis).
  • Re ( ⁇ ) as the slow axis (indicated by KOBRA 21ADH or WR) in the plane and the tilt axis (rotation axis).
  • KOBRA 21ADH or WR is calculated.
  • nx, ny, and nz can be calculated by KOBRA 21ADH.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • the retardation of the polymer film By setting the retardation of the polymer film within the above range, it becomes possible to approximate the envelope shape of the spectrum of transmitted light to the emission spectrum of the light source with only a relatively simple configuration. That is, since the conventional technique uses a light source having a discontinuous emission spectrum, the visibility cannot be improved unless a birefringent body having an extremely high retardation (over 100,000 nm) is used. Using the property of a white LED light source having a spectrum, a unique effect of improving the visibility with a relatively simple configuration as described above is achieved.
  • the thickness of the polymer layer is preferably 20 to 150 ⁇ m, more preferably 30 to 125 ⁇ m, and even more preferably 50 to 100 ⁇ m.
  • the thickness is less than 20 ⁇ m, the anisotropy of the mechanical properties of the polymer film becomes remarkable, and tearing, tearing and the like are likely to occur, and the practicality as an industrial material is remarkably reduced.
  • it exceeds 150 ⁇ m the polymer film is very rigid, and the flexibility specific to the polymer film is lowered, and the practicality as an industrial material may also be lowered.
  • the refractive index of the polymer layer varies depending on the material used, but is preferably 1.60 to 1.75, more preferably 1.62 to 1.68, and 1.64 to 1.67. It is particularly preferred that When the refractive index is within the above range, it is possible to obtain a laminate for a touch panel having excellent rigidity as a support for the laminate for a touch panel and having excellent transparency.
  • the refractive index represents a measured value at a wavelength of 660 nm.
  • the polymer layer may contain other additives as long as they do not depart from the spirit of the present invention, and examples thereof include antioxidants and ultraviolet inhibitors.
  • the laminated body for touchscreens of this invention has a hard-coat layer in the surface on the opposite side to the surface in which the protective layer of a polymer layer is formed.
  • a hard coat layer not only the scattering property of glass but also haze, transparency, pencil hardness and the like can be improved.
  • the hard coat layer preferably contains a hydrolysis condensate of curable resin or alkoxysilane.
  • the hard coat layer is mainly composed of a curable resin having high chemical resistance and scratch resistance (50% by mass or more).
  • the hard coat layer may be formed by curing a curable resin by irradiation with ultraviolet rays or an electron beam, or may be formed by condensing and curing a hydrolyzate of alkoxysilane.
  • the curable resin includes an ionizing radiation curable resin, a thermosetting resin, a thermoplastic resin, and preferably a film forming operation.
  • Ionizing radiation curable resin As the ionizing radiation curable resin used for forming the hard coat layer, those having an acrylate functional group are preferable, and polyester acrylate or urethane acrylate is particularly preferable.
  • the polyester acrylate is composed of an oligomer (meth) acrylate of a polyester-based polyol.
  • the urethane acrylate is composed of an acrylated oligomer composed of a polyol compound and a diisocyanate compound.
  • a polyfunctional monomer can be used in combination.
  • Specific polyfunctional monomers include, for example, trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, 1,6 hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and the like.
  • Polyester oligomers used to form the hard coat layer include adipic acid and glycol (ethylene glycol, polyethylene glycol, propylene glycol, butylene glycol, polybutylene glycol, etc.) and triol (glycerin, trimethylolpropane, etc.) sebacic acid and glycol Examples thereof include polyadipate triol which is a condensation product with triol and polysebacate polyol. Note that a part or all of the aliphatic dicarboxylic acid may be substituted with another organic acid. In this case, as the other organic acid, isophthalic acid, terephthalic acid, phthalic anhydride, or the like is preferable because high hardness is expressed in the hard coat layer.
  • the polyurethane oligomer used for forming the hard coat layer can be obtained from a condensation product of polyisocyanate and polyol.
  • Specific polyisocyanates include adducts of methylene bis (p-phenylene diisocyanate), hexamethylene diisocyanate / hexane triol, hexamethylene diisocyanate, tolylene diisocyanate, tolylene diisocyanate trimethylolpropane, 1,5 Examples include naphthylene diisocyanate, thiopropyl diisocyanate, ethylbenzene-2,4-diisocyanate, 2,4-tolylene diisocyanate dimer, hydrogenated xylylene diisocyanate, tris (4-phenyl isocyanate) thiophosphate, Specific polyols include polyether polyols such as polyoxytate and methylene glycol, polyadipate polyols, and polycarbonate polyols
  • UV curable resins are used as the above ionizing radiation curable resins, photopolymerization of acetophenones, benzophenones, mifilabenzoylbenzoate, ⁇ -amyloxime esters, thioxanthones, etc. in these resins is started. It is preferable to use n-butylamine, triethylamine, tri-n-butylphosphine or the like as a photosensitizer mixed as a photosensitizer.
  • urethane acrylate is rich in elasticity and flexibility and excellent in workability (foldability), but has insufficient surface hardness, and it is difficult to obtain a pencil hardness of 2H or more.
  • the polyester acrylate can form a hard coat layer with extremely high hardness by selecting the constituent components of the polyester. Therefore, a hard coat layer in which 40 to 10 parts by mass of polyester acrylate is blended with 60 to 90 parts by mass of urethane acrylate is preferable because both high hardness and flexibility are easily achieved.
  • the thickness of the hard coat layer can be controlled by adjusting the coating amount of the aqueous composition.
  • the hard coat layer is formed by condensing a hydrolyzate of alkoxysilane.
  • Alkoxysilane has a hydrolyzable group, and when this hydrolyzable group is hydrolyzed in an acidic aqueous solution, silanol is generated, and silanols condense with each other, so that a hydrolyzed condensate of alkoxysilane ( Oligomer) is produced. That is, the hard coat layer contains a hydrolysis condensate of alkoxysilane.
  • the hard coat layer may contain a portion of alkoxysilane or a hydrolyzate thereof in addition to the alkoxysilane hydrolysis condensate.
  • the hard coat layer used in the present invention can be formed by applying an aqueous composition containing alkoxysilane and drying it.
  • the use of an aqueous composition is also preferable from the viewpoint of reducing environmental pollution caused by VOC (volatile organic compounds).
  • an epoxy group-containing alkoxysilane and an epoxy group-free alkoxysilane as the alkoxysilane.
  • Each of the epoxy group-containing alkoxysilane and the epoxy group-free alkoxysilane has a hydrolyzable group. Therefore, the hydrolyzable group is hydrolyzed in an acidic aqueous solution, and the resulting silanol is condensed to contain an epoxy group.
  • a hydrolysis condensate of alkoxysilane and epoxy group-free alkoxysilane is produced. That is, the hard coat layer used in the present invention includes a hydrolysis condensate of an epoxy group-containing alkoxysilane and an epoxy group-free alkoxysilane.
  • the ratio of the epoxy group-containing alkoxysilane to the total alkoxysilane is preferably 20 to 85% by mass.
  • the proportion of the epoxy group-containing alkoxysilane may be 20% by mass or more, preferably 25% by mass or more, and more preferably 30% by mass or more.
  • the ratio for which an epoxy-group-containing alkoxysilane accounts may be 85 mass% or less, it is preferable that it is 80 mass% or less, and it is more preferable that it is 75 mass% or less.
  • the epoxy group-containing alkoxysilane is an alkoxysilane having an epoxy group. Any epoxy group-containing alkoxysilane may be used as long as it has one or more epoxy groups in one molecule, and the number of epoxy groups is not particularly limited. In addition to the epoxy group, the epoxy group-containing alkoxysilane may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxyl group.
  • epoxy group-containing alkoxysilane used in the present invention 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxy) Cyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Examples thereof include glycidoxypropyltriethoxysilane. Examples of commercially available products include KBE-403 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the epoxy group-free alkoxysilane is an alkoxysilane having no epoxy group.
  • the epoxy group-free alkoxysilane may be an alkoxysilane having no epoxy group, and may have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxyl group. good.
  • the epoxy group-free alkoxysilane is preferably tetraalkoxysilane, trialkoxysilane, or a mixture thereof. It is preferably a mixture of tetraalkoxysilane or trialkoxysilane, and contains a mixture of tetraalkoxysilane and trialkoxysilane, so that when a hard coat layer is formed, while having appropriate flexibility, Sufficient hardness can be obtained.
  • the molar ratio of tetraalkoxysilane and trialkoxysilane is preferably 25:75 to 85:15, and 30:70 to 80:20 is more preferable, and 30:70 to 65:35 is even more preferable.
  • the tetraalkoxysilane is a tetrafunctional alkoxysilane, more preferably one having 1 to 4 carbon atoms in each alkoxy group. Of these, tetramethoxysilane and tetraethoxysilane are particularly preferably used.
  • the hydrolysis rate of tetraalkoxysilane when mixed with acidic water does not become too slow, and the time required for dissolution until a uniform aqueous solution is shortened. Thereby, the manufacturing efficiency at the time of manufacturing a hard-coat layer can be improved.
  • Examples of commercially available products include KBE-04 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the trialkoxysilane is a trifunctional alkoxysilane represented by the following general formula (1).
  • RSi (OR 1 ) 3 (1)
  • R is an organic group having 1 to 15 carbon atoms that does not contain an amino group
  • R 1 is an alkyl group having 4 or less carbon atoms such as a methyl or ethyl group.
  • the trifunctional alkoxysilane represented by the general formula (1) does not contain an amino group as a functional group. That is, this trifunctional alkoxysilane has an organic group R having no amino group.
  • R has an amino group, if it is mixed with a tetrafunctional alkoxysilane and hydrolyzed, dehydration condensation is promoted between the produced silanols. For this reason, an aqueous composition becomes unstable and is not preferable.
  • R in the general formula (1) may be an organic group having a molecular chain length in the range of 1 to 15 carbon atoms.
  • the number of carbon atoms By setting the number of carbon atoms to 15 or less, the flexibility when the hard coat layer is formed is not excessively increased, and sufficient hardness can be obtained.
  • the carbon number of R By setting the carbon number of R within the above range, a hard coat layer with improved brittleness can be obtained.
  • the adhesiveness of other films, such as a support body, and a hard-coat layer can be improved.
  • the organic group represented by R may have a heteroatom such as oxygen, nitrogen, or sulfur.
  • a heteroatom such as oxygen, nitrogen, or sulfur.
  • trialkoxysilane examples include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, propyltrimethoxysilane, Phenyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriethoxysilane, 3-chloropropyltriethoxysilane, 3-ureidopropyltriethoxysilane, methyltriethoxysilane, methyl Trimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, propyltrimethoxysilane, phenyltriethoxysilane, fluorine
  • the hard coat layer used in the present invention may contain a metal complex as a curing agent.
  • a metal complex composed of Al, Mg, Mn, Ti, Cu, Co, Zn, Hf and Zr is preferable, and these can be used in combination.
  • metal complexes can be easily obtained by reacting a metal alkoxide with a chelating agent.
  • chelating agents include ⁇ -diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane, and ⁇ -keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
  • the metal complex include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), aluminum tris (acetyl)
  • Magnesium chelate compounds such as ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkyl acetoacetate magnesium monoisopropylate, magnesium bis (acetylacetonate), zirconium tetraacetylacetate Narate, zirconium tributoxyacetylacetonate, zirconium Chill acetonate bis (ethyl acetoacetate), manganese acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate and titanium
  • aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), magnesium bis (acetylacetonate), magnesium bis (ethylacetoacetate), and zirconium tetraacetylacetonate are preferred, and storage stability Considering availability, aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate), which are aluminum chelate complexes, are particularly preferable.
  • Examples of commercially available products include aluminum chelate A (W), aluminum chelate D, aluminum chelate M (manufactured by Kawaken Fine Chemical Co., Ltd.), and the like.
  • the proportion of the metal complex is preferably 17 to 70 mol% with respect to the epoxy group-containing alkoxysilane.
  • the proportion occupied by the metal complex may be 17% or more, and more preferably 20% or more.
  • the content rate of a metal complex should just be 70% or less, it is preferable that it is 65% or less, and it is more preferable that it is 60% or less.
  • the metal complex when the metal complex is contained in the above lower limit value or more, excellent alkali resistance can be obtained when the hard coat layer is formed. Moreover, by setting it as the said upper limit or less, the dispersibility in aqueous solution can be made favorable, and manufacturing cost can be suppressed.
  • the hard coat layer used in the present invention may contain inorganic fine particles.
  • the inorganic fine particles are added for the purpose of adjusting the refractive index of the hard coat layer to a preferable range and for increasing the alkali resistance of the hard coat layer.
  • a preferable example of the inorganic fine particles is a transparent and insulating metal oxide.
  • fine silica particles from the viewpoint of crosslinking with alkoxysilane.
  • silica fine particles dry powdery silica produced by combustion of silicon tetrachloride can be used, but colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferable.
  • colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferable.
  • Specific examples include, but are not limited to, Snowtex series manufactured by Nissan Chemical Industries, Ltd. such as Snowtex O-33.
  • the average particle size of colloidal silica is 3 nm to 50 nm, preferably 4 nm to 50 nm, more preferably 4 nm to 40 nm, and particularly preferably 5 nm to 35 nm.
  • the average particle diameter can be determined from a photograph obtained by observing dispersed inorganic fine particles with a transmission electron microscope.
  • the projected area of the particles is obtained, and the equivalent circle diameter is obtained therefrom, and the average particle size (average primary particle size) is obtained.
  • the average particle diameter of the inorganic fine particles can be calculated by measuring the projected area of 300 or more particles and obtaining the equivalent circle diameter.
  • the colloidal silica is more preferably adjusted to have a pH of 2 to 7 when added to the aqueous composition.
  • the pH is 2 to 7
  • the stability of silanol, which is a hydrolyzate of alkoxysilane is better than when the pH is less than 2 or greater than 7, and the dehydration condensation reaction of the silanol proceeds faster. It is possible to suppress an increase in the viscosity of the coating liquid due to this.
  • x is the ratio (unit: mass%) of the inorganic fine particles to the total solid content contained in the aqueous composition.
  • x is preferably 1 or more, and more preferably 3 or more.
  • x should just be 80 or less, it is preferable that it is 70 or less, and it is more preferable that it is 65 or less.
  • the ratio (unit: mass%) of the epoxy group-containing alkoxysilane to the total alkoxysilane is x, where x is the ratio (unit: mass%) of the inorganic fine particles to the total solid content in the aqueous composition.
  • x is the ratio (unit: mass%) of the inorganic fine particles to the total solid content in the aqueous composition.
  • the inorganic fine particles preferably have an average aspect ratio of 30 to 5000.
  • the aspect ratio of the inorganic fine particles may be 30 or more, preferably 100 or more, more preferably 200 or more, and further preferably 300 or more.
  • the aspect ratio of the inorganic fine particles may be 5000 or less, preferably 3000 or less, more preferably 1500 or less, and further preferably 800 or less.
  • a hard coat layer with higher hardness can be formed by setting the average aspect ratio of the inorganic fine particles within the above range.
  • the average aspect ratio means that the average minor axis of the inorganic fine particles in the thickness direction perpendicular to the major axis direction of the inorganic fine particles is r (nm), and the average major axis of the inorganic fine particles in the major axis direction of the inorganic fine particles is L (nm). ) Means the L / r ratio. That is, the aspect ratio can be calculated by observing inorganic fine particles contained in the aqueous composition and dividing the long diameter of the inorganic fine particles by the short diameter.
  • the average minor axis r (nm) of the inorganic fine particles is preferably 1 to 20 nm.
  • the average minor axis r (nm) is preferably 1 nm or more, and more preferably 2 nm or more.
  • the average minor axis r (nm) is preferably 20 nm or less, more preferably 15 nm or less, and further preferably 10 nm or less.
  • the average major axis L (nm) is preferably 100 to 10000 nm.
  • the average major axis L (nm) is The thickness is preferably 100 nm or more, more preferably 300 nm or more, and further preferably 700 nm or more.
  • the average major axis L (nm) is preferably 10000 nm or less, more preferably 8000 nm or less, and further preferably 5000 nm or less.
  • the average aspect ratio of the inorganic fine particles can be within a preferable range.
  • the length of the inorganic fine particles described above can be measured using an optical microscope or an electron microscope. For example, using a scanning electron microscope (SEM), select 100 arbitrary inorganic particles having a major axis of 100 nm or more present in a cross section perpendicular to the longitudinal direction of the hard coat layer and a cross section parallel to the longitudinal direction.
  • SEM scanning electron microscope
  • the aspect ratio can be obtained by measuring the major axis and minor axis of the inorganic particles. The major axis and minor axis are measured for every 100 inorganic particles, and the average aspect ratio can be calculated from these aspect ratios.
  • the hard coat layer may contain an ultraviolet absorber.
  • an ultraviolet absorber As a result, UV degradation of the laminated film and the colorant (particularly dye-based) can be prevented, and visibility and explosion-proof properties can be maintained for a long time.
  • the kind of ultraviolet absorber is not specified.
  • the addition amount is preferably 0.1 to 10% by mass with respect to the resin forming the hard coat layer. By setting the content to 0.1% by mass or more, the effect of preventing UV deterioration is sufficiently exhibited, and by setting the content to 10% by mass or less, it is possible to more effectively suppress a decrease in wear resistance and scratch resistance.
  • the addition method is preferably used by dispersing in a solvent.
  • a surfactant may be added to the hard coat layer for the purpose of reducing friction on the coating film surface or improving the coating property.
  • the hard coat layer may be colored by dispersing pigments, dyes, and other fine particles.
  • an ultraviolet absorber, an antioxidant or the like may be added.
  • surfactant various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
  • fluorosurfactant examples include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780, F780, F781 (above DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Limited), Surflon S-382, SC-101, Same SC-103, Same SC-104, Same SC-105, Same SC1068, Same SC-381, Same SC-383, Same S393, Same KH-40 (manufactured by Asahi Glass Co., Ltd.), PF636, PF656, PF6320 PF6520, PF7002 (manufactured by OMNOVA), and the like.
  • nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerin ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene Stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61, L62, manufactured by BASF) 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 90 1,904,150R1, Pionein D-6512, D-6414, D-6112, D-6115, D-6120, D-6131, D-6108-W, D-6112-W, D-6115-W, D -6115-W,
  • cationic surfactant examples include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
  • phthalocyanine derivatives trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.
  • organosiloxane polymer KP341 manufactured by Shin-Etsu Chemical Co., Ltd.
  • (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 manufactured by Kyoeisha Chemical Co., Ltd.
  • W001 manufactured by Yusho Co., Ltd.
  • anionic surfactant examples include W004, W005, W017 (manufactured by Yusho Co., Ltd.), and sanded BL (manufactured by Sanyo Chemical Industries, Ltd.).
  • silicone surfactant examples include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Tore Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd.
  • an aliphatic wax can be contained.
  • the aliphatic wax include plant-based waxes such as carnauba wax, candelilla wax, rice wax, wood wax, jojoba oil, palm wax, rosin modified wax, cucumber wax, sugar cane wax, esparto wax, and bark wax.
  • Animal waxes such as beeswax, lanolin, whale wax, ibota wax, shellac wax, mineral waxes such as montan wax, ozokerite, ceresin wax, petroleum waxes such as paraffin wax, microcrystalline wax, petrolactam, and fishertro push wax
  • synthetic hydrocarbon waxes such as polyethylene wax, oxidized polyethylene wax, polypropylene wax, and oxidized polypropylene wax.
  • carbana wax, paraffin wax, and polyethylene wax are particularly preferable because of easy adhesion to a hard coat layer and a pressure-sensitive adhesive and good lubricity.
  • These are also preferably used as aqueous dispersions because they can reduce the environmental burden and are easy to handle. Examples of commercially available products include Cellosol 524 (manufactured by Chukyo Yushi Co., Ltd.).
  • either organic or inorganic fine particles can be used.
  • polymer fine particles such as polystyrene, polymethyl methacrylate, silicone resin, and benzoguanamine resin
  • inorganic fine particles such as silica, calcium carbonate, magnesium oxide, and magnesium carbonate
  • polystyrene, polymethylmethacrylate, and silica are preferably used from the viewpoints of a slip improvement effect and cost.
  • These particles may be used alone or as a colloid dispersed in a dispersion medium such as water, such as colloidal silica.
  • Examples of commercially available products include Snowtex XL (manufactured by Nissan Chemical Industries, Ltd.), Seahoster KE-P250 (manufactured by Nippon Shokubai Co., Ltd.), and the like. Two or more kinds of matting agents may be included.
  • the thickness of the hard coat layer is not particularly limited, but is preferably in the range of 1 to 15 ⁇ m.
  • the refractive index of the hard coat layer is preferably 1.50 to 2.10, more preferably 1.60 to 2.00, and further preferably 1.62 to 1.95.
  • the laminated body for touchscreens of this invention may have an easily bonding layer between at least one between a protective layer and a polymer layer, and between a polymer layer and a hard-coat layer.
  • the refractive index n of the easy-adhesion layer is preferably
  • the refractive index difference between the refractive index of the hard coat layer and the refractive index of the easy adhesion layer at least one is preferably 0.02 or less, more preferably 0.015 or less, and More preferably, it is 01 or less.
  • the refractive index difference between the refractive index of the easy adhesion layer between the protective layer and the polymer layer and the refractive index of the protective layer and the polymer layer adjacent to the easy adhesion layer is 0.02 or less. It is preferable.
  • the refractive index difference between the refractive index of the easy adhesion layer between the polymer layer and the hard coat layer and the refractive index of the polymer layer adjacent to the easy adhesion layer and the hard coat layer is 0. 02 or less is preferable.
  • the refractive index n of the easy-adhesion layer used in the present invention is preferably 1.63 or more and 1.69 or less, and more preferably 1.63 or more and 1.66 or less. By setting it as the said range, it can be made easy to adjust a refractive index with respect to another layer.
  • the thickness of the easy adhesion layer used in the present invention is 200 nm or less.
  • the thickness of the easy-adhesion layer used in the present invention is determined by required optical performance, easy adhesion, and the like.
  • the thickness of the easy adhesion layer used in the present invention is preferably 50 nm or more, and more preferably 80 nm or more.
  • the thickness of the easy-adhesion layer used in the present invention is preferably 180 nm or less, and more preferably 150 nm or less.
  • the easy-adhesion layer used in the present invention preferably contains a polyester having a naphthalene skeleton.
  • the polyester having a naphthalene skeleton represents that a monomer having a naphthalene skeleton is included as a monomer constituting the polyester.
  • the monomer having a naphthalene skeleton is preferably contained as a dicarboxylic acid component, and examples thereof include 2,6-naphthalenedicarboxylic acid.
  • a monomer having no naphthalene skeleton can be included as necessary, such as adjustment of the refractive index.
  • examples of the dicarboxylic acid component include terephthalic acid and isophthalic acid
  • examples of the diol component include ethylene glycol and diethylene glycol.
  • the structural unit derived from the monomer having a naphthalene skeleton is preferably from 50 mol% to 100 mol%, more preferably from 60 mol% to 80 mol% in the dicarboxylic acid component. .
  • the number average molecular weight of the polyester having a naphthalene skeleton is preferably 15000 to 40000, more preferably 17000 to 30000, and further preferably 18000 to 25000.
  • the number average molecular weight of the polyester having a naphthalene skeleton used in the present invention within the above range, the adhesion between the polymer layer and the polyester film, particularly the adhesion after wet heat aging can be enhanced.
  • the number average molecular weight represents the number average molecular weight measured by GPC (Gel Permeation Chromatography) as a standard material as polystyrene.
  • the refractive index of the polyester having a naphthalene skeleton is preferably 1.60 or more and 1.75 or less, and more preferably 1.60 or more and 1.70 or less.
  • the content of the polyester having a naphthalene skeleton in the polymer layer is preferably 5% by mass or more and 80% by mass or less, and more preferably 10% by mass or more and 60% by mass or less with respect to the total solid content in the polymer layer.
  • the easy-adhesion layer used in the present invention may contain particles.
  • the particles used in the present invention can easily adjust the refractive index of the easy-adhesion layer. There may be only one type of particles used in the present invention, or two or more types.
  • the refractive index of the particles is preferably 1.60 or more and 3.00 or less, more preferably 1.80 or more and 2.80 or less, and further preferably 1.90 or more and 2.60 or less. By setting it as the said range, it can be made easy to adjust the refractive index of an easily bonding layer.
  • the average particle diameter of the particles is preferably 0.65 times or less with respect to the thickness of the easy adhesion layer. It is more preferably 0.50 times or less, and further preferably 0.40 times or less. By setting it as the said range, an unevenness
  • the average particle size of the particles was measured using a laser diffraction / scattering particle size distribution analyzer LA910 (manufactured by Horiba, Ltd.) using an aqueous dispersion of particles, and expressed in median size. Moreover, after manufacturing the laminated body of this invention, the average particle diameter of the particle
  • the particles are preferably contained in an amount of 40% by mass to 80% by mass with respect to the solid content of the easy adhesion layer. It is preferably 45 to 75% by mass, and more preferably 50 to 70% by mass. By setting it as the said range, while making it easy to adjust the refractive index of an easily bonding layer, particle
  • the particles include conductive metal particles and metal oxide particles, and metal oxide particles are preferable.
  • Examples of the conductive metal particles include particles of antimony, selenium, titanium, tungsten, tin, zinc, indium and the like.
  • the metal oxide particles include particles containing any one of tin oxide, zirconium oxide and titanium oxide as a main component.
  • the particle containing any one of tin oxide, zirconium oxide and titanium oxide as the main component in the present invention means that the compounding amount of any one of tin oxide, zirconium oxide and titanium oxide contained in the particle is 80% by mass or more. A certain particle. Among these, it is preferable to use tin oxide or zirconium oxide.
  • tin oxide As the tin oxide, tin (IV) oxide having a SnO 2 composition is preferably used.
  • tin oxide the use of tin oxide doped with antimony or the like has the effect of reducing the surface resistivity of the laminated film and preventing impurities such as dust from adhering because of its conductivity. Since it is obtained, it is preferable.
  • antimony-doped tin oxide commercially available products can also be used. FS-10D, SN-38F, SN-88F, SN-100F, TDL-S, TDL-1 (all of which are Ishihara Sangyo) Etc.).
  • inorganic oxide fine particles having no conductivity may be preferably used.
  • tin oxide prepared so that tin oxide is not doped with antimony or the like and the surface resistance is not lowered can be suitably used.
  • tin oxide doped with phosphorus for example, EP SPDL-2 manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd., an aqueous dispersion of P-doped SnO 2 having a particle size of 130 nm
  • Zirconium oxide has a composition of ZrO 2 , for example, NZS-20A, NZS-30.
  • A, OZ-S30K (all manufactured by Nissan Chemical Industries, Ltd.) and SZR-CW (manufactured by Sakai Chemical Industry Co., Ltd.) can be mentioned, and these can also be suitably used in the present invention.
  • titanium oxide (IV) having a composition of TiO 2 is preferably used. Titanium oxide has a rutile type (tetragonal high-temperature type), anatase type (tetragonal low-temperature type), etc. depending on the difference in crystal structure, but is not particularly limited. Further, titanium oxide subjected to surface treatment may be used. Examples of the titanium oxide used in the present invention include IT-S, IT-O, IT-W (all manufactured by Idemitsu Kosan Co., Ltd.), TTO-W-5 (manufactured by Ishihara Sangyo Co., Ltd.), and the like. And can also be suitably used in the present invention.
  • the shape of the particles used in the present invention may be acicular or spherical, but is preferably spherical.
  • the average particle diameter of the particles can be measured by the above-described method.
  • the diameter of a circle circumscribing such shaped particles can be determined as the particle diameter in the present invention.
  • the easily bonding layer used for this invention may contain members other than the member mentioned above as needed. An example will be described below.
  • the easy-adhesion layer used in the present invention may further contain a second polyester in addition to the above-described polyester having a naphthalene skeleton.
  • the glass transition temperature Tg 1 of the polyester having a naphthalene skeleton is set to 80 to 130 ° C.
  • the glass transition temperature Tg 2 of the second polyester is set to 0 to 80 ° C. It is also preferable to do.
  • Tg 1 and Tg 2 are set in the above range, adhesion between the polymer layer and other layers, particularly a hard coat layer described later, can be improved.
  • Tg 1 is preferably 90 to 120 ° C., and more preferably 100 to 115 ° C.
  • Tg 2 is preferably 20 to 70 ° C., more preferably 30 to 60 ° C.
  • Tg 1 -Tg 2 is preferably 20 ° C. or higher, and more preferably 40 ° C. or higher. By setting Tg 1 -Tg 2 to be equal to or more than the above lower limit value, the adhesion can be more effectively improved.
  • the glass transition temperature represents a glass transition temperature measured by DSC (Differential Scanning Calibration) as follows. Weigh 10 mg of polyester and set in an aluminum pan. At a rate of temperature increase of 10 ° C./min, the temperature is raised from room temperature to 300 ° C., rapidly cooled, and again heated at 10 ° C./min to obtain a DSC curve. The temperature at which the obtained DSC curve is bent is defined as the glass transition temperature.
  • DSC Different Scanning Calibration
  • the second polyester may contain one or more of terephthalic acid, isophthalic acid and sodium sulfoisophthalate as the acid component.
  • the second polyester resin may contain triethylene glycol as a diol component. Triethylene glycol can enhance the adhesiveness of the easy-adhesion layer formed using the second polyester.
  • the content of triethylene glycol is 10 to 50 mol% with respect to the total diol component of the second polyester resin.
  • the content of triethylene glycol may be 10 to 50 mol%, preferably 15 to 45 mol%, and more preferably 20 to 40 mol%.
  • the number average molecular weight of the second polyester is preferably 15000 to 40000.
  • the number average molecular weight of the second polyester is preferably 17000 to 30000, and more preferably 18000 to 25000.
  • the easy-adhesion layer used in the present invention may contain polyolefin, acrylic, polyurethane, rubber-based resin or the like as a binder in order to further improve the adhesion to the polyester film.
  • content in the easily bonding layer of the binder used for this invention 0.5 to 40 mass% is preferable with respect to the total solid of an easily bonding layer, and 1.5 to 30 mass% is preferable. Is more preferable.
  • the polyolefin preferably has a polar group such as a carboxyl group as an ionomer of the polyolefin having a polar group. It may be used by dissolving in an organic solvent, or an aqueous dispersion may be used. However, since the environmental load is small, it is preferable to attach with an aqueous system using an aqueous dispersion.
  • a commercially available product may be used as the aqueous dispersion and is not particularly limited. Examples of those that can be preferably used in the present invention include Chemipearl S75N (manufactured by Mitsui Chemicals), Arrow Base SE1200.
  • Arrowbase SB1200 (above, manufactured by Unitika Ltd.), Hitech S3111, S3121 (above, produced by Toho Chemical Co., Ltd.), and the like. Only one type of polyolefin may be included, or two or more types may be included.
  • acrylic acrylic containing methacrylate and ethyl acrylate and other copolymerization components is preferable, and those described in paragraphs [0145] to [0146] of JP2012-101449A can be used.
  • Commercially available products may also be used, and specific examples include AS-563A manufactured by Daicel Finechem Co., Ltd. (product name) and the like.
  • Acrylic has a glass transition temperature of preferably ⁇ 50 to 120 ° C., and more preferably ⁇ 30 to 100 ° C.
  • the weight average molecular weight of acrylic is preferably 3000 to 1000000.
  • the polyurethane is preferably composed of polyol, polyisocyanate, chain extender, cross-linking agent, etc., and those described in paragraph [0035] of JP2012-056220A can be used.
  • the easy-adhesion layer used in the present invention may contain a crosslinking agent.
  • the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • a carbodiimide type crosslinking agent and an oxazoline type crosslinking agent are preferable.
  • a compound having a plurality of carbodiimide structures in the molecule is preferable.
  • a compound having a plurality of carbodiimide groups in the molecule can be used without particular limitation.
  • Polycarbodiimide is usually synthesized by condensation reaction of organic diisocyanate, but the organic group of the organic diisocyanate used in this synthesis is not particularly limited, either aromatic or aliphatic, or a mixture thereof It can be used. From the viewpoint of reactivity, an aliphatic type is particularly preferable.
  • organic isocyanate organic diisocyanate, organic triisocyanate and the like are used.
  • organic isocyanate those described in paragraph [0024] of JP2009-220316A can be used.
  • the carbodiimide-based crosslinking agent used in the present invention may be a commercially available product, and specific examples include Carbodilite V-02-L2 manufactured by Nisshinbo Co., Ltd.
  • JP 2012-231029 A As the oxazoline-based crosslinking agent, those described in paragraph [0078] of JP 2012-231029 A can be used. Commercial products may also be used, such as Epochros K2010E, K2020E, K2030E, WS500, WS500, and WS700 manufactured by Nippon Shokubai Chemical Industry Co., Ltd.
  • the cross-linking agent used in the present invention is preferably added in the range of 0.5 to 50% by mass, more preferably in the range of 1 to 30% by mass, with respect to the total solid content of the easy-adhesion layer. That is.
  • the addition amount 1% by mass or more, the particles contained in the easy-adhesion layer can be effectively prevented from peeling off.
  • the addition amount is 50% by mass or less, the surface shape tends to be further improved.
  • Two or more types of crosslinking agents may be included, and when two or more types are included, the total amount is preferably within the above range.
  • the easy-adhesion layer used in the present invention may contain a matting agent for improving the slipperiness of the laminated film.
  • a matting agent for improving the slipperiness of the laminated film.
  • the matting agent either organic or inorganic fine particles can be used.
  • polymer fine particles such as polystyrene, polymethyl methacrylate, silicone resin, and benzoguanamine resin
  • inorganic fine particles such as silica, calcium carbonate, magnesium oxide, and magnesium carbonate can be used.
  • polystyrene, polymethyl methacrylate, and silica are preferable from the viewpoint of the effect of improving the slipperiness and cost.
  • These particles may be used alone or as a colloid dispersed in a dispersion medium such as water, such as colloidal silica.
  • a dispersion medium such as water, such as colloidal silica.
  • examples of commercially available products include Snowtex XL (manufactured by Nissan Chemical Industries, Ltd.). Two or more kinds of matting agents may be included.
  • the average particle size of the matting agent is preferably 0.03 to 1 ⁇ m, more preferably 0.05 to 0.5 ⁇ m.
  • the average particle size of the matting agent is 0.03 ⁇ m or more, the effect of improving the slip property is effectively exhibited, and when the average particle size is 1 ⁇ m or less, the laminated film is incorporated into a display device such as a touch panel. There is a tendency to suppress the deterioration of display quality.
  • the average particle size of the matting agent is preferably 0.65 times or less the thickness of the easy-adhesion layer, like the average particle size of the particles of the polymer layer. It is more preferably 0.50 times or less, and further preferably 0.40 times or less. By setting it as the said range, an unevenness
  • the average particle diameter of the matting agent in the present invention is a value measured by the same method as the average particle diameter of the particles included in the polymer layer.
  • the easy-adhesion layer used in the present invention may have a surfactant to reduce repellency and the like when a functional layer such as a hard coat layer is applied to the surface of the easy-adhesion layer.
  • a surfactant the above-described surfactants can be used.
  • the easy-adhesion layer used in the present invention may have an antistatic agent to prevent the easy-adhesion layer from being charged by static electricity or the like.
  • the type of the antistatic agent is not particularly limited.
  • an electron conductive polymer such as polyaniline and polypyrrole, an ion conductive polymer having a carboxyl group or a sulfonic acid group in the molecular chain, conductive fine particles, etc. Is mentioned.
  • the conductive tin oxide fine particles described in JP-A-61-20033 can be preferably used from the viewpoints of conductivity and transparency.
  • the addition amount of the antistatic agent is preferably added so that the surface resistivity of the easy adhesion layer measured in an atmosphere of 25 ° C. and 30% relative humidity is 1 ⁇ 10 5 ⁇ or more and 1 ⁇ 10 13 ⁇ or less.
  • the surface resistivity can be suppressed 1 ⁇ 10 and a 5 Omega or lower the amount of the antistatic agent tends to improve transparency of the laminate, by the following 1 ⁇ 10 13 Omega, dust It tends to be less likely to adhere.
  • the easy-adhesion layer used in the present invention preferably contains an aliphatic wax as a slipping agent in order to obtain the lubricity of the layer surface.
  • aliphatic wax examples include plant-based waxes such as carnauba wax, candelilla wax, rice wax, wood wax, jojoba oil, palm wax, rosin modified wax, cucumber wax, sugar cane wax, esparto wax, and bark wax.
  • Animal waxes such as beeswax, lanolin, whale wax, ibota wax, shellac wax, mineral waxes such as montan wax, ozokerite, ceresin wax, petroleum waxes such as paraffin wax, microcrystalline wax, petrolactam, and fishertro push wax
  • synthetic hydrocarbon waxes such as polyethylene wax, oxidized polyethylene wax, polypropylene wax, and oxidized polypropylene wax.
  • carnauba wax, paraffin wax, and polyethylene wax are particularly preferable because they are easy to adhere to a hard coat layer and a pressure-sensitive adhesive and have good lubricity.
  • These are also preferably used as aqueous dispersions because they can reduce the environmental burden and are easy to handle.
  • Examples of commercially available products include Cellosol 524 (manufactured by Chukyo Yushi Co., Ltd.).
  • the laminate for a touch panel of the present invention may have an antireflection layer between the transparent electrode layer and the protective layer. By having the antireflection layer, the pattern visibility of the transparent electrode layer is improved.
  • the refractive index of the antireflection layer is preferably 1.6 or more, more preferably 1.65 or more. Although there is no restriction
  • the antireflection layer preferably contains metal oxide particles, a resin (preferably an alkali-soluble resin), a polymerizable compound, a polymerization initiator, or a polymerization initiation system. Furthermore, an additive etc. are used, but it is not restricted to this.
  • the antireflection layer may be a transparent resin film or an inorganic film.
  • inorganic films used in JP 2010-86684 A, JP 2010-152809 A, JP 2010-257492 A, and the like can be used, which are described in these documents. From the viewpoint of controlling the refractive index, it is preferable to use an inorganic film having a laminated structure of a low refractive index material and a high refractive index material, or an inorganic film having a mixed film of a low refractive index material and a high refractive index material.
  • the inorganic layer may be a mixed layer of SiO 2 and Nb 2 O 5, and more preferably that case is a mixed film of SiO 2 and Nb 2 O 5 formed by sputtering.
  • the antireflection layer is preferably a transparent resin film.
  • the method for controlling the refractive index of the antireflection layer that is the transparent resin film is not particularly limited, but a transparent resin film having a desired refractive index is used alone, or fine particles such as metal fine particles and metal oxide fine particles are added. A transparent resin film that has been used can be used.
  • the antireflection layer preferably contains particles, and more preferably contains metal oxide particles.
  • the resin composition used for the antireflection layer which is the transparent resin film preferably contains metal oxide particles for the purpose of adjusting the refractive index and light transmittance. Since the metal oxide particles have high transparency and light transmittance, a composition having a high refractive index and excellent transparency can be obtained.
  • the metal oxide particles preferably have a refractive index higher than the refractive index of the resin composition made of a material excluding the particles.
  • the antireflection layer has a wavelength of 400 to 750 nm. It is preferable to include particles having a refractive index of 1.60 to 3.00 in the light having, preferably including particles having a refractive index of 1.70 or more, and more preferably including particles of 1.90 or more.
  • the refractive index of light having a wavelength of 400 to 750 nm being 1.60 or more means that the average refractive index of light having a wavelength in the above range is 1.60 or more. It is not necessary that the refractive index of all light having a wavelength is 1.60 or more.
  • the average refractive index is a value obtained by dividing the sum of the measured values of the refractive index for each light having a wavelength in the above range by the number of measurement points.
  • the metal of the metal oxide particles includes semimetals such as B, Si, Ge, As, Sb, and Te.
  • the light-transmitting and high refractive index metal oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb.
  • Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Sb, Bi, Te, etc.
  • titanium oxide, titanium composite oxide, zinc oxide, tin oxide, oxidation Zirconium, indium / tin oxide and antimony / tin oxide particles are more preferred, titanium oxide, titanium composite oxide, tin oxide and zirconium oxide particles are more preferred, and zirconium oxide particles are most preferred.
  • the surface of these metal oxide particles can be treated with an organic material in order to impart dispersion stability.
  • the average primary particle diameter of the metal oxide particles is preferably 1 to 200 nm, particularly preferably 3 to 80 nm.
  • the average primary particle diameter of the particles refers to an arithmetic average obtained by measuring the particle diameter of 200 arbitrary particles with an electron microscope. When the particle shape is not spherical, the longest side is the diameter.
  • the said metal oxide particle may be used individually by 1 type, and can also use 2 or more types together.
  • the content of the metal oxide particles in the antireflection layer that is the transparent resin film may be appropriately determined in consideration of the refractive index required for the optical member obtained from the resin composition, light transmittance, and the like.
  • the content of the antireflection layer, which is the transparent resin film can be 5 to 95% by mass, preferably 5 to 80% by mass, and more preferably 40 to 80% by mass. preferable.
  • the antireflection layer that is the transparent resin film preferably has at least one of ZrO 2 particles and TiO 2 particles from the viewpoint of controlling the refractive index within the range of the refractive index of the antireflection layer, and the ZrO 2 particles are more preferable.
  • the resin (referred to as binder and polymer) used for the antireflection layer which is a transparent resin film and other additives are not particularly limited as long as they are not contrary to the gist of the present invention.
  • the antireflection layer is a transparent resin film, components other than the particles of the antireflection layer can be the same as those of the protective layer.
  • an alkali-soluble resin As the resin (referred to as binder or polymer) used in the antireflection layer, an alkali-soluble resin is preferable.
  • the alkali-soluble resin include paragraphs [0025] of JP2011-95716A and JP2010-237589A.
  • the polymers described in paragraphs [0033] to [0052] can be used.
  • the polymerizable compound the polymerizable compounds described in paragraphs [0023] to [0024] of Japanese Patent No. 4098550 can be used.
  • the polymerization initiator or polymerization initiation system the polymerizable compounds described in [0031] to [0042] described in JP2011-95716A can be used.
  • an additive may be used in the antireflection layer.
  • the additive include surfactants described in paragraph [0017] of Japanese Patent No. 4502784, paragraphs [0060] to [0071] of JP-A-2009-237362, and paragraph [ And the other additives described in paragraphs [0058] to [0071] of JP-A No. 2000-310706.
  • the thickness of the antireflection layer is preferably 500 nm or less, and more preferably 100 nm or less.
  • the thickness of the antireflection layer is particularly preferably from 55 to 100 nm, more preferably from 60 to 90 nm, even more preferably from 70 to 90 nm.
  • the manufacturing method of the laminated body for touchscreens of this invention is a laminated body for touchscreens of this invention, Comprising: A front layer board with a transparent electrode layer which has a glass substrate and a transparent electrode layer has a protective layer and a polymer layer in this order. Including a step of laminating a laminated material such that the surface on the transparent electrode layer side and the surface on the protective layer side face each other, wherein the glass substrate is a part of ions having an ion radius smaller than potassium ions in glass or It is characterized by being subjected to a chemical strengthening treatment that replaces all with potassium ions.
  • the manufacturing method of the laminated body for touchscreens of this invention can be manufactured by laminating
  • the said transfer process is a process of laminating
  • Lamination (bonding) of the protective layer and the polymer layer to the surface of the glass substrate is performed by stacking the protective layer and the polymer layer on the surface of the transparent electrode pattern, and applying pressure and heating.
  • known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
  • a surface treatment can be applied to the non-contact surface of the glass substrate (front plate) in advance.
  • the surface treatment it is preferable to perform a surface treatment (silane coupling treatment) using a silane compound.
  • silane coupling agent those having a functional group that interacts with the photosensitive resin are preferable.
  • a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.
  • a heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.
  • the transparent electrode pattern is formed by using the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 forming method in the description of the capacitive input device of the present invention described later.
  • a method using a photosensitive film that can be formed on a glass substrate is preferred.
  • the transfer step includes the first photocurable resin layer for etching and the second photocurable resin layer for etching (hereinafter collectively referred to as photocurable resin layer) of the transfer film from which the protective film has been removed, which will be described later. Is also transferred onto the transparent electrode layer.
  • a method including a step of removing the temporary support after laminating the photocurable resin layer of the transfer film on the transparent electrode pattern is preferable.
  • Transfer (bonding) of the photocurable resin layer to the surface of the base material is performed by overlaying the photocurable resin layer on the surface of the transparent electrode pattern, and applying pressure and heating.
  • known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
  • the transfer film has a temporary support and the first photocurable resin layer for etching or the second photocurable resin layer for etching.
  • a temporary support a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used.
  • Examples of such a support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.
  • the thickness of the temporary support is not particularly limited and is generally in the range of 5 to 200 ⁇ m, and in the range of easy handling and versatility, the range of 10 to 150 ⁇ m is particularly preferable.
  • the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like. Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
  • Thermoplastic resin layer >> The transfer film is preferably provided with a thermoplastic resin layer between the temporary support and the first photocurable resin layer for etching or the second photocurable resin layer for etching.
  • thermoplastic resin layer is preferably alkali-soluble.
  • the thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness of the base surface (including unevenness due to already formed images, etc.), and according to the unevenness of the target surface. It is preferable to have a property that can be deformed.
  • the thermoplastic resin layer preferably includes an organic polymer substance described in JP-A-5-72724 as a component.
  • the Vicat method specifically, a polymer obtained by American Material Testing Method ASTM D1235
  • polyolefins such as polyethylene and polypropylene, ethylene copolymers with ethylene and vinyl acetate or saponified products thereof, copolymers of ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride and vinyl chloride, Vinyl chloride copolymer with vinyl acetate or saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer with styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, Vinyl toluene copolymer of vinyl toluene and (meth) acrylic acid ester or saponified product thereof, poly (meth) acrylic acid ester, (meth) acrylic acid ester copolymer weight of butyl (meth) acrylate and vinyl acetate, etc.
  • the layer thickness of the thermoplastic resin layer is preferably 3 to 30 ⁇ m.
  • the thickness of the thermoplastic resin layer is more preferably 4 to 25 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the thermoplastic resin layer can be formed by applying a preparation liquid containing a thermoplastic organic polymer, and the preparation liquid used for the application can be prepared using a solvent.
  • the solvent is not particularly limited as long as it can dissolve the polymer component constituting the layer, and examples thereof include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, 2-propanol and the like.
  • thermoplastic resin layer and photocurable resin layer The viscosity of the thermoplastic resin layer measured at 100 ° C. is in the region of 1000 to 10,000 Pa ⁇ sec, the viscosity of the photocurable resin layer measured at 100 ° C. is in the region of 2000 to 50000 Pa ⁇ sec, and the following formula ( It is preferable to satisfy A).
  • the viscosity of each layer can be measured as follows.
  • the solvent is removed from the coating solution for the thermoplastic resin layer or the photocurable resin layer by drying under atmospheric pressure and reduced pressure to obtain a measurement sample.
  • Vibron DD-III type: manufactured by Toyo Baldwin Co., Ltd.
  • Vibron Can be used under the conditions of a measurement start temperature of 50 ° C., a measurement end temperature of 150 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz / deg, and a measurement value of 100 ° C.
  • the transfer film further includes an intermediate layer between the photo-curable resin layer and the thermoplastic resin, from the viewpoint of preventing mixing of components when applying a plurality of layers and during storage after application. ,preferable.
  • an oxygen-blocking film having an oxygen-blocking function which is described as “separation layer” in JP-A No. 5-72724, is preferable. And productivity is improved.
  • the transfer film is preferably further provided with a protective film (protective release layer) or the like on the surface of the photocurable resin layer.
  • the transfer film can be produced according to the method for producing a photosensitive transfer material described in paragraphs [0094] to [0098] of JP-A-2006-259138.
  • JP-A-2006-23696 As examples of the exposure step, the development step, and other steps, the methods described in paragraph numbers [0035] to [0051] of JP-A-2006-23696 can be preferably used in the present invention.
  • the exposure step is a step of exposing the photocurable resin layer transferred onto the transparent electrode layer.
  • a predetermined mask is disposed above the photocurable resin layer formed on the transparent electrode layer, and then the light is applied from above the mask through the mask, the thermoplastic resin layer, and the intermediate layer.
  • Examples thereof include a method of exposing the curable resin layer, and a method of exposing the entire surface of the photocurable resin layer through a thermoplastic resin layer and an intermediate layer without using a mask.
  • the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.).
  • the exposure amount is usually about 5 to 200 mJ / cm 2 , preferably 10 to 100 m. It is about J / cm 2 .
  • the developing step is a step of developing the exposed photocurable resin layer for etching.
  • the developing step is not a developing step in a narrow sense in which the pattern-exposed photocurable resin layer is pattern-developed with a developer, but only the thermoplastic resin layer and the intermediate layer are removed after the entire surface exposure.
  • the photo-curable resin layer itself is a developing step that includes a case where a pattern is not formed.
  • the development can be performed using a developer.
  • the developer is not particularly limited, and known developers such as those described in JP-A-5-72724 can be used.
  • the developer in the case where the photo-curable resin layer itself does not form a pattern preferably has a development behavior that does not dissolve the non-alkali development type colored composition layer.
  • a small amount of an organic solvent miscible with water may be added to the developer.
  • organic solvents miscible with water examples include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ⁇ -caprolactone, ⁇ -butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ⁇ -caprolactam, N-methylpyrrolidone and the like.
  • the concentration of the organic solvent is preferably 0.1% by mass to 30% by mass.
  • a known surfactant can be added to the developer.
  • the concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
  • the development method may be any of paddle development, shower development, shower & spin development, dip development, and the like.
  • shower development will be described.
  • An uncured portion can be removed by spraying a developer onto the photocurable resin layer after exposure.
  • an alkaline solution having a low solubility of the photocurable resin layer is sprayed by a shower or the like before development to remove the thermoplastic resin layer or the intermediate layer. It is preferable to keep it.
  • it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like.
  • the liquid temperature of the developer is preferably 20 ° C. to 40 ° C.
  • the pH of the developer is preferably 8 to 13.
  • the manufacturing method of the capacitance-type input device may have other processes such as a post-exposure process and a post-bake process.
  • a post-exposure process When the first photocurable resin layer for etching and the second photocurable resin layer for etching are thermosetting transparent resin layers, it is preferable to perform a post-bake process.
  • patterning exposure and whole surface exposure may be performed after peeling the temporary support, or may be performed before peeling the temporary support, and then the temporary support may be peeled off. Exposure through a mask or digital exposure using a laser or the like may be used.
  • the capacitance-type input device of the present invention has the laminate of the present invention.
  • the capacitive input device of the present invention has a transparent electrode pattern, an antireflection layer disposed adjacent to the transparent electrode pattern, and a protective layer disposed adjacent to the antireflection layer,
  • the refractive index of the antireflection layer is preferably higher than the refractive index of the protective layer, and the refractive index of the antireflection layer is preferably 1.6 or more.
  • the capacitance-type input device of the present invention includes at least the following (3) to (5), (7) on the front plate (corresponding to the glass substrate in the laminate of the present invention) and the non-contact side of the front plate. And it is preferable to have the laminated body of this invention.
  • the antireflection layer corresponds to the antireflection layer in the laminate of the invention.
  • the (8) protective layer corresponds to the protective layer in the laminate of the present invention.
  • the protective layer is preferably a so-called transparent protective layer in a generally known capacitance type input device.
  • the (4) second electrode pattern may be a transparent electrode pattern or a transparent electrode pattern, but is preferably a transparent electrode pattern.
  • the capacitive input device of the present invention may further have the following element (6).
  • (6) A conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern and is different from the first transparent electrode pattern and the second transparent electrode pattern
  • the first transparent electrode pattern is It corresponds to the transparent electrode pattern in the laminate.
  • the (3) first transparent electrode pattern and the (7) second electrode pattern At least one of the electrode patterns corresponds to the transparent electrode pattern in the laminate of the present invention.
  • the second electrode pattern is not a transparent electrode pattern but has (6) another conductive element
  • (3) the first transparent electrode pattern and (6) another conductive element At least one of them corresponds to the transparent electrode pattern in the laminate of the present invention.
  • the second electrode pattern is a transparent electrode pattern and (6) has another conductive element
  • (3) the first transparent electrode pattern, (7) the second electrode pattern At least one of the other conductive elements (6) corresponds to the transparent electrode pattern in the transparent laminate of the present invention.
  • the capacitance-type input device of the present invention preferably further has (1) a mask layer and / or a decoration layer as necessary.
  • the mask layer is provided as a black frame around the area touched by a finger or a touch pen so that the transparent wiring of the transparent electrode pattern cannot be seen from the contact side or is decorated.
  • the decoration layer is provided for decoration, for example, it is preferable to provide a white decoration layer.
  • the (1) mask layer and / or the decorative layer may comprise (2) the transparent film and the front plate, (3) the first transparent electrode pattern and the front plate, and (4) the second transparent electrode pattern. And the front plate or (6) another conductive element and the front plate.
  • the (1) mask layer and / or decorative layer is more preferably provided adjacent to the front plate.
  • the capacitance-type input device of the present invention includes such various members, the antireflection layer disposed adjacent to the transparent electrode pattern and the antireflection layer disposed adjacent to the transparent electrode pattern.
  • the transparent electrode pattern can be made inconspicuous, and the visibility problem of the transparent electrode pattern can be improved.
  • the transparent electrode pattern is sandwiched between the transparent film having the refractive index of 1.6 to 1.78 and the film thickness of 55 to 110 nm and the antireflection layer, thereby further transparent. The problem of the visibility of the electrode pattern can be improved.
  • FIG. 2 is a cross-sectional view showing a preferred configuration of the capacitive input device of the present invention.
  • the capacitive input device has the laminate of the present invention. Specifically, the front plate 1, the decorative layer 2a, the mask layer 2b, the first transparent electrode pattern 3, The second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and the transparent protective layer 7 are included.
  • a transparent protective plate 7 has a polymer layer (not shown) on the opposite side of the front plate 1 side.
  • a mask layer 2 b is provided on the non-contact surface of the front plate 1.
  • the mask layer 2b is a frame-like pattern around the display area formed on the non-contact side of the front panel of the touch panel, and is formed so as not to show the lead wiring or the like.
  • the capacitance type input device of the present invention is provided with a mask layer 2 so as to cover a part of the front plate 1 (a region other than the input surface in FIG. 1).
  • the front plate 1 can be provided with an opening 8 in part as shown in FIG. A mechanical switch by pressing can be installed in the opening 8.
  • a plurality of first transparent electrode patterns 3 formed by extending a plurality of pad portions in the first direction via connection portions;
  • a plurality of second transparent electrode patterns 4 made of a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction, the first transparent electrode pattern 3 and the second An insulating layer 5 that electrically insulates the transparent electrode pattern 4 is formed.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 to be described later those mentioned as the material for the transparent electrode pattern in the laminate of the present invention can be used.
  • a membrane is preferred.
  • At least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4 extends over both the non-contact surface of the front plate 1 and the region of the mask layer 2 opposite to the front plate 1.
  • FIG. 2 a diagram is shown in which the second transparent electrode pattern is disposed across both the non-contact surface of the front plate 1 and the area of the mask layer 2 opposite to the front plate 1. Yes.
  • an expensive film such as a vacuum laminator can be used by using a photosensitive film having a specific layer structure to be described later. Even without the use of equipment, it is possible to perform lamination without generating bubbles at the boundary of the mask portion with a simple process.
  • FIG. 4 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention.
  • the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction via the connection portion 3b.
  • the second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction intersecting the first direction (second direction in FIG. 4). It is constituted by a plurality of pad portions that are formed.
  • the pad portion 3a and the connection portion 3b may be manufactured as one body, or only the connection portion 3b is manufactured and the pad portion 3a and the second portion 3b are formed.
  • the transparent electrode pattern 4 may be integrally formed (patterned).
  • the pad portion 3a and the second transparent electrode pattern 4 are manufactured (patterned) as a single body (patterning), a part of the connection part 3b and a part of the pad part 3a are connected as shown in FIG.
  • Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.
  • a conductive element 6 is provided on the side of the mask layer 2 opposite to the front plate 1.
  • the conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4. Is another element.
  • FIG. 2 shows a diagram in which the conductive element 6 is connected to the second transparent electrode pattern 4.
  • the protective layer 7 is installed so that all of each component may be covered.
  • the protective layer 7 may be configured to cover only a part of each component.
  • the insulating layer 5 and the protective layer 7 may be made of the same material or different materials. As the material constituting the insulating layer 5, those mentioned as the material for the antireflection layer or protective layer in the laminate of the present invention can be preferably used.
  • FIG. 5 is a top view showing an example of the tempered glass 11 in which the opening 8 is formed.
  • FIG. 6 is a top view showing an example of the front plate on which the mask layer 2 is formed.
  • FIG. 7 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed.
  • FIG. 8 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed.
  • FIG. 9 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed.
  • a laminate material is used to form a surface on the front plate 1 on which each element is arbitrarily formed. It can be formed by laminating the antireflection layer.
  • At least one element of the mask layer 2, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, and the conductive element 6 is: It is preferable to form using the said photosensitive film which has a temporary support body and a photocurable resin layer in this order.
  • the said photosensitive film which has a temporary support body and a photocurable resin layer in this order.
  • the photosensitive film Using the photosensitive film, permanent materials such as the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element when the mask layer, the insulating layer, and the conductive photocurable resin layer are used are formed.
  • the photosensitive film is laminated on the substrate and then exposed in a pattern as necessary.
  • the non-exposed part In the case of negative type material, the non-exposed part is exposed, and in the case of positive type material, the exposed part is developed and removed. By doing so, a pattern can be obtained.
  • the thermoplastic resin layer and the photocurable layer may be developed and removed with separate liquids, or may be removed with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
  • the photosensitive film other than the transfer film which is preferably used when manufacturing the capacitive input device of the present invention, will be described.
  • the photosensitive film preferably has a temporary support and a photocurable resin layer, and preferably has a thermoplastic resin layer between the temporary support and the photocurable resin layer. If a mask layer or the like is formed using the photosensitive film having the thermoplastic resin layer, bubbles are not easily generated in the element formed by transferring the photocurable resin layer, and image unevenness occurs in the image display device. Therefore, excellent display characteristics can be obtained.
  • the photosensitive film may be a negative type material or a positive type material.
  • production method- As the temporary support and the thermoplastic resin layer in the photosensitive film, the same materials as those used in the transfer film of the present invention can be used. Also, as the method for producing the photosensitive film, the same method as the method for producing the transfer film can be used.
  • the said photosensitive film adds an additive to a photocurable resin layer according to the use. That is, when using the said photosensitive film for formation of a mask layer, a coloring agent is contained in a photocurable resin layer. Moreover, when the said photosensitive film has an electroconductive photocurable resin layer, an electroconductive fiber etc. contain in the said photocurable resin layer.
  • the photocurable resin layer preferably contains an alkali-soluble resin, a polymerizable compound, a polymerization initiator, or a polymerization initiation system. Furthermore, conductive fibers, colorants, other additives, and the like are used, but are not limited thereto.
  • a solid structure or a hollow structure is preferable.
  • the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”.
  • a conductive fiber having an average minor axis length of 5 nm to 1,000 nm and an average major axis length of 1 ⁇ m to 100 ⁇ m may be referred to as “nanowire”.
  • a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 ⁇ m to 1,000 ⁇ m, and having a hollow structure may be referred to as “nanotube”.
  • the material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable, and among these, The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
  • the material of the metal nanowire is not particularly limited.
  • at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable.
  • at least one metal selected from Group 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14.
  • At least one metal selected from the group is more preferable, and it is particularly preferable to include it as a main component.
  • Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable. Containing mainly silver means that the metal nanowire contains 50% by mass or more, preferably 90% by mass or more. Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
  • the shape of the metal nanowire is not particularly limited and can be appropriately selected depending on the purpose. In applications where high transparency is required, a cylindrical shape and a cross-sectional shape with rounded polygonal corners are preferred.
  • the cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners.
  • the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness.
  • the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line.
  • a cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners.
  • the sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at the corners, and plasmon absorption may increase, or the transparency may deteriorate due to yellowing or the like. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise.
  • the lower limit of the sharpness is preferably 30%, more preferably 40%.
  • the average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, and more preferably 10 n m to 40 nm is more preferable, and 15 nm to 35 nm is particularly preferable.
  • the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated.
  • the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
  • the average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
  • the average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 35 ⁇ m, and even more preferably 5 ⁇ m to 30 ⁇ m. If the average major axis length is less than 1 ⁇ m, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 ⁇ m, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
  • the average major axis length of the metal nanowires is, for example, observed with 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle
  • the thickness of the conductive photocurable resin layer is preferably from 0.1 to 20 ⁇ m, and preferably from 0.5 to 18 ⁇ m, from the viewpoint of process suitability such as coating solution stability, drying during coating, and development time during patterning. Further preferred is 1 to 15 ⁇ m.
  • the content of the conductive fiber based on the total solid content of the conductive photocurable resin layer is preferably 0.01 to 50% by mass, and 0.05 to 30% by mass from the viewpoints of conductivity and coating solution stability. % Is more preferable, and 0.1 to 20% by mass is particularly preferable.
  • a coloring agent can be used for a photocurable resin layer.
  • a coloring agent can be used for a photocurable resin layer.
  • known colorants organic pigments, inorganic pigments, dyes, etc.
  • a mixture of pigments such as red, blue, and green can be used.
  • the photocurable resin layer is used as a black mask layer, it is preferable to include a black colorant from the viewpoint of optical density.
  • the black colorant include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. Among these, carbon black is preferable.
  • white pigments described in paragraphs [0015] and [0114] of JP-A-2005-7765 can be used.
  • pigments or dyes described in paragraphs [0183] to [0185] of Japanese Patent No. 4546276 may be mixed and used.
  • the colorants described in paragraph numbers [0080] to [0088] of JP-A-2005-17521 can be suitably used.
  • the colorant preferably a pigment, more preferably carbon black
  • This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the colorant and the pigment dispersant in an organic solvent (or vehicle) described later.
  • the vehicle is a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it.
  • Component organic solvent
  • the disperser used for dispersing the pigment is not particularly limited.
  • the kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, first edition, Asakura Shoten, 2000, 438 Known dispersing machines such as a roll mill, an atrider, a super mill, a dissolver, a homomixer, and a sand mill can be used. Further, fine grinding may be performed using frictional force by mechanical grinding described on page 310 of the document.
  • the colorant preferably has a number average particle size of 0.001 ⁇ m to 0.1 ⁇ m, more preferably 0.01 ⁇ m to 0.08 ⁇ m, from the viewpoint of dispersion stability.
  • the “particle diameter” as used herein refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and the “number average particle diameter” is the above-mentioned particle diameter for a large number of particles, This 100 average value is said.
  • the layer thickness of the photocurable resin layer containing the colorant is preferably 0.5 to 10 ⁇ m, more preferably 0.8 to 5 ⁇ m, and particularly preferably 1 to 3 ⁇ m, from the viewpoint of thickness difference from other layers.
  • the content of the colorant in the solid content of the colored photosensitive resin composition is not particularly limited, but is preferably 15 to 70% by mass from the viewpoint of sufficiently shortening the development time, and preferably 20 to 60%. More preferably, it is more preferably 25 to 50% by mass.
  • the total solid content as used in this specification means the total mass of the non-volatile component remove
  • the layer thickness of the photocurable resin layer is preferably from 0.1 to 5 ⁇ m, more preferably from 0.3 to 3 ⁇ m from the viewpoint of maintaining insulation. 0.5 to 2 ⁇ m is particularly preferable.
  • the photosensitive film is a negative type material
  • the photosensitive film may be a positive type material.
  • the photosensitive film is a positive type material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but the material is not limited thereto.
  • thermoplastic resin layer -Viscosity of thermoplastic resin layer and photocurable resin layer-
  • the viscosity of the thermoplastic resin layer measured at 100 ° C. is in the region of 1000 to 10,000 Pa ⁇ sec
  • the viscosity of the photocurable resin layer measured at 100 ° C. is in the region of 2000 to 50000 Pa ⁇ sec
  • the viscosity of each layer can be measured as follows.
  • the solvent is removed from the coating solution for the thermoplastic resin layer or the photocurable resin layer by drying under atmospheric pressure and reduced pressure to obtain a measurement sample.
  • Vibron DD-III type: manufactured by Toyo Baldwin Co., Ltd.
  • Vibron Can be used under the conditions of a measurement start temperature of 50 ° C., a measurement end temperature of 150 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz / deg.
  • the mask layer 2 and the insulating layer 5 can be formed by transferring a photocurable resin layer to the front plate 1 or the like using the photosensitive film.
  • the black photocurable resin is formed on the surface of the front plate 1 using the photosensitive film having a black photocurable resin layer as the photocurable resin layer. It can be formed by transferring the layer.
  • the front plate 1 on which the first transparent electrode pattern is formed using the photosensitive film having an insulating photocurable resin layer as the photocurable resin layer It can be formed by transferring the photocurable resin layer to the surface.
  • the photosensitive film having the specific layer structure including the thermoplastic resin layer between the photocurable resin layer and the temporary support is used. Generation of bubbles during lamination can be prevented, and a high-quality mask layer 2 and the like having no light leakage can be formed.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 may be formed by using the photosensitive film having an etching treatment or a conductive photocurable resin layer, or using a photosensitive film. It can be formed using as a lift-off material.
  • the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 are formed by etching, first, on the non-contact surface of the front plate 1 on which the mask layer 2 and the like are formed.
  • a transparent electrode layer such as ITO is formed by sputtering.
  • an etching pattern is formed by exposure and development using the photosensitive film having an etching photocurable resin layer as the photocurable resin layer on the transparent electrode layer.
  • the transparent electrode layer is etched to pattern the transparent electrode, and the etching pattern is removed, whereby the first transparent electrode pattern 3 and the like can be formed.
  • etching pattern when the photosensitive film is used as an etching resist (etching pattern), a resist pattern can be obtained in the same manner as in the above method.
  • etching etching or resist stripping can be applied by a known method described in paragraphs [0048] to [0054] of JP 2010-152155 A.
  • an etching method there is a commonly performed wet etching method of dipping in an etching solution.
  • an acid type or an alkaline type may be appropriately selected according to an object to be etched.
  • acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done.
  • the acidic component a combination of a plurality of acidic components may be used.
  • alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate.
  • alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate.
  • a mixed aqueous solution of a salt such as A combination of a plurality of alkali components may be used as the alkali component.
  • the temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower.
  • the resin pattern used as an etching mask (etching pattern) in the present invention is formed by using the above-described photocurable resin layer, so that it is particularly suitable for acidic and alkaline etching solutions in such a temperature range. Excellent resistance. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
  • a cleaning process and a drying process may be performed as necessary to prevent line contamination.
  • the cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
  • the method of peeling the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes.
  • the resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resin pattern peeling residue is reduced.
  • the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching process, while in the peeling process. Good peelability will be exhibited, and both conflicting properties of chemical resistance and peelability can be satisfied.
  • the stripping solution examples include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these. What was melt
  • dissolved in this mixed solution is mentioned. You may peel by the spray method, the shower method, the paddle method etc. using the said peeling liquid.
  • the front plate 1 It can be formed by transferring the conductive photocurable resin layer to the surface.
  • the first transparent electrode pattern 3 or the like is formed using a photosensitive film having the conductive photocurable resin layer, there is no leakage of resist components from the opening portion even on a substrate (front plate) having an opening portion. Without contaminating the back side of the substrate, it is possible to manufacture a touch panel having a merit of thin layer / light weight by a simple process.
  • the first transparent electrode pattern 3 or the like is formed by using the photosensitive film having a specific layer structure including a thermoplastic resin layer between the conductive photocurable resin layer and the temporary support. It is possible to prevent the generation of bubbles when laminating the conductive film, and to form the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 with excellent conductivity and low resistance.
  • a 1st transparent electrode layer, a 2nd transparent electrode layer, and another electroconductive member can also be formed using the said photosensitive film as a lift-off material.
  • a transparent conductive layer is formed on the entire surface of the base material, and then the desired transparent conductive layer is formed by dissolving and removing the photocurable resin layer together with the deposited transparent conductive layer. A pattern can be obtained (lift-off method).
  • the touch panel of this invention contains the laminated body of this invention mentioned above.
  • the touch panel of the present invention can be used as an input device by being incorporated in a display device such as a liquid crystal display, a plasma display, an organic EL display, a CRT display, and electronic paper.
  • a display device such as a liquid crystal display, a plasma display, an organic EL display, a CRT display, and electronic paper.
  • occurrence of interference unevenness can be suppressed and a touch panel with good color can be obtained.
  • Capacitance type input devices have the advantage of simply forming a light-transmitting conductive film on a single substrate. A capacitance type is preferred.
  • a capacitance-type input device for example, when the electrode pattern is extended in a direction intersecting each other as the transparent electrode layer and a finger or the like comes into contact, it is detected that the capacitance between the electrodes changes.
  • a type that detects the input position can be preferably used.
  • descriptions in JP 2010-86684 A, JP 2010-152809 A, JP 2010-257492 A, and the like can be referred to.
  • thermoplastic film layer having a dry film thickness of 15.1 ⁇ m, the intermediate layer having a dry film thickness of 1.6 ⁇ m, and the dry film thickness so that the optical density is 4.0 are formed on the temporary support.
  • a 2.2 ⁇ m black photocurable resin layer was provided, and finally a protective film (12 ⁇ m thick polypropylene film) was pressure-bonded.
  • a transfer material in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the black photocurable resin layer were integrated was prepared, and the sample name was designated as a decorative pattern forming photosensitive film K1. .
  • Propylene glycol monomethyl ether acetate 79.53 mass%
  • R pigment dispersion 1 (the following composition): 3.3 parts by mass MMPGAc (manufactured by Daicel Chemical Industries): 6.2 parts by mass Methyl ethyl ketone (Tonen Chemical) (Manufactured by Co., Ltd.): 34.0 parts by mass / cyclohexanone (manufactured by Kanto Denka Kogyo Co., Ltd.):
  • ⁇ Decorative pattern formation on glass substrate> For a glass substrate (thickness 0.7 mm, Gorilla glass, manufactured by Corning) that has been subjected to a chemical strengthening treatment in which part or all of ions having a smaller ion radius than potassium ions in the glass are replaced with potassium ions, Silane coupling treatment was performed. A glass cleaner solution adjusted to 25 ° C. is sprayed with a rotating brush having nylon bristles while sprayed for 20 seconds in a shower. After pure water shower cleaning, a silane coupling solution (N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxy) is washed.
  • a silane coupling solution N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxy
  • Silane 0.3% by mass aqueous solution trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBM603 manufactured by Shin-Etsu Chemical Co., Ltd.
  • This substrate was heated at 140 ° C. for 2 minutes with a substrate preheating device.
  • the surface of the black photocurable resin layer exposed to the silane coupling-treated glass substrate obtained by removing the cover film from the decorative film-forming photosensitive film K1 obtained from the above and the silane coupling is removed.
  • the surface of the treated glass substrate is overlapped with each other, and the substrate heated at 140 ° C.
  • the laminator manufactured by Hitachi Industries (Lamic II type)
  • a rubber roller temperature of 130 ° C. a wire Lamination was performed at a pressure of 100 N / cm and a conveyance speed of 2.2 m / min.
  • the polyethylene terephthalate temporary support was peeled off at the interface with the thermoplastic resin layer to remove the temporary support.
  • the substrate and the exposure mask (quartz exposure mask with a frame pattern) were set up vertically with a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp. In this state, the distance between the exposure mask surface and the black light curable resin layer was set to 200 ⁇ m, and pattern exposure was performed at an exposure amount of 70 mJ / cm 2 (i-line).
  • a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 33 ° C. for 60 seconds
  • shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer and the intermediate layer.
  • air was blown onto the upper surface of the glass base material to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce the liquid pool on the base material.
  • the shower pressure was reduced to 0.1 MPa at 32 ° C. using a sodium carbonate / sodium hydrogen carbonate developer (trade name: T-CD1 (manufactured by FUJIFILM Corporation) diluted 5 times with pure water). It was set, developed for 45 seconds, and washed with pure water.
  • a sodium carbonate / sodium hydrogen carbonate developer trade name: T-CD1 (manufactured by FUJIFILM Corporation) diluted 5 times with pure water. It was set, developed for 45 seconds, and washed with pure water.
  • ⁇ Formation of transparent electrode pattern> ⁇ Formation of transparent electrode layer >> The substrate on which the decorative pattern was formed was introduced into a vacuum chamber, and DC magnetron sputtering (conditions) was performed using an ITO target (indium: tin 95: 5 (molar ratio)) with a SnO 2 content of 10% by mass. : A base material temperature of 250 ° C., an argon pressure of 0.13 Pa, an oxygen pressure of 0.01 Pa) was used to form an ITO thin film having a thickness of 40 nm to obtain a substrate on which a transparent electrode layer was formed. The surface resistance of the ITO thin film was 80 ⁇ / ⁇ .
  • first transparent electrode pattern (Formation of first transparent electrode pattern) Similarly to the formation of the decorative pattern, the substrate on which the transparent electrode layer was formed was washed, and the etching photosensitive film E1 from which the cover film was removed was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., wire Pressure 100 N / cm, conveyance speed 2.2 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 ⁇ m, and the exposure amount is 50 mJ / cm 2 (i-line). ) For pattern exposure.
  • a triethanolamine developer (containing 30% by mass of triethanolamine, a trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 25 ° C. for 100 seconds
  • a surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) diluted 10-fold with pure water) was treated at 33 ° C. for 20 seconds, using a rotating brush and an ultra-high pressure cleaning nozzle. The residue was removed, and a post-bake treatment at 130 ° C. for 30 minutes was further performed to obtain a substrate on which a transparent electrode layer and a photocurable resin layer pattern for etching were formed.
  • the substrate on which the transparent electrode layer and the photocurable resin layer pattern for etching are formed is immersed in an etching tank containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.), treated for 100 seconds, and etched light.
  • ITO etchant hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.
  • the transparent electrode layer in the exposed region not covered with the curable resin layer was dissolved and removed to obtain a substrate with a transparent electrode layer pattern having a photocurable resin layer pattern for etching.
  • a substrate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465, Nissin Chemical Industry Co., Ltd.) immersed in a resist stripping tank containing a liquid temperature of 45 ° C., treated for 200 seconds, removed the photo-curable resin layer for etching, and the mask layer and the first transparent electrode pattern A formed substrate was obtained.
  • a resist stripping solution N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465, Nissin Chemical Industry Co., Ltd.) immersed in a resist stripping tank containing a liquid temperature of 45 ° C., treated for 200 seconds, removed the photo-curable resin layer for etching, and the mask layer and the first transparent electrode pattern A formed substrate was obtained.
  • the front plate with the first transparent electrode pattern was washed, treated with silane coupling, and laminated with the insulating film forming photosensitive film W1 from which the cover film was removed (base temperature). : 100 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, transport speed 2.3 m / min).
  • the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the photocurable resin layer for etching is set to 100 ⁇ m, and the exposure dose is 30 mJ / cm 2 (i Line).
  • a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 33 ° C. for 60 seconds, Sodium carbonate / bicarbonate developer (trade name: T-CD1 (Fuji Film Co., Ltd.) diluted 5-fold with pure water) at 25 ° C. for 50 seconds, surfactant-containing cleaning solution (trade name) : T-SD3 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water for 20 seconds at 33 ° C, and the residue is removed with a rotating brush and ultra-high pressure washing nozzle.
  • a post-baking treatment for 60 minutes was performed to obtain a substrate on which a decorative pattern, a first transparent electrode pattern, and an insulating layer pattern were formed.
  • Second Transparent Electrode Pattern (Formation of transparent electrode layer)
  • the front plate on which the first transparent electrode pattern and the insulating layer pattern were formed was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa).
  • An ITO thin film having an oxygen pressure of 0.01 Pa and a thickness of 80 nm was formed to obtain a substrate on which a transparent electrode layer was formed.
  • the surface resistance of the ITO thin film was 110 ⁇ / ⁇ .
  • the first transparent electrode pattern, the insulating layer pattern, the transparent electrode layer, and the photocurable resin layer pattern for etching are formed using the etching photosensitive film E1.
  • the obtained front plate was obtained (post-baking treatment; 130 ° C. for 30 minutes).
  • the decorative pattern the first are obtained by etching (30 ° C. for 50 seconds) and removing the photocurable resin layer for etching (45 ° C. for 200 seconds).
  • a substrate on which a transparent electrode pattern, an insulating layer pattern, and a second transparent electrode pattern were formed was obtained.
  • the front plate on which the first transparent electrode pattern, the insulating layer pattern, and the second transparent electrode pattern were formed was subjected to DC magnetron sputtering treatment to a thickness of 200 nm.
  • a front plate on which an aluminum (Al) thin film was formed was obtained.
  • the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the photocuring for etching are performed using the etching photosensitive film E1.
  • a front plate on which a conductive resin layer pattern was formed was obtained.
  • the decorative pattern the first are obtained by etching (30 ° C. for 50 seconds) and removing the photocurable resin layer for etching (45 ° C. for 200 seconds).
  • a substrate on which a conductive element different from the transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns was formed was obtained.
  • Tin oxide fine particle dispersion 8 parts by mass (average particle size 60 nm) as solid content 2.8 parts by mass of polyurethane (manufactured by Mitsui Chemicals, Takelac WS-5100)
  • Cross-linking agent 4.2 parts by mass (manufactured by Nisshinbo Chemical Co., Ltd., 10% diluted solution of Carbodilite V-02-L2)
  • Surfactant A 0.2 parts by mass (manufactured by Sanyo Chemical Industries, Ltd., 10% aqueous solution of sanded BL, anionic)
  • Surfactant B 0.2 parts by mass (Sanyo Chemical Industry Co., Ltd., 10% diluted solution of NAROACTY CL-95, nonionic) 84.6 parts by weight of water
  • the above formulation is adjusted so that the refractive index of the easy-adhesion layer after coating and drying is 1.58.
  • An easy-adhesion layer coating solution was applied to the surface of the PET film subjected to the glow discharge treatment by a bar coating method. And this was dried at 150 degreeC for 2 minutes. A laminated film having an easy-adhesion layer applied on both sides of the PET film was obtained.
  • the film thickness of the easy-adhesion layer was measured by observing the laminated film at a magnification of 200,000 using a transmission electron microscope (JEM2010 (manufactured by JEOL Ltd.)). The film thickness was 100 nm.
  • the following formulation was used for the aqueous composition.
  • Acetic acid aqueous solution 100 parts by mass (manufactured by Daicel Chemical Industries, Ltd., 1% aqueous solution of industrial acetic acid) 80 parts by mass of 3-glycidoxypropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-403) 20 parts by mass of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-04)
  • Aluminum chelate complex 22.1 parts by mass made by Kawaken Fine Chemicals, aluminum chelate D
  • 200 parts by mass of inorganic fine particles manufactured by Nissan Chemical Industries, Snowtex O-33
  • Surfactant A 0.2 parts by mass (manufactured by Sanyo Chemical Industries, Ltd., 10% aqueous solution of sanded BL, anionic)
  • Surfactant B 0.2 parts by mass (Sanyo Chemical Industry Co.,
  • Preparation was performed according to the following procedure. 3-Glycidoxypropyltriethoxysilane (KBE-403) was added to 100 parts by mass of 1% acetic acid and sufficiently hydrolyzed, and then tetraalkoxysilane (KBE-04) was added. A necessary part by mass of the aluminum chelate complex with respect to the epoxy group-containing alkoxysilane was added, and inorganic fine particles (Snowtex O-33) were added thereto.
  • KBE-403 3-Glycidoxypropyltriethoxysilane
  • KBE-04 tetraalkoxysilane
  • a necessary part by mass of the aluminum chelate complex with respect to the epoxy group-containing alkoxysilane was added, and inorganic fine particles (Snowtex O-33) were added thereto.
  • the protective layer coating solution prepared by the following composition is adjusted to a film thickness of 10 ⁇ m while changing the coating amount, and coated and dried to form a protective layer. Then, a cover film (12 ⁇ m thick polypropylene film) was pressure-bonded.
  • the adjusted glass cleaner solution was washed with a rotating brush having nylon bristles while spraying the glass cleaner solution for 20 seconds by showering, and after pure water shower washing, a silane coupling solution (N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane.
  • a 3% by weight aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd. was sprayed for 20 seconds with a shower and washed with pure water.
  • the substrate was heated at 140 ° C. for 2 minutes with a base material preheating device.
  • the surface of the curable transparent resin layer exposed after the removal of the cover film from the above-mentioned laminated material with an anti-scattering function, which has been cut into a desired shape of the substrate in advance to the obtained silane coupling treatment substrate, and the silane cup The substrate was heated so as to be in contact with the surface of the ring-treated substrate, and the substrate heated at 140 ° C.
  • Example 2 After the protective layer was formed, UV lamp irradiation (exposure amount 300 mJ / cm 2 , methane halide lamp) was irradiated. Thereafter, an antireflection layer was formed on the protective layer with a coating solution (refractive index: 1.72) having the composition of the following material-8 so as to have a film thickness of 52 nm. A laminated material was produced in the same manner as in Example 1 except for this.
  • Example 3 A laminate was produced in the same manner as in Example 1 except that the PET film of Example 1 was changed to a TAC film having a thickness of 80 ⁇ m (Fuji Film, Fujitac).
  • Example 4 A laminate was prepared in the same manner as in Example 1 except that the PET film of Example 1 was changed to a TAC film having a thickness of 40 ⁇ m (Fujifilm, Fujitac).
  • Example 7 A laminate was prepared in the same manner as in Example 1 except that the PET film of Example 1 was replaced with a 66 ⁇ m thick polycarbonate film (manufactured by Kaneka Corporation, Elmec).
  • Example 8 In Example 1, a laminate was produced in the same manner as in Example 1 except that a laminate material without a hard coat layer was used.
  • Example 9 A laminate was produced in the same manner as in Example 1 except that a laminate material having a hard coat layer containing an acrylic resin produced as follows was used. In the table below, “acrylic” was indicated.
  • the solvent was distilled off under reduced pressure to obtain a curable multi-branched polymer (RHB-1).
  • the OH value of the curable multi-branched polymer (RHB-1) was 434 mgKOH / g, and the conversion rate from the reactive hydroxyl group to the curable reactive group was 15 mol%.
  • ⁇ Adjustment of coating solution 40 parts by mass of the polymer (RHB-1) DPHA (dipentaerythritol hexaacrylate manufactured by Nippon Kayaku Co., Ltd.) 10 parts by mass Irgacure 907 (manufactured by BASF) 2.5 parts by mass Methyl ethyl ketone 20 parts by mass Methyl isobutyl ketone 30 parts by mass
  • each well-mixed solution was filtered and adjusted with a polypropylene filter having a pore size of 30 ⁇ m.
  • ⁇ Coating of hard coat layer> It is applied by a bar coating method so as to have a film thickness of 1 ⁇ m, dried at 30 ° C. for 15 seconds and 90 ° C. for 20 seconds, and further irradiated with 160 W / cm 2 of UV under a nitrogen purge to cure the coating film, A hard coat layer was formed on the polymer layer.
  • Example 10 A laminate was produced in the same manner as in Example 1 except that a laminate material without an easy-adhesion layer was used.
  • Example 11 Using a hard coat layer having a refractive index of 1.64 containing zirconium formed by the following method as a hard coat layer, and forming an easy adhesion layer having a refractive index of 1.65 prepared from a coating solution having the composition shown in the following table The difference between the refractive index difference with the hard coat layer is 0.02 or less, and the difference between the refractive index difference with the polymer layer is 0.02 or less and a laminated material having an easy-adhesion layer is used. A laminate was produced in the same manner.
  • a hard coat layer coating solution having the following composition was applied by a bar coating method to a WET thickness of about 2 ⁇ m. After drying at 90 ° C. for 1 minute, the resin was cured by irradiating ultraviolet rays at a dose of 1600 mJ / cm 2 using a high-pressure mercury lamp. This produced the hard-coat layer on the surface of the easily bonding layer described below.
  • the hard coat layer had a thickness of 1 ⁇ m and a refractive index of 1.64.
  • UV curable resin manufactured by JSR Corporation, Z7410B
  • Inorganic fine particles zirconium oxide manufactured by Nissan Chemical Industries, Ltd. OZ-S30K 20 parts by mass
  • Example 12 A laminate was produced in the same manner as in Example 1 except that the PET film of Example 1 was changed to a cycloolefin polymer film (Zeon Corporation, Zeon film ZD14) having a thickness of 60 ⁇ m and a retardation of 140 nm.
  • the transparent laminate is placed on a liquid crystal display device (a liquid crystal cell is sandwiched between two polarizing plates) with an absorption axis of the polarizing plate and a slow axis of the polymer film of 45 degrees. Visibility was good when the image was viewed through a polarizing plate such as sunglasses.
  • a protective layer having the same composition as that used in Example 1 was formed by coating, and an easy-adhesion layer was coated using a bar coater so as to have a film thickness described in the table. It was formed by partial drying, and the hard coat layer was applied by a bar coating method to a thickness of 1 ⁇ m and dried at 150 ° C. for 2 minutes to form a laminate.
  • ⁇ Haze> The amount of change of the haze before and after the heat treatment at 150 ° C. for 10 minutes was measured on the laminated material before being transferred to the glass substrate, and the measurement result was evaluated. Haze was measured according to JIS-K-7105 using a haze meter (NDH-2000, Nippon Denshoku Industries Co., Ltd.). Regarding the amount of change in haze before and after heat treatment (unit:%), the haze before and after the heat treatment under a predetermined condition (that is, no heat treatment) was measured, and the haze before the heat treatment was determined as H1. When the haze after heat treatment is H2,
  • the heat treatment in the haze measurement was performed by placing the sample in an oven whose internal temperature was set to 150 ° C. and holding it for 10 minutes. In addition, the haze measurement after heat processing was implemented after cooling the sample taken out from oven.
  • ⁇ Transparency (transmittance)> The transmittance of 440 nm was evaluated for the laminated material before being transferred to the glass substrate. Measurement was performed using a spectrophotometer (UV2100, manufactured by Shimadzu Corporation). A: (Good): 95% or more B: (Preferably usable): 90 to less than 95% C: (Useable): Less than 90%
  • ⁇ Transparent electrode pattern visibility> The transparent laminated body of each Example and Comparative Example was bonded to the transparent laminated body and the black PET material via a transparent adhesive tape (trade name, OCA tape 8171CL, manufactured by 3M), and the entire substrate was shielded from light.
  • the visibility of the transparent electrode pattern was performed by making light incident on the fluorescent lamp (light source) and the prepared substrate from the glass surface side and visually observing reflected light from the glass surface obliquely in a dark room.
  • B The transparent electrode pattern is slightly visible but hardly visible.
  • C A transparent electrode pattern is visible (unclear).
  • D Although a transparent electrode pattern can be seen, it is practically acceptable.
  • E The transparent electrode pattern is clearly visible (easy to understand).
  • ⁇ Interference unevenness> Irradiate the surface of the laminate opposite to the glass substrate with the diffused light of the three-wavelength fluorescent lamp through the milky white acrylic plate from the transparent laminated body of each Example and Comparative Example on a desk with a black doskin cloth laminated The generated reflected light was visually observed. And by visually observing the rainbow-colored interference unevenness observed at this time, ranking was performed according to the following evaluation criteria, and the interference unevenness of the laminate was evaluated. In addition, when visually observing, each laminate was subjected to a blackening treatment as a compulsory condition, and a 500 nm light transmittance adjusted to 1% or less was separately evaluated.
  • the laminated body for touchscreens of this invention can prevent glass scattering. Moreover, in the preferable embodiment of the laminated body for touchscreens of this invention, it turns out that the property which is excellent also in haze, transparency, pencil hardness, and visibility was given.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Laminated Bodies (AREA)
  • Position Input By Displaying (AREA)

Abstract

This laminate for use in a touch panel has, in order, a glass substrate, a transparent electrode layer, a protective layer covering the transparent electrode layer, and a polymer layer, wherein the glass substrate is formed by performing a chemical strengthening treatment involving substituting with potassium ions some or all of the ions in the glass having an ionic radius less than that of a potassium ion.

Description

タッチパネル用積層体およびタッチパネル用積層体の製造方法Touch panel laminate and method for manufacturing touch panel laminate
 本発明は、タッチパネル用積層体およびタッチパネル用積層体の製造方法に関する。 The present invention relates to a laminate for a touch panel and a method for producing a laminate for a touch panel.
 携帯電話、カーナビゲーション、パーソナルコンピュータ、券売機、銀行の端末などの電子機器では、近年、液晶装置などの表面にタブレット型の入力装置(タッチパネル)が配置され、液晶表示装置の画像表示領域に表示された指示画像を参照しながら、この指示画像が表示されている箇所に指またはタッチペンなどを触れることで指示画像に対応する情報の入力が行える。 In recent years, electronic devices such as mobile phones, car navigation systems, personal computers, ticket vending machines, and bank terminals have been equipped with a tablet-type input device (touch panel) on the surface of a liquid crystal device, etc., and displayed in the image display area of the liquid crystal display device. The information corresponding to the instruction image can be input by touching a location where the instruction image is displayed with a finger or a touch pen while referring to the instruction image.
 このようなタッチパネルは、電子デバイスの表層に設けられ、且つ最表面にガラスが貼付されているため、安全の観点から、外部衝撃を受けて破損しても基板として用いられているガラスの破片が飛散することを少なくすることが要求される。 Since such a touch panel is provided on the surface layer of the electronic device and glass is affixed to the outermost surface, from a safety point of view, glass fragments used as a substrate even if damaged by external impact It is required to reduce scattering.
 例えば、特許文献1には、膜厚と内部ヘイズとを掛け合わせた値が4以上であり、表面の十点平均粗さが2μm以下である光透過性ハードコート層をガラスの表面に貼付することでガラスの飛散を防止できることが記載されている。
 また、特許文献2には、ハードコート層、厚みが25~70μmの透明基材フィルム、接着剤層、厚みが5~25μmのポリエステル系フィルム、および粘着剤層の順で積層された粘着シートをガラス板の表面に貼付することでガラスの飛散を防止できることが記載されている。
For example, in Patent Document 1, a light-transmitting hard coat layer having a value obtained by multiplying the film thickness and the internal haze is 4 or more and the 10-point average roughness of the surface is 2 μm or less is attached to the glass surface. It is described that scattering of glass can be prevented.
Patent Document 2 discloses an adhesive sheet in which a hard coat layer, a transparent substrate film having a thickness of 25 to 70 μm, an adhesive layer, a polyester film having a thickness of 5 to 25 μm, and an adhesive layer are laminated in this order. It is described that glass scattering can be prevented by sticking to the surface of a glass plate.
 一方、特許文献3では、フロート法で製造されたヤング率が71~74GPa、ポアソン比が0.22~0.24と化学的に強化したガラスが記載されている。しかしながら、ガラスを化学的に強化した場合に、外部衝撃を受けて破損したときのガラスの飛散を防止できることについては記載されていない。 On the other hand, Patent Document 3 describes a glass reinforced by a float process and having a Young's modulus of 71 to 74 GPa and a Poisson's ratio of 0.22 to 0.24. However, it does not describe that when glass is chemically strengthened, the glass can be prevented from scattering when it is damaged by external impact.
特開2008-216913号公報JP 2008-216913 A 特開2012-35431号公報JP 2012-35431 A 特開2007-11210号公報JP 2007-11210 A
 特許文献1および特許文献2のようにハードコート層や粘着シートをガラス板の表面に貼付することである程度の外部衝撃を受けて破損したときのガラスの破片を飛散させることを防止することができるが、本発明者らが検討した結果、不十分であることがわかった。 By sticking a hard coat layer or an adhesive sheet to the surface of a glass plate as in Patent Document 1 and Patent Document 2, it is possible to prevent glass fragments from being scattered when damaged by receiving a certain external impact. However, as a result of investigations by the present inventors, it was found that this is insufficient.
 そこで本発明者らは、このような従来技術の課題を解決するために検討を進めた。本発明が解決しようとする課題は、外部衝撃を受けて破損したときのガラスの破片の飛散を防止できるタッチパネル用積層体、およびその製造方法を提供することである。 Therefore, the present inventors proceeded with studies in order to solve such problems of the prior art. The problem to be solved by the present invention is to provide a laminate for a touch panel that can prevent scattering of glass fragments when it is damaged by an external impact, and a method for manufacturing the same.
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、ガラス基板、透明電極層、保護層、およびポリマー層の順で積層させ、前記ガラス基板が、ガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理を行ったガラスを用いた場合にも外部衝撃を受けて破損したときのガラスの破片の飛散を防止できることを見出し、本発明に至った。
 上記課題を解決するための具体的な手段である本発明は、以下の構成を有する。
As a result of earnest studies to solve the above problems, the present inventors have laminated a glass substrate, a transparent electrode layer, a protective layer, and a polymer layer in this order, and the glass substrate has potassium ions in the glass. We found that even when glass with a chemical strengthening treatment that replaces some or all of the ions with smaller ionic radii with potassium ions is used, it is possible to prevent scattering of glass fragments when damaged by external impact. The present invention has been reached.
The present invention, which is a specific means for solving the above problems, has the following configuration.
[1] ガラス基板と、
 透明電極層と、
 前記透明電極層を覆う保護層と、
 ポリマー層と、
をこの順で有し、
 前記ガラス基板が、ガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をされてなることを特徴とするタッチパネル用積層体。
[2] さらに、前記ポリマー層の、前記保護層が形成されている面の反対側の面にハードコート層を有する、[1]のタッチパネル用積層体。
[3] 前記保護層と前記ポリマー層との間、および前記ポリマー層と前記ハードコート層との間の少なくとも一方に易接着層を有する、[2]のタッチパネル用積層体。
[4] 前記透明電極層と前記保護層との間に、反射防止層を有する、[1]~[3]のいずれかのタッチパネル用積層体。
[5] 前記ハードコート層が、硬化性樹脂またはアルコキシシランの加水分解縮合物を含む、[2]~[4]のいずれかのタッチパネル用積層体。
[6] 前記保護層が、アクリル系ポリマーを含む、[1]~[5]のいずれかのタッチパネル用積層体。
[7] 厚みが0.3~1mmである[1]~[6]のいずれかのタッチパネル用積層体。
[8] 前記反射防止層の厚みが、500nm以下である、[4]~[7]のいずれかのタッチパネル用積層体。
[9] 前記反射防止層の屈折率が、1.6以上である、[4]~[8]のいずれかのタッチパネル用積層体。
[10] 前記保護層と前記ポリマー層との間に有する前記易接着層の屈折率と、該易接着層に隣接する前記保護層および前記ポリマー層の屈折率との屈折率差が、0.02以下である、[3]~[9]のいずれかのタッチパネル用積層体。
[11] 前記ポリマー層の厚みが、20~150μmである、[1]~[10]のいずれかのタッチパネル用積層体。
[12] 前記ポリマー層と前記ハードコート層との間に有する前記易接着層の屈折率と、該易接着層に隣接する前記ポリマー層および前記ハードコート層の屈折率との屈折率差が、0.02以下である、[3]~[11]のいずれかのタッチパネル用積層体。
[13] 前記ポリマー層が、ポリエチレンテレフタレート、ポリカーボネート、または、シクロオレフィンポリマーを含む、[1]~[12]のいずれかのタッチパネル用積層体。
[14] 前記ポリマー層のリタデーションが3000~12000nmである、[1]~[13]のいずれかのタッチパネル用積層体。
[15] 前記ポリマー層のリタデーションが100から200nmである、[1]~[14]のいずれかのタッチパネル用積層体。
[16] 前記ポリマー層の屈折率が1.60~1.75である、[1]~[15]のいずれかのタッチパネル用積層体。
[17] 前記ポリマー層の表面から40~330nmの範囲内のいずれかの深さまでの厚みの表面改質層を有す、[1]~[16]のいずれかのタッチパネル用積層体。
[18] 前記表面改質層が、前記ポリマー層の表面にグロー放電処理を施して形成されてなる、[17]のタッチパネル用積層体。
[19] 前記表面改質層が、Tg以上に加熱された前記ポリマー層の表面にグロー放電処理を施して形成されてなる、[17]のタッチパネル用積層体。
[20] 前記ハードコート層に含まれる前記アルコキシシランの加水分解縮合物は、エポキシ基含有アルコキシシランとエポキシ基非含有アルコキシシランの加水分解縮合物である、[5]~[19]のいずれかのタッチパネル用積層体。
[21] 前記ハードコート層がアルコキシシランを加水分解し、該加水分解したアルコキシシランを縮合して形成してなる、[5]~[20]のいずれかのタッチパネル用積層体。
[22] 前記ハードコート層の屈折率が、1.64以上2.10以下である、[4]~[21]のいずれかのタッチパネル用積層体。
[23] 前記反射防止層が粒子を含む、[4]~[22]のいずれかのタッチパネル用積層体。
[24] 前記反射防止層が屈折率1.60~3.00である粒子を含む、[4]~[23]のいずれかのタッチパネル用積層体。
[25] 前記反射防止層が金属酸化物粒子を含む、[4]~[24]のいずれかのタッチパネル用積層体。
[26] 前記反射防止層が酸化錫または酸化ジルコニウムの粒子を含む、[4]~[26]のいずれかのタッチパネル用積層体。
[27] 前記反射防止層が、前記反射防止層に含まれる固形分に対し、40~80質量%の粒子を含む、[4]~[26]のいずれかのタッチパネル用積層体。
[28] 前記透明電極層として、下記(3)~(5)の要素を有する、[1]~[27]のいずれかのタッチパネル用積層体。
(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(5)前記第一の透明電極パターンと前記第二の電極パターンとを電気的に絶縁する絶縁層
[29] (6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素を有する、[28]のタッチパネル用積層体。
[30] 前記第二の電極パターンが透明電極パターンである、[28]のタッチパネル用積層体。
[31] (1)加飾層を有する、[1]~[30]のいずれかのタッチパネル用積層体。
[32] 厚みが1~40μmである(1)加飾層を有する、[1]~[31]のいずれかのタッチパネル用積層体。
[33] (2)マスク層を有する、[1]~[32]のいずれかのタッチパネル用積層体。
[34] 前記ガラス基板の表面に表面処理を施してなる、[1]~[33]のいずれかのタッチパネル用積層体。
[35] 前記ガラス基板の表面にシラン化合物を用いて表面処理を施してなる、[1]~[34]のいずれかのタッチパネル用積層体。
[36] 前記ガラス基板が、少なくとも一部に開口部を有する、[1]~[35]のいずれかのタッチパネル用積層体。
[37] ガラス基板と透明電極層を有する透明電極層付き前面板に、保護層とポリマー層とをこの順で有する積層材料を、前記透明電極層側の表面と前記保護層側の表面とが対向するように積層する工程を含み、
 前記ガラス基板が、ガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をされてなることを特徴とする[1]~[36]のいずれかのタッチパネル用積層体の製造方法。
[38] 前記透明電極層を、硬化性樹脂組成物によって形成されたエッチングパターンを用いて透明導電材料をエッチング処理することによって形成する、[37]のタッチパネル用積層体の製造方法。
[39] 前記透明電極層を、導電性硬化性樹脂組成物を用いて形成する、[37]のタッチパネル用積層体の製造方法。
[1] a glass substrate;
A transparent electrode layer;
A protective layer covering the transparent electrode layer;
A polymer layer;
In this order,
A laminate for a touch panel, wherein the glass substrate is subjected to a chemical strengthening treatment in which a part or all of ions having an ion radius smaller than that of potassium ions in the glass are replaced with potassium ions.
[2] The touch panel laminate according to [1], further comprising a hard coat layer on the surface of the polymer layer opposite to the surface on which the protective layer is formed.
[3] The laminate for a touch panel according to [2], having an easy adhesion layer between at least one of the protective layer and the polymer layer and between the polymer layer and the hard coat layer.
[4] The touch panel laminate according to any one of [1] to [3], wherein an antireflection layer is provided between the transparent electrode layer and the protective layer.
[5] The touch panel laminate according to any one of [2] to [4], wherein the hard coat layer includes a hydrolysis condensate of a curable resin or an alkoxysilane.
[6] The touch panel laminate according to any one of [1] to [5], wherein the protective layer includes an acrylic polymer.
[7] The touch panel laminate according to any one of [1] to [6], having a thickness of 0.3 to 1 mm.
[8] The touch panel laminate according to any one of [4] to [7], wherein the antireflection layer has a thickness of 500 nm or less.
[9] The touch panel laminate according to any one of [4] to [8], wherein the antireflective layer has a refractive index of 1.6 or more.
[10] The refractive index difference between the refractive index of the easy adhesion layer between the protective layer and the polymer layer and the refractive index of the protective layer and the polymer layer adjacent to the easy adhesion layer is 0. The touch panel laminate according to any one of [3] to [9], which is 02 or less.
[11] The laminate for a touch panel according to any one of [1] to [10], wherein the polymer layer has a thickness of 20 to 150 μm.
[12] The refractive index difference between the refractive index of the easy adhesion layer between the polymer layer and the hard coat layer and the refractive index of the polymer layer and the hard coat layer adjacent to the easy adhesion layer is as follows: The laminate for a touch panel according to any one of [3] to [11], which is 0.02 or less.
[13] The laminate for a touch panel according to any one of [1] to [12], wherein the polymer layer includes polyethylene terephthalate, polycarbonate, or a cycloolefin polymer.
[14] The laminate for a touch panel according to any one of [1] to [13], wherein the retardation of the polymer layer is 3000 to 12000 nm.
[15] The touch panel laminate according to any one of [1] to [14], wherein the retardation of the polymer layer is 100 to 200 nm.
[16] The touch panel laminate according to any one of [1] to [15], wherein the polymer layer has a refractive index of 1.60 to 1.75.
[17] The touch panel laminate according to any one of [1] to [16], having a surface modified layer having a thickness from the surface of the polymer layer to any depth within a range of 40 to 330 nm.
[18] The laminate for a touch panel according to [17], wherein the surface modification layer is formed by performing glow discharge treatment on a surface of the polymer layer.
[19] The touch panel laminate according to [17], wherein the surface modified layer is formed by performing glow discharge treatment on a surface of the polymer layer heated to Tg or more.
[20] The hydrolysis condensate of the alkoxysilane contained in the hard coat layer is any one of [5] to [19], which is a hydrolysis condensate of an epoxy group-containing alkoxysilane and an epoxy group-free alkoxysilane. Laminate for touch panel.
[21] The touch panel laminate according to any one of [5] to [20], wherein the hard coat layer is formed by hydrolyzing alkoxysilane and condensing the hydrolyzed alkoxysilane.
[22] The touch panel laminate according to any one of [4] to [21], wherein the hard coat layer has a refractive index of 1.64 or more and 2.10 or less.
[23] The touch panel laminate according to any one of [4] to [22], wherein the antireflection layer contains particles.
[24] The touch panel laminate according to any one of [4] to [23], wherein the antireflection layer contains particles having a refractive index of 1.60 to 3.00.
[25] The touch panel laminate according to any one of [4] to [24], wherein the antireflection layer contains metal oxide particles.
[26] The touch panel laminate according to any one of [4] to [26], wherein the antireflection layer includes particles of tin oxide or zirconium oxide.
[27] The touch panel laminate according to any one of [4] to [26], wherein the antireflection layer contains 40 to 80% by mass of particles with respect to the solid content contained in the antireflection layer.
[28] The touch panel laminate according to any one of [1] to [27], having the following elements (3) to (5) as the transparent electrode layer.
(3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (4) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction intersecting the first direction (5) electrically connecting the first transparent electrode pattern and the second electrode pattern Insulating layer [29] for electrically insulating (6) The first transparent electrode pattern and the second electrode pattern electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern [28] The laminated body for touch panels which has another electroconductive element.
[30] The laminate for a touch panel according to [28], wherein the second electrode pattern is a transparent electrode pattern.
[31] (1) The touch panel laminate according to any one of [1] to [30], which has a decorative layer.
[32] The laminate for a touch panel according to any one of [1] to [31], having a decorating layer having a thickness of 1 to 40 μm.
[33] (2) The touch panel laminate according to any one of [1] to [32], having a mask layer.
[34] The touch panel laminate according to any one of [1] to [33], wherein the surface of the glass substrate is subjected to a surface treatment.
[35] The touch panel laminate according to any one of [1] to [34], wherein the surface of the glass substrate is subjected to a surface treatment using a silane compound.
[36] The touch panel laminate according to any one of [1] to [35], wherein the glass substrate has an opening at least in part.
[37] A laminated material having a protective layer and a polymer layer in this order on a front plate with a transparent electrode layer having a glass substrate and a transparent electrode layer, the surface on the transparent electrode layer side and the surface on the protective layer side Including a step of laminating to face each other,
Any one of [1] to [36], wherein the glass substrate is subjected to a chemical strengthening treatment in which part or all of ions having a smaller ion radius than potassium ions in the glass are replaced with potassium ions. Of manufacturing a laminate for a touch panel.
[38] The method for manufacturing a laminate for a touch panel according to [37], wherein the transparent electrode layer is formed by etching a transparent conductive material using an etching pattern formed of a curable resin composition.
[39] The method for producing a laminate for a touch panel according to [37], wherein the transparent electrode layer is formed using a conductive curable resin composition.
 本発明によれば、外部衝撃を受けて破損したときのガラスの破片の飛散を防止できるタッチパネル用積層体、およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a laminated body for a touch panel that can prevent scattering of glass fragments when damaged by receiving an external impact, and a method for manufacturing the same.
本発明のタッチパネル用積層体の断面模式図である。It is a cross-sectional schematic diagram of the laminated body for touchscreens of this invention. 本発明の静電容量型入力装置の構成を示す断面図である。It is sectional drawing which shows the structure of the electrostatic capacitance type input device of this invention. 本発明における前面板の一例を示す説明図である。It is explanatory drawing which shows an example of the front plate in this invention. 本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。It is explanatory drawing which shows an example of the 1st transparent electrode pattern in this invention, and a 2nd transparent electrode pattern. 開口部が形成された強化処理ガラスの一例を示す上面図である。It is a top view which shows an example of the tempered glass in which the opening part was formed. マスク層が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front board in which the mask layer was formed. 第一の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st transparent electrode pattern was formed. 第一および第二の透明電極パターンが形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the 1st and 2nd transparent electrode pattern was formed. 第一および第二の透明電極パターンとは別の導電性要素が形成された前面板の一例を示す上面図である。It is a top view which shows an example of the front plate in which the electroconductive element different from the 1st and 2nd transparent electrode pattern was formed. 金属ナノワイヤー断面を示す説明図である。It is explanatory drawing which shows a metal nanowire cross section.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[タッチパネル用積層体]
 本発明のタッチパネル用積層体は、ガラス基板と、透明電極層と、前記透明電極層を覆う保護層と、ポリマー層と、をこの順で有し、前記ガラス基板がガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をされてなることを特徴とする。
[Laminate for touch panel]
The laminate for a touch panel of the present invention has a glass substrate, a transparent electrode layer, a protective layer covering the transparent electrode layer, and a polymer layer in this order, and the glass substrate is more than potassium ions in the glass. It is characterized in that it is subjected to a chemical strengthening treatment in which part or all of ions having a small ion radius are replaced with potassium ions.
 本発明では、このような構成、即ち、ポリマー層を有する構成とすることでガラス基板におけるガラスの破片の飛散を防止することができる。
 また、後述の本発明のより好ましい構成とすることで光反射が低減して透明電極パターンが見えにくくなり、視認性、すなわちヘイズに優れる。
 図1は、本発明のタッチパネル用積層体の一例を示した断面模式図である。本発明のタッチパネル用積層体は、最表面側(視認側)から、ガラス基板100、透明電極層101、透明電極層101を覆うように形成されている保護層102、およびポリマー層103をこの順で有する。
 保護層102とポリマー層103との間には、必要に応じて易接着層104を有していてもよい。また、本発明のタッチパネル用積層体は、必要に応じて、ポリマー層103の保護層102側の面とは反対側の面にハードコート層105を有していてもよく、ハードコート層105とポリマー層103との間には易接着層106を有していてもよい。また、ガラス基板1の視認側の面と反対側の面の端部には加飾層107を有していてもよい。
 また、透明電極層101と保護層102との間には、反射防止層(図示せず)を有していてもよく、ガラス基板100の透明導電層101が形成されている面の反対側にハードコート層(図示せず)を有していてもよい。
In the present invention, scattering of glass fragments on the glass substrate can be prevented by adopting such a configuration, that is, a configuration having a polymer layer.
Moreover, by setting it as the more preferable structure of this invention mentioned later, light reflection reduces and it becomes difficult to see a transparent electrode pattern, and it is excellent in visibility, ie, a haze.
FIG. 1 is a schematic cross-sectional view showing an example of a laminate for a touch panel of the present invention. The laminate for a touch panel of the present invention comprises, from the outermost surface side (viewing side), the glass substrate 100, the transparent electrode layer 101, the protective layer 102 formed so as to cover the transparent electrode layer 101, and the polymer layer 103 in this order. Have in.
An easy adhesion layer 104 may be provided between the protective layer 102 and the polymer layer 103 as necessary. Moreover, the laminated body for touchscreens of this invention may have the hard-coat layer 105 in the surface on the opposite side to the surface by the side of the protective layer 102 of the polymer layer 103 as needed, An easy-adhesion layer 106 may be provided between the polymer layer 103. In addition, a decoration layer 107 may be provided at the end of the surface of the glass substrate 1 opposite to the surface on the viewing side.
Further, an antireflection layer (not shown) may be provided between the transparent electrode layer 101 and the protective layer 102, and on the opposite side of the surface of the glass substrate 100 where the transparent conductive layer 101 is formed. You may have a hard-coat layer (not shown).
 本発明のタッチパネル用積層体の厚みとしては、0.3~1mmであることが好ましく、0.5~1mmであることがより好ましく、0.7~1mmであることがさらに好ましい。
 以下、本発明のタッチパネル用積層体を構成する各部材について説明する。
The thickness of the laminate for a touch panel of the present invention is preferably 0.3 to 1 mm, more preferably 0.5 to 1 mm, and further preferably 0.7 to 1 mm.
Hereinafter, each member which comprises the laminated body for touchscreens of this invention is demonstrated.
<ガラス基板>
 本発明のタッチパネル用積層体に用いるガラス基板は、ガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をされてなる。
 本発明で使用するガラスは特に限定されないが、JIS R3103-2(2001年)に準拠した方法で得られる歪点温度が500℃~520℃であることが好ましい。また、ガラスの変形が生じやすい当該温度付近、すなわち溶融塩の温度を490~530℃とすることが好ましい。本発明で用いるガラス基板は、例えば、フロート法で製造される所謂ソーダライムガラスと呼ばれる、SiO2-Na2O-K2O-CaO-MgO-Al23系ガラスの表面に、化学強化処理を施すことにより、圧縮層が形成されているのが好ましい。
<Glass substrate>
The glass substrate used in the laminate for a touch panel of the present invention is subjected to a chemical strengthening treatment in which part or all of ions having an ion radius smaller than that of potassium ions in the glass are replaced with potassium ions.
The glass used in the present invention is not particularly limited, but the strain point temperature obtained by a method according to JIS R3103-2 (2001) is preferably 500 ° C. to 520 ° C. Further, it is preferable that the temperature near the temperature at which glass is likely to be deformed, that is, the temperature of the molten salt is 490 to 530 ° C. The glass substrate used in the present invention is chemically strengthened on the surface of SiO 2 —Na 2 O—K 2 O—CaO—MgO—Al 2 O 3 glass, for example, so-called soda lime glass produced by a float process. It is preferable that the compression layer is formed by performing the treatment.
 化学強化処理は、例えば、ガラスを溶融塩に浸漬させることにより行う。この化学強化処理により、ガラス中のナトリウムイオンと溶融塩中のカリウムイオンとが交換して、圧縮層が形成される。圧縮層は、200~650MPaの圧縮応力値を有する。本発明で行う化学強化処理は、形成される圧縮層が当該値を有するように、ガラスを化学強化する際に、浸漬させるための溶融塩の温度を450~550℃、浸漬時間を1時間~3時間とすることが好ましい。 The chemical strengthening treatment is performed, for example, by immersing glass in a molten salt. By this chemical strengthening treatment, sodium ions in the glass and potassium ions in the molten salt are exchanged to form a compressed layer. The compressed layer has a compressive stress value of 200 to 650 MPa. In the chemical strengthening treatment performed in the present invention, the temperature of the molten salt for immersion is 450 to 550 ° C. and the immersion time is 1 hour or more when chemically strengthening the glass so that the formed compressed layer has the value. 3 hours is preferable.
 ガラス基板の厚みとしては、0.3~1.0mmであることが好ましく、0.4~0.8mmであることがさらに好ましい。ガラス基板の厚みを0.3mm以上とすることで、強度不足を解消することができる。 The thickness of the glass substrate is preferably 0.3 to 1.0 mm, and more preferably 0.4 to 0.8 mm. By setting the thickness of the glass substrate to 0.3 mm or more, insufficient strength can be solved.
<透明電極層>
 本発明のタッチパネル用積層体は、ガラス基板上に透明電極層を有し、パターン状に配置されていることが好ましい。
 前記透明電極層の屈折率は1.75~2.1であることが好ましい。
 前記透明電極層の材料は特に制限されることはなく、公知の材料を用いることができる。例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透光性の導電性金属酸化膜で作製することができる。このような金属膜としては、ITO膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;SiO2等の金属酸化膜などが挙げられる。この際、各要素の、膜厚は10~200nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜とするため、電気的抵抗を低減することもできる。その他、ITO等によって透明電極層における導電性パターン等を形成する場合には、特許第4506785号公報の段落[0014]~[0016]等を参考にすることができる。その中でも、前記透明電極パターンは、ITO膜であることが好ましい。
 本発明の透明積層体は、前記透明電極パターンが屈折率1.75~2.1のITO膜であることが好ましい。
<Transparent electrode layer>
It is preferable that the laminated body for touchscreens of this invention has a transparent electrode layer on a glass substrate, and is arrange | positioned at pattern shape.
The transparent electrode layer preferably has a refractive index of 1.75 to 2.1.
The material for the transparent electrode layer is not particularly limited, and a known material can be used. For example, it can be made of a light-transmitting conductive metal oxide film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). Examples of such metal films include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 . At this time, the film thickness of each element can be set to 10 to 200 nm. Further, since the amorphous ITO film is made into a polycrystalline ITO film by firing, the electrical resistance can be reduced. In addition, when forming a conductive pattern or the like in the transparent electrode layer with ITO or the like, paragraphs [0014] to [0016] of Japanese Patent No. 4506785 can be referred to. Among them, the transparent electrode pattern is preferably an ITO film.
In the transparent laminate of the present invention, the transparent electrode pattern is preferably an ITO film having a refractive index of 1.75 to 2.1.
 透明電極層の厚みとしては、10~200nmが好ましく、20~150nmがより好ましく、30~100nmがさらに好ましい。 The thickness of the transparent electrode layer is preferably 10 to 200 nm, more preferably 20 to 150 nm, and even more preferably 30 to 100 nm.
<<透明電極パターン>>
 本発明の積層体を後述する静電容量型入力装置に用いる場合、透明電極パターンは行方向と列方向の略直交する2つの方向にそれぞれ第一の透明電極パターンおよび第二の透明電極パターンとして設けられることがある(例えば、図4参照)。例えば図4の構成では、本発明の積層体における透明電極パターンは、第二の透明電極パターン4であっても、第一の透明電極パターン3のパッド部分3aであってもよい。言い換えると、以下の本発明の透明積層体の説明では、透明電極パターンの符号を「4」で代表して表すことがあるが、本発明の透明積層体における透明電極パターンは、本発明の静電容量型入力装置における第二の透明電極パターン4への使用に限定されるものではなく、例えば第一の透明電極パターン3のパッド部分3aとして使用してもよい。
<< Transparent electrode pattern >>
When the laminate of the present invention is used in a capacitance-type input device to be described later, the transparent electrode pattern is a first transparent electrode pattern and a second transparent electrode pattern in two directions substantially orthogonal to the row direction and the column direction, respectively. (See, for example, FIG. 4). For example, in the configuration of FIG. 4, the transparent electrode pattern in the laminate of the present invention may be the second transparent electrode pattern 4 or the pad portion 3 a of the first transparent electrode pattern 3. In other words, in the following description of the transparent laminate of the present invention, the reference numeral of the transparent electrode pattern may be represented by “4”. However, the transparent electrode pattern in the transparent laminate of the present invention is the static electrode of the present invention. It is not limited to the use for the second transparent electrode pattern 4 in the capacitive input device, but may be used as the pad portion 3a of the first transparent electrode pattern 3, for example.
 前記透明電極パターンの屈折率は1.75~2.1であることが好ましい。
 前記透明電極パターンの材料は特に制限されることはなく、公知の材料を用いることができる。例えば、ITO(Indium Tin Oxide)やIZO(Indium
 Zinc Oxide)などの透光性の導電性金属酸化膜で作製することができる。このような金属膜としては、ITO膜;Al、Zn、Cu、Fe、Ni、Cr、Mo等の金属膜;SiO2等の金属酸化膜などが挙げられる。この際、各要素の、膜厚は10~20
0nmとすることができる。また、焼成により、アモルファスのITO膜を多結晶のITO膜とするため、電気的抵抗を低減することもできる。また、前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、前記導電性繊維を用いた光硬化性樹脂層を有する感光性フィルムを用いて製造することもできる。その他、ITO等によって第一の導電性パターン等を形成する場合には、特許第4506785号公報の段落[0014]~[0016]等を参考にすることができる。その中でも、前記透明電極パターンは、ITO膜であることが好ましい。
 前記透明電極パターンが屈折率1.75~2.1のITO膜であることが好ましい。
The refractive index of the transparent electrode pattern is preferably 1.75 to 2.1.
The material for the transparent electrode pattern is not particularly limited, and a known material can be used. For example, ITO (Indium Tin Oxide) or IZO (Indium
It can be made of a light-transmitting conductive metal oxide film such as Zinc Oxide). Examples of such metal films include ITO films; metal films such as Al, Zn, Cu, Fe, Ni, Cr, and Mo; metal oxide films such as SiO 2 . At this time, the film thickness of each element is 10-20.
It can be 0 nm. Further, since the amorphous ITO film is made into a polycrystalline ITO film by firing, the electrical resistance can be reduced. Moreover, said 1st transparent electrode pattern 3, the 2nd transparent electrode pattern 4, and the electroconductive element 6 mentioned later use the photosensitive film which has the photocurable resin layer using the said conductive fiber. It can also be manufactured. In addition, when the first conductive pattern or the like is formed of ITO or the like, paragraphs [0014] to [0016] of Japanese Patent No. 4506785 can be referred to. Among them, the transparent electrode pattern is preferably an ITO film.
The transparent electrode pattern is preferably an ITO film having a refractive index of 1.75 to 2.1.
<保護層>
 本発明のタッチパネル用積層体は、透明電極層を覆う保護層を有し、保護層は、透明電極層の腐食を防止する機能を有することが好ましい。ここでいう透明電極層の腐食の防止は、ハロゲンを含む化合物の除去、特に光重合開始剤を脱ハロゲン化して行うことが好ましい。
<Protective layer>
The laminated body for touch panels of this invention has a protective layer which covers a transparent electrode layer, and it is preferable that a protective layer has a function which prevents the corrosion of a transparent electrode layer. The prevention of corrosion of the transparent electrode layer here is preferably carried out by removing the halogen-containing compound, in particular by dehalogenating the photopolymerization initiator.
 保護層は、金属酸化物粒子、樹脂(好ましくはアルカリ可溶性樹脂)、重合性化合物、重合開始剤または重合開始系を含むことが好ましい。さらに、添加剤などが用いられるがこれに限られたものではない。 The protective layer preferably contains metal oxide particles, a resin (preferably an alkali-soluble resin), a polymerizable compound, a polymerization initiator, or a polymerization initiation system. Furthermore, an additive etc. are used, but it is not restricted to this.
 保護層は、透明樹脂膜であっても、無機膜であってもよい。
 前記無機膜としては、特開2010-86684号公報、特開2010-152809号公報および特開2010-257492号公報などに用いられている無機膜を用いることができ、これらの文献に記載されている低屈折率材料と高屈折率材料の積層構造の無機膜や、低屈折率材料と高屈折率材料の混合膜の無機膜を用いることが屈折率を制御する観点から好ましい。前記低屈折率材料と前記高屈折率材料は、上記の特開2010-86684号公報、特開2010-152809号公報および特開2010-257492号公報に用いられている材料を好ましく用いることができ、これらの文献の内容は本明細書中に組み込まれる。
 前記無機膜は、SiO2とNb25の混合膜であってもよく、その場合はスパッタによって形成されたSiO2とNb25の混合膜であることがより好ましい。
The protective layer may be a transparent resin film or an inorganic film.
As the inorganic film, inorganic films used in JP 2010-86684 A, JP 2010-152809 A, JP 2010-257492 A, and the like can be used, which are described in these documents. From the viewpoint of controlling the refractive index, it is preferable to use an inorganic film having a laminated structure of a low refractive index material and a high refractive index material, or an inorganic film having a mixed film of a low refractive index material and a high refractive index material. As the low refractive index material and the high refractive index material, the materials used in JP 2010-86684 A, JP 2010-152809 A, and JP 2010-257492 A can be preferably used. The contents of these documents are incorporated herein.
The inorganic layer may be a mixed layer of SiO 2 and Nb 2 O 5, and more preferably that case is a mixed film of SiO 2 and Nb 2 O 5 formed by sputtering.
 本発明では、保護層が、透明樹脂膜であることが好ましい。
 前記透明樹脂膜の屈折率を制御する方法としては特に制限はないが、所望の屈折率の透明樹脂膜を単独で用いたり、金属微粒子や金属酸化物微粒子などの微粒子を添加した透明樹脂膜を用いたりすることができる。
In the present invention, the protective layer is preferably a transparent resin film.
A method for controlling the refractive index of the transparent resin film is not particularly limited, but a transparent resin film having a desired refractive index is used alone, or a transparent resin film to which fine particles such as metal fine particles and metal oxide fine particles are added is used. Can be used.
 前記透明樹脂膜に用いられる樹脂組成物は、屈折率や光透過性を調節することを目的として、金属酸化物粒子を含有することが好ましい。金属酸化物粒子は、透明性が高く、光透過性を有するため、高屈折率で、透明性に優れた組成物が得られる。
 前記金属酸化物粒子は、当該粒子を除いた材料からなる樹脂組成物の屈折率より屈折率が高いものであることが好ましく、具体的には、400~750nmの波長を有する光における屈折率が1.50以上の粒子がより好ましく、屈折率が1.70以上の粒子が更に好ましく、1.90以上の粒子が特に好ましい。
 ここで、400~750nmの波長を有する光における屈折率が1.50以上であるとは、上記範囲の波長を有する光における平均屈折率が1.50以上であることを意味し、上記範囲の波長を有する全ての光における屈折率が1.50以上であることを要しない。また、平均屈折率は、上記範囲の波長を有する各光に対する屈折率の測定値の総和を、測定点の数で割った値である。
The resin composition used for the transparent resin film preferably contains metal oxide particles for the purpose of adjusting the refractive index and light transmittance. Since the metal oxide particles have high transparency and light transmittance, a composition having a high refractive index and excellent transparency can be obtained.
The metal oxide particles preferably have a refractive index higher than that of a resin composition made of a material excluding the particles. Specifically, the refractive index in light having a wavelength of 400 to 750 nm is used. Particles of 1.50 or more are more preferable, particles having a refractive index of 1.70 or more are further preferable, and particles of 1.90 or more are particularly preferable.
Here, the refractive index of light having a wavelength of 400 to 750 nm being 1.50 or more means that the average refractive index of light having a wavelength in the above range is 1.50 or more. It is not necessary that the refractive index of all light having a wavelength is 1.50 or more. The average refractive index is a value obtained by dividing the sum of the measured values of the refractive index for each light having a wavelength in the above range by the number of measurement points.
 なお、前記金属酸化物粒子の金属には、B、Si、Ge、As、Sb、Te等の半金属も含まれるものとする。
 光透過性で屈折率の高い金属酸化物粒子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Gd、Tb、Dy、Yb、Lu、Ti、Zr、Hf、Nb、Mo、W、Zn、B、Al、Si、Ge、Sn、Pb、Sb、Bi、Te等の原子を含む酸化物粒子が好ましく、酸化チタン、チタン複合酸化物、酸化亜鉛、酸化ジルコニウム、インジウム/スズ酸化物、アンチモン/スズ酸化物がより好ましく、酸化チタン、チタン複合酸化物、酸化ジルコニウムが更に好ましく、酸化チタン、酸化ジルコニウムが特に好ましく、二酸化チタンが最も好ましい。二酸化チタンとしては、特に屈折率の高いルチル型が好ましい。これら金属酸化物粒子は、分散安定性付与のために表面を有機材料で処理することもできる。
In addition, the metal of the metal oxide particles includes semimetals such as B, Si, Ge, As, Sb, and Te.
The light-transmitting and high refractive index metal oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb. Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Sb, Bi, and Te are preferable. Titanium oxide, titanium composite oxide, zinc oxide, zirconium oxide, indium / Tin oxide and antimony / tin oxide are more preferable, titanium oxide, titanium composite oxide and zirconium oxide are more preferable, titanium oxide and zirconium oxide are particularly preferable, and titanium dioxide is most preferable. Titanium dioxide is particularly preferably a rutile type having a high refractive index. The surface of these metal oxide particles can be treated with an organic material in order to impart dispersion stability.
 樹脂組成物の透明性の観点から、前記金属酸化物粒子の平均一次粒子径は、1~200nmが好ましく、3~80nmが特に好ましい。ここで粒子の平均一次粒子径は、電子顕微鏡により任意の粒子200個の粒子径を測定し、その算術平均をいう。また、粒子の形状が球形でない場合には、最も長い辺を径とする。 From the viewpoint of the transparency of the resin composition, the average primary particle diameter of the metal oxide particles is preferably 1 to 200 nm, particularly preferably 3 to 80 nm. Here, the average primary particle diameter of the particles refers to an arithmetic average obtained by measuring the particle diameter of 200 arbitrary particles with an electron microscope. When the particle shape is not spherical, the longest side is the diameter.
 また、前記金属酸化物粒子は、1種単独で使用してよいし、2種以上を併用することもできる。
 前記樹脂組成物における金属酸化物粒子の含有量は、樹脂組成物により得られる光学部材に要求される屈折率や、光透過性等を考慮して、適宜決定すればよいが、前記樹脂組成物の全固形分に対して、5~80質量%とすることが好ましく、10~70質量%とすることがより好ましい。
 前記透明樹脂膜が、ZrO2粒子およびTiO2粒子のうち少なくとも一方を有することが、反射防止層の屈折率の範囲に屈折率を制御する観点から好ましく、ZrO2粒子がより好ましい。
Moreover, the said metal oxide particle may be used individually by 1 type, and can also use 2 or more types together.
The content of the metal oxide particles in the resin composition may be appropriately determined in consideration of the refractive index required for the optical member obtained from the resin composition, light transmittance, and the like. The total solid content is preferably 5 to 80% by mass, more preferably 10 to 70% by mass.
The transparent resin film preferably has at least one of ZrO 2 particles and TiO 2 particles from the viewpoint of controlling the refractive index within the range of the refractive index of the antireflection layer, and more preferably ZrO 2 particles.
 透明樹脂膜に用いられる樹脂(バインダー、ポリマーという言う)やその他の添加剤としては本発明の趣旨に反しない限りにおいて特に制限は無い。 There are no particular restrictions on the resin (referred to as binder or polymer) and other additives used for the transparent resin film unless they are contrary to the spirit of the present invention.
 保護層に用いられる樹脂(バインダー、ポリマーという言う)としてはアルカリ可溶性樹脂が好ましく、前記アルカリ可溶性樹脂としては、特開2011-95716号公報の段落[0025]、特開2010-237589号公報の段落[0033]~[0052]に記載のポリマーを用いることができる。 As the resin (referred to as a binder or a polymer) used in the protective layer, an alkali-soluble resin is preferable. Examples of the alkali-soluble resin include paragraph [0025] of JP 2011-95716 A and paragraph of JP 2010-237589 A. The polymers described in [0033] to [0052] can be used.
 前記重合性化合物としては、特許第4098550号の段落[0023]~[0024]に記載の重合性化合物を用いることができる。
 前記重合開始剤または重合開始系としては、特開2011-95716号公報に記載の[0031]~[0042]に記載の重合性化合物を用いることができる。
As the polymerizable compound, the polymerizable compounds described in paragraphs [0023] to [0024] of Japanese Patent No. 4098550 can be used.
As the polymerization initiator or polymerization initiation system, the polymerizable compounds described in [0031] to [0042] described in JP2011-95716A can be used.
 さらに、保護層には、添加剤を用いてもよい。前記添加剤としては、例えば特許第4502784号公報の段落[0017]、特開2009-237362号公報の段落[0060]~[0071]に記載の界面活性剤や、特許第4502784号公報の段落[0018]に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落[0058]~[0071]に記載のその他の添加剤が挙げられる。 Furthermore, an additive may be used for the protective layer. Examples of the additive include surfactants described in paragraph [0017] of Japanese Patent No. 4502784, paragraphs [0060] to [0071] of JP-A-2009-237362, and paragraph [ And the other additives described in paragraphs [0058] to [0071] of JP-A No. 2000-310706.
 保護層の厚みとして、1~50nmであることが好ましく、2~30nmであることがより好ましい。
 また、保護層の屈折率が、1.5~1.53であることが好ましく、1.5~1.52であることがより好ましく、1.51~1.52であることが特に好ましい。
The thickness of the protective layer is preferably 1 to 50 nm, more preferably 2 to 30 nm.
Further, the refractive index of the protective layer is preferably 1.5 to 1.53, more preferably 1.5 to 1.52, and particularly preferably 1.51 to 1.52.
<ポリマー層>
 本発明のタッチパネル用積層体は、ポリマー層を有する。本発明では、ポリマー層を有し、且つ所定の積層順序とすることで本発明の効果を奏する。
<Polymer layer>
The laminated body for touchscreens of this invention has a polymer layer. In the present invention, the effect of the present invention is achieved by having a polymer layer and adopting a predetermined stacking order.
 ポリマー層には高分子フィルムを用いることが好ましい。
 ポリマー層に用いられる高分子フィルムの材質は、特に制限されるものではなく任意である。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリスチレン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、シクロオレフィンポリマー等が例示される。その中でも特に好ましい素材として、ポリカーボネート、ポリエステル(その中でも特にポリエチレンテレフタレート)、または、シクロオレフィンポリマーが例示される。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にリタデーションを制御することができる。特に、ポリエチレンテレフタレートに代表されるポリエステルは固有複屈折が大きく、フィルムの厚みが薄くても比較的容易に大きなリタデーションが得られるので、最も好適な素材である。
 本発明におけるポリエステルフィルムとは、主成分がポリエステルであるフィルムをいい、通常、樹脂成分の98質量%以上がポリエステルであるフィルムをいい、好ましくは、ポリエステルフィルムを構成する成分の90質量%がポリエステルであるフィルムをいう。ポリエステルの種類は特に制限されるものではなく、ポリエステルとして公知のものを使用することができる。具体的には、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート等が挙げられる。中でも、コストや機械的強度の観点から、ポリエチレンテレフタレート(PET)を用いることが特に好ましい。
It is preferable to use a polymer film for the polymer layer.
The material of the polymer film used for the polymer layer is not particularly limited and is arbitrary. Examples thereof include polyesters such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate, polystyrene, polyether ether ketone, polyphenylene sulfide, and cycloolefin polymer. Of these, polycarbonate, polyester (particularly, polyethylene terephthalate), or cycloolefin polymer is exemplified as a particularly preferable material. These resins are excellent in transparency and excellent in thermal and mechanical properties, and the retardation can be easily controlled by stretching. In particular, polyesters typified by polyethylene terephthalate are the most suitable materials because they have a large intrinsic birefringence and relatively large retardation can be obtained relatively easily even when the film thickness is thin.
The polyester film in the present invention refers to a film whose main component is polyester, and usually refers to a film in which 98% by mass or more of the resin component is polyester, and preferably 90% by mass of the component constituting the polyester film is polyester. Is a film. The kind in particular of polyester is not restrict | limited, A well-known thing can be used as polyester. Specific examples include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, and polybutylene naphthalate. Among them, it is particularly preferable to use polyethylene terephthalate (PET) from the viewpoint of cost and mechanical strength.
 高分子フィルムは特定の複屈折性を有するため配向フィルムを用いることが望ましいが、その製造方法は、本発明で規定したフィルム特性を満足する限り、特に限定されるものではない。 Since the polymer film has a specific birefringence, it is desirable to use an oriented film. However, the production method is not particularly limited as long as the film characteristics defined in the present invention are satisfied.
 ポリカーボネートフィルムの場合には、ポリカーボネートを溶融し、シート状に押し出し成型した無配向のシートをガラス転移温度以上の温度において一方向(必要によっては二方向)に延伸して、特定のリタデーションを有する配向ポリカーボネートフィルムを得ることができる。無配向のポリカーボネートシートは市販のものや溶液製膜によって作製したものも好適に用いることができる。
 また、シクロオレフィンポリマーを用いる場合、公知のシクロオレフィンポリマーを用いることができ、特定のリタデーションを有するシクロオレフィンポリマーを用いることが好ましい。シクロオレフィンフィルムの場合には、シクロオレフィンポリマーを溶融し、シート状に押し出し成型した無配向のシートをガラス転移温度以上の温度において一方向(必要によっては二方向)に延伸して、特定のリタデーションを有する配向シクロオレフィンポリマーフィルムを得ることができる。
 特定のリタデーションを有する配向シクロオレフィンポリマーとしては、市販のものを用いてもよく、日本ゼオン社製、ゼオノアフイルムZD14などを挙げることができる。
 無配向のシクロオレフィンポリマーは市販のものや溶液製膜によって作製したものも好適に用いることができる。
In the case of a polycarbonate film, a non-oriented sheet obtained by melting polycarbonate and extruding it into a sheet is stretched in one direction (or two directions if necessary) at a temperature equal to or higher than the glass transition temperature to obtain an orientation having a specific retardation. A polycarbonate film can be obtained. As the non-oriented polycarbonate sheet, a commercially available product or a solution prepared by solution film formation can be suitably used.
Moreover, when using a cycloolefin polymer, a well-known cycloolefin polymer can be used and it is preferable to use the cycloolefin polymer which has specific retardation. In the case of a cycloolefin film, a non-oriented sheet obtained by melting a cycloolefin polymer and extruding it into a sheet is stretched in one direction (or two directions if necessary) at a temperature equal to or higher than the glass transition temperature, and a specific retardation is obtained. An oriented cycloolefin polymer film having the following can be obtained.
As the oriented cycloolefin polymer having a specific retardation, commercially available ones may be used, and examples thereof include ZEON A FILM ZD14 manufactured by ZEON Corporation.
As the non-oriented cycloolefin polymer, a commercially available product or a solution prepared by solution casting can be suitably used.
 また、ポリエステルフィルムの場合には、ポリエステルを溶融し、シート状に押出し成形された無配向ポリエステルをガラス転移温度以上の温度においてテンターで横延伸後、熱処理を施す方法が挙げられる。 Further, in the case of a polyester film, there is a method in which a non-oriented polyester obtained by melting polyester and extruding into a sheet is subjected to heat treatment after transverse stretching with a tenter at a temperature equal to or higher than the glass transition temperature.
 具体的には、横延伸温度は80~130℃が好ましく、特に好ましくは90~120℃である。また、横延伸倍率は2.5~6.0倍が好ましく、特に好ましくは3.0~5.5倍である。延伸倍率が高すぎると、得られるフィルムの透明性が低下しやすくなる。一方、延伸倍率が低すぎると延伸張力も小さくなるため、得られるフィルムの複屈折が小さくなり、リタデーションが小さくなるので好ましくない。続く熱処理において、処理温度は100~250℃が好ましく、特に好ましくは180~245℃である。 Specifically, the transverse stretching temperature is preferably 80 to 130 ° C., particularly preferably 90 to 120 ° C. The transverse draw ratio is preferably 2.5 to 6.0 times, and particularly preferably 3.0 to 5.5 times. When the draw ratio is too high, the transparency of the resulting film tends to be lowered. On the other hand, if the draw ratio is too low, the draw tension is also small, so the birefringence of the resulting film is small, and the retardation is small, such being undesirable. In the subsequent heat treatment, the treatment temperature is preferably from 100 to 250 ° C., particularly preferably from 180 to 245 ° C.
 ポリマー層のリタデーションを特定範囲に制御する為には、延伸倍率や延伸温度、フィルムの厚みを適宜設定することにより行なうことができる。例えば、延伸倍率が高いほど、延伸温度が低いほど、フィルムの厚みが厚いほど高いリタデーションを得やすくなる。逆に、延伸倍率が低いほど、延伸温度が高いほど、フィルムの厚みが薄いほど低いリタデーションを得やすくなる。 In order to control the retardation of the polymer layer within a specific range, the stretching ratio, stretching temperature, and film thickness can be appropriately set. For example, the higher the stretching ratio, the lower the stretching temperature, and the thicker the film, the higher the retardation. Conversely, the lower the stretching ratio, the higher the stretching temperature, and the thinner the film, the lower the retardation.
 ポリマー層は、表面改質層を有することが好ましい。表面改質層とは、ポリマー層の表層に形成される層であって、非晶度(非結晶度/結晶度)が5%以上の層のことをいう。表面改質層は、ポリマー層の表面から40~330nmの範囲内のいずれかの深さまでの厚みを有している。表面改質層は、330nmの範囲内のいずれかの深さまでの厚みを有していることが好ましく、50~220nmの範囲内であることがより好ましく、50~200nmの範囲内であることがさらに好ましい。 The polymer layer preferably has a surface modification layer. The surface modified layer is a layer formed on the surface layer of the polymer layer, and means a layer having an amorphous degree (non-crystalline degree / crystalline degree) of 5% or more. The surface modification layer has a thickness from the surface of the polymer layer to any depth within the range of 40 to 330 nm. The surface modification layer preferably has a thickness up to any depth within the range of 330 nm, more preferably within the range of 50 to 220 nm, and within the range of 50 to 200 nm. Further preferred.
 非晶度は、非結晶部と結晶部の合計に占める非結晶部の割合(非結晶部の含有率)を示したものである。非結晶部はゴーシュ型の結晶分子を、結晶部はトランス型の結晶分子を多く含む。このため、非結晶部と結晶部の含有率は、結晶分子の含有率によって算出することができる。具体的には、ATR-IR法によって表面改質層のスペクトル得ることによって、非結晶部と結晶部の含有率を算出することができる。非晶度(1175cm-1)を結晶度のスペクトル(1341cm-1)のスペクトルで割った値を非晶度(非結晶度/結晶度)とした。 The non-crystallinity indicates the ratio of the non-crystalline part to the total of the non-crystalline part and the crystal part (content ratio of the non-crystalline part). The non-crystal part contains many Gauche crystal molecules, and the crystal part contains many trans-type crystal molecules. For this reason, the content rate of the non-crystal part and the crystal part can be calculated by the content rate of the crystal molecules. Specifically, the content ratio of the amorphous part and the crystalline part can be calculated by obtaining the spectrum of the surface modified layer by the ATR-IR method. A value obtained by dividing the amorphous degree (1175 cm −1 ) by the spectrum of the crystallinity spectrum (1341 cm −1 ) was defined as the amorphous degree (non-crystalline degree / crystalline degree).
 ポリマー層の表面改質層の非晶度(非結晶度/結晶度)は5%以上であることが好ましく、5~8.3%であることがより好ましく、5~8%であることがさらに好ましい。表面改質層の非晶度を上記範囲内とすることにより、ポリマー層の黄変を防ぎながら、オリゴマーブロック性と密着性等を上げることができる。 The amorphousness (noncrystallinity / crystallinity) of the surface modification layer of the polymer layer is preferably 5% or more, more preferably 5 to 8.3%, and more preferably 5 to 8%. Further preferred. By setting the amorphous degree of the surface modified layer within the above range, it is possible to improve the oligomer block property and adhesion while preventing yellowing of the polymer layer.
 表面改質層の厚さは、ポリマー層表面にオスミウム染色を施し、断面TEM観察することで求めることができる。色度がL=30以下の部分を黒く染まっているといい、改質されている部分である。未処理の場合では、ほとんど何も見えないが、グロー放電処理を行うと表面が黒く染まる。 The thickness of the surface modification layer can be obtained by osmium staining the polymer layer surface and observing a cross-section TEM. It is said that the portion where the chromaticity is L = 30 or less is dyed black, and this is a modified portion. In the untreated case, almost nothing can be seen, but when the glow discharge treatment is performed, the surface is dyed black.
 ポリマー層をグロー放電処理することによって、ポリエステルフィルムの表面に上記のような表面改質層を形成することが好ましく、Tg以上に加熱し、グロー放電処理することによって、ポリエステルフィルムの表面に上記のような表面改質層を形成することがより好ましい。 By subjecting the polymer layer to glow discharge treatment, it is preferable to form the surface modified layer as described above on the surface of the polyester film. By heating to Tg or higher and glow discharge treatment, the surface of the polyester film is subjected to the above-described treatment. It is more preferable to form such a surface modified layer.
 ポリマー層としては、保護層または易接着層、およびハードコート層との密着性を付与するために、ポリマー層の表面にグロー放電処理を施してもよい。
 グロー放電処理は、真空プラズマ処理またはグロー放電処理とも呼ばれる方法で、低圧雰囲気の気体(プラズマガス)中での放電によりプラズマを発生させ、基材表面を処理する方法である。本発明の処理で用いる低圧プラズマはプラズマガスの圧力が低い条件で生成する非平衡プラズマである。本発明の処理は、この低圧プラズマ雰囲気内に被処理フィルムを置くことにより行われる。
 本発明のグロー放電処理において、プラズマを発生させる方法としては、直流グロー放電、高周波放電、マイクロ波放電等の方法を利用することができる。放電に用いる電源は直流でも交流でもよい。交流を用いる場合は30Hz~20MHz程度の範囲が好ましい。交流を用いる場合には50又は60Hzの商用の周波数を用いてもよいし、10~50kHz程度の高周波を用いてもよい。また、13.56MHzの高周波を用いる方法も好ましい。
As the polymer layer, a glow discharge treatment may be applied to the surface of the polymer layer in order to impart adhesion to the protective layer or the easy-adhesion layer and the hard coat layer.
The glow discharge treatment is a method called vacuum plasma treatment or glow discharge treatment, in which plasma is generated by discharge in a gas (plasma gas) in a low-pressure atmosphere to treat the substrate surface. The low-pressure plasma used in the process of the present invention is a non-equilibrium plasma generated under conditions where the plasma gas pressure is low. The treatment of the present invention is performed by placing a film to be treated in this low-pressure plasma atmosphere.
In the glow discharge treatment of the present invention, as a method for generating plasma, methods such as direct current glow discharge, high frequency discharge, and microwave discharge can be used. The power source used for discharging may be direct current or alternating current. When alternating current is used, a range of about 30 Hz to 20 MHz is preferable. When alternating current is used, a commercial frequency of 50 or 60 Hz may be used, or a high frequency of about 10 to 50 kHz may be used. A method using a high frequency of 13.56 MHz is also preferable.
 本発明のグロー放電処理で用いるプラズマガスとして、酸素ガス、窒素ガス、水蒸気ガス、アルゴンガス、ヘリウムガス等の無機ガスを使用することができ、特に、酸素ガス、または、酸素ガスとアルゴンガスとの混合ガスが好ましい。具体的には、酸素ガスとアルゴンガスとの混合ガスを使用することが望ましい。酸素ガスとアルゴンガスを用いる場合、両者の比率としては、分圧比で酸素ガス:アルゴンガス=100:0~30:70位、より好ましくは、90:10~70:30位が好ましい。また、特に気体を処理容器に導入せず、リークにより処理容器にはいる大気や被処理物から出る水蒸気などの気体をプラズマガスとして用いる方法も好ましい。 As the plasma gas used in the glow discharge treatment of the present invention, an inorganic gas such as oxygen gas, nitrogen gas, water vapor gas, argon gas, helium gas can be used, and in particular, oxygen gas or oxygen gas and argon gas The mixed gas is preferable. Specifically, it is desirable to use a mixed gas of oxygen gas and argon gas. When oxygen gas and argon gas are used, the ratio between the two is preferably oxygen gas: argon gas = 100: 0 to 30:70, more preferably 90:10 to 70:30, as a partial pressure ratio. In addition, a method is also preferable in which a gas such as the air entering the processing container due to a leak or water vapor coming out of the object to be processed is used as the plasma gas without introducing the gas into the processing container.
 プラズマガスの圧力としては、非平衡プラズマ条件が達成される低圧が必要である。具体的なプラズマガスの圧力としては、0.005~10Torr、より好ましくは0.008~3Torr程度の範囲が好ましい。プラズマガスの圧力が0.005Torr未満の場合は接着性改良効果が不充分な場合があり、逆に10Torrを超えると電流が増大して放電が不安定になる場合がある。
 プラズマ出力としては、処理容器の形状や大きさ、電極の形状などにより一概には言えないが、100~10000W程度、より好ましくは、2000~10000W程度が好ましい。
As the pressure of the plasma gas, a low pressure at which non-equilibrium plasma conditions are achieved is necessary. The specific plasma gas pressure is preferably in the range of about 0.005 to 10 Torr, more preferably about 0.008 to 3 Torr. When the pressure of the plasma gas is less than 0.005 Torr, the effect of improving the adhesiveness may be insufficient. Conversely, when the pressure exceeds 10 Torr, the current may increase and the discharge may become unstable.
The plasma output cannot be generally specified depending on the shape and size of the processing container, the shape of the electrode, and the like, but is preferably about 100 to 10,000 W, more preferably about 2000 to 10,000 W.
 本発明のグロー放電処理の処理時間は0.05~100秒、より好ましくは0.5~30秒程度が好ましい。処理時間が0.05未満の場合には接着性改良効果が不充分な場合があり、逆に100秒を超えると被処理フィルムの変形や着色等の問題が生じる場合がある。 The treatment time of the glow discharge treatment of the present invention is preferably 0.05 to 100 seconds, more preferably about 0.5 to 30 seconds. If the treatment time is less than 0.05, the adhesion improving effect may be insufficient. Conversely, if the treatment time exceeds 100 seconds, problems such as deformation and coloring of the film to be treated may occur.
 本発明のグロー放電処理の放電処理強度はプラズマ出力と処理時間によるが、0.01~10kV・A・分/m2の範囲が好ましく、0.1~7kV・A・分/m2がより好ましい。
 放電処理強度を0.01kV・A・分/m2以上とすることで充分な接着性改良効果が得られ、10kV・A・分/m2以下とすることで被処理フィルムの変形や着色といった問題を避けることができる。
Discharge treatment intensity of the glow discharge treatment of the present invention will depend on the plasma power and treatment time, preferably in the range of 0.01 ~ 10kV · A · min / m 2, 0.1 ~ 7kV · A · min / m 2 Gayori preferable.
Discharge treatment intensity that is sufficient adhesion improving effect of the 0.01 kV · A · min / m 2 or more is obtained, and such deformation and coloration of the processed film by a 10 kV · A · min / m 2 or less You can avoid problems.
 本発明のグロー放電処理では、あらかじめ被処理フィルムであるポリマー層を加熱しておくことが好ましい。ポリエステルフィルムの表面は、Tg以上の温度でグロー放電処理が施され、その後にグロー放電処理が施されることが好ましい。すなわち、グロー放電処理時において、ポリマー層の表面はTg(69℃)以上に加熱されていることが好ましい。ポリマー層の表面はTg~200℃の温度範囲内に加熱されていることがより好ましく、Tg~150℃の温度範囲内に加熱されていることがさらに好ましい。上記温度範囲内に加熱してからグロー放電処理を施すことにより、ポリマー層にオリゴマーが析出することを防ぐことができ、ポリマー層が白化することを防止できる。さらに、上記温度範囲内に加熱してからグロー放電処理を施すことにより、ポリマー層が黄変することを抑制することができる。これにより、干渉ムラが解消され、b*値およびヘイズ値が小さいタッチパネル用積層体を得ることができる。 In the glow discharge treatment of the present invention, it is preferable to heat a polymer layer that is a film to be treated in advance. The surface of the polyester film is preferably subjected to glow discharge treatment at a temperature equal to or higher than Tg and then subjected to glow discharge treatment. That is, during the glow discharge treatment, the surface of the polymer layer is preferably heated to Tg (69 ° C.) or higher. The surface of the polymer layer is more preferably heated within a temperature range of Tg to 200 ° C., and further preferably heated within a temperature range of Tg to 150 ° C. By performing the glow discharge treatment after heating within the above temperature range, it is possible to prevent the oligomer from being deposited on the polymer layer and to prevent the polymer layer from being whitened. Furthermore, it can suppress that a polymer layer yellows by performing a glow discharge process after heating within the said temperature range. Thereby, interference nonuniformity is eliminated and the laminated body for touchscreens with a small b * value and a haze value can be obtained.
 真空中で被処理フィルムの温度を上げる具体的方法としては、赤外線ヒーターによる加熱、熱ロールに接触させることによる加熱方法などが挙げられる。 Specific examples of the method for raising the temperature of the film to be processed in a vacuum include heating with an infrared heater and a heating method by contacting with a hot roll.
 本発明のタッチパネル用積層体のb*値は、-2.0~2.0であることが好ましく、
-1.5~1.5であることがより好ましく、-1.2~1.2であることがさらに好ましい。なお、本発明では黄色味の着色度合をCIE1976のL***表色系における
*値で表す。
 前記ポリマー層のb*値は、b*=0.006t+0.55以下であることが好ましい。b*値はb*=0.006t+0.38以下であることが好ましく、更にb*=0.006
t+0.25以下であることが更に好ましい。尚、上記式において、tは前記ポリマー層の厚さ(μm)を示す。b*値を上記式以下にすることにより、前記ポリマー層の黄変を防ぐことができ、ポリエステルフィルムの透明性を高めることができる。
The b * value of the laminate for a touch panel of the present invention is preferably −2.0 to 2.0,
It is more preferably −1.5 to 1.5, and further preferably −1.2 to 1.2. In the present invention, the degree of yellowish coloring is represented by a b * value in the CIE 1976 L * a * b * color system.
The b * value of the polymer layer is preferably b * = 0.006t + 0.55 or less. The b * value is preferably b * = 0.006t + 0.38 or less, and b * = 0.006.
More preferably, it is t + 0.25 or less. In the above formula, t represents the thickness (μm) of the polymer layer. By making b * value below the said formula, the yellowing of the said polymer layer can be prevented and the transparency of a polyester film can be improved.
 本発明では、前記ポリマー層のb*値は1.75以下であることが好ましく、1.6以下であることがより好ましく、1.45以下であることがさらに好ましい。本発明で用いられる前記ポリマー層の膜厚は特に限定されるものではないが、前記ポリマー層の膜厚が10~100μmの場合、b*値は1.2以下であることが好ましく、1.0以下であることがより好ましく、0.9以下であることがさらに好ましい。また、前記ポリマー層の膜厚が100~150μmの場合、b*値は1.45以下であることが好ましく、1.3以下であることがより好ましく、1.15以下であることがさらに好ましい。さらに、前記ポリマー層の膜厚が150~200μmの場合、b*値は1.75以下であることが好ましく、1.6以下であることがより好ましく、1.45以下であることがさらに好ましい。 In the present invention, the b * value of the polymer layer is preferably 1.75 or less, more preferably 1.6 or less, and even more preferably 1.45 or less. The thickness of the polymer layer used in the present invention is not particularly limited, but when the thickness of the polymer layer is 10 to 100 μm, the b * value is preferably 1.2 or less. It is more preferably 0 or less, and further preferably 0.9 or less. Further, when the film thickness of the polymer layer is 100 to 150 μm, the b * value is preferably 1.45 or less, more preferably 1.3 or less, and further preferably 1.15 or less. . Further, when the film thickness of the polymer layer is 150 to 200 μm, the b * value is preferably 1.75 or less, more preferably 1.6 or less, and further preferably 1.45 or less. .
 さらに、グロー放電処理が施される前のb*値とグロー放電処理が施された後のb*値の変化量(Δb)が0.3以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることがさらに好ましい。グロー放電処理の前後でb*値の変化が少ないことは、グロー放電処理において黄変が起きていないことを示す。本発明では、グロー放電処理の前後におけるb*値の変化量を上記上限値以下とすることにより、黄変が抑制された前記ポリマー層を得ることができる。 Further, it is preferable that the amount of change in b * value after the b * value and a glow discharge treatment before the glow discharge treatment is performed is performed ([Delta] b) is 0.3 or less, is 0.2 or less More preferably, it is more preferably 0.1 or less. A small change in the b * value before and after the glow discharge treatment indicates that no yellowing has occurred in the glow discharge treatment. In the present invention, the polymer layer in which yellowing is suppressed can be obtained by setting the change amount of the b * value before and after the glow discharge treatment to be equal to or less than the above upper limit value.
 また、本発明のタッチパネル用積層体のヘイズ値は、2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。
 積層フィルムのb*値およびヘイズ値を、上記範囲内とすることにより、本発明のタッチパネル用積層体をタッチパネル等の表示装置に組み込んだ場合に、画像の色づきを少なくすることができ、視認性を良好なものとすることができる。
Moreover, it is preferable that the haze value of the laminated body for touchscreens of this invention is 2% or less, It is more preferable that it is 1.5% or less, It is further more preferable that it is 1% or less.
By setting the b * value and haze value of the laminated film within the above ranges, when the laminated body for a touch panel of the present invention is incorporated in a display device such as a touch panel, image coloring can be reduced and visibility is improved. Can be made good.
 ポリマー層に用いられる高分子フィルムは、3000~12000nmの位相差(面内方向のリタデーション、以下Reとも言う)を有することが好ましく、4500~10000nmの位相差を有することがより好ましく、6000~8000nmの位相差を有することがさらに好ましい。ポリマー層リタデーションが3000nm未満では、サングラスなどの偏光板を通して画面を観察した時、強い干渉色を呈するため、包絡線形状が光源の発光スペクトルと相違し、良好な視認性を確保することができない。一方、ポリマー層リタデーションが12000nmを超えると、それ以上のポリマー層リタデーションを有する高分子フィルムを用いたとしても更なる視認性の改善効果は実質的に得られないばかりか、フィルムの厚みも相当に厚くなり、工業材料としての取り扱い性が低下するので好ましくない。 The polymer film used in the polymer layer preferably has a retardation of 3000 to 12000 nm (in-plane retardation, hereinafter also referred to as Re), more preferably has a retardation of 4500 to 10000 nm, and preferably 6000 to 8000 nm. More preferably, the phase difference is as follows. When the polymer layer retardation is less than 3000 nm, when the screen is observed through a polarizing plate such as sunglasses, a strong interference color is exhibited. Therefore, the envelope shape is different from the emission spectrum of the light source, and good visibility cannot be ensured. On the other hand, when the polymer layer retardation exceeds 12000 nm, even if a polymer film having a polymer layer retardation of more than that is used, a further improvement in visibility is not substantially obtained, and the thickness of the film is considerably increased. This is not preferable because it becomes thick and the handling property as an industrial material is lowered.
 ポリマー層に用いられる高分子フィルムのReは、λ/4板として機能させることができる範囲とすることが、偏光サングラスなどの偏光板を介したときの表示画像の視認性の観点から好ましい。
 この場合のポリマー層に用いられる高分子フィルムのReは、100~200nmであることが好ましく、120~180nmであることがより好ましく、130~160nmであることがさらに好ましい。
 ポリマー層に用いられる高分子フィルムのReがこの範囲外になると、液晶表示装置の表示画像の偏光状態を円偏光にすることができず、偏光サングラスなどの偏光板を介したときの表示画像が、偏光サングラスの角度によって視認性が著しく悪化する。
The Re of the polymer film used for the polymer layer is preferably in a range that allows it to function as a λ / 4 plate, from the viewpoint of the visibility of the display image when a polarizing plate such as polarized sunglasses is used.
In this case, Re of the polymer film used for the polymer layer is preferably 100 to 200 nm, more preferably 120 to 180 nm, and further preferably 130 to 160 nm.
If the Re of the polymer film used for the polymer layer falls outside this range, the polarization state of the display image of the liquid crystal display device cannot be made circularly polarized, and the display image when passing through a polarizing plate such as polarized sunglasses is displayed. The visibility is significantly deteriorated depending on the angle of the polarized sunglasses.
 また、ポリマー層の面内方向のリタデーションと厚さ方向リタデーションの比(Re/Rth)は、好ましくは0.200以上、より好ましくは0.500以上、さらに好ましくは0.600以上である。上記面内方向のリタデーションと厚さ方向リタデーションの比(Re/Rth)が大きいほど、偏光サングラスで視認した場合の虹ムラを解消することができる。
 一方、ポリマー層の面内方向のリタデーションと厚さ方向リタデーションの比(Re/Rth)は、好ましくは1.2以下、より好ましくは1.0以下である。1.2より大きくすると、高分子フィルムをより延伸する必要があり、強度が劣ることがある。
Further, the ratio of the retardation in the in-plane direction to the thickness direction retardation (Re / Rth) of the polymer layer is preferably 0.200 or more, more preferably 0.500 or more, and further preferably 0.600 or more. As the ratio of the retardation in the in-plane direction to the retardation in the thickness direction (Re / Rth) is larger, rainbow unevenness when viewed with polarized sunglasses can be eliminated.
On the other hand, the ratio (Re / Rth) of retardation in the in-plane direction and thickness direction retardation of the polymer layer is preferably 1.2 or less, more preferably 1.0 or less. If it is larger than 1.2, the polymer film needs to be stretched more and the strength may be inferior.
 リタデーション(Re(λ)及びRth(λ))は各々、波長λにおける面内方向のレターデーション(nm)及び厚さ方向のレターデーション(nm)を表す。Re(λ)はKOBRA 21ADH又はWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。 Retardation (Re (λ) and Rth (λ)) represents retardation in the in-plane direction (nm) and retardation in the thickness direction (nm), respectively, at the wavelength λ. Re (λ) is measured by making light having a wavelength of λ nm incident in the normal direction of the film in KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments).
 測定されるフィルムが1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
 上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH又はWRが算出する。
 尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(11)及び式(12)よりRthを算出することもできる。
When the film to be measured is represented by a uniaxial or biaxial refractive index ellipsoid, Rth (λ) is calculated by the following method.
Rth (λ) is Re (λ), with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotation axis) (if there is no slow axis, any in-plane film The light is incident at a wavelength of λ nm from the inclined direction in steps of 10 degrees from the normal direction to 50 degrees on one side with respect to the film normal direction of the rotation axis of KOBRA 21ADH or WR is calculated based on the measured retardation value, the assumed value of the average refractive index, and the input film thickness value.
In the above case, in the case of a film having a direction in which the retardation value is zero at a certain tilt angle with the in-plane slow axis from the normal direction as the rotation axis, retardation at a tilt angle larger than the tilt angle. The value is calculated by KOBRA 21ADH or WR after changing its sign to negative.
In addition, the retardation value is measured from the two inclined directions, with the slow axis as the tilt axis (rotation axis) (in the absence of the slow axis, the arbitrary direction in the film plane is the rotation axis), Based on the value, the assumed value of the average refractive index, and the input film thickness value, Rth can also be calculated from the following equations (11) and (12).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
注記:
 式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値をあらわす。
 nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表す。dは膜厚を表す。
Note:
In the formula, Re (θ) represents a retardation value in a direction inclined by an angle θ from the normal direction.
nx represents the refractive index in the slow axis direction in the plane, ny represents the refractive index in the direction perpendicular to nx in the plane, and nz represents the refractive index in the direction perpendicular to nx and ny. d represents a film thickness.
 測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して-50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
In the case where the film to be measured cannot be expressed by a uniaxial or biaxial refractive index ellipsoid, that is, a film having no so-called optical axis, Rth (λ) is calculated by the following method.
Rth (λ) is from −50 degrees to +50 degrees with respect to the normal direction of the film, with Re (λ) as the slow axis (indicated by KOBRA 21ADH or WR) in the plane and the tilt axis (rotation axis). In each of the 10 degree steps, light of wavelength λ nm is incident from the inclined direction and measured at 11 points. Based on the measured retardation value, the assumed average refractive index, and the input film thickness value, KOBRA 21ADH or WR is calculated.
 ここで平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示すると、セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)などが挙げられる。
 これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHによりnx、ny、nzを算出することができる。なお、測定波長は特に断りがない限り550nmである。
Here, as the assumed value of the average refractive index, values in the polymer handbook (John Wiley & Sons, Inc.) and catalogs of various optical films can be used. Those whose average refractive index is not known can be measured with an Abbe refractometer. Examples of the average refractive index of the main optical film are as follows: cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethyl methacrylate (1.49), Examples include polystyrene (1.59).
By inputting the assumed value of the average refractive index and the film thickness, nx, ny, and nz can be calculated by KOBRA 21ADH. The measurement wavelength is 550 nm unless otherwise specified.
 高分子フィルムのリタデーションを上記範囲に設定することで、比較的簡便な構成のみで透過光のスペクトルの包絡線形状を光源の発光スペクトルに近似させることが可能となる。すなわち、従来技術では不連続な発光スペクトルを有する光源を用いるがために、極めて高いリタデーション(100000nm超)を有する複屈折体を用いなければ、視認性の改善ができなかったところ、連続的な発光スペクトルを有するという白色LED光源の性質を利用して上記のように比較的簡便な構成で視認性を向上させるという特異な効果を奏する。 By setting the retardation of the polymer film within the above range, it becomes possible to approximate the envelope shape of the spectrum of transmitted light to the emission spectrum of the light source with only a relatively simple configuration. That is, since the conventional technique uses a light source having a discontinuous emission spectrum, the visibility cannot be improved unless a birefringent body having an extremely high retardation (over 100,000 nm) is used. Using the property of a white LED light source having a spectrum, a unique effect of improving the visibility with a relatively simple configuration as described above is achieved.
 ポリマー層の厚みとしては、20~150μmであることが好ましいく、30~125μmであることがより好ましく、50~100μmであることがさらに好ましい。20μmを未満であると、高分子フィルムの力学特性の異方性が顕著となり、裂け、破れ等を生じやすくなり、工業材料としての実用性が著しく低下する。一方、150μmを超えると、高分子フィルムは非常に剛直であり、高分子フィルム特有のしなやかさが低下し、やはり工業材料としての実用性が低下することがある。 The thickness of the polymer layer is preferably 20 to 150 μm, more preferably 30 to 125 μm, and even more preferably 50 to 100 μm. When the thickness is less than 20 μm, the anisotropy of the mechanical properties of the polymer film becomes remarkable, and tearing, tearing and the like are likely to occur, and the practicality as an industrial material is remarkably reduced. On the other hand, when it exceeds 150 μm, the polymer film is very rigid, and the flexibility specific to the polymer film is lowered, and the practicality as an industrial material may also be lowered.
 ポリマー層の屈折率は、使用する材料により値は異なるが、1.60~1.75であることが好ましく、1.62~1.68であることがより好ましく、1.64~1.67であることが特に好ましい。屈折率が上記範囲内であれば、タッチパネル用積層体の支持体としての優れた剛性を示すとともに、透明性に優れたタッチパネル用積層体を得ることができる。なお、本発明において屈折率とは波長660nmにおける測定値を表す。 The refractive index of the polymer layer varies depending on the material used, but is preferably 1.60 to 1.75, more preferably 1.62 to 1.68, and 1.64 to 1.67. It is particularly preferred that When the refractive index is within the above range, it is possible to obtain a laminate for a touch panel having excellent rigidity as a support for the laminate for a touch panel and having excellent transparency. In the present invention, the refractive index represents a measured value at a wavelength of 660 nm.
 ポリマー層は、本発明の趣旨を逸脱しない範囲で他の添加剤を含んでいてもよく、酸化防止剤や紫外線防止剤が例示される。 The polymer layer may contain other additives as long as they do not depart from the spirit of the present invention, and examples thereof include antioxidants and ultraviolet inhibitors.
<ハードコート層>
 本発明のタッチパネル用積層体は、ポリマー層の保護層が形成されている面の反対側の面にハードコート層を有することが好ましい。ハードコート層を有することで、ガラスの飛散性だけでなく、ヘイズ、透明性、鉛筆硬度などを向上させることができる。
 なお、ハードコート層は、ガラス基板の透明導電層が形成されている面の反対側にも有していてもよい。
<Hard coat layer>
It is preferable that the laminated body for touchscreens of this invention has a hard-coat layer in the surface on the opposite side to the surface in which the protective layer of a polymer layer is formed. By having a hard coat layer, not only the scattering property of glass but also haze, transparency, pencil hardness and the like can be improved.
In addition, you may have a hard-coat layer also on the opposite side of the surface in which the transparent conductive layer of a glass substrate is formed.
 前記ハードコート層が、硬化性樹脂またはアルコキシシランの加水分解縮合物を含むことが好ましい。
 前記ハードコート層の好ましい態様の一つとしては、耐薬品性、耐傷性に強い硬化性樹脂から前記ハードコート層が主として(50質量%以上)構成されるものであることが好ましい。ハードコート層は、紫外線や電子線を照射することによって硬化性樹脂を硬化させて形成してもよく、アルコキシシランの加水分解物を縮合させ硬化させて形成してもよい。
 紫外線や電子線を照射することによって硬化性樹脂を硬化させて形成する場合、硬化性樹脂としては、電離放射線硬化型樹脂、熱硬化型樹脂、熱可塑性樹脂などあるが、好ましくは、膜形成作業が容易で且つ鉛筆硬度を所望の値に容易に高めやすい電離放射線硬化型樹脂である。また、アルコキシシランの加水分解物を縮合させることにより形成する場合、アルコキシシランの加水分解物を含む水性組成物を塗布して乾燥させることにより形成することができる。このため、有機溶剤等を用いることなくハードコート層を形成することができ、環境への負荷を大幅に低減することができる。
The hard coat layer preferably contains a hydrolysis condensate of curable resin or alkoxysilane.
As one of the preferable embodiments of the hard coat layer, it is preferable that the hard coat layer is mainly composed of a curable resin having high chemical resistance and scratch resistance (50% by mass or more). The hard coat layer may be formed by curing a curable resin by irradiation with ultraviolet rays or an electron beam, or may be formed by condensing and curing a hydrolyzate of alkoxysilane.
When the curable resin is cured by irradiation with ultraviolet rays or an electron beam, the curable resin includes an ionizing radiation curable resin, a thermosetting resin, a thermoplastic resin, and preferably a film forming operation. It is an ionizing radiation curable resin that is easy to increase and pencil hardness can be easily increased to a desired value. Moreover, when forming by condensing the hydrolyzate of alkoxysilane, it can form by apply | coating and drying the aqueous composition containing the hydrolyzate of alkoxysilane. For this reason, a hard-coat layer can be formed without using an organic solvent etc., and the load to an environment can be reduced significantly.
<<電離放射線硬化型樹脂>>
 ハードコート層の形成に用いる電離放射線硬化型樹脂としては、アクリレート系官能基を持つものが好ましく、特にポリエステルアクリレートまたはウレタンアクリレートが好ましい。ポリエステルアクリレートは、ポリエステル系ポリオールのオリゴマーの(メタ)アクリレートから構成される。また、前記ウレタンアクリレートは、ポリオール化合物とジイソシアネート化合物からなるオリゴマーをアクリレート化したものから構成される。なお、アクリレートを構成する単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2エチルヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレートなどがある。
<< Ionizing radiation curable resin >>
As the ionizing radiation curable resin used for forming the hard coat layer, those having an acrylate functional group are preferable, and polyester acrylate or urethane acrylate is particularly preferable. The polyester acrylate is composed of an oligomer (meth) acrylate of a polyester-based polyol. The urethane acrylate is composed of an acrylated oligomer composed of a polyol compound and a diisocyanate compound. In addition, as a monomer constituting the acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2 ethylhexyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate And phenyl (meth) acrylate.
 ハードコート層の硬度をさらに高めたい場合は、多官能モノマーを併用することができる。具体的な多官能モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートなど例示できる。 ¡To further increase the hardness of the hard coat layer, a polyfunctional monomer can be used in combination. Specific polyfunctional monomers include, for example, trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, 1,6 hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and the like.
 ハードコート層の形成に使用するポリエステル系オリゴマーとしては、アジピン酸とグリコール(エチレングリコール、ポリエチレングリコール、プロピレングリコール、ブチレングリコール、ポリブチレングリコールなど)やトリオール(グリセリン、トリメチロールプロパンなど)セバシン酸とグリコールやトリオールとの縮合生成物であるポリアジペートトリオールや、ポリセバシエートポリオールなどが例示できる。なお、上記脂肪族のジカルボン酸の一部または全てを他の有機酸で置換してもよい。この場合、他の有機酸としては、イソフタル酸、テレフタル酸または無水フタル酸などが、ハードコート層に高度の硬度を発現することから、好ましい。 Polyester oligomers used to form the hard coat layer include adipic acid and glycol (ethylene glycol, polyethylene glycol, propylene glycol, butylene glycol, polybutylene glycol, etc.) and triol (glycerin, trimethylolpropane, etc.) sebacic acid and glycol Examples thereof include polyadipate triol which is a condensation product with triol and polysebacate polyol. Note that a part or all of the aliphatic dicarboxylic acid may be substituted with another organic acid. In this case, as the other organic acid, isophthalic acid, terephthalic acid, phthalic anhydride, or the like is preferable because high hardness is expressed in the hard coat layer.
 ハードコート層の形成に使用するポリウレタン系オリゴマーは、ポリイソシアネートとポリオールとの縮合生成物から得ることができる。具体的なポリイソシアネートとしては、メチレン・ビス(p―フェニレンジイソシアネート)、ヘキサメチレンジイソシアネート・ヘキサントリオールの付加体、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、トリレンジイソシアネートトリメチロ―ルプロパンのアダクト体、1,5―ナフチレンジイソシアネート、チオプロピルジイソシアネート、エチルベンゼン―2,4―ジイソシアネート、2,4―トリレンジイソシアネート二量体、水添キシリレンジイソシアネート、トリス(4―フェニルイソシアネート)チオフォスフエートなどが例示でき、また、具体的なポリオールとしては、ポリオキシテトらメチレングリコールなどのポリエーテル系ポリオール、ポリアジペートポリオール、ポリカーボネートポリオールなどのポリエステル系ポリオール、アクリル酸エステル類とヒドロキシエチルメタアクリレートとのコポリマーなどが例示できる。 The polyurethane oligomer used for forming the hard coat layer can be obtained from a condensation product of polyisocyanate and polyol. Specific polyisocyanates include adducts of methylene bis (p-phenylene diisocyanate), hexamethylene diisocyanate / hexane triol, hexamethylene diisocyanate, tolylene diisocyanate, tolylene diisocyanate trimethylolpropane, 1,5 Examples include naphthylene diisocyanate, thiopropyl diisocyanate, ethylbenzene-2,4-diisocyanate, 2,4-tolylene diisocyanate dimer, hydrogenated xylylene diisocyanate, tris (4-phenyl isocyanate) thiophosphate, Specific polyols include polyether polyols such as polyoxytate and methylene glycol, polyadipate polyols, and polycarbonate polyols. What polyester polyols, such as copolymers of acrylic acid esters and hydroxyethyl methacrylate can be exemplified.
 さらに、上記の電離放射線硬化型樹脂として、紫外線硬化型樹脂を使用するときは、これらの樹脂中にアセトフェノン類、ベンゾフェノン類、ミフィラベンゾイルベンゾエート、α-アミロキシムエステルまたはチオキサントン類などを光重合開始剤として、また、n―ブチルアミン、トリエチルアミン、トリn-ブチルホスフィンなどを光増感剤として混合して使用するのが好ましい。 In addition, when UV curable resins are used as the above ionizing radiation curable resins, photopolymerization of acetophenones, benzophenones, mifilabenzoylbenzoate, α-amyloxime esters, thioxanthones, etc. in these resins is started. It is preferable to use n-butylamine, triethylamine, tri-n-butylphosphine or the like as a photosensitizer mixed as a photosensitizer.
 なお、ウレタンアクリレートは、弾性や可撓性に富み、加工性(折り曲げ性)に優れる反面、表面硬度が不足し、2H以上の鉛筆硬度のものが得難い。これに対して、ポリエステルアクリレートは、ポリエステルの構成成分の選択により、極めて高い硬度のハードコート層を形成することができる。そこで、高硬度と可撓性とを両立しやすいことから、ウレタンアクリレート60~90質量部に対して、ポリエステルアクリレート40~10質量部を配合させたハードコート層が好ましい。 In addition, urethane acrylate is rich in elasticity and flexibility and excellent in workability (foldability), but has insufficient surface hardness, and it is difficult to obtain a pencil hardness of 2H or more. On the other hand, the polyester acrylate can form a hard coat layer with extremely high hardness by selecting the constituent components of the polyester. Therefore, a hard coat layer in which 40 to 10 parts by mass of polyester acrylate is blended with 60 to 90 parts by mass of urethane acrylate is preferable because both high hardness and flexibility are easily achieved.
<<アルコキシシラン>>
 ハードコート層をアルコキシシランの加水分解物を縮合させることにより形成する場合、ハードコート層の厚みは、水性組成物の塗布量を調整することにより制御することができる。
<< Alkoxysilane >>
When the hard coat layer is formed by condensing an alkoxysilane hydrolyzate, the thickness of the hard coat layer can be controlled by adjusting the coating amount of the aqueous composition.
 本発明に用いられるハードコート層の他の好ましい態様の一つでは、前記ハードコート層がアルコキシシランの加水分解物を縮合させることにより形成される。アルコキシシランは加水分解性基を有し、この加水分解性基が酸性の水溶液中で加水分解されることにより、シラノールが生成され、シラノール同士が縮合することによって、アルコキシシランの加水分解縮合物(オリゴマー)が生成される。すなわち、ハードコート層には、アルコキシシランの加水分解縮合物が含まれる。
なお、ハードコート層には、アルコキシシランの加水分解縮合物の他に、アルコキシシラン、またはその加水分解物が一部含まれていてもよい。
 本発明に用いられるハードコート層は、アルコキシシランを含む水性組成物を塗布して乾燥させることにより形成することができる。水性組成を使用することは、VOC(volatile organic compounds)による環境汚染を低減する観点からも好ましい。
In another preferred embodiment of the hard coat layer used in the present invention, the hard coat layer is formed by condensing a hydrolyzate of alkoxysilane. Alkoxysilane has a hydrolyzable group, and when this hydrolyzable group is hydrolyzed in an acidic aqueous solution, silanol is generated, and silanols condense with each other, so that a hydrolyzed condensate of alkoxysilane ( Oligomer) is produced. That is, the hard coat layer contains a hydrolysis condensate of alkoxysilane.
The hard coat layer may contain a portion of alkoxysilane or a hydrolyzate thereof in addition to the alkoxysilane hydrolysis condensate.
The hard coat layer used in the present invention can be formed by applying an aqueous composition containing alkoxysilane and drying it. The use of an aqueous composition is also preferable from the viewpoint of reducing environmental pollution caused by VOC (volatile organic compounds).
 また、アルコキシシランとして、エポキシ基含有アルコキシシランおよびエポキシ基非含有アルコキシシランを用いることが好ましい。エポキシ基含有アルコキシシランおよびエポキシ基非含有アルコキシシランは各々、加水分解性基を有するため、この加水分解性基が酸性の水溶液中で加水分解され、生成されるシラノールが縮合することによってエポキシ基含有アルコキシシランとエポキシ基非含有アルコキシシランの加水分解縮合物が生成される。すなわち、本発明に用いられるハードコート層には、エポキシ基含有アルコキシシランとエポキシ基非含有アルコキシシランの加水分解縮合物が含まれる。 Moreover, it is preferable to use an epoxy group-containing alkoxysilane and an epoxy group-free alkoxysilane as the alkoxysilane. Each of the epoxy group-containing alkoxysilane and the epoxy group-free alkoxysilane has a hydrolyzable group. Therefore, the hydrolyzable group is hydrolyzed in an acidic aqueous solution, and the resulting silanol is condensed to contain an epoxy group. A hydrolysis condensate of alkoxysilane and epoxy group-free alkoxysilane is produced. That is, the hard coat layer used in the present invention includes a hydrolysis condensate of an epoxy group-containing alkoxysilane and an epoxy group-free alkoxysilane.
 ハードコート層を形成するための水性組成物中において、全アルコキシシランに対して、エポキシ基含有アルコキシシランが占める割合は20~85質量%であることが好ましい。エポキシ基含有アルコキシシランが占める割合は、20質量%以上であればよく、25質量%以上であることが好ましく、30質量%以上であることがより好ましい。また、エポキシ基含有アルコキシシランが占める割合は、85質量%以下であればよく、80質量%以下であることが好ましく、75質量%以下であることがより好ましい。全アルコキシシランに対してエポキシ基含有アルコキシシランが占める割合を上記範囲内とすることにより、水性組成物の安定性を高めることができ、さらに、アルカリ耐性の強いハードコート層を形成することができる。 In the aqueous composition for forming the hard coat layer, the ratio of the epoxy group-containing alkoxysilane to the total alkoxysilane is preferably 20 to 85% by mass. The proportion of the epoxy group-containing alkoxysilane may be 20% by mass or more, preferably 25% by mass or more, and more preferably 30% by mass or more. Moreover, the ratio for which an epoxy-group-containing alkoxysilane accounts may be 85 mass% or less, it is preferable that it is 80 mass% or less, and it is more preferable that it is 75 mass% or less. By setting the ratio of the epoxy group-containing alkoxysilane to the total alkoxysilane within the above range, the stability of the aqueous composition can be increased, and further, a hard coat layer having strong alkali resistance can be formed. .
 エポキシ基含有アルコキシシランは、エポキシ基を有するアルコキシシランである。エポキシ基含有アルコキシシランとしては、1分子中に1つ以上エポキシ基を有するものであればよく、エポキシ基の数は特に限定されない。エポキシ基含有アルコキシシランは、エポキシ基の他に、さらに、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシル基など基を有していても良い。 The epoxy group-containing alkoxysilane is an alkoxysilane having an epoxy group. Any epoxy group-containing alkoxysilane may be used as long as it has one or more epoxy groups in one molecule, and the number of epoxy groups is not particularly limited. In addition to the epoxy group, the epoxy group-containing alkoxysilane may further have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxyl group.
 本発明で用いるエポキシ基含有アルコキシシランとしては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等を挙げることができる。市販品としては、KBE-403(信越化学工業(株)製)などが挙げられる。 As the epoxy group-containing alkoxysilane used in the present invention, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxy) Cyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3- Examples thereof include glycidoxypropyltriethoxysilane. Examples of commercially available products include KBE-403 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 エポキシ基非含有アルコキシシランは、エポキシ基を有さないアルコキシシランである。エポキシ基非含有アルコキシシランは、エポキシ基を有さないアルコキシシランであればよく、アルキル基、アミド基、ウレタン基、ウレア基、エステル基、ヒドロキシ基、カルボキシル基などの基を有していても良い。 The epoxy group-free alkoxysilane is an alkoxysilane having no epoxy group. The epoxy group-free alkoxysilane may be an alkoxysilane having no epoxy group, and may have a group such as an alkyl group, an amide group, a urethane group, a urea group, an ester group, a hydroxy group, or a carboxyl group. good.
 エポキシ基非含有アルコキシシランは、テトラアルコキシシランまたはトリアルコキシシランであるか、これらの混合物であることが好ましい。テトラアルコキシシランまたはトリアルコキシシランの混合物であることが好ましく、テトラアルコキシシランとトリアルコキシシランを混合して含有することにより、ハードコート層を形成した際に、適度な柔軟性を有しつつも、十分な硬度を得ることができる。 The epoxy group-free alkoxysilane is preferably tetraalkoxysilane, trialkoxysilane, or a mixture thereof. It is preferably a mixture of tetraalkoxysilane or trialkoxysilane, and contains a mixture of tetraalkoxysilane and trialkoxysilane, so that when a hard coat layer is formed, while having appropriate flexibility, Sufficient hardness can be obtained.
 エポキシ基非含有アルコキシシランが、テトラアルコキシシランとトリアルコキシシランの混合物である場合、テトラアルコキシシランとトリアルコキシシランのモル比は、25:75~85:15であることが好ましく、30:70~80:20であることがより好ましく、30:70~65:35であることがさらに好ましい。モル比を上記範囲内とすることにより、アルコキシシランの重合度を所望の範囲内に制御することや加水分解速度及びアルミキレートの溶解性の制御が容易となる。 When the epoxy group-free alkoxysilane is a mixture of tetraalkoxysilane and trialkoxysilane, the molar ratio of tetraalkoxysilane and trialkoxysilane is preferably 25:75 to 85:15, and 30:70 to 80:20 is more preferable, and 30:70 to 65:35 is even more preferable. By setting the molar ratio within the above range, it becomes easy to control the degree of polymerization of the alkoxysilane within a desired range and to control the hydrolysis rate and the solubility of the aluminum chelate.
 テトラアルコキシシランは、4官能のアルコキシシランであり、各アルコキシ基の炭素数が1~4のものがより好ましい。中でも、テトラメトキシシラン、テトラエトキシシランが特に好ましく用いられる。炭素数を4以下とすることにより、酸性水と混ぜたときのテトラアルコキシシランの加水分解速度が遅くなりすぎることがなく、均一な水溶液にするまでの溶解に要する時間がより短くなる。これにより、ハードコート層を製造する際の製造効率を高めることができる。市販品としては、KBE-04(信越化学工業(株)製)などが挙げられる。 The tetraalkoxysilane is a tetrafunctional alkoxysilane, more preferably one having 1 to 4 carbon atoms in each alkoxy group. Of these, tetramethoxysilane and tetraethoxysilane are particularly preferably used. By setting the number of carbon atoms to 4 or less, the hydrolysis rate of tetraalkoxysilane when mixed with acidic water does not become too slow, and the time required for dissolution until a uniform aqueous solution is shortened. Thereby, the manufacturing efficiency at the time of manufacturing a hard-coat layer can be improved. Examples of commercially available products include KBE-04 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 トリアルコキシシランは、下記一般式(1)で表される3官能のアルコキシシランである。
RSi(OR13     …(1)
ここで、Rはアミノ基を含まない炭素数が1~15の有機基、R1はメチル、エチル基等の炭素数4以下のアルキル基である。
The trialkoxysilane is a trifunctional alkoxysilane represented by the following general formula (1).
RSi (OR 1 ) 3 (1)
Here, R is an organic group having 1 to 15 carbon atoms that does not contain an amino group, and R 1 is an alkyl group having 4 or less carbon atoms such as a methyl or ethyl group.
 一般式(1)で表される3官能のアルコキシシランは、アミノ基を官能基として含まない。つまり、この3官能のアルコキシシランは、アミノ基を持たない有機基Rを有している。Rがアミノ基を有する場合は、4官能のアルコキシシランと混合して加水分解すると、生成するシラノール同士で脱水縮合が促進されてしまう。このため、水性組成物が不安定となり好ましくない。 The trifunctional alkoxysilane represented by the general formula (1) does not contain an amino group as a functional group. That is, this trifunctional alkoxysilane has an organic group R having no amino group. When R has an amino group, if it is mixed with a tetrafunctional alkoxysilane and hydrolyzed, dehydration condensation is promoted between the produced silanols. For this reason, an aqueous composition becomes unstable and is not preferable.
 一般式(1)のRは、炭素数が1~15の範囲であるような分子鎖長を持つ有機基であれば良い。炭素数を15以下とすることにより、ハードコート層を形成した際の柔軟性が過度に大きくならず、十分な硬度を得ることができる。Rの炭素数を上記範囲内とすることにより、脆性がより改善されたハードコート層を得ることができる。また、支持体等の他のフィルムとハードコート層の密着性を高めることができる。 R in the general formula (1) may be an organic group having a molecular chain length in the range of 1 to 15 carbon atoms. By setting the number of carbon atoms to 15 or less, the flexibility when the hard coat layer is formed is not excessively increased, and sufficient hardness can be obtained. By setting the carbon number of R within the above range, a hard coat layer with improved brittleness can be obtained. Moreover, the adhesiveness of other films, such as a support body, and a hard-coat layer can be improved.
 さらに、Rで示す有機基は、酸素、窒素、硫黄などのヘテロ原子を有しても良い。有機基がヘテロ原子を持つことにより、他のフィルムとの密着性をより向上させることができる。 Furthermore, the organic group represented by R may have a heteroatom such as oxygen, nitrogen, or sulfur. When the organic group has a hetero atom, adhesion with other films can be further improved.
 トリアルコキシシランとしては、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、プロピルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-クロロプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシランを挙げることができる。中でも、メチルトリエトキシシラン、メチルトリメトキシシランは特に好ましく用いられる。市販品としては、KBE-13(信越化学工業(株)製)などが挙げられる。 Examples of trialkoxysilane include vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, propyltrimethoxysilane, Phenyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltriethoxysilane, 3-chloropropyltriethoxysilane, 3-ureidopropyltriethoxysilane, methyltriethoxysilane, methyl Trimethoxysilane, ethyltriethoxysilane, ethyltrimethoxysilane, propyltriethoxysilane, propyltrimethoxysilane, phenyltriethoxysilane, fluorine It can be exemplified sulfonyl trimethoxysilane. Of these, methyltriethoxysilane and methyltrimethoxysilane are particularly preferably used. Examples of commercially available products include KBE-13 (manufactured by Shin-Etsu Chemical Co., Ltd.).
(金属錯体)
 本発明に用いるハードコート層は、硬化剤として金属錯体を含んでいてもよい。金属錯体としては、Al、Mg、Mn、Ti、Cu、Co、Zn、Hf及びZrよりなる金属錯体が好ましく、これらを併用することもできる。
(Metal complex)
The hard coat layer used in the present invention may contain a metal complex as a curing agent. As the metal complex, a metal complex composed of Al, Mg, Mn, Ti, Cu, Co, Zn, Hf and Zr is preferable, and these can be used in combination.
 これらの金属錯体は、金属アルコキシドにキレート化剤を反応させることにより容易に得ることができる。キレート化剤の例としては、アセチルアセトン、ベンゾイルアセトン、ジベンゾイルメタンなどのβ-ジケトン、アセト酢酸エチル、ベンゾイル酢酸エチルなどのβ-ケト酸エステルなどを用いることができる。 These metal complexes can be easily obtained by reacting a metal alkoxide with a chelating agent. Examples of chelating agents that can be used include β-diketones such as acetylacetone, benzoylacetone, and dibenzoylmethane, and β-keto acid esters such as ethyl acetoacetate and ethyl benzoylacetate.
 金属錯体の好ましい具体的な例としては、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセテートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等のアルミニウムキレート化合物、エチルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(エチルアセトアセテート)、アルキルアセトアセテートマグネシウムモノイソプロピレート、マグネシウムビス(アセチルアセトネート)等のマグネシウムキレート化合物、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、マンガンアセチルアセトナート、コバルトアセチルアセトナート、銅アセチルアセトナート、チタンアセチルアセトナート、チタンオキシアセチルアセトナートが挙げられる。これらのうち、好ましくは、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、マグネシウムビス(アセチルアセトネート)、マグネシウムビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトナートであり、保存安定性、入手容易さを考慮すると、アルミニウムキレート錯体であるアルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)が特に好ましい。市販品としては、アルミキレートA(W)、アルミキレートD、アルミキレートM(川研ファインケミカル(株)製)などが挙げられる。 Preferable specific examples of the metal complex include ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkyl acetoacetate aluminum diisopropylate, aluminum monoacetyl acetate bis (ethyl acetoacetate), aluminum tris (acetyl) Magnesium chelate compounds such as ethyl acetoacetate magnesium monoisopropylate, magnesium bis (ethylacetoacetate), alkyl acetoacetate magnesium monoisopropylate, magnesium bis (acetylacetonate), zirconium tetraacetylacetate Narate, zirconium tributoxyacetylacetonate, zirconium Chill acetonate bis (ethyl acetoacetate), manganese acetylacetonate, cobalt acetylacetonate, copper acetylacetonate, titanium acetylacetonate and titanium oxy acetylacetonate. Of these, aluminum tris (acetylacetonate), aluminum tris (ethylacetoacetate), magnesium bis (acetylacetonate), magnesium bis (ethylacetoacetate), and zirconium tetraacetylacetonate are preferred, and storage stability Considering availability, aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate), which are aluminum chelate complexes, are particularly preferable. Examples of commercially available products include aluminum chelate A (W), aluminum chelate D, aluminum chelate M (manufactured by Kawaken Fine Chemical Co., Ltd.), and the like.
 金属錯体が占める割合は、エポキシ基含有アルコキシシランに対して、17~70モル%であることが好ましい。金属錯体が占める割合は、17%以上であれば良く、20%以上であることがより好ましい。また、金属錯体の含有率は、70%以下であれば良く、65%以下であることが好ましく、60%以下であることがより好ましい。
 本発明では、金属錯体を上記下限値以上含むことにより、ハードコート層を形成した際に優れたアルカリ耐性を得ることができる。また、上記上限値以下とすることにより、水性水溶液中の分散性を良好とし、かつ、製造コストを抑えることができる。
The proportion of the metal complex is preferably 17 to 70 mol% with respect to the epoxy group-containing alkoxysilane. The proportion occupied by the metal complex may be 17% or more, and more preferably 20% or more. Moreover, the content rate of a metal complex should just be 70% or less, it is preferable that it is 65% or less, and it is more preferable that it is 60% or less.
In the present invention, when the metal complex is contained in the above lower limit value or more, excellent alkali resistance can be obtained when the hard coat layer is formed. Moreover, by setting it as the said upper limit or less, the dispersibility in aqueous solution can be made favorable, and manufacturing cost can be suppressed.
(無機微粒子)
 また、本発明に用いるハードコート層は、無機微粒子を含有していてもよい。無機微粒子は、ハードコート層の屈折率を好ましい範囲に調節する目的と、ハードコート層のアルカリ耐性を高める目的で添加される。
 無機微粒子としては、透明で絶縁性の金属酸化物が好ましい例として挙げられる。例えば、シリカ、アルミナ、ジルコニア、チタンからなる微粒子を用いることが好ましく、特に、アルコキシシランとの架橋の観点からシリカ微粒子を用いることが好ましい。
(Inorganic fine particles)
The hard coat layer used in the present invention may contain inorganic fine particles. The inorganic fine particles are added for the purpose of adjusting the refractive index of the hard coat layer to a preferable range and for increasing the alkali resistance of the hard coat layer.
A preferable example of the inorganic fine particles is a transparent and insulating metal oxide. For example, it is preferable to use fine particles composed of silica, alumina, zirconia, and titanium. In particular, it is preferable to use fine silica particles from the viewpoint of crosslinking with alkoxysilane.
 シリカ微粒子としては、四塩化ケイ素の燃焼によって製造される乾燥粉末状のシリカを用いることもできるが、二酸化ケイ素又はその水和物が水に分散したコロイダルシリカを用いることがより好ましい。特に限定されないが、具体的にはスノーテックスO-33などの日産化学工業(株)製のスノーテックスシリーズなどが上げられる。コロイダルシリカの平均粒子径は3nm~50nmであり、4nm~50nmの範囲にあることが好ましく、4nm~40nmの範囲にあることがより好ましく、5nm~35nmの範囲にあることが特に好ましい。
 なお、ここでの平均粒子径は、分散した無機微粒子を透過型電子顕微鏡により観察し、得られた写真から求めることができる。粒子の投影面積を求め、そこから円相当径を求め平均粒子径(平均一次粒子径)とする。無機微粒子の平均粒子径は、300個以上の粒子について投影面積を測定して、円相当径を求めて算出することができる。
As the silica fine particles, dry powdery silica produced by combustion of silicon tetrachloride can be used, but colloidal silica in which silicon dioxide or a hydrate thereof is dispersed in water is more preferable. Specific examples include, but are not limited to, Snowtex series manufactured by Nissan Chemical Industries, Ltd. such as Snowtex O-33. The average particle size of colloidal silica is 3 nm to 50 nm, preferably 4 nm to 50 nm, more preferably 4 nm to 40 nm, and particularly preferably 5 nm to 35 nm.
Here, the average particle diameter can be determined from a photograph obtained by observing dispersed inorganic fine particles with a transmission electron microscope. The projected area of the particles is obtained, and the equivalent circle diameter is obtained therefrom, and the average particle size (average primary particle size) is obtained. The average particle diameter of the inorganic fine particles can be calculated by measuring the projected area of 300 or more particles and obtaining the equivalent circle diameter.
 なお、コロイダルシリカは、水性組成物中に添加される時点でのpHが2~7の範囲に調整されていることがより好ましい。このpHが2~7であると、2よりも小さいあるいは7よりも大きい場合に比べて、アルコキシシランの加水分解物であるシラノールの安定性がより良好で、このシラノールの脱水縮合反応が速く進行することによる塗布液の粘度上昇を抑制することができる。 The colloidal silica is more preferably adjusted to have a pH of 2 to 7 when added to the aqueous composition. When the pH is 2 to 7, the stability of silanol, which is a hydrolyzate of alkoxysilane, is better than when the pH is less than 2 or greater than 7, and the dehydration condensation reaction of the silanol proceeds faster. It is possible to suppress an increase in the viscosity of the coating liquid due to this.
 無機微粒子を含む場合、水性組成物中に含まれる全固形分に対して無機微粒子が占める割合(単位:質量%)をxとすると、0<x≦80である。xは1以上であることが好ましく、3以上であることがより好ましい。また、xは、80以下であれば良く、70以下であることが好ましく、65以下であることがより好ましい。水性組成物中において無機微粒子が占める割合を上記範囲とすることにより、ハードコート層を形成した際により高いアルカリ耐性を得ることができる。 When inorganic fine particles are contained, 0 <x ≦ 80, where x is the ratio (unit: mass%) of the inorganic fine particles to the total solid content contained in the aqueous composition. x is preferably 1 or more, and more preferably 3 or more. Moreover, x should just be 80 or less, it is preferable that it is 70 or less, and it is more preferable that it is 65 or less. By setting the proportion of the inorganic fine particles in the aqueous composition within the above range, higher alkali resistance can be obtained when the hard coat layer is formed.
 水性組成物中に含まれる全固形分に対して、無機微粒子が占める割合(単位:質量%)をxとして、全アルコキシシランに対してエポキシ基含有アルコキシシランが占める割合(単位:質量%)をyとすると、y≧x-5であることが好ましい。さらに、y≧xであることがより好ましい。yとxの関係を上記範囲とすることにより、より高い耐アルカリ耐性を得ることができ、アルカリ溶液に浸漬させた際のヘイズ値の変化を抑えることができる。さらに、水性組成物の安定性を高めることができる。 The ratio (unit: mass%) of the epoxy group-containing alkoxysilane to the total alkoxysilane is x, where x is the ratio (unit: mass%) of the inorganic fine particles to the total solid content in the aqueous composition. When y, y ≧ x−5 is preferable. Furthermore, it is more preferable that y ≧ x. By setting the relationship between y and x in the above range, higher alkali resistance can be obtained, and a change in haze value when immersed in an alkaline solution can be suppressed. Furthermore, the stability of the aqueous composition can be increased.
 この無機微粒子は、平均アスペクト比は、30~5000であることが好ましい。無機微粒子のアスペクト比は、30以上であれば良く、100以上が好ましく、200以上がより好ましく、300以上がさらに好ましい。また、無機微粒子のアスペクト比は、5000以下であれば良く、3000以下が好ましく、1500以下がより好ましく、800以下がさらに好ましい。
 本発明では、無機微粒子の平均アスペクト比を上記範囲内とすることにより、より高硬度なハードコート層を形成することができる。
The inorganic fine particles preferably have an average aspect ratio of 30 to 5000. The aspect ratio of the inorganic fine particles may be 30 or more, preferably 100 or more, more preferably 200 or more, and further preferably 300 or more. The aspect ratio of the inorganic fine particles may be 5000 or less, preferably 3000 or less, more preferably 1500 or less, and further preferably 800 or less.
In the present invention, a hard coat layer with higher hardness can be formed by setting the average aspect ratio of the inorganic fine particles within the above range.
 ここで、平均アスペクト比とは、無機微粒子の長軸方向に直交する厚み方向における無機微粒子の平均短径をr(nm)として、無機微粒子の長軸方向における無機微粒子の平均長径をL(nm)とした際のL/r比を意味する。すなわち、アスペクト比は、水性組成物中に含有される無機微粒子を観察し、無機微粒子の長径を短径で割ることにより算出することができる。 Here, the average aspect ratio means that the average minor axis of the inorganic fine particles in the thickness direction perpendicular to the major axis direction of the inorganic fine particles is r (nm), and the average major axis of the inorganic fine particles in the major axis direction of the inorganic fine particles is L (nm). ) Means the L / r ratio. That is, the aspect ratio can be calculated by observing inorganic fine particles contained in the aqueous composition and dividing the long diameter of the inorganic fine particles by the short diameter.
 本発明では、無機微粒子の平均短径r(nm)は、1~20nmであることが好ましい。平均短径r(nm)は、1nm以上であることが好ましく、2nm以上であることがより好ましい。平均短径r(nm)は、20nm以下であることが好ましく、15nm以下であることがより好ましく、10nm以下であることがさらに好ましい。また、平均長径L(nm)は、100~10000nmであることが好ましい。平均長径L(nm)は、
100nm以上であることが好ましく、300nm以上であることがより好ましく、700nm以上であることがさらに好ましい。また、平均長径L(nm)は、10000nm以下であることが好ましく、8000nm以下であることがより好ましく、5000nm以下であることがさらに好ましい。無機微粒子の短径および長径を上記範囲内とすることにより、無機微粒子の平均アスペクト比を好ましい範囲内にすることができる。
In the present invention, the average minor axis r (nm) of the inorganic fine particles is preferably 1 to 20 nm. The average minor axis r (nm) is preferably 1 nm or more, and more preferably 2 nm or more. The average minor axis r (nm) is preferably 20 nm or less, more preferably 15 nm or less, and further preferably 10 nm or less. The average major axis L (nm) is preferably 100 to 10000 nm. The average major axis L (nm) is
The thickness is preferably 100 nm or more, more preferably 300 nm or more, and further preferably 700 nm or more. Further, the average major axis L (nm) is preferably 10000 nm or less, more preferably 8000 nm or less, and further preferably 5000 nm or less. By setting the minor axis and major axis of the inorganic fine particles within the above range, the average aspect ratio of the inorganic fine particles can be within a preferable range.
 上述した無機微粒子の長さは、光学顕微鏡や電子顕微鏡を用いて測定することができる。例えば、走査型電子顕微鏡(SEM)を用いて、ハードコート層の縦方向に垂直な断面と、縦方向に平行な断面に存在する長径が100nm以上の任意の無機粒子を100個選択し、その無機粒子の長径と短径を計測し、アスペクト比を求めることができる。100個の無機粒子毎に長径と短径を計測し、それらアスペクト比から平均のアスペクト比を算出することができる。 The length of the inorganic fine particles described above can be measured using an optical microscope or an electron microscope. For example, using a scanning electron microscope (SEM), select 100 arbitrary inorganic particles having a major axis of 100 nm or more present in a cross section perpendicular to the longitudinal direction of the hard coat layer and a cross section parallel to the longitudinal direction. The aspect ratio can be obtained by measuring the major axis and minor axis of the inorganic particles. The major axis and minor axis are measured for every 100 inorganic particles, and the average aspect ratio can be calculated from these aspect ratios.
(紫外線吸収剤)
 ハードコート層には、紫外線吸収剤を含有させてもよい。これによって、積層フィルムおよび着色剤(特に染料系)の紫外線劣化を防止し、長期間視認性と防爆性を保持することができる。紫外線吸収剤の種類は特定されない。添加量は、ハードコート層を形成する樹脂に対し、0.1~10質量%が好ましい。0.1質量%以上とすることにより、紫外線劣化防止効果が十分に発揮され、10質量%以下とすることにより、耐摩耗性や耐擦傷性の低下をより効果的に抑制できる。
 添加方法は溶剤に分散して使用することが好ましい。
(UV absorber)
The hard coat layer may contain an ultraviolet absorber. As a result, UV degradation of the laminated film and the colorant (particularly dye-based) can be prevented, and visibility and explosion-proof properties can be maintained for a long time. The kind of ultraviolet absorber is not specified. The addition amount is preferably 0.1 to 10% by mass with respect to the resin forming the hard coat layer. By setting the content to 0.1% by mass or more, the effect of preventing UV deterioration is sufficiently exhibited, and by setting the content to 10% by mass or less, it is possible to more effectively suppress a decrease in wear resistance and scratch resistance.
The addition method is preferably used by dispersing in a solvent.
(その他の添加剤)
 さらにハードコート層には、塗膜表面の摩擦を軽減したり、塗布性をより向上する目的で界面活性剤、すべり剤、マット剤を添加しても良い。
また、顔料や染料、その他微粒子等を分散させることによってハードコート層を着色しても良い。さらに、耐候性を向上させる目的で紫外線吸収剤や酸化防止剤等を添加しても良い。
(Other additives)
Furthermore, a surfactant, a slipping agent, and a matting agent may be added to the hard coat layer for the purpose of reducing friction on the coating film surface or improving the coating property.
Further, the hard coat layer may be colored by dispersing pigments, dyes, and other fine particles. Furthermore, for the purpose of improving the weather resistance, an ultraviolet absorber, an antioxidant or the like may be added.
 界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。 As the surfactant, various surfactants such as a fluorine-based surfactant, a nonionic surfactant, a cationic surfactant, an anionic surfactant, and a silicone-based surfactant can be used.
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F475、同F479、同F482、同F554、同F780、同F781(以上、DIC(株)製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム(株)製)、サーフロンS-382、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子(株)製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。 Examples of the fluorosurfactant include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F475, F479, F482, F554, F780, F780, F781 (above DIC Corporation), Florard FC430, FC431, FC171 (above, Sumitomo 3M Limited), Surflon S-382, SC-101, Same SC-103, Same SC-104, Same SC-105, Same SC1068, Same SC-381, Same SC-383, Same S393, Same KH-40 (manufactured by Asahi Glass Co., Ltd.), PF636, PF656, PF6320 PF6520, PF7002 (manufactured by OMNOVA), and the like.
 ノニオン系界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタン並びにそれらのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、ソルビタン脂肪酸エステル(BASF社製のプルロニックL10、L31、L61、L62、10R5、17R2、25R2、テトロニック304、701、704、90
1、904、150R1、パイオニンD-6512、D-6414、D-6112、D-6115、D-6120、D-6131、D-6108-W、D-6112-W、D-6115-W、D-6115-X、D-6120-X(竹本油脂(株)製)、ソルスパース20000(日本ルーブリゾール(株)製)、ナロアクティーCL-95、HN-100(三洋化成工業(株)製)等が挙げられる。
Specific examples of nonionic surfactants include glycerol, trimethylolpropane, trimethylolethane, and ethoxylates and propoxylates thereof (for example, glycerol propoxylate, glycerin ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene Stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, sorbitan fatty acid ester (Pluronic L10, L31, L61, L62, manufactured by BASF) 10R5, 17R2, 25R2, Tetronic 304, 701, 704, 90
1,904,150R1, Pionein D-6512, D-6414, D-6112, D-6115, D-6120, D-6131, D-6108-W, D-6112-W, D-6115-W, D -6115-X, D-6120-X (manufactured by Takemoto Yushi Co., Ltd.), Solsperse 20000 (manufactured by Nippon Lubrizol Co., Ltd.), NAROACTY CL-95, HN-100 (manufactured by Sanyo Chemical Industries, Ltd.), etc. Is mentioned.
 カチオン系界面活性剤として具体的には、フタロシアニン誘導体(商品名:EFKA-745、森下産業(株)製)、オルガノシロキサンポリマーKP341(信越化学工業(株)製)、(メタ)アクリル酸系(共)重合体ポリフローNo.75、No.90、No.95(共栄社化学(株)製)、W001(裕商(株)製)等が挙げられる。 Specific examples of the cationic surfactant include phthalocyanine derivatives (trade name: EFKA-745, manufactured by Morishita Sangyo Co., Ltd.), organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), (meth) acrylic acid ( Co) polymer polyflow no. 75, no. 90, no. 95 (manufactured by Kyoeisha Chemical Co., Ltd.), W001 (manufactured by Yusho Co., Ltd.) and the like.
 アニオン系界面活性剤として具体的には、W004、W005、W017(裕商(株)社製)、サンデッドBL(三洋化成工業(株)製)等が挙げられる。 Specific examples of the anionic surfactant include W004, W005, W017 (manufactured by Yusho Co., Ltd.), and sanded BL (manufactured by Sanyo Chemical Industries, Ltd.).
 シリコーン系界面活性剤としては、例えば、東レ・ダウコーニング(株)製「トーレシリコーンDC3PA」、「トーレシリコーンSH7PA」、「トーレシリコーンDC11PA」,「トーレシリコーンSH21PA」,「トーレシリコーンSH28PA」、「トーレシリコーンSH29PA」、「トーレシリコーンSH30PA」、「トーレシリコーンSH8400」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF-4440」、「TSF-4300」、「TSF-4445」、「TSF-4460」、「TSF-4452」、信越シリコーン株式会社製「KP341」、「KF6001」、「KF6002」、ビックケミー社製「BYK307」、「BYK323」、「BYK330」等が挙げられる。
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
界面活性剤の添加量は、ハードコート層の全質量に対して、0.001質量%~2.0質量%が好ましく、より好ましくは0.005質量%~1.0質量%である。
Examples of the silicone surfactant include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Tore Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd. Silicone SH29PA, Torre Silicone SH30PA, Torre Silicone SH8400, Momentive Performance Materials TSF-4440, TSF-4300, TSF-4445, TSF-4460, TSF -4552 "," KP341 "," KF6001 "," KF6002 "manufactured by Shin-Etsu Silicone Co., Ltd.," BYK307 "," BYK323 "," BYK330 "manufactured by BYK Chemie.
Only one type of surfactant may be used, or two or more types may be combined.
The addition amount of the surfactant is preferably 0.001% by mass to 2.0% by mass, and more preferably 0.005% by mass to 1.0% by mass with respect to the total mass of the hard coat layer.
 すべり剤としては、脂肪族ワックスを含有させることができる。脂肪族ワックスの具体例としては、カルナバワックス、キャンデリラワックス、ライスワックス、木ロウ、ホホバ油、パームワックス、ロジン変性ワックス、オウリキュリーワックス、サトウキビワックス、エスパルトワックス、バークワックス等の植物系ワックス、ミツロウ、ラノリン、鯨ロウ、イボタロウ、セラックワックス等の動物系ワックス、モンタンワックス、オゾケライト、セレシンワックス等の鉱物系ワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等の石油系ワックス、フィッシャートロプッシュワックス、ポリエチレンワックス、酸化ポリエチレンワックス、ポリプロピレンワックス、酸化ポリプロピレンワックス等の合成炭化水素系ワックスを挙げることができる。この中でも、ハードコート層や粘着剤等に対する易接着性と滑性が良好なことから、カルバナワックス、パラフィンワックス、ポリエチレンワックスが特に好ましい。これらは環境負荷の低減が可能であることおよび取扱いのし易さから水分散体として用いることも好ましい。市販品としては例えばセロゾール524(中京油脂(株)製)などが挙げられる。 As the slipping agent, an aliphatic wax can be contained. Specific examples of the aliphatic wax include plant-based waxes such as carnauba wax, candelilla wax, rice wax, wood wax, jojoba oil, palm wax, rosin modified wax, cucumber wax, sugar cane wax, esparto wax, and bark wax. Animal waxes such as beeswax, lanolin, whale wax, ibota wax, shellac wax, mineral waxes such as montan wax, ozokerite, ceresin wax, petroleum waxes such as paraffin wax, microcrystalline wax, petrolactam, and fishertro push wax And synthetic hydrocarbon waxes such as polyethylene wax, oxidized polyethylene wax, polypropylene wax, and oxidized polypropylene wax. Among these, carbana wax, paraffin wax, and polyethylene wax are particularly preferable because of easy adhesion to a hard coat layer and a pressure-sensitive adhesive and good lubricity. These are also preferably used as aqueous dispersions because they can reduce the environmental burden and are easy to handle. Examples of commercially available products include Cellosol 524 (manufactured by Chukyo Yushi Co., Ltd.).
 マット剤としては、有機または無機微粒子のいずれも使用することができる。例えば、ポリスチレン、ポリメチルメタクリレート、シリコーン樹脂、ベンゾグアナミン樹脂等のポリマー微粒子や、シリカ、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム等の無機微粒子を用いることができる。これらの中でも、ポリスチレン、ポリメチルメタクリレート、シリカは、すべり性改良効果やコストの観点から好ましく用いられる。
 これらの粒子は、粒子単体で用いてもよく、コロイダルシリカのように、水等の分散媒に分散したコロイドとして用いてもよい。市販品としては、例えばスノーテックスXL(日産化学工業(株)製)、シーホスターKE-P250(日本触媒(株)製)などが挙げられる。また、マット剤は2種類以上含んでいてもよい。
As the matting agent, either organic or inorganic fine particles can be used. For example, polymer fine particles such as polystyrene, polymethyl methacrylate, silicone resin, and benzoguanamine resin, and inorganic fine particles such as silica, calcium carbonate, magnesium oxide, and magnesium carbonate can be used. Among these, polystyrene, polymethylmethacrylate, and silica are preferably used from the viewpoints of a slip improvement effect and cost.
These particles may be used alone or as a colloid dispersed in a dispersion medium such as water, such as colloidal silica. Examples of commercially available products include Snowtex XL (manufactured by Nissan Chemical Industries, Ltd.), Seahoster KE-P250 (manufactured by Nippon Shokubai Co., Ltd.), and the like. Two or more kinds of matting agents may be included.
 ハードコート層の厚さは特に限定されないが、1~15μmの範囲が好ましい。
 ハードコート層の屈折率は、1.50~2.10が好ましく、1.60~2.00がより好ましく、1.62~1.95がさらに好ましい。
The thickness of the hard coat layer is not particularly limited, but is preferably in the range of 1 to 15 μm.
The refractive index of the hard coat layer is preferably 1.50 to 2.10, more preferably 1.60 to 2.00, and further preferably 1.62 to 1.95.
<易接着層>
 本発明のタッチパネル用積層体は、保護層とポリマー層との間、およびポリマー層とハードコート層との間の少なくとも一方に易接着層を有していてもよい。
<Easily adhesive layer>
The laminated body for touchscreens of this invention may have an easily bonding layer between at least one between a protective layer and a polymer layer, and between a polymer layer and a hard-coat layer.
 易接着層の屈折率nは、隣接する層の屈折率npに対し、|n-np|≦0.02であることが好ましい。即ち、保護層と易接着層の屈折率との屈折率差、ポリマー層の屈折率と易接着層の屈折率との屈折率差、ポリマー層の屈折率と易接着層の屈折率との屈折率差、ハードコート層の屈折率と易接着層の屈折率との屈折率差のうち、少なくとも1つが0.02以下であることが好ましく、0.015以下であることがより好ましく、0.01以下であることがさらに好ましい。本発明に用いられる易接着層の屈折率を上記の範囲とすることで、各層間の反射を防止でき、干渉ムラの発生を低減することができる。前記保護層と前記ポリマー層との間に有する易接着層の屈折率と、該易接着層に隣接する前記保護層および前記ポリマー層の屈折率との屈折率差が、0.02以下であることが好ましい。また、前記ポリマー層と前記ハードコート層との間に有する易接着層の屈折率と、該易接着層に隣接する前記ポリマー層および前記ハードコート層の屈折率との屈折率差が、0.02以下であることが好ましい。
 本発明に用いられる易接着層の屈折率nは、具体的には1.63以上1.69以下であることが好ましく、1.63以上1.66以下であることがより好ましい。上記範囲とすることで、他の層に対して屈折率を調整しやすくすることができる。
The refractive index n of the easy-adhesion layer is preferably | n−np | ≦ 0.02 with respect to the refractive index np of the adjacent layer. That is, the refractive index difference between the refractive index of the protective layer and the easy adhesion layer, the refractive index difference between the refractive index of the polymer layer and the refractive index of the easy adhesion layer, the refraction of the refractive index of the polymer layer and the refractive index of the easy adhesion layer. Of the difference in refractive index, the refractive index difference between the refractive index of the hard coat layer and the refractive index of the easy adhesion layer, at least one is preferably 0.02 or less, more preferably 0.015 or less, and More preferably, it is 01 or less. By making the refractive index of the easy-adhesion layer used in the present invention in the above range, reflection between the respective layers can be prevented, and occurrence of interference unevenness can be reduced. The refractive index difference between the refractive index of the easy adhesion layer between the protective layer and the polymer layer and the refractive index of the protective layer and the polymer layer adjacent to the easy adhesion layer is 0.02 or less. It is preferable. The refractive index difference between the refractive index of the easy adhesion layer between the polymer layer and the hard coat layer and the refractive index of the polymer layer adjacent to the easy adhesion layer and the hard coat layer is 0. 02 or less is preferable.
Specifically, the refractive index n of the easy-adhesion layer used in the present invention is preferably 1.63 or more and 1.69 or less, and more preferably 1.63 or more and 1.66 or less. By setting it as the said range, it can be made easy to adjust a refractive index with respect to another layer.
 本発明に用いられる易接着層の厚さは200nm以下である。本発明に用いられる易接着層の厚さは、求められる光学性能や易接着性等により決定される。本発明に用いられる易接着層の厚さは50nm以上であることが好ましく、80nm以上であることがより好ましい。本発明に用いられる易接着層の厚さを上記範囲とすることで、易接着層が易接着層として機能する際に易接着性を高めることができる。また、本発明に用いられる易接着層の厚さは180nm以下であることが好ましく、150nm以下であることがより好ましい。本発明に用いられる易接着層の厚さを上記範囲とすることで、易接着層の面状をより良好な状態とすることができ、また、干渉ムラを抑制できる。 The thickness of the easy adhesion layer used in the present invention is 200 nm or less. The thickness of the easy-adhesion layer used in the present invention is determined by required optical performance, easy adhesion, and the like. The thickness of the easy adhesion layer used in the present invention is preferably 50 nm or more, and more preferably 80 nm or more. By making the thickness of the easy-adhesion layer used in the present invention in the above range, the easy-adhesion can be enhanced when the easy-adhesion layer functions as the easy-adhesion layer. In addition, the thickness of the easy-adhesion layer used in the present invention is preferably 180 nm or less, and more preferably 150 nm or less. By setting the thickness of the easy-adhesion layer used in the present invention in the above range, the surface state of the easy-adhesion layer can be made to be in a better state, and interference unevenness can be suppressed.
<<ナフタレン骨格を有するポリエステル>>
 本発明に用いられる易接着層は、ナフタレン骨格を有するポリエステルを含むことが好ましい。
 ナフタレン骨格を有するポリエステルとは、ポリエステルを構成するモノマーとしてナフタレン骨格を有するモノマーが含まれることを表す。ナフタレン骨格を有するモノマーはジカルボン酸性分として含まれることが好ましく、2,6-ナフタレンジカルボン酸等が挙げられる。
<< Polyester having naphthalene skeleton >>
The easy-adhesion layer used in the present invention preferably contains a polyester having a naphthalene skeleton.
The polyester having a naphthalene skeleton represents that a monomer having a naphthalene skeleton is included as a monomer constituting the polyester. The monomer having a naphthalene skeleton is preferably contained as a dicarboxylic acid component, and examples thereof include 2,6-naphthalenedicarboxylic acid.
 ナフタレン骨格を有するポリエステルを構成するモノマーとしては、ナフタレン骨格を有さないモノマーも、屈折率の調整等必要に応じて含むことができる。本発明に用いられるナフタレン骨格を有さないモノマーは、ジカルボン酸成分としては、テレフタル酸、イソフタル酸等が挙げられ、ジオール成分としてはエチレングリコール、ジエチレングリコール等が挙げられる。
 ナフタレン骨格を有するモノマーがジカルボン酸成分の場合には、ナフタレン骨格を有するモノマー由来の構造単位がジカルボン酸成分中50モル%以上100モル%以下が好ましく、60モル%以上80モル%以下がより好ましい。
As a monomer constituting the polyester having a naphthalene skeleton, a monomer having no naphthalene skeleton can be included as necessary, such as adjustment of the refractive index. In the monomer having no naphthalene skeleton used in the present invention, examples of the dicarboxylic acid component include terephthalic acid and isophthalic acid, and examples of the diol component include ethylene glycol and diethylene glycol.
When the monomer having a naphthalene skeleton is a dicarboxylic acid component, the structural unit derived from the monomer having a naphthalene skeleton is preferably from 50 mol% to 100 mol%, more preferably from 60 mol% to 80 mol% in the dicarboxylic acid component. .
 ナフタレン骨格を有するポリエステルの数平均分子量は15000~40000であることが好ましく、17000~30000であることがより好ましく、18000~25000であることがさらに好ましい。本発明に用いられるナフタレン骨格を有するポリエステルの数平均分子量を上記範囲内とすることにより、ポリマー層とポリエステルフィルムとの密着性、特に湿熱経時後の密着性を高めることができる。
 本発明において、数平均分子量はGPC(Gel Permeation Chromatography)にて標準物質をポリスチレンとして測定した数平均分子量を表す。
The number average molecular weight of the polyester having a naphthalene skeleton is preferably 15000 to 40000, more preferably 17000 to 30000, and further preferably 18000 to 25000. By adjusting the number average molecular weight of the polyester having a naphthalene skeleton used in the present invention within the above range, the adhesion between the polymer layer and the polyester film, particularly the adhesion after wet heat aging can be enhanced.
In the present invention, the number average molecular weight represents the number average molecular weight measured by GPC (Gel Permeation Chromatography) as a standard material as polystyrene.
 ナフタレン骨格を有するポリエステルの屈折率は1.60以上1.75以下であることが好ましく、1.60以上1.70以下であることがより好ましい。上記範囲とすることで、易接着層の屈折率を調整する際に、後述の粒子の添加量を少なくすることができ、ポリマー層が易接着層として機能する際の密着性を高めることができる。 The refractive index of the polyester having a naphthalene skeleton is preferably 1.60 or more and 1.75 or less, and more preferably 1.60 or more and 1.70 or less. By adjusting the refractive index of the easy-adhesion layer, the addition amount of particles described later can be reduced and the adhesion when the polymer layer functions as the easy-adhesion layer can be increased. .
 ナフタレン骨格を有するポリエステルの、ポリマー層中の含有量は、ポリマー層に含まれる全固形分量に対して、5質量%以上80質量%以下が好ましく、10質量%以上60質量%以下がより好ましい。 The content of the polyester having a naphthalene skeleton in the polymer layer is preferably 5% by mass or more and 80% by mass or less, and more preferably 10% by mass or more and 60% by mass or less with respect to the total solid content in the polymer layer.
<<粒子>>
 本発明に用いられる易接着層は粒子を含んでいてもよい。本発明に用いられる粒子によって、易接着層の屈折率を調整しやすくすることができる。本発明に用いられる粒子は1種類のみでもよく、2種類以上であってもよい。
<< Particles >>
The easy-adhesion layer used in the present invention may contain particles. The particles used in the present invention can easily adjust the refractive index of the easy-adhesion layer. There may be only one type of particles used in the present invention, or two or more types.
 粒子の屈折率は1.60以上3.00以下であることが好ましく、1.80以上2.80以下がより好ましく、1.90以上2.60以下であることがさらに好ましい。上記範囲とすることで、易接着層の屈折率を調整しやすくすることができる。 The refractive index of the particles is preferably 1.60 or more and 3.00 or less, more preferably 1.80 or more and 2.80 or less, and further preferably 1.90 or more and 2.60 or less. By setting it as the said range, it can be made easy to adjust the refractive index of an easily bonding layer.
 粒子の平均粒子径は、易接着層の厚みに対して0.65倍以下であることが好ましい。0.50倍以下であることがより好ましく、0.40倍以下であることがさらに好ましい。上記範囲とすることで、易接着層の表面に凹凸が形成されにくくなり、光の散乱を低減することができ、積層フィルムの色味を良好なものとすることができる。下限については特に限定されないが、0.05倍以上であることが好ましい。
 粒子の平均粒子径は、具体的には5nm以上130nm以下が好ましい。5nm以上100nm以下がより好ましく、5nm以上80nm以下がさらに好ましい。130nm以下とすることで、光が粒子で散乱される影響が小さくなり、5nm以上とすることで、粒子同士が凝集せず巨大化しにくくできる。
The average particle diameter of the particles is preferably 0.65 times or less with respect to the thickness of the easy adhesion layer. It is more preferably 0.50 times or less, and further preferably 0.40 times or less. By setting it as the said range, an unevenness | corrugation becomes difficult to be formed in the surface of an easily bonding layer, scattering of light can be reduced, and the color of a laminated | multilayer film can be made favorable. Although it does not specifically limit about a minimum, It is preferable that it is 0.05 times or more.
Specifically, the average particle diameter of the particles is preferably 5 nm or more and 130 nm or less. 5 nm or more and 100 nm or less are more preferable, and 5 nm or more and 80 nm or less are more preferable. By setting the thickness to 130 nm or less, the influence of light being scattered by the particles is reduced, and by setting the thickness to 5 nm or more, the particles are not aggregated and can hardly be made large.
 粒子の平均粒子径は、粒子の水分散物を用いて、レーザー回折/散乱式粒度分布測定装置 LA910(株式会社 堀場製作所製)を用いて測定し、メジアン径で表記した。
 また、本発明の積層体を製造した後に、本発明の積層体の易接着層に含まれる粒子の平均粒子径は、易接着層のみを溶媒に溶解させたのち、易接着層に含まれていた粒子の水分散物を調製してから、上記装置を用いて測定することができる。
The average particle size of the particles was measured using a laser diffraction / scattering particle size distribution analyzer LA910 (manufactured by Horiba, Ltd.) using an aqueous dispersion of particles, and expressed in median size.
Moreover, after manufacturing the laminated body of this invention, the average particle diameter of the particle | grains contained in the easily bonding layer of the laminated body of this invention is contained in an easily bonding layer after dissolving only an easily bonding layer in a solvent. After preparing an aqueous dispersion of particles, measurement can be performed using the above-described apparatus.
 粒子は、易接着層の固形分に対して、40質量%から80質量%含まれることが好ましい。45~75質量%であることが好ましく、50~70質量%であることがより好ましい。上記範囲とすることで、易接着層の屈折率を調整しやすくするとともに、易接着層から粒子があふれ出さず、ポリマー層の表面の凹凸を形成しにくくできる。 The particles are preferably contained in an amount of 40% by mass to 80% by mass with respect to the solid content of the easy adhesion layer. It is preferably 45 to 75% by mass, and more preferably 50 to 70% by mass. By setting it as the said range, while making it easy to adjust the refractive index of an easily bonding layer, particle | grains do not overflow from an easily bonding layer, but it can make it difficult to form the unevenness | corrugation on the surface of a polymer layer.
 粒子としては、例えば、導電性の金属粒子や金属酸化物粒子等が挙げられ、金属酸化物粒子が好ましい。 Examples of the particles include conductive metal particles and metal oxide particles, and metal oxide particles are preferable.
 導電性の金属粒子としては、アンチモン、セレン、チタン、タングステン、スズ、亜鉛、インジウム等の粒子が挙げられる。 Examples of the conductive metal particles include particles of antimony, selenium, titanium, tungsten, tin, zinc, indium and the like.
 金属酸化物粒子としては、酸化錫、酸化ジルコニウムおよび酸化チタンのいずれかを主成分として含む粒子を挙げることができる。ここで本発明における酸化錫、酸化ジルコニウムおよび酸化チタンのいずれかを主成分として含む粒子とは、粒子に含まれる、酸化錫、酸化ジルコニウムおよび酸化チタンのいずれかの配合量が80質量%以上である粒子をいう。
 この中でも、酸化錫または酸化ジルコニウムを用いることが好ましい。
Examples of the metal oxide particles include particles containing any one of tin oxide, zirconium oxide and titanium oxide as a main component. Here, the particle containing any one of tin oxide, zirconium oxide and titanium oxide as the main component in the present invention means that the compounding amount of any one of tin oxide, zirconium oxide and titanium oxide contained in the particle is 80% by mass or more. A certain particle.
Among these, it is preferable to use tin oxide or zirconium oxide.
 酸化錫としては、SnO2の組成を持つ酸化錫(IV)が好ましく用いられる。酸化錫
を用いる場合には、酸化錫にアンチモン等をドープしたものを使用すると、導電性を有するために積層フィルムの表面抵抗率を低下させてゴミ等の不純物が付着するのを防止する効果が得られるので好ましい。このようなアンチモンをドープした酸化錫は市販されているものも用いることができ、FS-10D、SN-38F、SN-88F、SN-100F、TDL-S、TDL-1(いずれも、石原産業(株)製)等が挙げられる。
 一方、タッチパネルの誤動作を防ぐために、導電性を有さない無機酸化物微粒子が好ましく用いられる場合がある。たとえば、酸化錫にアンチモン等をドープせず、表面抵抗を低下させないように作製した酸化錫は好適に用いることができる。
 また、リンをドープした酸化錫(例えば、三菱マテリアル電子化成株式会社製、EP SPDL-2、粒径130nmのPドープSnO2の水分散液)等が挙げられる。
 これらの中でも、本発明では酸化錫として、アンチモンをドープしていない酸化錫を用いることが特に好ましい。
As the tin oxide, tin (IV) oxide having a SnO 2 composition is preferably used. In the case of using tin oxide, the use of tin oxide doped with antimony or the like has the effect of reducing the surface resistivity of the laminated film and preventing impurities such as dust from adhering because of its conductivity. Since it is obtained, it is preferable. As such antimony-doped tin oxide, commercially available products can also be used. FS-10D, SN-38F, SN-88F, SN-100F, TDL-S, TDL-1 (all of which are Ishihara Sangyo) Etc.).
On the other hand, in order to prevent malfunction of the touch panel, inorganic oxide fine particles having no conductivity may be preferably used. For example, tin oxide prepared so that tin oxide is not doped with antimony or the like and the surface resistance is not lowered can be suitably used.
Further, tin oxide doped with phosphorus (for example, EP SPDL-2 manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd., an aqueous dispersion of P-doped SnO 2 having a particle size of 130 nm) can be used.
Among these, in the present invention, it is particularly preferable to use tin oxide not doped with antimony as tin oxide.
 酸化ジルコニウムは、ZrO2の組成を持ち、例えば、NZS-20A、NZS-30
A、OZ-S30K(いずれも、日産化学工業(株)製)やSZR-CW(堺化学工業(株)製)が挙げられ、これらも本発明に好適に用いることができる。
Zirconium oxide has a composition of ZrO 2 , for example, NZS-20A, NZS-30.
A, OZ-S30K (all manufactured by Nissan Chemical Industries, Ltd.) and SZR-CW (manufactured by Sakai Chemical Industry Co., Ltd.) can be mentioned, and these can also be suitably used in the present invention.
 酸化チタンとしては、TiO2の組成を持つ酸化チタン(IV)が好ましく用いられる。酸化チタンは、結晶構造の違いによりルチル型(正方晶高温型)やアナターゼ型(正方晶低温型)等が存在するが、特に限定されるものではない。また、表面処理が施された酸化チタンであっても良い。本発明に用いられる酸化チタンとしては、例えば、IT-S、IT-O、IT-W(いずれも、出光興産(株)製)、TTO-W-5(石原産業(株)製)等が挙げられ、本発明でも好適に用いることができる。 As titanium oxide, titanium oxide (IV) having a composition of TiO 2 is preferably used. Titanium oxide has a rutile type (tetragonal high-temperature type), anatase type (tetragonal low-temperature type), etc. depending on the difference in crystal structure, but is not particularly limited. Further, titanium oxide subjected to surface treatment may be used. Examples of the titanium oxide used in the present invention include IT-S, IT-O, IT-W (all manufactured by Idemitsu Kosan Co., Ltd.), TTO-W-5 (manufactured by Ishihara Sangyo Co., Ltd.), and the like. And can also be suitably used in the present invention.
 本発明に用いられる粒子の形状は、針状でも球状でもよいが、球状が好ましい。なお、本発明に用いられる粒子の形状が完全な球状ではない場合にも上述の方法で粒子の平均粒子径を測定することができるが、粒子の形状が完全な球状ではない場合であって上記測定方法で測定することが難しい場合は、本発明ではそのような形状の粒子に外接する円の直径をもって粒子径と判断することができる。 The shape of the particles used in the present invention may be acicular or spherical, but is preferably spherical. In addition, even when the shape of the particles used in the present invention is not perfectly spherical, the average particle diameter of the particles can be measured by the above-described method. However, when the shape of the particles is not perfectly spherical, When it is difficult to measure by the measuring method, the diameter of a circle circumscribing such shaped particles can be determined as the particle diameter in the present invention.
(その他の部材)
 本発明に用いられる易接着層は、必要に応じて上述した部材以外の部材を含んでいてもよい。以下に例示して説明する。
(Other parts)
The easily bonding layer used for this invention may contain members other than the member mentioned above as needed. An example will be described below.
((第2のポリエステル))
 本発明に用いられる易接着層は、前述したナフタレン骨格を有するポリエステル以外に、第2のポリエステルをさらに含んでいてもよい。
((Second polyester))
The easy-adhesion layer used in the present invention may further contain a second polyester in addition to the above-described polyester having a naphthalene skeleton.
 また、易接着層が第2のポリエステルを含む際には、ナフタレン骨格を有するポリエステルのガラス転移温度Tg1を80~130℃とし、第2のポリエステルのガラス転移温度Tg2を0~80℃とすることも好ましい。
 Tg1とTg2を上記範囲とすることで、ポリマー層と他の層、特に後述するハードコート層との密着性を高めることができる。
 Tg1は、90~120℃であることが好ましく、100~115℃であることがより好ましい。また、Tg2は、20~70℃であることが好ましく、30~60℃であることがより好ましい。
Further, when the easy adhesion layer contains the second polyester, the glass transition temperature Tg 1 of the polyester having a naphthalene skeleton is set to 80 to 130 ° C., and the glass transition temperature Tg 2 of the second polyester is set to 0 to 80 ° C. It is also preferable to do.
By setting Tg 1 and Tg 2 in the above range, adhesion between the polymer layer and other layers, particularly a hard coat layer described later, can be improved.
Tg 1 is preferably 90 to 120 ° C., and more preferably 100 to 115 ° C. Tg 2 is preferably 20 to 70 ° C., more preferably 30 to 60 ° C.
 Tg1-Tg2は、20℃以上であることが好ましく、40℃以上であることがより好ましい。Tg1-Tg2を上記下限値以上とすることにより、より効果的に密着性を高めることができる。 Tg 1 -Tg 2 is preferably 20 ° C. or higher, and more preferably 40 ° C. or higher. By setting Tg 1 -Tg 2 to be equal to or more than the above lower limit value, the adhesion can be more effectively improved.
 本発明において、ガラス転移温度は、DSC(Differential Scanning Calorimetry)にて以下のように測定したガラス転移温度を表す。
 ポリエステルを10mg秤量し、アルミパンにセットする。昇温速度10℃/minで、室温から300℃まで昇温し急冷、再び10℃/minで昇温しDSC曲線を得る。得られたDSC曲線が屈曲する温度をガラス転移温度とする。
In the present invention, the glass transition temperature represents a glass transition temperature measured by DSC (Differential Scanning Calibration) as follows.
Weigh 10 mg of polyester and set in an aluminum pan. At a rate of temperature increase of 10 ° C./min, the temperature is raised from room temperature to 300 ° C., rapidly cooled, and again heated at 10 ° C./min to obtain a DSC curve. The temperature at which the obtained DSC curve is bent is defined as the glass transition temperature.
 第2のポリエステルは、酸成分としてテレフタル酸、イソフタル酸およびスルホイソフタル酸ナトリウムのいずれか、またはその複数を含んでいてもよい。 The second polyester may contain one or more of terephthalic acid, isophthalic acid and sodium sulfoisophthalate as the acid component.
 第2のポリエステル樹脂は、ジオール成分としてトリエチレングリコールを含んでもよい。トリエチレングリコールは、第2のポリエステルを用いて形成した易接着層の接着性を高めることができる。 The second polyester resin may contain triethylene glycol as a diol component. Triethylene glycol can enhance the adhesiveness of the easy-adhesion layer formed using the second polyester.
 トリエチレングリコールの含有率は、第2のポリエステル樹脂の全ジオール成分に対して10~50モル%である。トリエチレングリコールの含有率は、10~50モル%であれば良く、15~45モル%であることが好ましく、20~40モル%であることがより好ましい。 The content of triethylene glycol is 10 to 50 mol% with respect to the total diol component of the second polyester resin. The content of triethylene glycol may be 10 to 50 mol%, preferably 15 to 45 mol%, and more preferably 20 to 40 mol%.
 第2のポリエステルの数平均分子量は、15000~40000であることが好ましい。第2のポリエステルの数平均分子量は、17000~30000であることが好ましく、18000~25000であることがさらに好ましい。第2のポリエステルの数平均分子量を上記範囲内とすることにより、ポリマー層とポリエステルフィルムとの密着性、特に湿熱経時後の密着性を高めることができる。 The number average molecular weight of the second polyester is preferably 15000 to 40000. The number average molecular weight of the second polyester is preferably 17000 to 30000, and more preferably 18000 to 25000. By setting the number average molecular weight of the second polyester within the above range, the adhesion between the polymer layer and the polyester film, particularly the adhesion after wet heat aging can be enhanced.
 易接着層中に含まれるナフタレン骨格を有するポリエステルの含有率をPとし、第2のポリエステルの含有率をQとした場合、P:Q=20:80~80:20であることが好ましく、30:70~70:30であることがより好ましく、40:60~60:40であることがさらに好ましい。P:Qを上記範囲内とすることにより、良好な接着性を得ることができる。 When the content of the polyester having a naphthalene skeleton contained in the easy-adhesion layer is P and the content of the second polyester is Q, it is preferable that P: Q = 20: 80 to 80:20, : 70 to 70:30 is more preferable, and 40:60 to 60:40 is even more preferable. By setting P: Q within the above range, good adhesiveness can be obtained.
((バインダー))
 本発明に用いられる易接着層は、ポリエステルフィルムに対する接着性をさらに良好なものにするために、バインダーとしてポリオレフィン、アクリル、ポリウレタンまたはゴム系樹脂等を含有しても良い。
((binder))
The easy-adhesion layer used in the present invention may contain polyolefin, acrylic, polyurethane, rubber-based resin or the like as a binder in order to further improve the adhesion to the polyester film.
 本発明に用いられるバインダーの易接着層中の含有量としては、易接着層の全固形分に対し、0.5質量%以上40質量%以下が好ましく、1.5質量%以上30質量%以下がより好ましい。 As content in the easily bonding layer of the binder used for this invention, 0.5 to 40 mass% is preferable with respect to the total solid of an easily bonding layer, and 1.5 to 30 mass% is preferable. Is more preferable.
 ポリオレフィンは、極性基を有するポリオレフィンのアイオノマーとして、カルボキシル基等の極性基を有するものが好ましい。有機溶剤に溶解して用いても良いし、水分散物を用いてもよい。ただし、環境負荷が小さいことから、水分散物を用いて水系と付することが好ましい。水分散物としては市販のものを用いればよく、特に限定されるものではないが、本発明に好ましく用いることができるものとしては、例えば、ケミパールS75N(三井化学(株)製)、アローベースSE1200、アローベースSB1200(以上、ユニチカ(株)製)、ハイテックS3111、S3121(以上、東邦化学(株)製)等が挙げられる。ポリオレフィンは1種類のみ含まれていてもよいし、2種類以上含まれていてもよい。 The polyolefin preferably has a polar group such as a carboxyl group as an ionomer of the polyolefin having a polar group. It may be used by dissolving in an organic solvent, or an aqueous dispersion may be used. However, since the environmental load is small, it is preferable to attach with an aqueous system using an aqueous dispersion. A commercially available product may be used as the aqueous dispersion and is not particularly limited. Examples of those that can be preferably used in the present invention include Chemipearl S75N (manufactured by Mitsui Chemicals), Arrow Base SE1200. Arrowbase SB1200 (above, manufactured by Unitika Ltd.), Hitech S3111, S3121 (above, produced by Toho Chemical Co., Ltd.), and the like. Only one type of polyolefin may be included, or two or more types may be included.
 アクリルとしては、メタクリレートおよびエチルアクリレートおよびその他の共重合成分を含むアクリルが好ましく、特開2012-101449号公報の段落[0145]~[0146]に記載のものなどを利用することができる。また、市販品を用いてもよく、具体的には、ダイセルファインケム(株)製AS-563A、(会社名)製(製品名)等が挙げられる。
 アクリルは、ガラス転移温度が-50~120℃であることが好ましく、-30~100℃であることがより好ましい。アクリルの重量平均分子量は3000~1000000のものが好ましい。
As the acrylic, acrylic containing methacrylate and ethyl acrylate and other copolymerization components is preferable, and those described in paragraphs [0145] to [0146] of JP2012-101449A can be used. Commercially available products may also be used, and specific examples include AS-563A manufactured by Daicel Finechem Co., Ltd. (product name) and the like.
Acrylic has a glass transition temperature of preferably −50 to 120 ° C., and more preferably −30 to 100 ° C. The weight average molecular weight of acrylic is preferably 3000 to 1000000.
 ポリウレタンとしては、ポリオール、ポリイソシアネート、鎖長延長剤、架橋剤等で構成されるものが好ましく、特開2012-056220号公報の段落[0035]に記載のものなどを利用することができる。 The polyurethane is preferably composed of polyol, polyisocyanate, chain extender, cross-linking agent, etc., and those described in paragraph [0035] of JP2012-056220A can be used.
((架橋剤))
 本発明に用いられる易接着層は、架橋剤を含有していてもよい。架橋剤の例としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。これらの中でも、カルボジイミド系架橋剤およびオキサゾリン系架橋剤が好ましい。
((Crosslinking agent))
The easy-adhesion layer used in the present invention may contain a crosslinking agent. Examples of the crosslinking agent include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents. Among these, a carbodiimide type crosslinking agent and an oxazoline type crosslinking agent are preferable.
 カルボジイミド系架橋剤としては、分子内にカルボジイミド構造を複数個有する化合物が好ましい。このような化合物を含むことにより、ハードコート層を設けたときの、ハードコート層と易接着層の密着性が向上する傾向にある。分子内に複数のカルボジイミド基を有する化合物は、特に制限なく使用することができる。ポリカルボジイミドは、通常、有機ジイソシアネートの縮合反応により合成されるが、この合成に用いられる有機ジイソシアネートの有機基は特に限定されず、芳香族系、脂肪族系のいずれか、あるいはそれらの混合系も使用可能である。反応性の観点からは脂肪族系が特に好ましい。合成原料としては、有機イソシアネート、有機ジイソシアネート、有機トリイソシアネート等が使用される。有機イソシアネートの例としては、特開2009-220316号公報の段落[0024]に記載のものなどを利用することができる。
 また、本発明に用いられるカルボジイミド系架橋剤は市販品を用いてもよく、具体的には、日清紡(株)製、カルボジライトV-02-L2等があげられる。
As the carbodiimide-based crosslinking agent, a compound having a plurality of carbodiimide structures in the molecule is preferable. By including such a compound, the adhesion between the hard coat layer and the easy-adhesion layer tends to be improved when the hard coat layer is provided. A compound having a plurality of carbodiimide groups in the molecule can be used without particular limitation. Polycarbodiimide is usually synthesized by condensation reaction of organic diisocyanate, but the organic group of the organic diisocyanate used in this synthesis is not particularly limited, either aromatic or aliphatic, or a mixture thereof It can be used. From the viewpoint of reactivity, an aliphatic type is particularly preferable. As the synthetic raw material, organic isocyanate, organic diisocyanate, organic triisocyanate and the like are used. As examples of the organic isocyanate, those described in paragraph [0024] of JP2009-220316A can be used.
The carbodiimide-based crosslinking agent used in the present invention may be a commercially available product, and specific examples include Carbodilite V-02-L2 manufactured by Nisshinbo Co., Ltd.
 オキサゾリン系架橋剤としては、特開2012-231029号公報の段落[0078]等に記載のものを用いることができる。また、市販品を用いてもよく、日本触媒化学工業(株)製エポクロスK2010E、同K2020E、同K2030E、同WS500、同WS700等が挙げられる。 As the oxazoline-based crosslinking agent, those described in paragraph [0078] of JP 2012-231029 A can be used. Commercial products may also be used, such as Epochros K2010E, K2020E, K2030E, WS500, WS500, and WS700 manufactured by Nippon Shokubai Chemical Industry Co., Ltd.
 本発明に用いられる架橋剤は、易接着層の固形分の合計量に対して0.5~50質量%の範囲で添加することが好ましく、より好ましくは1~30質量%の範囲で添加することである。添加量を1質量%以上とすることにより、易接着層に含まれる粒子の剥落を効果的に防止ができる。一方で、添加量を50質量%以下とすると、面状がより向上する傾向にある。架橋剤は2種類以上を含んでいてもよく、2種類以上含む場合、合計量が上記範囲となることが好ましい。 The cross-linking agent used in the present invention is preferably added in the range of 0.5 to 50% by mass, more preferably in the range of 1 to 30% by mass, with respect to the total solid content of the easy-adhesion layer. That is. By making the addition amount 1% by mass or more, the particles contained in the easy-adhesion layer can be effectively prevented from peeling off. On the other hand, when the addition amount is 50% by mass or less, the surface shape tends to be further improved. Two or more types of crosslinking agents may be included, and when two or more types are included, the total amount is preferably within the above range.
((マット剤))
 本発明に用いられる易接着層は、積層フィルムのすべり性改良のためにマット剤を含んでいてもよい。
マット剤としては、有機または無機微粒子のいずれも使用することができる。例えば、ポリスチレン、ポリメチルメタクリレート、シリコーン樹脂、ベンゾグアナミン樹脂等のポリマー微粒子や、シリカ、炭酸カルシウム、酸化マグネシウム、炭酸マグネシウム等の無機微粒子を用いることができる。これらの中で、ポリスチレン、ポリメチルメタクリレート、シリカは、すべり性改良効果やコストの観点から好ましい。
 これらの粒子は、粒子単体で用いてもよく、コロイダルシリカのように、水等の分散媒に分散したコロイドとして用いてもよい。市販品としては、例えばスノーテックスXL(日産化学工業(株)製)などが挙げられる。
 また、マット剤は2種類以上含んでいてもよい。
((Matting agent))
The easy-adhesion layer used in the present invention may contain a matting agent for improving the slipperiness of the laminated film.
As the matting agent, either organic or inorganic fine particles can be used. For example, polymer fine particles such as polystyrene, polymethyl methacrylate, silicone resin, and benzoguanamine resin, and inorganic fine particles such as silica, calcium carbonate, magnesium oxide, and magnesium carbonate can be used. Among these, polystyrene, polymethyl methacrylate, and silica are preferable from the viewpoint of the effect of improving the slipperiness and cost.
These particles may be used alone or as a colloid dispersed in a dispersion medium such as water, such as colloidal silica. Examples of commercially available products include Snowtex XL (manufactured by Nissan Chemical Industries, Ltd.).
Two or more kinds of matting agents may be included.
 マット剤の平均粒子径は、0.03~1μmが好ましく、0.05~0.5μmがより好ましい。マット剤の平均粒子径を0.03μm以上とすることにより、すべり性改良効果が効果的に発揮され、平均粒子径を1μm以下とすることにより、積層フィルムをタッチパネル等表示装置に組み込んだ際の表示品位の低下を抑制できる傾向にある。 The average particle size of the matting agent is preferably 0.03 to 1 μm, more preferably 0.05 to 0.5 μm. When the average particle size of the matting agent is 0.03 μm or more, the effect of improving the slip property is effectively exhibited, and when the average particle size is 1 μm or less, the laminated film is incorporated into a display device such as a touch panel. There is a tendency to suppress the deterioration of display quality.
 また、マット剤の平均粒子径は、前述のポリマー層が有する粒子の平均粒子径と同様に、易接着層の厚さの0.65倍以下とすることも好ましい。0.50倍以下であることがより好ましく、0.40倍以下であることがさらに好ましい。上記範囲とすることで、易接着層の表面に凹凸が形成されにくくなり、より光の散乱を低減することができ、積層フィルムの色味をさらに良好なものとすることができる。 Also, the average particle size of the matting agent is preferably 0.65 times or less the thickness of the easy-adhesion layer, like the average particle size of the particles of the polymer layer. It is more preferably 0.50 times or less, and further preferably 0.40 times or less. By setting it as the said range, an unevenness | corrugation becomes difficult to be formed in the surface of an easily bonding layer, scattering of light can be reduced more, and the color tone of a laminated film can be made still more favorable.
 なお、本発明におけるマット剤の平均粒子径は、前述のポリマー層が有する粒子の平均粒子径と同様の方法により測定される値である。 In addition, the average particle diameter of the matting agent in the present invention is a value measured by the same method as the average particle diameter of the particles included in the polymer layer.
((界面活性剤))
 本発明に用いられる易接着層は、易接着層の表面にハードコート層等の機能層を塗布等した際の、ハジキ等を軽減するために界面活性剤を有していてもよい。界面活性剤としては、上述した界面活性剤を使用することができる。
((Surfactant))
The easy-adhesion layer used in the present invention may have a surfactant to reduce repellency and the like when a functional layer such as a hard coat layer is applied to the surface of the easy-adhesion layer. As the surfactant, the above-described surfactants can be used.
((帯電防止剤))
 本発明に用いられる易接着層は、易接着層が静電気等により帯電すること防ぐために帯電防止剤を有していてもよい。
 帯電防止剤の種類等は特に限定されるものではないが、例えば、ポリアニリン、ポリピロール等の電子伝導系のポリマー、分子鎖中にカルボキシル基やスルホン酸基を有するイオン伝導系ポリマー、導電性微粒子等が挙げられる。これらのうち、特に特開昭61-20033号公報に記載されている導電性酸化錫微粒子は、導電性と透明性の観点から好ましく用いることができる。
((Antistatic agent))
The easy-adhesion layer used in the present invention may have an antistatic agent to prevent the easy-adhesion layer from being charged by static electricity or the like.
The type of the antistatic agent is not particularly limited. For example, an electron conductive polymer such as polyaniline and polypyrrole, an ion conductive polymer having a carboxyl group or a sulfonic acid group in the molecular chain, conductive fine particles, etc. Is mentioned. Of these, the conductive tin oxide fine particles described in JP-A-61-20033 can be preferably used from the viewpoints of conductivity and transparency.
 帯電防止剤の添加量は、25℃、相対湿度30%雰囲気で測定した易接着層の表面抵抗率が、1×105Ω以上1×1013Ω以下となるように添加することが好ましい。表面抵抗率を1×105Ω以上とすると帯電防止剤の添加量を低く抑えることができ、積層体の透明性が向上する傾向にあり、1×1013Ω以下とすることにより、ゴミがより付着しにくくなる傾向にある。 The addition amount of the antistatic agent is preferably added so that the surface resistivity of the easy adhesion layer measured in an atmosphere of 25 ° C. and 30% relative humidity is 1 × 10 5 Ω or more and 1 × 10 13 Ω or less. The surface resistivity can be suppressed 1 × 10 and a 5 Omega or lower the amount of the antistatic agent tends to improve transparency of the laminate, by the following 1 × 10 13 Omega, dust It tends to be less likely to adhere.
((すべり剤))
 本発明に用いられる易接着層は、層表面の滑性を得るために、すべり剤として脂肪族ワックスを含有させることが好ましい。
((Slip agent))
The easy-adhesion layer used in the present invention preferably contains an aliphatic wax as a slipping agent in order to obtain the lubricity of the layer surface.
 脂肪族ワックスの具体例としては、カルナバワックス、キャンデリラワックス、ライスワックス、木ロウ、ホホバ油、パームワックス、ロジン変性ワックス、オウリキュリーワックス、サトウキビワックス、エスパルトワックス、バークワックス等の植物系ワックス、ミツロウ、ラノリン、鯨ロウ、イボタロウ、セラックワックス等の動物系ワックス、モンタンワックス、オゾケライト、セレシンワックス等の鉱物系ワックス、パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等の石油系ワックス、フィッシャートロプッシュワックス、ポリエチレンワックス、酸化ポリエチレンワックス、ポリプロピレンワックス、酸化ポリプロピレンワックス等の合成炭化水素系ワックスを挙げることができる。この中でも、ハードコート層や粘着剤等に対する易接着性と滑性が良好なことから、カルナバワックス、パラフィンワックス、ポリエチレンワックスが特に好ましい。これらは環境負荷の低減が可能であることおよび取扱のし易さから水分散体として用いることも好ましい。市販品としては例えばセロゾール524(中京油脂(株)製)などが挙げられる。 Specific examples of the aliphatic wax include plant-based waxes such as carnauba wax, candelilla wax, rice wax, wood wax, jojoba oil, palm wax, rosin modified wax, cucumber wax, sugar cane wax, esparto wax, and bark wax. Animal waxes such as beeswax, lanolin, whale wax, ibota wax, shellac wax, mineral waxes such as montan wax, ozokerite, ceresin wax, petroleum waxes such as paraffin wax, microcrystalline wax, petrolactam, and fishertro push wax And synthetic hydrocarbon waxes such as polyethylene wax, oxidized polyethylene wax, polypropylene wax, and oxidized polypropylene wax. Among these, carnauba wax, paraffin wax, and polyethylene wax are particularly preferable because they are easy to adhere to a hard coat layer and a pressure-sensitive adhesive and have good lubricity. These are also preferably used as aqueous dispersions because they can reduce the environmental burden and are easy to handle. Examples of commercially available products include Cellosol 524 (manufactured by Chukyo Yushi Co., Ltd.).
<反射防止層>
 本発明のタッチパネル用積層体は、透明電極層と保護層との間に反射防止層を有していてもよい。反射防止層を有することで透明電極層のパターン視認性が向上する。
<Antireflection layer>
The laminate for a touch panel of the present invention may have an antireflection layer between the transparent electrode layer and the protective layer. By having the antireflection layer, the pattern visibility of the transparent electrode layer is improved.
 反射防止層としては、屈折率が1.6以上であることが好ましく、1.65以上であることが好ましい。上限値については特に制限はないが、1.78以下であることが実用上好ましく、1.74以下であってもよい。 The refractive index of the antireflection layer is preferably 1.6 or more, more preferably 1.65 or more. Although there is no restriction | limiting in particular about an upper limit, it is practically preferable that it is 1.78 or less, and 1.74 or less may be sufficient.
 反射防止層は、金属酸化物粒子、樹脂(好ましくはアルカリ可溶性樹脂)、重合性化合物、重合開始剤または重合開始系を含むことが好ましい。さらに、添加剤などが用いられるがこれに限られたものではない。 The antireflection layer preferably contains metal oxide particles, a resin (preferably an alkali-soluble resin), a polymerizable compound, a polymerization initiator, or a polymerization initiation system. Furthermore, an additive etc. are used, but it is not restricted to this.
 反射防止層は、透明樹脂膜であっても、無機膜であってもよい。
 前記無機膜としては、特開2010-86684号公報、特開2010-152809号公報および特開2010-257492号公報などに用いられている無機膜を用いることができ、これらの文献に記載されている低屈折率材料と高屈折率材料の積層構造の無機膜や、低屈折率材料と高屈折率材料の混合膜の無機膜を用いることが屈折率を制御する観点から好ましい。前記低屈折率材料と前記高屈折率材料は、上記の特開2010-86684号公報、特開2010-152809号公報および特開2010-257492号公報に用いられている材料を好ましく用いることができ、これらの文献の内容は本明細書中に組み込まれる。
 前記無機膜は、SiO2とNb25の混合膜であってもよく、その場合はスパッタによって形成されたSiO2とNb25の混合膜であることがより好ましい。
The antireflection layer may be a transparent resin film or an inorganic film.
As the inorganic film, inorganic films used in JP 2010-86684 A, JP 2010-152809 A, JP 2010-257492 A, and the like can be used, which are described in these documents. From the viewpoint of controlling the refractive index, it is preferable to use an inorganic film having a laminated structure of a low refractive index material and a high refractive index material, or an inorganic film having a mixed film of a low refractive index material and a high refractive index material. As the low refractive index material and the high refractive index material, the materials used in JP 2010-86684 A, JP 2010-152809 A, and JP 2010-257492 A can be preferably used. The contents of these documents are incorporated herein.
The inorganic layer may be a mixed layer of SiO 2 and Nb 2 O 5, and more preferably that case is a mixed film of SiO 2 and Nb 2 O 5 formed by sputtering.
 本発明では、反射防止層が、透明樹脂膜であることが好ましい。 In the present invention, the antireflection layer is preferably a transparent resin film.
 前記透明樹脂膜である反射防止層の屈折率を制御する方法としては特に制限はないが、所望の屈折率の透明樹脂膜を単独で用いたり、金属微粒子や金属酸化物微粒子などの微粒子を添加した透明樹脂膜を用いたりすることができる。本発明では、前記反射防止層が粒子を含むことが好ましく、金属酸化物粒子を含むことがより好ましい。 The method for controlling the refractive index of the antireflection layer that is the transparent resin film is not particularly limited, but a transparent resin film having a desired refractive index is used alone, or fine particles such as metal fine particles and metal oxide fine particles are added. A transparent resin film that has been used can be used. In the present invention, the antireflection layer preferably contains particles, and more preferably contains metal oxide particles.
 前記透明樹脂膜である反射防止層に用いられる樹脂組成物は、屈折率や光透過性を調節することを目的として、金属酸化物粒子を含有することが好ましい。金属酸化物粒子は、透明性が高く、光透過性を有するため、高屈折率で、透明性に優れた組成物が得られる。
 前記金属酸化物粒子は、当該粒子を除いた材料からなる樹脂組成物の屈折率より屈折率が高いものであることが好ましく、具体的には、前記反射防止層が、400~750nmの波長を有する光における屈折率1.60~3.00である粒子を含むことが好ましく、屈折率が1.70以上の粒子を含むのが好ましく、1.90以上の粒子を含むのが更に好ましい。
 ここで、400~750nmの波長を有する光における屈折率が1.60以上であるとは、上記範囲の波長を有する光における平均屈折率が1.60以上であることを意味し、上記範囲の波長を有する全ての光における屈折率が1.60以上であることを要しない。また、平均屈折率は、上記範囲の波長を有する各光に対する屈折率の測定値の総和を、測定点の数で割った値である。
The resin composition used for the antireflection layer which is the transparent resin film preferably contains metal oxide particles for the purpose of adjusting the refractive index and light transmittance. Since the metal oxide particles have high transparency and light transmittance, a composition having a high refractive index and excellent transparency can be obtained.
The metal oxide particles preferably have a refractive index higher than the refractive index of the resin composition made of a material excluding the particles. Specifically, the antireflection layer has a wavelength of 400 to 750 nm. It is preferable to include particles having a refractive index of 1.60 to 3.00 in the light having, preferably including particles having a refractive index of 1.70 or more, and more preferably including particles of 1.90 or more.
Here, the refractive index of light having a wavelength of 400 to 750 nm being 1.60 or more means that the average refractive index of light having a wavelength in the above range is 1.60 or more. It is not necessary that the refractive index of all light having a wavelength is 1.60 or more. The average refractive index is a value obtained by dividing the sum of the measured values of the refractive index for each light having a wavelength in the above range by the number of measurement points.
 なお、前記金属酸化物粒子の金属には、B、Si、Ge、As、Sb、Te等の半金属も含まれるものとする。
 光透過性で屈折率の高い金属酸化物粒子としては、Be、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Gd、Tb、Dy、Yb、Lu、Ti、Zr、Hf、Nb、Mo、W、Zn、B、Al、Si、Ge、Sn、Pb、Sb、Bi、Te等の原子を含む酸化物粒子が好ましく、酸化チタン、チタン複合酸化物、酸化亜鉛、酸化錫、酸化ジルコニウム、インジウム/スズ酸化物、アンチモン/スズ酸化物の粒子がより好ましく、酸化チタン、チタン複合酸化物、酸化錫、酸化ジルコニウムの粒子が更に好ましく、酸化ジルコニウムの粒子が最も好ましい。これら金属酸化物粒子は、分散安定性付与のために表面を有機材料で処理することもできる。
In addition, the metal of the metal oxide particles includes semimetals such as B, Si, Ge, As, Sb, and Te.
The light-transmitting and high refractive index metal oxide particles include Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Gd, Tb, Dy, Yb, Lu, Ti, Zr, Hf, and Nb. Oxide particles containing atoms such as Mo, W, Zn, B, Al, Si, Ge, Sn, Pb, Sb, Bi, Te, etc. are preferable, titanium oxide, titanium composite oxide, zinc oxide, tin oxide, oxidation Zirconium, indium / tin oxide and antimony / tin oxide particles are more preferred, titanium oxide, titanium composite oxide, tin oxide and zirconium oxide particles are more preferred, and zirconium oxide particles are most preferred. The surface of these metal oxide particles can be treated with an organic material in order to impart dispersion stability.
 透明樹脂膜である反射防止層の透明性の観点から、前記金属酸化物粒子の平均一次粒子径は、1~200nmが好ましく、3~80nmが特に好ましい。ここで粒子の平均一次粒子径は、電子顕微鏡により任意の粒子200個の粒子径を測定し、その算術平均をいう。また、粒子の形状が球形でない場合には、最も長い辺を径とする。 From the viewpoint of the transparency of the antireflection layer which is a transparent resin film, the average primary particle diameter of the metal oxide particles is preferably 1 to 200 nm, particularly preferably 3 to 80 nm. Here, the average primary particle diameter of the particles refers to an arithmetic average obtained by measuring the particle diameter of 200 arbitrary particles with an electron microscope. When the particle shape is not spherical, the longest side is the diameter.
 また、前記金属酸化物粒子は、1種単独で使用してよいし、2種以上を併用することもできる。
 前記透明樹脂膜である反射防止層における金属酸化物粒子の含有量は、樹脂組成物により得られる光学部材に要求される屈折率や、光透過性等を考慮して、適宜決定すればよいが、前記透明樹脂膜である反射防止層の全固形分に対して、5~95質量%とすることができ、5~80質量%とすることが好ましく、40~80質量%とすることがより好ましい。
 前記透明樹脂膜である反射防止層が、ZrO2粒子およびTiO2粒子のうち少なくとも一方を有することが、反射防止層の屈折率の範囲に屈折率を制御する観点から好ましく、ZrO2粒子がより好ましい。
Moreover, the said metal oxide particle may be used individually by 1 type, and can also use 2 or more types together.
The content of the metal oxide particles in the antireflection layer that is the transparent resin film may be appropriately determined in consideration of the refractive index required for the optical member obtained from the resin composition, light transmittance, and the like. The content of the antireflection layer, which is the transparent resin film, can be 5 to 95% by mass, preferably 5 to 80% by mass, and more preferably 40 to 80% by mass. preferable.
The antireflection layer that is the transparent resin film preferably has at least one of ZrO 2 particles and TiO 2 particles from the viewpoint of controlling the refractive index within the range of the refractive index of the antireflection layer, and the ZrO 2 particles are more preferable.
 透明樹脂膜である反射防止層に用いられる樹脂(バインダー、ポリマーという言う)やその他の添加剤としては本発明の趣旨に反しない限りにおいて特に制限は無い。前記反射防止層が透明樹脂膜である場合、前記反射防止層の前記粒子以外の成分は、前記保護層と同様のものを用いることができる。 The resin (referred to as binder and polymer) used for the antireflection layer which is a transparent resin film and other additives are not particularly limited as long as they are not contrary to the gist of the present invention. When the antireflection layer is a transparent resin film, components other than the particles of the antireflection layer can be the same as those of the protective layer.
 反射防止層に用いられる樹脂(バインダー、ポリマーという言う)としてはアルカリ可溶性樹脂が好ましく、前記アルカリ可溶性樹脂としては、特開2011-95716号公報の段落[0025]、特開2010-237589号公報の段落[0033]~[0052]に記載のポリマーを用いることができる。 As the resin (referred to as binder or polymer) used in the antireflection layer, an alkali-soluble resin is preferable. Examples of the alkali-soluble resin include paragraphs [0025] of JP2011-95716A and JP2010-237589A. The polymers described in paragraphs [0033] to [0052] can be used.
 前記重合性化合物としては、特許第4098550号の段落[0023]~[0024]に記載の重合性化合物を用いることができる。
 前記重合開始剤または重合開始系としては、特開2011-95716号公報に記載の[0031]~[0042]に記載の重合性化合物を用いることができる。
As the polymerizable compound, the polymerizable compounds described in paragraphs [0023] to [0024] of Japanese Patent No. 4098550 can be used.
As the polymerization initiator or polymerization initiation system, the polymerizable compounds described in [0031] to [0042] described in JP2011-95716A can be used.
 さらに、反射防止層には、添加剤を用いてもよい。前記添加剤としては、例えば特許第4502784号公報の段落[0017]、特開2009-237362号公報の段落[0060]~[0071]に記載の界面活性剤や、特許第4502784号公報の段落[0018]に記載の熱重合防止剤、さらに、特開2000-310706号公報の段落[0058]~[0071]に記載のその他の添加剤が挙げられる。 Furthermore, an additive may be used in the antireflection layer. Examples of the additive include surfactants described in paragraph [0017] of Japanese Patent No. 4502784, paragraphs [0060] to [0071] of JP-A-2009-237362, and paragraph [ And the other additives described in paragraphs [0058] to [0071] of JP-A No. 2000-310706.
 反射防止層の厚みとして、500nm以下であることが好ましく、100nm以下であることがより好ましい。反射防止層の厚みが55~100nmであることが特に好ましく、60~90nmであることがより特に好ましく、70~90nmであることがさらにより特に好ましい。 The thickness of the antireflection layer is preferably 500 nm or less, and more preferably 100 nm or less. The thickness of the antireflection layer is particularly preferably from 55 to 100 nm, more preferably from 60 to 90 nm, even more preferably from 70 to 90 nm.
[タッチパネル用積層体の製造方法]
 本発明のタッチパネル用積層体の製造方法は、本発明のタッチパネル用積層体であって、ガラス基板と透明電極層を有する透明電極層付き前面板に、保護層とポリマー層とをこの順で有する積層材料を、前記透明電極層側の表面と前記保護層側の表面とが対向するように積層する工程を含み、前記ガラス基板がガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をされてなることを特徴とする。
 本発明のタッチパネル用積層体の製造方法は、保護層、およびポリマー層を少なくとも有する積層材料を、透明導電層を形成したガラス基板の透明導電層側に積層することで製造することができる。
[Method for producing laminate for touch panel]
The manufacturing method of the laminated body for touchscreens of this invention is a laminated body for touchscreens of this invention, Comprising: A front layer board with a transparent electrode layer which has a glass substrate and a transparent electrode layer has a protective layer and a polymer layer in this order. Including a step of laminating a laminated material such that the surface on the transparent electrode layer side and the surface on the protective layer side face each other, wherein the glass substrate is a part of ions having an ion radius smaller than potassium ions in glass or It is characterized by being subjected to a chemical strengthening treatment that replaces all with potassium ions.
The manufacturing method of the laminated body for touchscreens of this invention can be manufactured by laminating | stacking the laminated material which has a protective layer and a polymer layer at least on the transparent conductive layer side of the glass substrate in which the transparent conductive layer was formed.
<積層工程>
 前記転写工程は、保護層とポリマー層と、をこの順で有する積層材料を後述する透明電極パターン上に積層する工程である。
 この際、保護層とポリマー層とをこの順で有する積層材料を透明電極パターンにラミネート後、ポリマー層を取り除く必要はない。
 前記保護層および前記ポリマー層のガラス基板表面への積層(貼り合わせ)は、前記保護層および前記ポリマー層を透明電極パターン表面に重ね、加圧、加熱することに行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。
<Lamination process>
The said transfer process is a process of laminating | stacking the laminated material which has a protective layer and a polymer layer in this order on the transparent electrode pattern mentioned later.
At this time, it is not necessary to remove the polymer layer after laminating the laminated material having the protective layer and the polymer layer in this order on the transparent electrode pattern.
Lamination (bonding) of the protective layer and the polymer layer to the surface of the glass substrate is performed by stacking the protective layer and the polymer layer on the surface of the transparent electrode pattern, and applying pressure and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
<ガラス基板の表面処理>
 後の転写工程におけるラミネートによる各層の密着性を高めるために、予めガラス基板(前面板)の非接触面に表面処理を施すことができる。前記表面処理としては、シラン化合物を用いた表面処理(シランカップリング処理)を実施することが好ましい。シランカップリング剤としては、感光性樹脂と相互作用する官能基を有するものが好ましい。例えばシランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄する。この後、加熱により反応させる。加熱槽を用いてもよく、ラミネータの基板予備加熱でも反応を促進できる。
<Surface treatment of glass substrate>
In order to improve the adhesion of each layer by lamination in the subsequent transfer step, a surface treatment can be applied to the non-contact surface of the glass substrate (front plate) in advance. As the surface treatment, it is preferable to perform a surface treatment (silane coupling treatment) using a silane compound. As the silane coupling agent, those having a functional group that interacts with the photosensitive resin are preferable. For example, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) is sprayed for 20 seconds by a shower, and pure water shower washing is performed. To do. Thereafter, the reaction is carried out by heating. A heating tank may be used, and the reaction can be promoted by preheating the substrate of the laminator.
<透明電極パターンの製膜>
 前記透明電極パターンは、後述する本発明の静電容量型入力装置の説明における、第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6の形成方法などを用いて、ガラス基板上に製膜することができ、感光性フィルムを用いる方法が好ましい。
<Filming of transparent electrode pattern>
The transparent electrode pattern is formed by using the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 forming method in the description of the capacitive input device of the present invention described later. A method using a photosensitive film that can be formed on a glass substrate is preferred.
-転写工程-
 前記転写工程は、後述する、保護フィルムが除去された転写フィルムの前記第一のエッチング用光硬化性樹脂層および前記第二のエッチング用光硬化性樹脂層(以下、まとめて光硬化性樹脂層ともいう)を透明電極層上に転写する工程である。
 この際、転写フィルムの前記光硬化性樹脂層を透明電極パターンにラミネート後、仮支持体を取り除く工程を含む方法が好ましい。
 前記光硬化性樹脂層の基材表面への転写(貼り合わせ)は、前記光硬化性樹脂層を透明電極パターン表面に重ね、加圧、加熱することに行われる。貼り合わせには、ラミネータ、真空ラミネータ、および、より生産性を高めることができるオートカットラミネーター等の公知のラミネータを使用することができる。
-Transfer process-
The transfer step includes the first photocurable resin layer for etching and the second photocurable resin layer for etching (hereinafter collectively referred to as photocurable resin layer) of the transfer film from which the protective film has been removed, which will be described later. Is also transferred onto the transparent electrode layer.
At this time, a method including a step of removing the temporary support after laminating the photocurable resin layer of the transfer film on the transparent electrode pattern is preferable.
Transfer (bonding) of the photocurable resin layer to the surface of the base material is performed by overlaying the photocurable resin layer on the surface of the transparent electrode pattern, and applying pressure and heating. For laminating, known laminators such as a laminator, a vacuum laminator, and an auto-cut laminator that can further increase productivity can be used.
<転写フィルム>
 転写フィルムは、仮支持体と前記第一のエッチング用光硬化性樹脂層または前記第二のエッチング用光硬化性樹脂層を有する。
 前記仮支持体としては、可撓性を有し、加圧下または、加圧および加熱下で著しい変形、収縮もしくは伸びを生じない材料を用いることができる。このような支持体の例として、ポリエチレンテレフタレートフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられ、中でも2 軸延伸ポリエチレンテレフタレートフィルムが特に好ましい。
<Transfer film>
The transfer film has a temporary support and the first photocurable resin layer for etching or the second photocurable resin layer for etching.
As the temporary support, a material that is flexible and does not cause significant deformation, shrinkage, or elongation under pressure or under pressure and heating can be used. Examples of such a support include a polyethylene terephthalate film, a cellulose triacetate film, a polystyrene film, and a polycarbonate film, and among them, a biaxially stretched polyethylene terephthalate film is particularly preferable.
 仮支持体の厚みには、特に制限はなく、5~200μmの範囲が一般的であり、取扱い易さ、汎用性などの点で、特に10~150μmの範囲が好ましい。
 また、仮支持体は透明でもよいし、染料化ケイ素、アルミナゾル、クロム塩、ジルコニウム塩などを含有していてもよい。
 また、前記仮支持体には、特開2005-221726号公報に記載の方法などにより、導電性を付与することができる。
<<熱可塑性樹脂層>>
 転写フィルムは、仮支持体と前記第一のエッチング用光硬化性樹脂層または前記第二のエッチング用光硬化性樹脂層との間に熱可塑性樹脂層が設けられることが好ましい。前記熱可塑性樹脂層を有する転写フィルムを用いて、光硬化性樹脂層を転写して透明積層体を形成すると、転写して形成した各要素に気泡が発生し難くなり、画像表示装置に画像ムラなどが発生し難くなり、優れた表示特性を得ることができる。
 前記熱可塑性樹脂層はアルカリ可溶性であることが好ましい。熱可塑性樹脂層は、下地表面の凹凸(既に形成されている画像などによる凹凸等も含む。)を吸収することができるようにクッション材としての役割を担うものであり、対象面の凹凸に応じて変形しうる性質を有していることが好ましい。
The thickness of the temporary support is not particularly limited and is generally in the range of 5 to 200 μm, and in the range of easy handling and versatility, the range of 10 to 150 μm is particularly preferable.
Further, the temporary support may be transparent or may contain dyed silicon, alumina sol, chromium salt, zirconium salt or the like.
Further, the temporary support can be imparted with conductivity by the method described in JP-A-2005-221726.
<< Thermoplastic resin layer >>
The transfer film is preferably provided with a thermoplastic resin layer between the temporary support and the first photocurable resin layer for etching or the second photocurable resin layer for etching. If a transparent laminate is formed by transferring a photocurable resin layer using a transfer film having the thermoplastic resin layer, bubbles are less likely to be generated in each element formed by transfer, and image unevenness is caused in the image display device. Etc. are less likely to occur and excellent display characteristics can be obtained.
The thermoplastic resin layer is preferably alkali-soluble. The thermoplastic resin layer plays a role as a cushioning material so as to be able to absorb unevenness of the base surface (including unevenness due to already formed images, etc.), and according to the unevenness of the target surface. It is preferable to have a property that can be deformed.
 熱可塑性樹脂層は、特開平5-72724号公報に記載の有機高分子物質を成分として含む態様が好ましく、ヴィカー(Vicat)法〔具体的には、アメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法〕による軟化点が約80℃以下の有機高分子物質より選ばれる少なくとも1種を含む態様が特に好ましい。 The thermoplastic resin layer preferably includes an organic polymer substance described in JP-A-5-72724 as a component. The Vicat method [specifically, a polymer obtained by American Material Testing Method ASTM D1235] An embodiment containing at least one selected from organic polymer substances having a softening point of about 80 ° C. or less according to the softening point measurement method] is particularly preferable.
 具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニルまたはそのケン化物等とのエチレン共重合体、エチレンとアクリル酸エステルまたはそのケン化物との共重合体、ポリ塩化ビニルや塩化ビニルと酢酸ビニルまたはそのケン化物等との塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステルまたはそのケン化物等とのスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステルまたはそのケン化物等とのビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等との(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N-アルコキシメチル化ナイロン、N-ジメチルアミノ化ナイロン等のポリアミド樹脂などの有機高分子が挙げられる。 Specifically, polyolefins such as polyethylene and polypropylene, ethylene copolymers with ethylene and vinyl acetate or saponified products thereof, copolymers of ethylene and acrylic acid esters or saponified products thereof, polyvinyl chloride and vinyl chloride, Vinyl chloride copolymer with vinyl acetate or saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene copolymer with styrene and (meth) acrylic acid ester or saponified product thereof, polyvinyl toluene, Vinyl toluene copolymer of vinyl toluene and (meth) acrylic acid ester or saponified product thereof, poly (meth) acrylic acid ester, (meth) acrylic acid ester copolymer weight of butyl (meth) acrylate and vinyl acetate, etc. Copolymer, vinyl acetate copolymer nylon, copolymer nylon N- alkoxymethyl nylon, and organic polymers such as polyamide resins such as N- dimethylamino nylon.
 熱可塑性樹脂層の層厚は、3~30μmが好ましい。熱可塑性樹脂層の層厚が3μm未満の場合には、ラミネート時の追随性が不十分で、下地表面の凹凸を完全に吸収できないことがある。また、層厚が30μmを超える場合には、仮支持体への熱可塑性樹脂層の形成時の乾燥(溶剤除去)に負荷がかかったり、熱可塑性樹脂層の現像に時間を要したりし、プロセス適性を悪化させることがある。前記熱可塑性樹脂層の層厚としては、4~25μmが更に好ましく、5~20μmが特に好ましい。 The layer thickness of the thermoplastic resin layer is preferably 3 to 30 μm. When the thickness of the thermoplastic resin layer is less than 3 μm, followability at the time of lamination may be insufficient, and unevenness on the base surface may not be completely absorbed. In addition, when the layer thickness exceeds 30 μm, a load is applied to drying (solvent removal) at the time of forming the thermoplastic resin layer on the temporary support, or it takes time to develop the thermoplastic resin layer, May deteriorate process suitability. The thickness of the thermoplastic resin layer is more preferably 4 to 25 μm, and particularly preferably 5 to 20 μm.
 熱可塑性樹脂層は、熱可塑性の有機高分子を含む調製液を塗布等して形成することができ、塗布等の際に用いる調製液は溶媒を用いて調製できる。溶媒には、該層を構成する高分子成分を溶解し得るものであれば特に制限なく、例えば、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、n-プロパノール、2-プロパノール等が挙げられる。 The thermoplastic resin layer can be formed by applying a preparation liquid containing a thermoplastic organic polymer, and the preparation liquid used for the application can be prepared using a solvent. The solvent is not particularly limited as long as it can dissolve the polymer component constituting the layer, and examples thereof include methyl ethyl ketone, cyclohexanone, propylene glycol monomethyl ether acetate, n-propanol, 2-propanol and the like.
(熱可塑性樹脂層および光硬化性樹脂層の粘度)
 前記熱可塑性樹脂層の100℃で測定した粘度が1000~10000Pa・secの領域にあり、光硬化性樹脂層の100℃で測定した粘度が2000~50000Pa・secの領域にあり、さらに次式(A)を満たすことが好ましい。
式(A):熱可塑性樹脂層の粘度<光硬化性樹脂層の粘度
(Viscosity of thermoplastic resin layer and photocurable resin layer)
The viscosity of the thermoplastic resin layer measured at 100 ° C. is in the region of 1000 to 10,000 Pa · sec, the viscosity of the photocurable resin layer measured at 100 ° C. is in the region of 2000 to 50000 Pa · sec, and the following formula ( It is preferable to satisfy A).
Formula (A): Viscosity of thermoplastic resin layer <viscosity of photocurable resin layer
 ここで、各層の粘度は、次のようにして測定できる。大気圧および減圧乾燥により、熱可塑性樹脂層あるいは光硬化性樹脂層用塗布液から溶剤を除去して測定サンプルとし、例えば、測定器として、バイブロン(DD-III型:東洋ボールドウィン(株)製)を使用し、測定開始温度50℃、測定終了温度150℃、昇温速度5℃/分および振動数1Hz/degの条件で測定し、100℃の測定値を用いることができる。 Here, the viscosity of each layer can be measured as follows. The solvent is removed from the coating solution for the thermoplastic resin layer or the photocurable resin layer by drying under atmospheric pressure and reduced pressure to obtain a measurement sample. For example, as a measuring instrument, Vibron (DD-III type: manufactured by Toyo Baldwin Co., Ltd.) Can be used under the conditions of a measurement start temperature of 50 ° C., a measurement end temperature of 150 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz / deg, and a measurement value of 100 ° C. can be used.
<中間層>
 転写フィルムは、前記光硬化性樹脂層と前記熱可塑性樹脂との間に、さらに中間層を含むことが、複数層を塗布する際および塗布後の保存の際における成分の混合を防止する観点から、好ましい。中間層としては、特開平5-72724号公報に「分離層」として記載されている、酸素遮断機能のある酸素遮断膜が好ましく、露光時の感度がアップし、露光機の時間負荷を低減し得、生産性が向上する。
<Intermediate layer>
The transfer film further includes an intermediate layer between the photo-curable resin layer and the thermoplastic resin, from the viewpoint of preventing mixing of components when applying a plurality of layers and during storage after application. ,preferable. As the intermediate layer, an oxygen-blocking film having an oxygen-blocking function, which is described as “separation layer” in JP-A No. 5-72724, is preferable. And productivity is improved.
 転写フィルムは、前記光硬化性樹脂層の表面に保護フィルム(保護剥離層)などを更に設けることが好ましい。 The transfer film is preferably further provided with a protective film (protective release layer) or the like on the surface of the photocurable resin layer.
 前記中間層および保護フィルムとしては、特開2006-259138号公報の段落[0083]~[0087]および[0093]に記載のものを適宜使用することができる。 As the intermediate layer and the protective film, those described in paragraphs [0083] to [0087] and [0093] of JP-A-2006-259138 can be appropriately used.
[転写フィルムの製造方法]
 転写フィルムは、特開2006-259138号公報の段落[0094]~[0098]に記載の感光性転写材料の作製方法に準じて作製することができる。
[Transfer Film Manufacturing Method]
The transfer film can be produced according to the method for producing a photosensitive transfer material described in paragraphs [0094] to [0098] of JP-A-2006-259138.
-露光工程、現像工程、およびその他の工程-
 前記露光工程、現像工程、およびその他の工程の例としては、特開2006-23696号公報の段落番号[0035]~[0051]に記載の方法を本発明においても好適に用いることができる。
-Exposure process, development process, and other processes-
As examples of the exposure step, the development step, and other steps, the methods described in paragraph numbers [0035] to [0051] of JP-A-2006-23696 can be preferably used in the present invention.
 前記露光工程は、透明電極層上に転写された前記光硬化性樹脂層を露光する工程である。
 具体的には、前記透明電極層上に形成された前記光硬化性樹脂層の上方に所定のマスクを配置し、その後該マスク、熱可塑性樹脂層、および中間層を介してマスク上方から前記光硬化性樹脂層を露光する方法や、マスクを用いずに熱可塑性樹脂層、および中間層を介して前記光硬化性樹脂層を全面露光する方法が挙げられる。
 ここで、前記露光の光源としては、前記光硬化性樹脂層を硬化しうる波長域の光(例えば、365nm、405nmなど)を照射できるものであれば適宜選定して用いることができる。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。露光量としては、通常5~200mJ/cm2程度であり、好ましくは10~100m
J/cm2程度である。
The exposure step is a step of exposing the photocurable resin layer transferred onto the transparent electrode layer.
Specifically, a predetermined mask is disposed above the photocurable resin layer formed on the transparent electrode layer, and then the light is applied from above the mask through the mask, the thermoplastic resin layer, and the intermediate layer. Examples thereof include a method of exposing the curable resin layer, and a method of exposing the entire surface of the photocurable resin layer through a thermoplastic resin layer and an intermediate layer without using a mask.
Here, the light source for the exposure can be appropriately selected and used as long as it can irradiate light in a wavelength region capable of curing the photocurable resin layer (for example, 365 nm, 405 nm, etc.). Specifically, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, etc. are mentioned. The exposure amount is usually about 5 to 200 mJ / cm 2 , preferably 10 to 100 m.
It is about J / cm 2 .
 前記現像工程は、露光されたエッチング用光硬化性樹脂層を現像する工程である。
 本発明では、前記現像工程は、パターン露光された前記光硬化性樹脂層を現像液によってパターン現像する狭義の意味の現像工程ではなく、全面露光後に熱可塑性樹脂層や中間層を除去するのみで前記光硬化性樹脂層自体はパターンを形成しない場合も含む現像工程である。
 前記現像は、現像液を用いて行うことができる。前記現像液としては、特に制約はなく、特開平5-72724号公報に記載のものなど、公知の現像液を使用することができる。尚、現像液は光硬化性樹脂層が溶解型の現像挙動をするものが好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含むものが好ましい。一方、前記光硬化性樹脂層自体はパターンを形成しない場合の現像液は前記非アルカリ現像型着色組成物層を溶解しない型の現像挙動をするものが好ましく、例えば、pKa=7~13の化合物を0.05~5mol/Lの濃度で含むものが好ましい。現像液には、更に水と混和性を有する有機溶剤を少量添加してもよい。水と混和性を有する有機溶剤としては、メタノール、エタノール、2-プロパノール、1-プロパノール、ブタノール、ジアセトンアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、ε-カプロラクトン、γ-ブチロラクトン、ジメチルホルムアミド、ジメチルアセトアミド、ヘキサメチルホスホルアミド、乳酸エチル、乳酸メチル、ε-カプロラクタム、N-メチルピロリドン等を挙げることができる。該有機溶剤の濃度は0.1質量%~30質量%が好ましい。また、前記現像液には、更に公知の界面活性剤を添加することができる。界面活性剤の濃度は0.01質量%~10質量%が好ましい。
The developing step is a step of developing the exposed photocurable resin layer for etching.
In the present invention, the developing step is not a developing step in a narrow sense in which the pattern-exposed photocurable resin layer is pattern-developed with a developer, but only the thermoplastic resin layer and the intermediate layer are removed after the entire surface exposure. The photo-curable resin layer itself is a developing step that includes a case where a pattern is not formed.
The development can be performed using a developer. The developer is not particularly limited, and known developers such as those described in JP-A-5-72724 can be used. The developer is preferably one in which the photocurable resin layer exhibits a dissolution type development behavior, for example, one containing a compound having a pKa = 7 to 13 at a concentration of 0.05 to 5 mol / L. On the other hand, the developer in the case where the photo-curable resin layer itself does not form a pattern preferably has a development behavior that does not dissolve the non-alkali development type colored composition layer. For example, a compound having pKa = 7 to 13 Is preferably contained at a concentration of 0.05 to 5 mol / L. A small amount of an organic solvent miscible with water may be added to the developer. Examples of organic solvents miscible with water include methanol, ethanol, 2-propanol, 1-propanol, butanol, diacetone alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, benzyl alcohol And acetone, methyl ethyl ketone, cyclohexanone, ε-caprolactone, γ-butyrolactone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, ethyl lactate, methyl lactate, ε-caprolactam, N-methylpyrrolidone and the like. The concentration of the organic solvent is preferably 0.1% by mass to 30% by mass. Further, a known surfactant can be added to the developer. The concentration of the surfactant is preferably 0.01% by mass to 10% by mass.
 前記現像の方式としては、パドル現像、シャワー現像、シャワー&スピン現像、ディプ現像等のいずれでもよい。ここで、前記シャワー現像について説明すると、露光後の前記光硬化性樹脂層に現像液をシャワーにより吹き付けることにより、未硬化部分を除去することができる。尚、熱可塑性樹脂層や中間層を設けた場合には、現像の前に光硬化性樹脂層の溶解性が低いアルカリ性の液をシャワーなどにより吹き付け、熱可塑性樹脂層、中間層などを除去しておくことが好ましい。また、現像の後に、洗浄剤などをシャワーにより吹き付け、ブラシなどで擦りながら、現像残渣を除去することが好ましい。現像液の液温度は20℃~40℃が好ましく、また、現像液のpHは8~13が好ましい。 The development method may be any of paddle development, shower development, shower & spin development, dip development, and the like. Here, the shower development will be described. An uncured portion can be removed by spraying a developer onto the photocurable resin layer after exposure. When a thermoplastic resin layer or an intermediate layer is provided, an alkaline solution having a low solubility of the photocurable resin layer is sprayed by a shower or the like before development to remove the thermoplastic resin layer or the intermediate layer. It is preferable to keep it. Further, after the development, it is preferable to remove the development residue while spraying a cleaning agent or the like with a shower and rubbing with a brush or the like. The liquid temperature of the developer is preferably 20 ° C. to 40 ° C., and the pH of the developer is preferably 8 to 13.
 前記静電容量型入力装置の製造方法は、ポスト露光工程、ポストベーク工程等、その他の工程を有していてもよい。前記第一のエッチング用光硬化性樹脂層および前記第二のエッチング用光硬化性樹脂層が、熱硬化性透明樹脂層である場合は、ポストベーク工程を行うことが好ましい。 The manufacturing method of the capacitance-type input device may have other processes such as a post-exposure process and a post-bake process. When the first photocurable resin layer for etching and the second photocurable resin layer for etching are thermosetting transparent resin layers, it is preferable to perform a post-bake process.
 尚、パターニング露光や全面露光は、仮支持体を剥離してから行ってもよいし、仮支持体を剥離する前に露光し、その後、仮支持体を剥離してもよい。マスクを介した露光でも良いし、レーザー等を用いたデジタル露光でも良い。 In addition, patterning exposure and whole surface exposure may be performed after peeling the temporary support, or may be performed before peeling the temporary support, and then the temporary support may be peeled off. Exposure through a mask or digital exposure using a laser or the like may be used.
[静電容量型入力装置]
 本発明の静電容量型入力装置は、本発明の積層体を有することを特徴とする。
 本発明の静電容量型入力装置は、透明電極パターンと、該透明電極パターンに隣接して配置された反射防止層と、該反射防止層に隣接して配置された保護層とを有し、前記反射防止層の屈折率が前記保護層の屈折率よりも高く、前記反射防止層の屈折率が1.6以上であることが好ましい。
 以下、本発明の静電容量型入力装置の好ましい態様の詳細を説明する。
[Capacitance type input device]
The capacitance-type input device of the present invention has the laminate of the present invention.
The capacitive input device of the present invention has a transparent electrode pattern, an antireflection layer disposed adjacent to the transparent electrode pattern, and a protective layer disposed adjacent to the antireflection layer, The refractive index of the antireflection layer is preferably higher than the refractive index of the protective layer, and the refractive index of the antireflection layer is preferably 1.6 or more.
Hereinafter, the detail of the preferable aspect of the electrostatic capacitance type input device of this invention is demonstrated.
 本発明の静電容量型入力装置は、前面板(本発明の積層体における前記ガラス基板に相当する)と、前記前面板の非接触側に少なくとも下記(3)~(5)、(7)および(8)の要素を有し、本発明の積層体を有することが好ましい。
(3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
(4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
(5)前記第一の透明電極パターンと前記第二の電極パターンとを電気的に絶縁する絶縁層
(7) 前記(3)~(5)の要素の全てまたは一部を覆うように形成された反射防止層(8) 前記(7)の要素を覆うように隣接して形成された保護層
 ここで、前記(7)反射防止層が、本発明の積層体における前記反射防止層に相当する。また、前記(8)保護層が、本発明の積層体における前記保護層に相当する。なお、前記保護層は、通常公知の静電容量型入力装置におけるいわゆる透明保護層であることが好ましい。
The capacitance-type input device of the present invention includes at least the following (3) to (5), (7) on the front plate (corresponding to the glass substrate in the laminate of the present invention) and the non-contact side of the front plate. And it is preferable to have the laminated body of this invention.
(3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (4) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction intersecting the first direction (5) electrically connecting the first transparent electrode pattern and the second electrode pattern Insulating layer (7) for electrically insulating Antireflection layer (8) formed so as to cover all or part of the elements (3) to (5) Adjacent to cover the element (7) Formed Protective Layer Here, (7) the antireflection layer corresponds to the antireflection layer in the laminate of the invention. The (8) protective layer corresponds to the protective layer in the laminate of the present invention. The protective layer is preferably a so-called transparent protective layer in a generally known capacitance type input device.
 本発明の静電容量型入力装置は、前記(4)第二の電極パターンが透明電極パターンであってもよい、透明電極パターンでなくてもよいが、透明電極パターンであることが好ましい。
 本発明の静電容量型入力装置は、さらに下記(6)の要素を有していてもよい。
(6)前記第一の透明電極パターンおよび前記第二の透明電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の透明電極パターンとは別の導電性要素
 ここで、前記(7)第二の電極パターンが透明電極パターンでなく、前記(8)別の導電性要素を有さない場合は、前記(7)第一の透明電極パターンが、本発明の積層体における透明電極パターンに相当する。
 前記(7)第二の電極パターンが透明電極パターンであり、前記(6)別の導電性要素を有さない場合は、前記(3)第一の透明電極パターンおよび前記(7)第二の電極パターンのうち少なくとも一つが、本発明の積層体における透明電極パターンに相当する。
 前記(7)第二の電極パターンが透明電極パターンでなく、前記(6)別の導電性要素を有する場合は、前記(3)第一の透明電極パターンおよび前記(6)別の導電性要素のうち少なくとも一つが、本発明の積層体における透明電極パターンに相当する。
 前記(7)第二の電極パターンが透明電極パターンであり、前記(6)別の導電性要素を有する場合は、前記(3)第一の透明電極パターン、前記(7)第二の電極パターンおよび前記(6)別の導電性要素のうち少なくとも一つが、本発明の透明積層体における透明電極パターンに相当する。
In the capacitance-type input device of the present invention, the (4) second electrode pattern may be a transparent electrode pattern or a transparent electrode pattern, but is preferably a transparent electrode pattern.
The capacitive input device of the present invention may further have the following element (6).
(6) A conductive element that is electrically connected to at least one of the first transparent electrode pattern and the second transparent electrode pattern and is different from the first transparent electrode pattern and the second transparent electrode pattern Here, when (7) the second electrode pattern is not a transparent electrode pattern and (8) does not have another conductive element, (7) the first transparent electrode pattern is It corresponds to the transparent electrode pattern in the laminate.
When the (7) second electrode pattern is a transparent electrode pattern and (6) does not have another conductive element, the (3) first transparent electrode pattern and the (7) second electrode pattern At least one of the electrode patterns corresponds to the transparent electrode pattern in the laminate of the present invention.
(7) When the second electrode pattern is not a transparent electrode pattern but has (6) another conductive element, (3) the first transparent electrode pattern and (6) another conductive element At least one of them corresponds to the transparent electrode pattern in the laminate of the present invention.
When (7) the second electrode pattern is a transparent electrode pattern and (6) has another conductive element, (3) the first transparent electrode pattern, (7) the second electrode pattern At least one of the other conductive elements (6) corresponds to the transparent electrode pattern in the transparent laminate of the present invention.
 本発明の静電容量型入力装置は、さらに必要に応じて(1)マスク層および/または加飾層を有することが好ましい。前記マスク層は、指またはタッチペンなどで触れる領域の周囲に黒色の額縁として、透明電極パターンの引き回し配線を接触側から視認できないようにしたり、加飾をしたりするためにも設けられる。前記加飾層は、加飾のために設けられ、例えば白色の加飾層を設けることが好ましい。
 前記(1)マスク層および/または加飾層は、前記(2)透明膜と前記前面板の間、前記(3)第一の透明電極パターンと前記前面板の間、前記(4)第二の透明電極パターンと前記前面板の間、または、前記(6)別の導電性要素と前記前面板の間に有することが好ましい。前記(1)マスク層および/または加飾層は、前記前面板に隣接して設けられることがより好ましい。
The capacitance-type input device of the present invention preferably further has (1) a mask layer and / or a decoration layer as necessary. The mask layer is provided as a black frame around the area touched by a finger or a touch pen so that the transparent wiring of the transparent electrode pattern cannot be seen from the contact side or is decorated. The decoration layer is provided for decoration, for example, it is preferable to provide a white decoration layer.
The (1) mask layer and / or the decorative layer may comprise (2) the transparent film and the front plate, (3) the first transparent electrode pattern and the front plate, and (4) the second transparent electrode pattern. And the front plate or (6) another conductive element and the front plate. The (1) mask layer and / or decorative layer is more preferably provided adjacent to the front plate.
 本発明の静電容量型入力装置は、このような様々な部材を含む場合であっても、透明電極パターンに隣接して配置された前記反射防止層と、前記反射防止層に隣接して配置された前記保護層を含むことによって、透明電極パターンを目立たなくすることができ、透明電極パターンの視認性の問題を改善することができる。さらに、上述のとおり、前記屈折率1.6~1.78であり膜厚が55~110nmの透明膜と前記反射防止層を用いて、透明電極パターンを挟みこむ構成とすることによって、より透明電極パターンの視認性の問題を改善することができる。 Even if the capacitance-type input device of the present invention includes such various members, the antireflection layer disposed adjacent to the transparent electrode pattern and the antireflection layer disposed adjacent to the transparent electrode pattern. By including the protective layer, the transparent electrode pattern can be made inconspicuous, and the visibility problem of the transparent electrode pattern can be improved. Furthermore, as described above, the transparent electrode pattern is sandwiched between the transparent film having the refractive index of 1.6 to 1.78 and the film thickness of 55 to 110 nm and the antireflection layer, thereby further transparent. The problem of the visibility of the electrode pattern can be improved.
<静電容量型入力装置の構成>
 まず、本発明の製造方法によって形成される静電容量型入力装置の構成について説明する。図2は、本発明の静電容量型入力装置の中でも好ましい構成を示す断面図である。図2において静電容量型入力装置は、本発明の積層体を有し、具体的には、前面板1と、加飾層2aと、マスク層2bと、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6と、透明保護層7と、から構成されている。また、透明保護板7の前面板1側の面の反対側には、図示しないポリマー層を有する。
<Configuration of capacitance type input device>
First, the configuration of a capacitive input device formed by the manufacturing method of the present invention will be described. FIG. 2 is a cross-sectional view showing a preferred configuration of the capacitive input device of the present invention. In FIG. 2, the capacitive input device has the laminate of the present invention. Specifically, the front plate 1, the decorative layer 2a, the mask layer 2b, the first transparent electrode pattern 3, The second transparent electrode pattern 4, the insulating layer 5, the conductive element 6, and the transparent protective layer 7 are included. A transparent protective plate 7 has a polymer layer (not shown) on the opposite side of the front plate 1 side.
 また、前面板1の非接触面上にはマスク層2bが設けられている。マスク層2bは、タッチパネル前面板の非接触側に形成された表示領域周囲の額縁状のパターンであり、引回し配線等が見えないようにするために形成される。
 本発明の静電容量型入力装置には、図1に示すように、前面板1の一部の領域(図1においては入力面以外の領域)を覆うようにマスク層2が設けられている。更に、前面板1には、図1に示すように一部に開口部8を設けることができる。開口部8には、押圧によるメカニカルなスイッチを設置することができる。
A mask layer 2 b is provided on the non-contact surface of the front plate 1. The mask layer 2b is a frame-like pattern around the display area formed on the non-contact side of the front panel of the touch panel, and is formed so as not to show the lead wiring or the like.
As shown in FIG. 1, the capacitance type input device of the present invention is provided with a mask layer 2 so as to cover a part of the front plate 1 (a region other than the input surface in FIG. 1). . Further, the front plate 1 can be provided with an opening 8 in part as shown in FIG. A mechanical switch by pressing can be installed in the opening 8.
 前面板1の接触面には、複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン3と、第一の透明電極パターン3と電気的に絶縁され、第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の透明電極パターン4と、第一の透明電極パターン3と第二の透明電極パターン4を電気的に絶縁する絶縁層5とが形成されている。前記第一の透明電極パターン3と、第二の透明電極パターン4と、後述する導電性要素6とは、本発明の積層体における透明電極パターンの材料として挙げたものを用いることができ、ITO膜であることが好ましい。 On the contact surface of the front plate 1, a plurality of first transparent electrode patterns 3 formed by extending a plurality of pad portions in the first direction via connection portions; A plurality of second transparent electrode patterns 4 made of a plurality of pad portions that are electrically insulated and extend in a direction intersecting the first direction, the first transparent electrode pattern 3 and the second An insulating layer 5 that electrically insulates the transparent electrode pattern 4 is formed. As the first transparent electrode pattern 3, the second transparent electrode pattern 4, and the conductive element 6 to be described later, those mentioned as the material for the transparent electrode pattern in the laminate of the present invention can be used. A membrane is preferred.
 また、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方は、前面板1の非接触面およびマスク層2の前面板1とは逆側の面の両方の領域にまたがって設置することができる。図2においては、第二の透明電極パターンが、前面板1の非接触面およびマスク層2の前面板1とは逆側の面の両方の領域にまたがって設置されている図が示されている。このように、一定の厚みが必要なマスク層と前面板裏面とにまたがって感光性フィルムをラミネートする場合でも、後述する特定の層構成を有する感光性フィルムを用いることで真空ラミネータなどの高価な設備を用いなくても、簡単な工程でマスク部分境界に泡の発生がないラミネートが可能になる。 In addition, at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4 extends over both the non-contact surface of the front plate 1 and the region of the mask layer 2 opposite to the front plate 1. Can be installed. In FIG. 2, a diagram is shown in which the second transparent electrode pattern is disposed across both the non-contact surface of the front plate 1 and the area of the mask layer 2 opposite to the front plate 1. Yes. Thus, even when a photosensitive film is laminated across the mask layer and the back surface of the front plate that require a certain thickness, an expensive film such as a vacuum laminator can be used by using a photosensitive film having a specific layer structure to be described later. Even without the use of equipment, it is possible to perform lamination without generating bubbles at the boundary of the mask portion with a simple process.
 図4を用いて第一の透明電極パターン3および第二の透明電極パターン4について説明する。図4は、本発明における第一の透明電極パターンおよび第二の透明電極パターンの一例を示す説明図である。図4に示すように、第一の透明電極パターン3は、パッド部分3aが接続部分3bを介して第一の方向に延在して形成されている。また、第二の透明電極パターン4は、第一の透明電極パターン3と絶縁層5によって電気的に絶縁されており、第一の方向に交差する方向(図4における第二の方向)に延在して形成された複数のパッド部分によって構成されている。ここで、第一の透明電極パターン3を形成する場合、前記パッド部分3aと接続部分3bとを一体として作製してもよいし、接続部分3bのみを作製して、パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)してもよい。パッド部分3aと第二の透明電極パターン4とを一体として作製(パターニング)する場合、図4に示すように接続部分3bの一部とパッド部分3aの一部とが連結され、且つ、絶縁層5によって第一の透明電極パターン3と第二の透明電極パターン4とが電気的に絶縁されるように各層が形成される。 The first transparent electrode pattern 3 and the second transparent electrode pattern 4 will be described with reference to FIG. FIG. 4 is an explanatory diagram showing an example of the first transparent electrode pattern and the second transparent electrode pattern in the present invention. As shown in FIG. 4, the first transparent electrode pattern 3 is formed such that the pad portion 3a extends in the first direction via the connection portion 3b. The second transparent electrode pattern 4 is electrically insulated by the first transparent electrode pattern 3 and the insulating layer 5 and extends in a direction intersecting the first direction (second direction in FIG. 4). It is constituted by a plurality of pad portions that are formed. Here, when the first transparent electrode pattern 3 is formed, the pad portion 3a and the connection portion 3b may be manufactured as one body, or only the connection portion 3b is manufactured and the pad portion 3a and the second portion 3b are formed. The transparent electrode pattern 4 may be integrally formed (patterned). When the pad portion 3a and the second transparent electrode pattern 4 are manufactured (patterned) as a single body (patterning), a part of the connection part 3b and a part of the pad part 3a are connected as shown in FIG. Each layer is formed so that the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are electrically insulated by 5.
 図2において、マスク層2の前面板1とは逆側の面側には導電性要素6が設置されている。導電性要素6は、第一の透明電極パターン3および第二の透明電極パターン4の少なくとも一方に電気的に接続され、且つ、第一の透明電極パターン3および第二の透明電極パターン4とは別の要素である。図2においては、導電性要素6が第二の透明電極パターン4に接続されている図が示されている。 In FIG. 2, a conductive element 6 is provided on the side of the mask layer 2 opposite to the front plate 1. The conductive element 6 is electrically connected to at least one of the first transparent electrode pattern 3 and the second transparent electrode pattern 4, and is different from the first transparent electrode pattern 3 and the second transparent electrode pattern 4. Is another element. FIG. 2 shows a diagram in which the conductive element 6 is connected to the second transparent electrode pattern 4.
 また、図2においては、各構成要素の全てを覆うように保護層7が設置されている。保護層7は、各構成要素の一部のみを覆うように構成されていてもよい。絶縁層5と保護層7とは、同一材料であってもよいし、異なる材料であってもよい。絶縁層5を構成する材料としては、本発明の積層体における反射防止層または保護層の材料として挙げたものを好ましく用いることができる。 Moreover, in FIG. 2, the protective layer 7 is installed so that all of each component may be covered. The protective layer 7 may be configured to cover only a part of each component. The insulating layer 5 and the protective layer 7 may be made of the same material or different materials. As the material constituting the insulating layer 5, those mentioned as the material for the antireflection layer or protective layer in the laminate of the present invention can be preferably used.
<静電容量型入力装置の製造方法>
 本発明の静電容量型入力装置を製造する過程で形成される態様例として、図5~9の態様を挙げることができる。図5は、開口部8が形成された強化処理ガラス11の一例を示す上面図である。図6は、マスク層2が形成された前面板の一例を示す上面図である。図7は、第一の透明電極パターン3が形成された前面板の一例を示す上面図である。図8は、第一の透明電極パターン3と第二の透明電極パターン4が形成された前面板の一例を示す上面図である。図9は、第一および第二の透明電極パターンとは別の導電性要素6が形成された前面板の一例を示す上面図である。これらは、以下の説明を具体化した例を示すものであり、本発明の範囲はこれらの図面により限定的に解釈されることはない。
<Method for Manufacturing Capacitive Input Device>
Examples of the embodiment formed in the process of manufacturing the capacitive input device of the present invention include the embodiments shown in FIGS. FIG. 5 is a top view showing an example of the tempered glass 11 in which the opening 8 is formed. FIG. 6 is a top view showing an example of the front plate on which the mask layer 2 is formed. FIG. 7 is a top view showing an example of the front plate on which the first transparent electrode pattern 3 is formed. FIG. 8 is a top view showing an example of a front plate on which the first transparent electrode pattern 3 and the second transparent electrode pattern 4 are formed. FIG. 9 is a top view showing an example of a front plate on which conductive elements 6 different from the first and second transparent electrode patterns are formed. These show examples embodying the following explanation, and the scope of the present invention is not limitedly interpreted by these drawings.
 静電容量型入力装置の製造方法において、前記反射防止層12、前記保護層7およびポリマー層を形成する場合、積層材料を用いて、各要素が任意に形成された前記前面板1の表面に前記反射防止層を積層することで形成することができる。 In the method of manufacturing a capacitance-type input device, when the antireflection layer 12, the protective layer 7, and the polymer layer are formed, a laminate material is used to form a surface on the front plate 1 on which each element is arbitrarily formed. It can be formed by laminating the antireflection layer.
 静電容量型入力装置の製造方法においては、マスク層2と、第一の透明電極パターン3と、第二の透明電極パターン4と、絶縁層5と、導電性要素6の少なくとも一要素が、仮支持体と光硬化性樹脂層とをこの順で有する前記感光性フィルムを用いて形成されること
が好ましい。
 前記各要素を、転写フィルムや前記感光性フィルムを用いて形成すると、開口部を有する基板(前面板)でも開口部分からレジスト成分のモレがなく、特に前面板の境界ギリギリまで遮光パターンを形成する必要のあるマスク層でのガラス端からのレジスト成分のはみ出しがないため基板裏側を汚染することなく、簡略な工程で、薄層/軽量化のメリットがあるタッチパネルの製造を可能となる。
In the method for manufacturing the capacitance type input device, at least one element of the mask layer 2, the first transparent electrode pattern 3, the second transparent electrode pattern 4, the insulating layer 5, and the conductive element 6 is: It is preferable to form using the said photosensitive film which has a temporary support body and a photocurable resin layer in this order.
When each element is formed using a transfer film or the photosensitive film, even a substrate (front plate) having an opening has no resist component leakage from the opening, and a light shielding pattern is formed from the opening to the boundary of the front plate. Since there is no protrusion of the resist component from the glass edge in the necessary mask layer, it is possible to manufacture a touch panel having a merit of thin layer / light weight by a simple process without contaminating the back side of the substrate.
 前記マスク層、絶縁層、導電性光硬化性樹脂層を用いた場合の第一の透明電極パターン、第二の透明電極パターンおよび導電性要素などの永久材を、前記感光性フィルムを用いて形成する場合、感光性フィルムは、基材にラミネートされた後、必要に応じてパターン様に露光され、ネガ型材料の場合は非露光部分、ポジ型材料の場合は露光部分を現像処理して除去することでパターンを得ることができる。現像は熱可塑性樹脂層と、光硬化性層を別々の液で現像除去してもよいし、同一の液で除去してもよい。必要に応じて、ブラシや高圧ジェットなどの公知の現像設備を組み合わせてもよい。現像の後、必要に応じて、ポスト露光、ポストベークを行ってもよい。 Using the photosensitive film, permanent materials such as the first transparent electrode pattern, the second transparent electrode pattern, and the conductive element when the mask layer, the insulating layer, and the conductive photocurable resin layer are used are formed. In this case, the photosensitive film is laminated on the substrate and then exposed in a pattern as necessary. In the case of negative type material, the non-exposed part is exposed, and in the case of positive type material, the exposed part is developed and removed. By doing so, a pattern can be obtained. In the development, the thermoplastic resin layer and the photocurable layer may be developed and removed with separate liquids, or may be removed with the same liquid. You may combine well-known image development facilities, such as a brush and a high pressure jet, as needed. After the development, post-exposure and post-bake may be performed as necessary.
(感光性フィルム)
 本発明の静電容量型入力装置を製造するときに好ましく用いられる、転写フィルム以外の前記感光性フィルムについて説明する。前記感光性フィルムは、仮支持体と光硬化性樹脂層を有し、仮支持体と光硬化性樹脂層との間に熱可塑性樹脂層を有することが好ましい。前記熱可塑性樹脂層を有する感光性フィルムを用いて、マスク層等を形成すると、光硬化性樹脂層を転写して形成した要素に気泡が発生し難くなり、画像表示装置に画像ムラなどが発生し難くなり、優れた表示特性を得ることができる。
 前記感光性フィルムは、ネガ型材料であってもポジ型材料であってもよい。
(Photosensitive film)
The photosensitive film other than the transfer film, which is preferably used when manufacturing the capacitive input device of the present invention, will be described. The photosensitive film preferably has a temporary support and a photocurable resin layer, and preferably has a thermoplastic resin layer between the temporary support and the photocurable resin layer. If a mask layer or the like is formed using the photosensitive film having the thermoplastic resin layer, bubbles are not easily generated in the element formed by transferring the photocurable resin layer, and image unevenness occurs in the image display device. Therefore, excellent display characteristics can be obtained.
The photosensitive film may be a negative type material or a positive type material.
-光硬化性樹脂層以外の層、作製方法-
 前記感光性フィルムにおける前記仮支持体、前記熱可塑性樹脂層としては、本発明の転写フィルムに用いられるものと同様のものを用いることができる。また、前記感光性フィルムの作製方法としても、転写フィルムの作製方法と同様の方法を用いることができる。
-Layers other than the photo-curable resin layer, production method-
As the temporary support and the thermoplastic resin layer in the photosensitive film, the same materials as those used in the transfer film of the present invention can be used. Also, as the method for producing the photosensitive film, the same method as the method for producing the transfer film can be used.
-光硬化性樹脂層-
 前記感光性フィルムは、その用途に応じて光硬化性樹脂層に添加物を加える。即ち、マスク層の形成に前記感光性フィルムを用いる場合には、光硬化性樹脂層に着色剤を含有させる。また、前記感光性フィルムが導電性光硬化性樹脂層を有する場合は、前記光硬化性樹脂層に導電性繊維等が含有される。
-Photocurable resin layer-
The said photosensitive film adds an additive to a photocurable resin layer according to the use. That is, when using the said photosensitive film for formation of a mask layer, a coloring agent is contained in a photocurable resin layer. Moreover, when the said photosensitive film has an electroconductive photocurable resin layer, an electroconductive fiber etc. contain in the said photocurable resin layer.
 前記感光性フィルムがネガ型材料である場合、光硬化性樹脂層には、アルカリ可溶性樹脂、重合性化合物、重合開始剤または重合開始系、を含むことが好ましい。さらに、導電性繊維、着色剤、その他の添加剤、などが用いられるがこれに限られたものではない。 When the photosensitive film is a negative material, the photocurable resin layer preferably contains an alkali-soluble resin, a polymerizable compound, a polymerization initiator, or a polymerization initiation system. Furthermore, conductive fibers, colorants, other additives, and the like are used, but are not limited thereto.
--アルカリ可溶性樹脂、重合性化合物、前記重合開始剤または重合開始系--
 前記感光性フィルムに含まれるアルカリ可溶性樹脂、重合性化合物、前記重合開始剤または重合開始系としては、本発明の転写フィルムに用いられるものと同様のものを用いることができる。
--Alkali-soluble resin, polymerizable compound, polymerization initiator or polymerization initiation system--
As the alkali-soluble resin, the polymerizable compound, the polymerization initiator, or the polymerization initiation system contained in the photosensitive film, those similar to those used for the transfer film of the present invention can be used.
--導電性繊維(導電性光硬化性樹脂層として用いる場合)--
 前記導電性光硬化性樹脂層を積層した前記感光性フィルムを透明電極パターン、あるいは別の導電性要素の形成に用いる場合には、以下の導電性繊維などを光硬化性樹脂層に用いることができる。
--Conductive fiber (when used as conductive photo-curing resin layer)-
When the photosensitive film on which the conductive photocurable resin layer is laminated is used for forming a transparent electrode pattern or another conductive element, the following conductive fibers may be used for the photocurable resin layer. it can.
 導電性繊維の構造としては、特に制限はなく、目的に応じて適宜選択することができるが、中実構造および中空構造のいずれかが好ましい。
 ここで、中実構造の繊維を「ワイヤー」と称することがあり、中空構造の繊維を「チューブ」と称することがある。また、平均短軸長さが5nm~1,000nmであって、平均長軸長さが1μm~100μmの導電性繊維を「ナノワイヤー」と称することがある。
 また、平均短軸長さが1nm~1,000nm、平均長軸長さが0.1μm~1,000μmであって、中空構造を持つ導電性繊維を「ナノチューブ」と称することがある。
 前記導電性繊維の材料としては、導電性を有していれば、特に制限はなく、目的に応じて適宜選択することができるが、金属およびカーボンの少なくともいずれかが好ましく、これらの中でも、前記導電性繊維は、金属ナノワイヤー、金属ナノチューブ、およびカーボンナノチューブの少なくともいずれかが特に好ましい。
There is no restriction | limiting in particular as a structure of an electroconductive fiber, Although it can select suitably according to the objective, A solid structure or a hollow structure is preferable.
Here, the fiber having a solid structure may be referred to as “wire”, and the fiber having a hollow structure may be referred to as “tube”. A conductive fiber having an average minor axis length of 5 nm to 1,000 nm and an average major axis length of 1 μm to 100 μm may be referred to as “nanowire”.
In addition, a conductive fiber having an average minor axis length of 1 nm to 1,000 nm, an average major axis length of 0.1 μm to 1,000 μm, and having a hollow structure may be referred to as “nanotube”.
The material of the conductive fiber is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, at least one of metal and carbon is preferable, and among these, The conductive fiber is particularly preferably at least one of metal nanowires, metal nanotubes, and carbon nanotubes.
 前記金属ナノワイヤーの材料としては、特に制限はなく、例えば、長周期律表(IUPAC1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2族~第14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましく、主成分として含むことが特に好ましい。 The material of the metal nanowire is not particularly limited. For example, at least one metal selected from the group consisting of the fourth period, the fifth period, and the sixth period of the long periodic table (IUPAC 1991) is preferable. More preferably, at least one metal selected from Group 2 to Group 14 is selected from Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, and Group 14. At least one metal selected from the group is more preferable, and it is particularly preferable to include it as a main component.
 前記金属としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンテル、チタン、ビスマス、アンチモン、鉛、これらの合金などが挙げられる。これらの中でも、導電性に優れる点で、銀を主に含有するもの、または銀と銀以外の金属との合金を含有するものが好ましい。
 前記銀を主に含有するとは、金属ナノワイヤー中に銀を50質量%以上、好ましくは90質量%以上含有することを意味する。
 前記銀との合金で使用する金属としては、白金、オスミウム、パラジウムおよびイリジウムなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
Examples of the metal include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantel, titanium, bismuth, antimony, and lead. And alloys thereof. Among these, in view of excellent conductivity, those mainly containing silver or those containing an alloy of silver and a metal other than silver are preferable.
Containing mainly silver means that the metal nanowire contains 50% by mass or more, preferably 90% by mass or more.
Examples of the metal used in the alloy with silver include platinum, osmium, palladium and iridium. These may be used alone or in combination of two or more.
 前記金属ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができるが、高い透明性が必要とされる用途では、円柱状、断面の多角形の角が丸まっている断面形状が好ましい。
 前記金属ナノワイヤーの断面形状は、基材上に金属ナノワイヤー水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより調べることができる。
 前記金属ナノワイヤーの断面の角とは、断面の各辺を延長し、隣り合う辺から降ろされた垂線と交わる点の周辺部を意味する。また、「断面の各辺」とはこれらの隣り合う角と角を結んだ直線とする。この場合、前記「断面の各辺」の合計長さに対する前記「断面の外周長さ」との割合を鋭利度とした。鋭利度は、例えば図10に示したような金属ナノワイヤー断面では、実線で示した断面の外周長さと点線で示した五角形の外周長さとの割合で表すことができる。この鋭利度が75%以下の断面形状を角の丸い断面形状と定義する。前記鋭利度は60%以下が好ましく、50%以下がより好ましい。前記鋭利度が75%を超えると、該角に電子が局在し、プラズモン吸収が増加するためか、黄色みが残るなどして透明性が悪化してしまうことがある。また、パターンのエッジ部の直線性が低下し、ガタツキが生じてしまうことがある。前記鋭利度の下限は、30%が好ましく、40%がより好ましい。
The shape of the metal nanowire is not particularly limited and can be appropriately selected depending on the purpose. In applications where high transparency is required, a cylindrical shape and a cross-sectional shape with rounded polygonal corners are preferred.
The cross-sectional shape of the metal nanowire can be examined by applying a metal nanowire aqueous dispersion on a substrate and observing the cross-section with a transmission electron microscope (TEM).
The corner of the cross section of the metal nanowire means a peripheral portion of a point that extends each side of the cross section and intersects with a perpendicular drawn from an adjacent side. Further, “each side of the cross section” is a straight line connecting these adjacent corners. In this case, the ratio of the “outer peripheral length of the cross section” to the total length of the “each side of the cross section” was defined as the sharpness. For example, in the metal nanowire cross section as shown in FIG. 10, the sharpness can be represented by the ratio of the outer peripheral length of the cross section indicated by the solid line and the outer peripheral length of the pentagon indicated by the dotted line. A cross-sectional shape having a sharpness of 75% or less is defined as a cross-sectional shape having rounded corners. The sharpness is preferably 60% or less, and more preferably 50% or less. If the sharpness exceeds 75%, the electrons may be localized at the corners, and plasmon absorption may increase, or the transparency may deteriorate due to yellowing or the like. Moreover, the linearity of the edge part of a pattern may fall and a shakiness may arise. The lower limit of the sharpness is preferably 30%, more preferably 40%.
 前記金属ナノワイヤーの平均短軸長さ(「平均短軸径」、「平均直径」と称することがある)としては、150nm以下が好ましく、1nm~40nmがより好ましく、10n
m~40nmが更に好ましく、15nm~35nmが特に好ましい。
 前記平均短軸長さが、1nm未満であると、耐酸化性が悪化し、耐久性が悪くなることがあり、150nmを超えると、金属ナノワイヤー起因の散乱が生じ、十分な透明性を得ることができないことがある。
 前記金属ナノワイヤーの平均短軸長さは、透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均短軸長さを求めた。なお、前記金属ナノワイヤーの短軸が円形でない場合の短軸長さは、最も長いものを短軸長さとした。
The average minor axis length of the metal nanowire (sometimes referred to as “average minor axis diameter” or “average diameter”) is preferably 150 nm or less, more preferably 1 nm to 40 nm, and more preferably 10 n
m to 40 nm is more preferable, and 15 nm to 35 nm is particularly preferable.
When the average minor axis length is less than 1 nm, the oxidation resistance may be deteriorated and the durability may be deteriorated. When the average minor axis length is more than 150 nm, scattering due to metal nanowires occurs and sufficient transparency is obtained. There are times when you can't.
The average minor axis length of the metal nanowires was determined by observing 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average minor axis length of was determined. In addition, the shortest axis length when the short axis of the metal nanowire is not circular is the shortest axis.
 前記金属ナノワイヤーの平均長軸長さ(「平均長さ」と称することがある)としては、1μm~40μmが好ましく、3μm~35μmがより好ましく、5μm~30μmが更に好ましい。
 前記平均長軸長さが、1μm未満であると、密なネットワークを形成することが難しく、十分な導電性を得ることができないことがあり、40μmを超えると、金属ナノワイヤーが長すぎて製造時に絡まり、製造過程で凝集物が生じてしまうことがある。
 前記金属ナノワイヤーの平均長軸長さは、例えば透過型電子顕微鏡(TEM;日本電子(株)製、JEM-2000FX)を用い、300個の金属ナノワイヤーを観察し、その平均値から金属ナノワイヤーの平均長軸長さを求めた。なお、前記金属ナノワイヤーが曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長さとした。
The average major axis length (sometimes referred to as “average length”) of the metal nanowire is preferably 1 μm to 40 μm, more preferably 3 μm to 35 μm, and even more preferably 5 μm to 30 μm.
If the average major axis length is less than 1 μm, it may be difficult to form a dense network and sufficient conductivity may not be obtained. If it exceeds 40 μm, the metal nanowires are too long and manufactured. Sometimes entangled and agglomerates may occur during the manufacturing process.
The average major axis length of the metal nanowires is, for example, observed with 300 metal nanowires using a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-2000FX). The average major axis length of the wire was determined. In addition, when the said metal nanowire was bent, the circle | round | yen which makes it an arc was considered and the value calculated from the radius and curvature was made into the major axis length.
 導電性光硬化性樹脂層の層厚は、塗布液の安定性や塗布時の乾燥やパターニング時の現像時間などのプロセス適性の観点から、0.1~20μmが好ましく、0.5~18μmが更に好ましく、1~15μmが特に好ましい。前記導電性光硬化性樹脂層の全固形分に対する前記導電性繊維の含有量は、導電性と塗布液の安定性の観点から、0.01~50質量%が好ましく、0.05~30質量%が更に好ましく、0.1~20質量%が特に好ましい。 The thickness of the conductive photocurable resin layer is preferably from 0.1 to 20 μm, and preferably from 0.5 to 18 μm, from the viewpoint of process suitability such as coating solution stability, drying during coating, and development time during patterning. Further preferred is 1 to 15 μm. The content of the conductive fiber based on the total solid content of the conductive photocurable resin layer is preferably 0.01 to 50% by mass, and 0.05 to 30% by mass from the viewpoints of conductivity and coating solution stability. % Is more preferable, and 0.1 to 20% by mass is particularly preferable.
--着色剤(マスク層として用いる場合)--
 また、前記感光性フィルムをマスク層として用いる場合には、光硬化性樹脂層に着色剤を用いることができる。本発明に用いる着色剤としては、公知の着色剤(有機顔料、無機顔料、染料等)を好適に用いることができる。尚、本発明においては、黒色着色剤の他に、赤、青、緑色等の顔料の混合物等を用いることができる。
--Colorant (when used as a mask layer)-
Moreover, when using the said photosensitive film as a mask layer, a coloring agent can be used for a photocurable resin layer. As the colorant used in the present invention, known colorants (organic pigments, inorganic pigments, dyes, etc.) can be suitably used. In the present invention, in addition to the black colorant, a mixture of pigments such as red, blue, and green can be used.
 前記光硬化性樹脂層を黒色のマスク層として用いる場合には、光学濃度の観点から、黒色着色剤を含むことが好ましい。黒色着色剤としては、例えば、カーボンブラック、チタンカーボン、酸化鉄、酸化チタン、黒鉛などが挙げられ、中でも、カーボンブラックが好ましい。 When the photocurable resin layer is used as a black mask layer, it is preferable to include a black colorant from the viewpoint of optical density. Examples of the black colorant include carbon black, titanium carbon, iron oxide, titanium oxide, and graphite. Among these, carbon black is preferable.
 前記光硬化性樹脂層を白色のマスク層として用いる場合には、特開2005-7765公報の段落[0015]や[0114]に記載のホワイト顔料を用いることができる。その他の色のマスク層として用いるためには、特許第4546276号公報の段落[0183]~[0185]などに記載の顔料、あるいは染料を混合して用いてもよい。具体的には、特開2005-17716号公報の段落番号[0038]~[0054]に記載の顔料および染料、特開2004-361447号公報の段落番号[0068]~[0072]に記載の顔料、特開2005-17521号公報の段落番号[0080]~[0088]に記載の着色剤等を好適に用いることができる。 When the photocurable resin layer is used as a white mask layer, white pigments described in paragraphs [0015] and [0114] of JP-A-2005-7765 can be used. For use as a mask layer of other colors, pigments or dyes described in paragraphs [0183] to [0185] of Japanese Patent No. 4546276 may be mixed and used. Specifically, pigments and dyes described in paragraph numbers [0038] to [0054] of JP-A-2005-17716, and pigments described in paragraph numbers [0068] to [0072] of JP-A-2004-361447. The colorants described in paragraph numbers [0080] to [0088] of JP-A-2005-17521 can be suitably used.
 前記着色剤(好ましくは顔料、より好ましくはカーボンブラック)は、分散液として使用することが望ましい。この分散液は、前記着色剤と顔料分散剤とを予め混合して得られる組成物を、後述する有機溶媒(またはビヒクル)に添加して分散させることによって調製することができる。前記ビビクルとは、塗料が液体状態にある時に顔料を分散させている媒質の部分をいい、液状であって前記顔料と結合して塗膜を形成する成分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。
 前記顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438項に記載されているニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の公知の分散機が挙げられる。更に該文献310頁記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。
The colorant (preferably a pigment, more preferably carbon black) is desirably used as a dispersion. This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the colorant and the pigment dispersant in an organic solvent (or vehicle) described later. The vehicle is a portion of a medium in which a pigment is dispersed when the paint is in a liquid state, and is a liquid component that binds to the pigment to form a coating film (binder) and dissolves and dilutes it. Component (organic solvent).
The disperser used for dispersing the pigment is not particularly limited. For example, the kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, first edition, Asakura Shoten, 2000, 438, Known dispersing machines such as a roll mill, an atrider, a super mill, a dissolver, a homomixer, and a sand mill can be used. Further, fine grinding may be performed using frictional force by mechanical grinding described on page 310 of the document.
 前記着色剤は、分散安定性の観点から、数平均粒径0.001μm~0.1μmのものが好ましく、更に0.01μm~0.08μmのものが好ましい。尚、ここで言う「粒径」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒径」とは多数の粒子について前記の粒径を求め、この100個平均値をいう。 The colorant preferably has a number average particle size of 0.001 μm to 0.1 μm, more preferably 0.01 μm to 0.08 μm, from the viewpoint of dispersion stability. The “particle diameter” as used herein refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and the “number average particle diameter” is the above-mentioned particle diameter for a large number of particles, This 100 average value is said.
 着色剤を含む光硬化性樹脂層の層厚は、他層との厚み差の観点から、0.5~10μmが好ましく、0.8~5μmが更に好ましく、1~3μmが特に好ましい。前記着色感光性樹脂組成物の固形分中の着色剤の含有率としては、特に制限はないが、十分に現像時間を短縮する観点から、15~70質量%であることが好ましく、20~60質量%であることがより好ましく、25~50質量%であることが更に好ましい。
 本明細書でいう全固形分とは着色感光性樹脂組成物から溶剤等を除いた不揮発成分の総質量を意味する。
The layer thickness of the photocurable resin layer containing the colorant is preferably 0.5 to 10 μm, more preferably 0.8 to 5 μm, and particularly preferably 1 to 3 μm, from the viewpoint of thickness difference from other layers. The content of the colorant in the solid content of the colored photosensitive resin composition is not particularly limited, but is preferably 15 to 70% by mass from the viewpoint of sufficiently shortening the development time, and preferably 20 to 60%. More preferably, it is more preferably 25 to 50% by mass.
The total solid content as used in this specification means the total mass of the non-volatile component remove | excluding the solvent etc. from the coloring photosensitive resin composition.
 尚、前記感光性フィルムを用いて絶縁層を形成する場合、光硬化性樹脂層の層厚は、絶縁性の維持の観点から、0.1~5μmが好ましく、0.3~3μmが更に好ましく、0.5~2μmが特に好ましい。 When forming the insulating layer using the photosensitive film, the layer thickness of the photocurable resin layer is preferably from 0.1 to 5 μm, more preferably from 0.3 to 3 μm from the viewpoint of maintaining insulation. 0.5 to 2 μm is particularly preferable.
--その他の添加剤--
 さらに、前記光硬化性樹脂層は、その他の添加剤を用いてもよい。前記添加剤としては、本発明の転写フィルムに用いられるものと同様のものを用いることができる。
 また、前記感光性フィルムを塗布により製造する際の溶剤としては、本発明の転写フィルムに用いられるものと同様のものを用いることができる。
-Other additives-
Furthermore, you may use another additive for the said photocurable resin layer. As said additive, the thing similar to what is used for the transfer film of this invention can be used.
Moreover, as a solvent at the time of manufacturing the said photosensitive film by application | coating, the thing similar to what is used for the transfer film of this invention can be used.
 以上、前記感光性フィルムがネガ型材料である場合を中心に説明したが、前記感光性フィルムは、ポジ型材料であってもよい。前記感光性フィルムがポジ型材料である場合、光硬化性樹脂層に、例えば特開2005-221726号公報に記載の材料などが用いられるが、これに限られたものではない。 As described above, the case where the photosensitive film is a negative type material has been mainly described, but the photosensitive film may be a positive type material. When the photosensitive film is a positive type material, for example, a material described in JP-A-2005-221726 is used for the photocurable resin layer, but the material is not limited thereto.
-熱可塑性樹脂層および光硬化性樹脂層の粘度-
 前記熱可塑性樹脂層の100℃で測定した粘度が1000~10000Pa・secの領域にあり、光硬化性樹脂層の100℃で測定した粘度が2000~50000Pa・secの領域にあり、さらに次式(A)を満たすことが好ましい。
式(A):熱可塑性樹脂層の粘度<光硬化性樹脂層の粘度
-Viscosity of thermoplastic resin layer and photocurable resin layer-
The viscosity of the thermoplastic resin layer measured at 100 ° C. is in the region of 1000 to 10,000 Pa · sec, the viscosity of the photocurable resin layer measured at 100 ° C. is in the region of 2000 to 50000 Pa · sec, and the following formula ( It is preferable to satisfy A).
Formula (A): Viscosity of thermoplastic resin layer <viscosity of photocurable resin layer
 ここで、各層の粘度は、次のようにして測定できる。大気圧および減圧乾燥により、熱可塑性樹脂層あるいは光硬化性樹脂層用塗布液から溶剤を除去して測定サンプルとし、例えば、測定器として、バイブロン(DD-III型:東洋ボールドウィン(株)製)を使用し、測定開始温度50℃、測定終了温度150℃、昇温速度5℃/分および振動数1Hz/degの条件で測定し、100℃の測定値を用いることができる。 Here, the viscosity of each layer can be measured as follows. The solvent is removed from the coating solution for the thermoplastic resin layer or the photocurable resin layer by drying under atmospheric pressure and reduced pressure to obtain a measurement sample. For example, as a measuring instrument, Vibron (DD-III type: manufactured by Toyo Baldwin Co., Ltd.) Can be used under the conditions of a measurement start temperature of 50 ° C., a measurement end temperature of 150 ° C., a heating rate of 5 ° C./min, and a frequency of 1 Hz / deg.
(感光性フィルムによるマスク層、絶縁層の形成)
 前記マスク層2、絶縁層5は、前記感光性フィルムを用いて光硬化性樹脂層を前面板1などに転写することで形成することができる。例えば、黒色のマスク層2を形成する場合には、前記光硬化性樹脂層として黒色光硬化性樹脂層を有する前記感光性フィルムを用いて、前記前面板1の表面に前記黒色光硬化性樹脂層を転写することで形成することができる。絶縁層5を形成する場合には、前記光硬化性樹脂層として絶縁性の光硬化性樹脂層を有する前記感光性フィルムを用いて、第一の透明電極パターンが形成された前記前面板1の表面に前記光硬化性樹脂層を転写することで形成することができる。
 さらに、遮光性が必要なマスク層2の形成に、光硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する前記感光性フィルムを用いることで感光性フィルムラミネート時の気泡発生を防止し、光モレのない高品位なマスク層2等を形成することができる。
(Formation of mask layer and insulating layer with photosensitive film)
The mask layer 2 and the insulating layer 5 can be formed by transferring a photocurable resin layer to the front plate 1 or the like using the photosensitive film. For example, when the black mask layer 2 is formed, the black photocurable resin is formed on the surface of the front plate 1 using the photosensitive film having a black photocurable resin layer as the photocurable resin layer. It can be formed by transferring the layer. When forming the insulating layer 5, the front plate 1 on which the first transparent electrode pattern is formed using the photosensitive film having an insulating photocurable resin layer as the photocurable resin layer. It can be formed by transferring the photocurable resin layer to the surface.
Furthermore, in the formation of the mask layer 2 that needs light shielding properties, the photosensitive film having the specific layer structure including the thermoplastic resin layer between the photocurable resin layer and the temporary support is used. Generation of bubbles during lamination can be prevented, and a high-quality mask layer 2 and the like having no light leakage can be formed.
(感光性フィルムによる第一および第二の透明電極パターン、別の導電性要素の形成)
 前記第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6は、エッチング処理または導電性光硬化性樹脂層を有する前記感光性フィルムを用いて、あるいは感光性フィルムをリフトオフ材として使用して形成することができる。
(Formation of first and second transparent electrode patterns and other conductive elements by a photosensitive film)
The first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 may be formed by using the photosensitive film having an etching treatment or a conductive photocurable resin layer, or using a photosensitive film. It can be formed using as a lift-off material.
-エッチング処理-
 エッチング処理によって、前記第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成する場合、まずマスク層2等が形成された前面板1の非接触面上にITO等の透明電極層をスパッタリングによって形成する。次いで、前記透明電極層上に前記光硬化性樹脂層としてエッチング用光硬化性樹脂層を有する前記感光性フィルムを用いて露光・現像によってエッチングパターンを形成する。その後、透明電極層をエッチングして透明電極をパターニングし、エッチングパターンを除去することで、第一の透明電極パターン3等を形成することができる。
-Etching treatment-
When the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 are formed by etching, first, on the non-contact surface of the front plate 1 on which the mask layer 2 and the like are formed. A transparent electrode layer such as ITO is formed by sputtering. Next, an etching pattern is formed by exposure and development using the photosensitive film having an etching photocurable resin layer as the photocurable resin layer on the transparent electrode layer. Thereafter, the transparent electrode layer is etched to pattern the transparent electrode, and the etching pattern is removed, whereby the first transparent electrode pattern 3 and the like can be formed.
 前記感光性フィルムをエッチングレジスト(エッチングパターン)として用いる場合にも、前記方法と同様にして、レジストパターンを得ることができる。前記エッチングは、特開2010-152155公報の段落[0048]~[0054]等に記載の公知の方法でエッチング、レジスト剥離を適用することができる。 Also when the photosensitive film is used as an etching resist (etching pattern), a resist pattern can be obtained in the same manner as in the above method. For the etching, etching or resist stripping can be applied by a known method described in paragraphs [0048] to [0054] of JP 2010-152155 A.
 例えば、エッチングの方法としては、一般的に行われている、エッチング液に浸漬するウェットエッチング法が挙げられる。ウェットエッチングに用いられるエッチング液は、エッチングの対象に合わせて酸性タイプまたはアルカリ性タイプのものを適宜選択すればよい。酸性タイプのエッチング液としては、塩酸、硫酸、フッ酸、リン酸等の酸性成分単独の水溶液、酸性成分と塩化第2鉄、フッ化アンモニウム、過マンガン酸カリウム等の塩の混合水溶液等が例示される。酸性成分は、複数の酸性成分を組み合わせたものを使用してもよい。また、アルカリ性タイプのエッチング液としては、水酸化ナトリウム、水酸化カリウム、アンモニア、有機アミン、テトラメチルアンモニウムハイドロオキサイドのような有機アミンの塩等のアルカリ成分単独の水溶液、アルカリ成分と過マンガン酸カリウム等の塩の混合水溶液等が例示される。アルカリ成分は、複数のアルカリ成分を組み合わせたものを使用してもよい。 For example, as an etching method, there is a commonly performed wet etching method of dipping in an etching solution. As an etching solution used for wet etching, an acid type or an alkaline type may be appropriately selected according to an object to be etched. Examples of acidic etching solutions include aqueous solutions of acidic components such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid, and mixed aqueous solutions of acidic components and salts of ferric chloride, ammonium fluoride, potassium permanganate, and the like. Is done. As the acidic component, a combination of a plurality of acidic components may be used. In addition, alkaline type etching solutions include sodium hydroxide, potassium hydroxide, ammonia, organic amines, aqueous solutions of alkali components such as organic amine salts such as tetramethylammonium hydroxide, alkaline components and potassium permanganate. A mixed aqueous solution of a salt such as A combination of a plurality of alkali components may be used as the alkali component.
 エッチング液の温度は特に限定されないが、45℃以下であることが好ましい。本発明でエッチングマスク(エッチングパターン)として使用される樹脂パターンは、上述した光硬化性樹脂層を使用して形成されることにより、このような温度域における酸性およびアルカリ性のエッチング液に対して特に優れた耐性を発揮する。したがって、エッチング工程中に樹脂パターンが剥離することが防止され、樹脂パターンの存在しない部分が選択的にエッチングされることになる。
 前記エッチング後、ライン汚染を防ぐために必要に応じて、洗浄工程・乾燥工程を行ってもよい。洗浄工程については、例えば常温で純水により10~300秒間基材を洗浄して行い、乾燥工程については、エアブローを使用して、エアブロー圧(0.1~5kg/cm2程度)を適宜調整し行えばよい。
The temperature of the etching solution is not particularly limited, but is preferably 45 ° C. or lower. The resin pattern used as an etching mask (etching pattern) in the present invention is formed by using the above-described photocurable resin layer, so that it is particularly suitable for acidic and alkaline etching solutions in such a temperature range. Excellent resistance. Therefore, the resin pattern is prevented from peeling off during the etching process, and the portion where the resin pattern does not exist is selectively etched.
After the etching, a cleaning process and a drying process may be performed as necessary to prevent line contamination. The cleaning process is performed by cleaning the substrate with pure water for 10 to 300 seconds at room temperature, for example, and the air blowing pressure (about 0.1 to 5 kg / cm 2 ) is appropriately adjusted using an air blow for the drying process. Just do it.
 次いで、樹脂パターンの剥離方法としては、特に限定されないが、例えば、30~80℃、好ましくは50~80℃にて攪拌中の剥離液に基材を5~30分間浸漬する方法が挙げられる。本発明でエッチングマスクとして使用される樹脂パターンは、上述のように45℃以下において優れた薬液耐性を示すものであるが、薬液温度が50℃以上になるとアルカリ性の剥離液により膨潤する性質を示す。このような性質により、50~80℃の剥離液を使用して剥離工程を行うと工程時間が短縮され、樹脂パターンの剥離残渣が少なくなるという利点がある。すなわち、前記エッチング工程と剥離工程との間で薬液温度に差を設けることにより、本発明でエッチングマスクとして使用される樹脂パターンは、エッチング工程において良好な薬液耐性を発揮する一方で、剥離工程において良好な剥離性を示すことになり、薬液耐性と剥離性という、相反する特性を両方とも満足することができる。 Next, the method of peeling the resin pattern is not particularly limited, and examples thereof include a method of immersing the substrate in a peeling solution being stirred at 30 to 80 ° C., preferably 50 to 80 ° C. for 5 to 30 minutes. The resin pattern used as an etching mask in the present invention exhibits excellent chemical resistance at 45 ° C. or lower as described above, but exhibits a property of swelling by an alkaline stripping solution when the chemical temperature is 50 ° C. or higher. . Due to such properties, when the peeling process is performed using a peeling solution of 50 to 80 ° C., there are advantages that the process time is shortened and the resin pattern peeling residue is reduced. That is, by providing a difference in chemical temperature between the etching process and the peeling process, the resin pattern used as an etching mask in the present invention exhibits good chemical resistance in the etching process, while in the peeling process. Good peelability will be exhibited, and both conflicting properties of chemical resistance and peelability can be satisfied.
 剥離液としては、例えば、水酸化ナトリウム、水酸化カリウム等の無機アルカリ成分や、第3級アミン、第4級アンモニウム塩等の有機アルカリ成分を、水、ジメチルスルホキシド、N-メチルピロリドン、またはこれらの混合溶液に溶解させたものが挙げられる。前記の剥離液を使用し、スプレー法、シャワー法、パドル法等により剥離してもよい。 Examples of the stripping solution include inorganic alkali components such as sodium hydroxide and potassium hydroxide, organic alkali components such as tertiary amine and quaternary ammonium salt, water, dimethyl sulfoxide, N-methylpyrrolidone, or these. What was melt | dissolved in this mixed solution is mentioned. You may peel by the spray method, the shower method, the paddle method etc. using the said peeling liquid.
-導電性光硬化性樹脂層を有する感光性フィルム-
 導電性光硬化性樹脂層を有する前記感光性フィルムを用いて、前記第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成する場合、前記前面板1の表面に前記導電性光硬化性樹脂層を転写することで形成することができる。
 前記第一の透明電極パターン3等を、前記導電性光硬化性樹脂層を有する感光性フィルムを用いて形成すると、開口部を有する基板(前面板)でも開口部分からレジスト成分のモレがなく、基板裏側を汚染することなく、簡略な工程で、薄層/軽量化のメリットがあるタッチパネルの製造を可能となる。
 さらに、第一の透明電極パターン3等の形成に、導電性光硬化性樹脂層と仮支持体との間に熱可塑性樹脂層を有する特定の層構成を有する前記感光性フィルムを用いることで感光性フィルムラミネート時の気泡発生を防止し、導電性に優れ抵抗の少ないに第一の透明電極パターン3、第二の透明電極パターン4および別の導電性要素6を形成することができる。
-Photosensitive film with conductive photocurable resin layer-
When forming the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 using the photosensitive film having a conductive photocurable resin layer, the front plate 1 It can be formed by transferring the conductive photocurable resin layer to the surface.
When the first transparent electrode pattern 3 or the like is formed using a photosensitive film having the conductive photocurable resin layer, there is no leakage of resist components from the opening portion even on a substrate (front plate) having an opening portion. Without contaminating the back side of the substrate, it is possible to manufacture a touch panel having a merit of thin layer / light weight by a simple process.
Furthermore, the first transparent electrode pattern 3 or the like is formed by using the photosensitive film having a specific layer structure including a thermoplastic resin layer between the conductive photocurable resin layer and the temporary support. It is possible to prevent the generation of bubbles when laminating the conductive film, and to form the first transparent electrode pattern 3, the second transparent electrode pattern 4, and another conductive element 6 with excellent conductivity and low resistance.
-感光性フィルムのリフトオフ材としての使用-
 また、前記感光性フィルムをリフトオフ材として用いて、第一の透明電極層、第二の透明電極層およびその他の導電性部材を形成することもできる。この場合、前記感光性フィルムを用いてパターニングした後に、基材全面に透明導電層を形成した後、堆積した透明導電層ごと前記光硬化性樹脂層の溶解除去を行うことにより所望の透明導電層パターンを得ることができる(リフトオフ法)。
-Use of photosensitive film as lift-off material-
Moreover, a 1st transparent electrode layer, a 2nd transparent electrode layer, and another electroconductive member can also be formed using the said photosensitive film as a lift-off material. In this case, after patterning using the photosensitive film, a transparent conductive layer is formed on the entire surface of the base material, and then the desired transparent conductive layer is formed by dissolving and removing the photocurable resin layer together with the deposited transparent conductive layer. A pattern can be obtained (lift-off method).
[タッチパネル]
 本発明のタッチパネルは、上述した本発明の積層体を含む。
[Touch panel]
The touch panel of this invention contains the laminated body of this invention mentioned above.
 本発明のタッチパネルは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、CRTディスプレイ、電子ペーパー等の表示装置等に組み込むことで、入力デバイスとして利用することができる。本発明のタッチパネルを利用することで、干渉ムラの発生が抑制され、かつ、良好な色味のタッチパネルとすることができる。
 タッチパネルの構成については、抵抗膜型、静電容量型などがあり、静電容量型の入力装置は、単に一枚の基板に透光性導電膜を形成すればよいという利点があるため、静電容量型であることが好ましい。かかる静電容量型の入力装置では、例えば、前記透明電極層として互いに交差する方向に電極パターンを延在させて、指などが接触した際、電極間の静電容量が変化することを検知して入力位置を検出するタイプのものを好ましく用いることができる。このようなタッチパネルの構成については、例えば、特開2010-86684号公報、特開2010-152809号公報、特開2010-257492号公報等の記載を参酌できる。
 タッチパネルを構成要素として備えた画像表示装置の構成については、『最新タッチパネル技術』(2009年7月6日発行(株)テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
 また、タッチパネルを組み込むことができる液晶ディスプレイの構成については、特開2002-48913号公報等の記載も参酌できる。
The touch panel of the present invention can be used as an input device by being incorporated in a display device such as a liquid crystal display, a plasma display, an organic EL display, a CRT display, and electronic paper. By using the touch panel of the present invention, occurrence of interference unevenness can be suppressed and a touch panel with good color can be obtained.
There are two types of touch panel configurations, such as a resistance film type and a capacitance type. Capacitance type input devices have the advantage of simply forming a light-transmitting conductive film on a single substrate. A capacitance type is preferred. In such a capacitance-type input device, for example, when the electrode pattern is extended in a direction intersecting each other as the transparent electrode layer and a finger or the like comes into contact, it is detected that the capacitance between the electrodes changes. Thus, a type that detects the input position can be preferably used. Regarding the configuration of such a touch panel, for example, descriptions in JP 2010-86684 A, JP 2010-152809 A, JP 2010-257492 A, and the like can be referred to.
Regarding the configuration of an image display device equipped with a touch panel as a component, “Latest Touch Panel Technology” (published July 6, 2009, Techno Times), supervised by Yuji Mitani, “Technology and Development of Touch Panels”, CM Publishing (2004, 12), FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, and the like can be applied.
In addition, regarding the configuration of a liquid crystal display in which a touch panel can be incorporated, description in JP-A-2002-48913 can be referred to.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1]
<加飾パターン形成用感光性フィルムK1の調製>
 厚さ75μmのポリエチレンテレフタレートフィルム仮支持体の上に、スリット状ノズルを用いて、下記処方H1からなる熱可塑性樹脂層用塗布液を塗布、乾燥させた。次に、下記処方P1からなる中間層用塗布液を塗布、乾燥させた。更に、下記処方K1からなる黒色光硬化性樹脂層用塗布液を塗布、乾燥させた。このようにして仮支持体の上に乾燥膜厚が15.1μmの熱可塑性樹脂層と、乾燥膜厚が1.6μmの中間層と、光学濃度が4.0となるように乾燥膜厚が2.2μmの黒色光硬化性樹脂層を設け、最後に保護フイルム(厚さ12μmポリプロピレンフィルム)を圧着した。こうして仮支持体と熱可塑性樹脂層と中間層(酸素遮断膜)と黒色光硬化性樹脂層とが一体となった転写材料を作製し、サンプル名を加飾パターン形成用感光性フィルムK1とした。
[Example 1]
<Preparation of decorative film-forming photosensitive film K1>
On a 75 μm thick polyethylene terephthalate film temporary support, a coating solution for a thermoplastic resin layer having the following formulation H1 was applied and dried using a slit nozzle. Next, an intermediate layer coating solution having the following formulation P1 was applied and dried. Furthermore, the coating liquid for black photocurable resin layers which consists of the following prescription K1 was apply | coated and dried. In this way, the thermoplastic film layer having a dry film thickness of 15.1 μm, the intermediate layer having a dry film thickness of 1.6 μm, and the dry film thickness so that the optical density is 4.0 are formed on the temporary support. A 2.2 μm black photocurable resin layer was provided, and finally a protective film (12 μm thick polypropylene film) was pressure-bonded. Thus, a transfer material in which the temporary support, the thermoplastic resin layer, the intermediate layer (oxygen barrier film), and the black photocurable resin layer were integrated was prepared, and the sample name was designated as a decorative pattern forming photosensitive film K1. .
(熱可塑性樹脂層用塗布液:処方H1)
・メタノール                         :11.1質量部
・プロピレングリコールモノメチルエーテルアセテート      :6.36質量部
・メチルエチルケトン                     :52.4質量部
・メチルメタクリレート/2-エチルヘキシルアクリレート/ベンジルメタクリレート/メタクリル酸共重合体(共重合組成比(モル比)=55/11.7/4.5/28.8、分子量=10万、Tg≒70℃)                :5.83質量部
・スチレン/アクリル酸共重合体(共重合組成比(モル比)=63/37、重量平均分子量=1万、Tg≒100℃)                  :13.6質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製):9.1質量部
・フッ素系ポリマー                      :0.54質量部
  (C613CH2CH2OCOCH=CH2 40部とH(OCH(CH3)CH27OCOCH=CH2 55部とH(OCHCH27OCOCH=CH2 5部との共重合体、重量平均分子量3万、メチルエチルケトン30質量%溶液、商品名:メガファックF780F、大日本インキ化学工業(株)製)
 なお、熱可塑性樹脂層用塗布液H1の溶剤除去後の120℃の粘度は1500Pa・sであった。
(Coating solution for thermoplastic resin layer: Formulation H1)
Methanol: 11.1 parts by mass Propylene glycol monomethyl ether acetate: 6.36 parts by mass Methyl ethyl ketone: 52.4 parts by mass Methyl methacrylate / 2-ethylhexyl acrylate / benzyl methacrylate / methacrylic acid copolymer (copolymerization composition ratio) (Molar ratio) = 55 / 11.7 / 4.5 / 28.8, molecular weight = 100,000, Tg≈70 ° C.): 5.83 parts by mass. Styrene / acrylic acid copolymer (copolymerization composition ratio (mol) Ratio) = 63/37, weight average molecular weight = 10,000, Tg≈100 ° C.): 13.6 parts by mass Monomer 1 (trade name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.): 9.1 mass parts fluorine-based polymer: 0.54 parts by weight (C 6 F 13 CH 2 CH 2 O OCH = CH 2 40 parts of H (OCH (CH 3) CH 2) 7 OCOCH = copolymer of CH 2 55 parts of H (OCHCH 2) 7 OCOCH = CH 2 5 parts, weight average molecular weight of 30,000, methyl ethyl ketone 30% by weight solution, trade name: MegaFuck F780F, manufactured by Dainippon Ink & Chemicals, Inc.)
The viscosity at 120 ° C. after removing the solvent from the coating liquid H1 for the thermoplastic resin layer was 1500 Pa · s.
(中間層用塗布液:処方P1)
・ポリビニルアルコール                    :32.2質量部
  (商品名:PVA205、(株)クラレ製、鹸化度=88%、重合度550)
・ポリビニルピロリドン                    :14.9質量部
  (商品名:K-30、アイエスピー・ジャパン(株)製)
・蒸留水                           :524質量部
・メタノール                         :429質量部
(Coating liquid for intermediate layer: prescription P1)
Polyvinyl alcohol: 32.2 parts by mass (trade name: PVA205, manufactured by Kuraray Co., Ltd., saponification degree = 88%, polymerization degree 550)
・ Polyvinylpyrrolidone: 14.9 parts by mass (trade name: K-30, manufactured by IS Japan Co., Ltd.)
-Distilled water: 524 parts by mass-Methanol: 429 parts by mass
(黒色光硬化性樹脂層用塗布液:処方K1)
・K顔料分散物1                       :31.2質量部
(K顔料分散物1の組成)
・カーボンブラック(商品名:Nipex35、デグッサ社製)  :13.1質量%
・下記分散剤1                        :0.65質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)              :6.72質量%
・プロピレングリコールモノメチルエーテルアセテート      :79.53質量%・R顔料分散物1(下記の組成)                :3.3質量部
・MMPGAc(ダイセル化学(株)製)            :6.2質量部
・メチルエチルケトン(東燃化学(株)製)           :34.0質量部
・シクロヘキサノン(関東電化工業(株)製)          :8.5質量部
・バインダー2(ベンジルメタクリレート/メタクリル酸=78/22モル比のランダム共重合物、重量平均分子量3.8万)              :10.8質量部
・フェノチアジン(東京化成(株)製)             :0.01質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%) :5.5質量部
・2,4-ビス(トリクロロメチル)-6-[4’-(N,N-ビス(エトキシカルボニルメチル)アミノ-3’-ブロモフェニル]-s-トリアジン   :0.4質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製)
:0.1質量部
 なお、黒色光硬化性樹脂層用塗布液K1の溶剤除去後の100℃の粘度は10000Pa・sであった。
(Coating liquid for black light curable resin layer: Formula K1)
-K pigment dispersion 1: 31.2 parts by mass (composition of K pigment dispersion 1)
Carbon black (trade name: Nipex 35, manufactured by Degussa): 13.1% by mass
・ The following dispersant 1: 0.65 mass%
Binder 1 (Random copolymer of benzyl methacrylate / methacrylic acid = 72/28 molar ratio, weight average molecular weight 37,000): 6.72% by mass
Propylene glycol monomethyl ether acetate: 79.53 mass% R pigment dispersion 1 (the following composition): 3.3 parts by mass MMPGAc (manufactured by Daicel Chemical Industries): 6.2 parts by mass Methyl ethyl ketone (Tonen Chemical) (Manufactured by Co., Ltd.): 34.0 parts by mass / cyclohexanone (manufactured by Kanto Denka Kogyo Co., Ltd.): 8.5 parts by mass / binder 2 (random copolymer having a benzyl methacrylate / methacrylic acid = 78/22 molar ratio, weight (Average molecular weight 38,000): 10.8 parts by mass / phenothiazine (manufactured by Tokyo Chemical Industry Co., Ltd.): 0.01 parts by mass / propylene glycol monomethyl of DPHA (dipentaerythritol hexaacrylate, Nippon Kayaku Co., Ltd.) Ether acetate solution (76 mass%): 5.5 mass 2,4-bis (trichloromethyl) -6- [4 ′-(N, N-bis (ethoxycarbonylmethyl) amino-3′-bromophenyl] -s-triazine: 0.4 parts by mass Surfactant (Product name: Megafuck F-780F, manufactured by Dainippon Ink Co., Ltd.)
: 0.1 mass part In addition, the viscosity of 100 degreeC after the solvent removal of the coating liquid K1 for black photocurable resin layers was 10000 Pa.s.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(R顔料分散物1の組成)
・顔料(C.I.ピグメントレッド177)           :18質量%
・バインダー1(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合物、重量平均分子量3.7万)
                               :12質量%
・プロピレングリコールモノメチルエーテルアセテート      :70質量%
(Composition of R pigment dispersion 1)
Pigment (CI Pigment Red 177): 18% by mass
-Binder 1 (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, weight average molecular weight 37,000)
: 12% by mass
Propylene glycol monomethyl ether acetate: 70% by mass
<ガラス基板上の加飾パターン形成>
 ガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をしたガラス基板(厚み0.7mm、Gorillaガラス、コーニング社製)に対し、以下の方法でシランカップリング処理をした。
 25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。この基材を基材予備加熱装置で140℃2分間加熱した。得られたシランカップリング処理ガラス基材に、上述から得られた加飾パターン形成用感光性フィルムK1からカバーフィルムを除去し、除去後に露出した黒色光硬化性樹脂層の表面と前記シランカップリング処理ガラス基材の表面とが接するように重ね合わせ、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、前記140℃で加熱した基材に、ゴムローラー温度130℃、線圧100N/cm、搬送速度2.2m/分でラミネートした。続いてポリエチレンテレフタレートの仮支持体を、熱可塑性樹脂層との界面で剥離し、仮支持体を除去した。仮支持体を剥離後、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製)で、基材と露光マスク(額縁パターンを有す石英露光マスク)とを垂直に立てた状態で、露光マスク面と該黒色光硬化性樹脂層の間の距離を200μmに設定し、露光量70mJ/cm2(i線)でパターン露光した。
<Decorative pattern formation on glass substrate>
For a glass substrate (thickness 0.7 mm, Gorilla glass, manufactured by Corning) that has been subjected to a chemical strengthening treatment in which part or all of ions having a smaller ion radius than potassium ions in the glass are replaced with potassium ions, Silane coupling treatment was performed.
A glass cleaner solution adjusted to 25 ° C. is sprayed with a rotating brush having nylon bristles while sprayed for 20 seconds in a shower. After pure water shower cleaning, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxy) is washed. Silane 0.3% by mass aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed for 20 seconds with a shower and washed with pure water. This substrate was heated at 140 ° C. for 2 minutes with a substrate preheating device. The surface of the black photocurable resin layer exposed to the silane coupling-treated glass substrate obtained by removing the cover film from the decorative film-forming photosensitive film K1 obtained from the above and the silane coupling is removed. The surface of the treated glass substrate is overlapped with each other, and the substrate heated at 140 ° C. using a laminator (manufactured by Hitachi Industries (Lamic II type)), a rubber roller temperature of 130 ° C., a wire Lamination was performed at a pressure of 100 N / cm and a conveyance speed of 2.2 m / min. Subsequently, the polyethylene terephthalate temporary support was peeled off at the interface with the thermoplastic resin layer to remove the temporary support. After peeling off the temporary support, the substrate and the exposure mask (quartz exposure mask with a frame pattern) were set up vertically with a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp. In this state, the distance between the exposure mask surface and the black light curable resin layer was set to 200 μm, and pattern exposure was performed at an exposure amount of 70 mJ / cm 2 (i-line).
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を33℃で60秒間、フラットノズル圧力0.1MPaでシャワー現像し、熱可塑性樹脂層と中間層とを除去した。引き続き、このガラス基材の上面にエアを吹きかけて液切りした後、純水をシャワーにより10秒間吹き付け、純水シャワー洗浄し、エアを吹きかけて基材上の液だまりを減らした。 Next, a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 33 ° C. for 60 seconds, Shower development was performed at a flat nozzle pressure of 0.1 MPa to remove the thermoplastic resin layer and the intermediate layer. Subsequently, air was blown onto the upper surface of the glass base material to drain the liquid, and then pure water was sprayed for 10 seconds by a shower, pure water shower washing was performed, and air was blown to reduce the liquid pool on the base material.
 その後、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を用いて32℃でシャワー圧を0.1MPaに設定して、45秒現像し、純水で洗浄した。 Thereafter, the shower pressure was reduced to 0.1 MPa at 32 ° C. using a sodium carbonate / sodium hydrogen carbonate developer (trade name: T-CD1 (manufactured by FUJIFILM Corporation) diluted 5 times with pure water). It was set, developed for 45 seconds, and washed with pure water.
 引き続き、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間、コーン型ノズル圧力0.1MPaにてシャワーで吹きかけ、更にやわらかいナイロン毛を有する回転ブラシにより、形成されたパターン像を擦って残渣除去を行った。さらに、超高圧洗浄ノズルにて9.8MPaの圧力で超純水を噴射して残渣除去を行い、次いで大気下にて露光量1300mJ/cm2にてポスト露光を行い、さらに240℃80分間のポストベーク処理を行って、光学濃度4.0、膜厚2.0μmの加飾パターンを、強化処理をしたガラス基板上に形成した。 Subsequently, using a surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by Fuji Film Co., Ltd.) diluted 10-fold with pure water) at 33 ° C. for 20 seconds, cone-type nozzle pressure of 0.1 MPa The residue was removed by rubbing the formed pattern image with a rotating brush having soft nylon hairs. Furthermore, ultrapure water was sprayed at a pressure of 9.8 MPa with an ultra-high pressure cleaning nozzle to remove residues, followed by post-exposure at an exposure amount of 1300 mJ / cm 2 in the atmosphere, and further at 240 ° C. for 80 minutes. A post-baking process was performed to form a decorative pattern having an optical density of 4.0 and a film thickness of 2.0 μm on the glass substrate subjected to the tempering process.
<透明電極パターンの形成>
<<透明電極層の形成>>
 加飾パターンが形成された基板を、真空チャンバー内に導入し、SnO2含有率が10質量%のITOターゲット(インジウム:錫=95:5(モル比))を用いて、DCマグネトロンスパッタリング(条件:基材の温度250℃、アルゴン圧0.13Pa、酸素圧0.01Pa)により、厚さ40nmのITO薄膜を形成し、透明電極層を形成した基板を得た。ITO薄膜の表面抵抗は80Ω/□であった。
<Formation of transparent electrode pattern>
<< Formation of transparent electrode layer >>
The substrate on which the decorative pattern was formed was introduced into a vacuum chamber, and DC magnetron sputtering (conditions) was performed using an ITO target (indium: tin = 95: 5 (molar ratio)) with a SnO 2 content of 10% by mass. : A base material temperature of 250 ° C., an argon pressure of 0.13 Pa, an oxygen pressure of 0.01 Pa) was used to form an ITO thin film having a thickness of 40 nm to obtain a substrate on which a transparent electrode layer was formed. The surface resistance of the ITO thin film was 80Ω / □.
(感光性フィルムE1の調製)
 前記加飾パターン形成用感光性フィルムK1の調製において、黒色光硬化性樹脂層用塗布液を、下記処方E1からなるエッチング用光硬化性樹脂層用塗布液に代えた以外は加飾パターン形成用感光性フィルムK1の調製と同様にして、エッチング用感光性フィルムE1を得た(エッチング用光硬化性樹脂層の膜厚は2.0μmであった)。
(Preparation of photosensitive film E1)
In the preparation of the decorative film forming photosensitive film K1, the coating liquid for black photocurable resin layer was used for forming a decorative pattern except that the coating liquid for etching photocurable resin layer comprising the following formulation E1 was used. In the same manner as in the preparation of the photosensitive film K1, a photosensitive film E1 for etching was obtained (the film thickness of the photocurable resin layer for etching was 2.0 μm).
(エッチング用光硬化性樹脂層用塗布液:処方E1)
・メチルメタクリレート/スチレン/メタクリル酸共重合体(共重合体組成(質量%):31/40/29、質量平均分子量:60000、酸価163mgKOH/g)
                               :16質量部
・モノマー1(商品名:BPE-500、新中村化学工業(株)製):5.6質量部
・ヘキサメチレンジイソシアネートのテトラエチレンオキシドモノメタクリレート0.5モル付加物
                               :7質量部
・分子中に重合性基を1つ有する化合物としてのシクロヘキサンジメタノールモノアクリレート
                               :2.8質量部
・2-クロロ-N-ブチルアクリドン              :0.42質量部
・2,2-ビス(o-クロロフェニル)-4,4',5,5'-テトラフェニルビイミダゾール  :2.17質量部
・マラカイトグリーンシュウ酸塩                :0.02質量部
・ロイコクリスタルバイオレット                :0.26質量部
・フェノチアジン                       :0.013質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ(株)製)
                               :0.03質量部
・メチルエチルケトン                     :40質量部
・1-メトキシ-2-プロパノール               :20質量部
 なお、エッチング用光硬化性樹脂層用塗布液E1の溶剤除去後の100℃の粘度は2500Pa・sであった。
(Coating liquid for photocurable resin layer for etching: prescription E1)
Methyl methacrylate / styrene / methacrylic acid copolymer (copolymer composition (mass%): 31/40/29, mass average molecular weight: 60000, acid value 163 mg KOH / g)
: 16 parts by mass-Monomer 1 (Brand name: BPE-500, manufactured by Shin-Nakamura Chemical Co., Ltd.): 5.6 parts by mass-Tetraethylene oxide monomethacrylate 0.5 mol adduct of hexamethylene diisocyanate: 7 parts by mass Cyclohexanedimethanol monoacrylate as a compound having one polymerizable group in the molecule: 2.8 parts by mass, 2-chloro-N-butylacridone: 0.42 parts by mass, 2,2-bis (o-chlorophenyl) ) -4,4 ', 5,5'-tetraphenylbiimidazole: 2.17 parts by mass Malachite green oxalate: 0.02 parts by mass Leucocrystal violet: 0.26 parts by mass Phenothiazine: 0.013 Part by mass / surfactant ( Product name: Megafac F-780F, Dainippon Ink Co., Ltd.)
: 0.03 parts by mass · Methyl ethyl ketone: 40 parts by mass · 1-methoxy-2-propanol: 20 parts by mass The viscosity of the coating solution E1 for photocurable resin layer for etching after removing the solvent is 2500 Pa · s. Met.
(第一の透明電極パターンの形成)
 加飾パターンの形成と同様にして、透明電極層を形成した基板を洗浄し、カバーフィルムを除去したエッチング用感光性フィルムE1をラミネートした(基材温度:130℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.2m/分)。仮支持体を剥離後、露光マスク(透明電極パターンを有す石英露光マスク)面と該エッチング用光硬化性樹脂層との間の距離を200μmに設定し、露光量50mJ/cm2(i線)でパターン露光した。
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を25℃で100秒間、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間処理し、回転ブラシ、超高圧洗浄ノズルで残渣除去を行い、さらに130℃30分間のポストベーク処理を行って、透明電極層とエッチング用光硬化性樹脂層パターンとを形成した基板を得た。
(Formation of first transparent electrode pattern)
Similarly to the formation of the decorative pattern, the substrate on which the transparent electrode layer was formed was washed, and the etching photosensitive film E1 from which the cover film was removed was laminated (base material temperature: 130 ° C., rubber roller temperature 120 ° C., wire Pressure 100 N / cm, conveyance speed 2.2 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having a transparent electrode pattern) surface and the photocurable resin layer for etching is set to 200 μm, and the exposure amount is 50 mJ / cm 2 (i-line). ) For pattern exposure.
Next, a triethanolamine developer (containing 30% by mass of triethanolamine, a trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 25 ° C. for 100 seconds, A surfactant-containing cleaning solution (trade name: T-SD3 (manufactured by FUJIFILM Corporation) diluted 10-fold with pure water) was treated at 33 ° C. for 20 seconds, using a rotating brush and an ultra-high pressure cleaning nozzle. The residue was removed, and a post-bake treatment at 130 ° C. for 30 minutes was further performed to obtain a substrate on which a transparent electrode layer and a photocurable resin layer pattern for etching were formed.
 透明電極層とエッチング用光硬化性樹脂層パターンとを形成した基板を、ITOエッチャント(塩酸、塩化カリウム水溶液。液温30℃)を入れたエッチング槽に浸漬し、100秒処理し、エッチング用光硬化性樹脂層で覆われていない露出した領域の透明電極層を溶解除去し、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の基板を得た。 The substrate on which the transparent electrode layer and the photocurable resin layer pattern for etching are formed is immersed in an etching tank containing ITO etchant (hydrochloric acid, potassium chloride aqueous solution, liquid temperature 30 ° C.), treated for 100 seconds, and etched light. The transparent electrode layer in the exposed region not covered with the curable resin layer was dissolved and removed to obtain a substrate with a transparent electrode layer pattern having a photocurable resin layer pattern for etching.
 次に、エッチング用光硬化性樹脂層パターンのついた透明電極層パターン付の基板を、レジスト剥離液(N-メチル-2-ピロリドン、モノエタノールアミン、界面活性剤(商品名:サーフィノール465、日信化学工業株式会社製)液温45℃)を入れたレジスト剥離槽に浸漬し、200秒処理し、エッチング用光硬化性樹脂層を除去し、マスク層と第一の透明電極パターンとを形成した基板を得た。 Next, a substrate with a transparent electrode layer pattern with a photocurable resin layer pattern for etching is applied to a resist stripping solution (N-methyl-2-pyrrolidone, monoethanolamine, a surfactant (trade name: Surfynol 465, Nissin Chemical Industry Co., Ltd.) immersed in a resist stripping tank containing a liquid temperature of 45 ° C., treated for 200 seconds, removed the photo-curable resin layer for etching, and the mask layer and the first transparent electrode pattern A formed substrate was obtained.
<<絶縁層の形成>>
(絶縁層形成用感光性フィルムW1の調製)
 加飾パターン形成用感光性フィルムK1の調製において、黒色光硬化性樹脂層用塗布液を、下記処方W1からなる絶縁層用光硬化性樹脂層用塗布液に代えた以外は加飾パターン形成用感光性フィルムK1の調製と同様にして、絶縁層形成用感光性フィルムW1を得た(絶縁層用光硬化性樹脂層の膜厚は1.4μm)。
<< Formation of insulating layer >>
(Preparation of photosensitive film W1 for insulating layer formation)
For the preparation of the decorative pattern-forming photosensitive film K1, the black-light-curable resin layer coating solution was replaced with an insulating-layer photocurable resin layer coating solution composed of the following formulation W1. In the same manner as in the preparation of the photosensitive film K1, a photosensitive film W1 for forming an insulating layer was obtained (the film thickness of the photocurable resin layer for the insulating layer was 1.4 μm).
(絶縁層形成用塗布液:処方W1)
・バインダー3(シクロヘキシルメタクリレート(a)/メチルメタクリレート(b)/メタクリル酸共重合体(c)のグリシジルメタクリレート付加物(d)(組成(質量%):a/b/c/d=46/1/10/43、質量平均分子量:36000、酸価66mgKOH/g)の1-メトキシ-2-プロパノール、メチルエチルケトン溶液(固形分:45%))     :12.5質量部
・DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製)のプロピレングリコールモノメチルエーテルアセテート溶液(76質量%)
                              :1.4質量部
・ウレタン系モノマー(商品名:NKオリゴUA-32P、新中村化学(株)製:不揮発分75%、プロピレングリコールモノメチルエーテルアセテート:25%)
                              :0.68質量部
・トリペンタエリスリトールオクタアクリレート
(商品名:V#802、大阪有機化学工業(株)製)      :1.8質量部
・ジエチルチオキサントン                  :0.17質量部
・2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(商品名:Irgacure379、BASF製)
                              :0.17質量部
・分散剤(商品名:ソルスパース20000、アビシア製)   :0.19質量部
・界面活性剤(商品名:メガファックF-780F、大日本インキ製)
                              :0.05質量部
・メチルエチルケトン                    :23.3質量部
・MMPGAc(ダイセル化学(株)製)           :59.8質量部
 なお、絶縁層形成用塗布液W1の溶剤除去後の100℃の粘度は4000Pa・sであった。
(Insulating layer forming coating solution: Formula W1)
Binder 3 (cyclohexyl methacrylate (a) / methyl methacrylate (b) / methacrylic acid copolymer (c) glycidyl methacrylate adduct (d) (composition (% by mass): a / b / c / d = 46/1) / 10/43, mass average molecular weight: 36000, acid value 66 mgKOH / g) 1-methoxy-2-propanol, methyl ethyl ketone solution (solid content: 45%)): 12.5 parts by mass. DPHA (dipentaerythritol hexaacrylate) , Nippon Kayaku Co., Ltd.) propylene glycol monomethyl ether acetate solution (76% by mass)
: 1.4 parts by mass / urethane-based monomer (trade name: NK Oligo UA-32P, manufactured by Shin-Nakamura Chemical Co., Ltd .: non-volatile content 75%, propylene glycol monomethyl ether acetate: 25%)
: 0.68 parts by mass · Tripentaerythritol octaacrylate (trade name: V # 802, manufactured by Osaka Organic Chemical Industry Co., Ltd.): 1.8 parts by mass · Diethylthioxanthone: 0.17 parts by mass · 2- (dimethylamino ) -2-[(4-Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone (trade name: Irgacure 379, manufactured by BASF)
: 0.17 parts by mass-Dispersant (trade name: Solsperse 20000, manufactured by Avicia): 0.19 parts by mass-Surfactant (trade name: Megafac F-780F, manufactured by Dainippon Ink)
: 0.05 parts by mass-Methyl ethyl ketone: 23.3 parts by mass-MMPGAc (manufactured by Daicel Chemical Co., Ltd.): 59.8 parts by mass The viscosity at 100 ° C. after removing the solvent of the coating liquid W1 for forming the insulating layer is 4000 Pa.・ It was s.
 加飾パターンの形成と同様にして、前記第一の透明電極パターン付の前面板を洗浄、シランカップリング処理し、カバーフィルムを除去した絶縁層形成用感光性フィルムW1をラミネートした(基材温度:100℃、ゴムローラー温度120℃、線圧100N/cm、搬送速度2.3m/分)。仮支持体を剥離後、露光マスク(絶縁層用パターンを有す石英露光マスク)面と該エッチング用光硬化性樹脂層との間の距離を100μmに設定し、露光量30mJ/cm2(i線)でパターン露光した。 In the same manner as the decoration pattern formation, the front plate with the first transparent electrode pattern was washed, treated with silane coupling, and laminated with the insulating film forming photosensitive film W1 from which the cover film was removed (base temperature). : 100 ° C., rubber roller temperature 120 ° C., linear pressure 100 N / cm, transport speed 2.3 m / min). After peeling off the temporary support, the distance between the exposure mask (quartz exposure mask having the insulating layer pattern) surface and the photocurable resin layer for etching is set to 100 μm, and the exposure dose is 30 mJ / cm 2 (i Line).
 次に、トリエタノールアミン系現像液(トリエタノールアミン30質量%含有、商品名:T-PD2(富士フイルム(株)製)を純水で10倍に希釈した液)を33℃で60秒間、炭酸ナトリウム/炭酸水素ナトリウム系現像液(商品名:T-CD1(富士フイルム(株)製)を純水で5倍に希釈した液)を25℃で50秒間、界面活性剤含有洗浄液(商品名:T-SD3(富士フイルム(株)製)を純水で10倍に希釈した液)を用いて33℃で20秒間処理し、回転ブラシ、超高圧洗浄ノズルで残渣除去を行い、さらに230℃60分間のポストベーク処理を行って、加飾パターン、第一の透明電極パターン、絶縁層パターンを形成した基板を得た。 Next, a triethanolamine developer (containing 30% by mass of triethanolamine, trade name: T-PD2 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water) at 33 ° C. for 60 seconds, Sodium carbonate / bicarbonate developer (trade name: T-CD1 (Fuji Film Co., Ltd.) diluted 5-fold with pure water) at 25 ° C. for 50 seconds, surfactant-containing cleaning solution (trade name) : T-SD3 (manufactured by Fuji Film Co., Ltd.) diluted 10 times with pure water for 20 seconds at 33 ° C, and the residue is removed with a rotating brush and ultra-high pressure washing nozzle. A post-baking treatment for 60 minutes was performed to obtain a substrate on which a decorative pattern, a first transparent electrode pattern, and an insulating layer pattern were formed.
<<第二の透明電極パターンの形成>>
(透明電極層の形成)
 前記第一の透明電極パターンの形成と同様にして、第一の透明電極パターン、絶縁層パターンを形成した前面板をDCマグネトロンスパッタリング処理し(条件:基材の温度50℃、アルゴン圧0.13Pa、酸素圧0.01Pa)、厚さ80nmのITO薄膜を形成し、透明電極層を形成した基板を得た。ITO薄膜の表面抵抗は110Ω/□であった。
<< Formation of Second Transparent Electrode Pattern >>
(Formation of transparent electrode layer)
In the same manner as the formation of the first transparent electrode pattern, the front plate on which the first transparent electrode pattern and the insulating layer pattern were formed was subjected to DC magnetron sputtering treatment (conditions: substrate temperature 50 ° C., argon pressure 0.13 Pa). An ITO thin film having an oxygen pressure of 0.01 Pa and a thickness of 80 nm was formed to obtain a substrate on which a transparent electrode layer was formed. The surface resistance of the ITO thin film was 110Ω / □.
 第一の透明電極パターンの形成の形成と同様にして、エッチング用感光性フィルムE1を用いて、第一の透明電極パターン、絶縁層パターン、透明電極層、エッチング用光硬化性樹脂層パターンを形成した前面板を得た(ポストベーク処理;130℃30分間)。
 さらに、第一の透明電極パターンの形成の形成と同様にして、エッチング(30℃50秒間)、エッチング用光硬化性樹脂層を除去(45℃200秒間)することにより、加飾パターン、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した基板を得た。
In the same manner as the formation of the first transparent electrode pattern, the first transparent electrode pattern, the insulating layer pattern, the transparent electrode layer, and the photocurable resin layer pattern for etching are formed using the etching photosensitive film E1. The obtained front plate was obtained (post-baking treatment; 130 ° C. for 30 minutes).
Further, in the same manner as in the formation of the first transparent electrode pattern, the decorative pattern, the first are obtained by etching (30 ° C. for 50 seconds) and removing the photocurable resin layer for etching (45 ° C. for 200 seconds). A substrate on which a transparent electrode pattern, an insulating layer pattern, and a second transparent electrode pattern were formed was obtained.
(第一および第二の透明電極パターンとは別の導電性要素の形成)
 前記第一、および第二の透明電極パターンの形成と同様にして、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターンを形成した前面板をDCマグネトロンスパッタリング処理し、厚さ200nmのアルミニウム(Al)薄膜を形成した前面板を得た。
(Formation of conductive elements different from the first and second transparent electrode patterns)
Similar to the formation of the first and second transparent electrode patterns, the front plate on which the first transparent electrode pattern, the insulating layer pattern, and the second transparent electrode pattern were formed was subjected to DC magnetron sputtering treatment to a thickness of 200 nm. A front plate on which an aluminum (Al) thin film was formed was obtained.
 前記第一、および第二の透明電極パターンの形成と同様にして、エッチング用感光性フィルムE1を用いて、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、エッチング用光硬化性樹脂層パターンを形成した前面板を得た。(ポストベーク処理;130℃30分間)。
 さらに、第一の透明電極パターンの形成の形成と同様にして、エッチング(30℃50秒間)、エッチング用光硬化性樹脂層を除去(45℃200秒間)することにより、加飾パターン、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した基板を得た。
Similar to the formation of the first and second transparent electrode patterns, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the photocuring for etching are performed using the etching photosensitive film E1. A front plate on which a conductive resin layer pattern was formed was obtained. (Post-bake treatment; 130 ° C. for 30 minutes).
Further, in the same manner as in the formation of the first transparent electrode pattern, the decorative pattern, the first are obtained by etching (30 ° C. for 50 seconds) and removing the photocurable resin layer for etching (45 ° C. for 200 seconds). A substrate on which a conductive element different from the transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns was formed was obtained.
<積層材料の作製>
 厚さ75μm、屈折率1.66のPETフィルムを搬送速度80m/分で搬送しながら、両面に対して真空条件でグロー放電処理を行った。グロー放電処理の条件は4.0KJ/m2、グロー放電処理前のPETフィルムの表面温度は、150℃であった。また、P
ETフィルムの表面に得られた表面改質層の厚みは60nm、非晶度(非結晶度/結晶度)は6%であった。
<Production of laminated material>
While discharging a PET film having a thickness of 75 μm and a refractive index of 1.66 at a transfer speed of 80 m / min, both surfaces were subjected to glow discharge treatment under vacuum conditions. The conditions for the glow discharge treatment were 4.0 KJ / m 2 , and the surface temperature of the PET film before the glow discharge treatment was 150 ° C. P
The thickness of the surface modification layer obtained on the surface of the ET film was 60 nm, and the non-crystallinity (non-crystallinity / crystallinity) was 6%.
<易接着層の作製>
 ポリマー層塗布液は、以下の処方を用いた。
酸化スズ微粒子分散液                固形分として8質量部
(平均粒径60nm)
ポリウレタン                        2.8質量部
(三井化学(株)製、タケラックWS-5100)
架橋剤                           4.2質量部
(日清紡ケミカル(株)製、カルボジライトV-02-L2の10%希釈液)
界面活性剤A                        0.2質量部
(三洋化成工業(株)製、サンデッドBLの10%水溶液、アニオン性)
界面活性剤B                        0.2質量部
(三洋化成工業(株)、ナロアクティーCL-95の10%希釈液、ノニオン性)
水                            84.6質量部
<Preparation of easy adhesion layer>
The following formulation was used for the polymer layer coating solution.
Tin oxide fine particle dispersion 8 parts by mass (average particle size 60 nm) as solid content
2.8 parts by mass of polyurethane (manufactured by Mitsui Chemicals, Takelac WS-5100)
Cross-linking agent 4.2 parts by mass (manufactured by Nisshinbo Chemical Co., Ltd., 10% diluted solution of Carbodilite V-02-L2)
Surfactant A 0.2 parts by mass (manufactured by Sanyo Chemical Industries, Ltd., 10% aqueous solution of sanded BL, anionic)
Surfactant B 0.2 parts by mass (Sanyo Chemical Industry Co., Ltd., 10% diluted solution of NAROACTY CL-95, nonionic)
84.6 parts by weight of water
 上記処方は塗布乾燥後の易接着層の屈折率が1.58となるように調整したものである。グロー放電処理を行ったPETフィルムの表面に、易接着層塗布液をバーコート法により塗布した。そして、これを150℃で2分乾燥させた。PETフィルムの両面に易接着層が塗布された積層フィルムを得た。なお、積層フィルムを、透過型電子顕微鏡(JEM2010(日本電子化(株))製)を用いて倍率200000倍で観察することにより、易接着層の膜厚を測定した。膜厚は、100nmであった。 The above formulation is adjusted so that the refractive index of the easy-adhesion layer after coating and drying is 1.58. An easy-adhesion layer coating solution was applied to the surface of the PET film subjected to the glow discharge treatment by a bar coating method. And this was dried at 150 degreeC for 2 minutes. A laminated film having an easy-adhesion layer applied on both sides of the PET film was obtained. In addition, the film thickness of the easy-adhesion layer was measured by observing the laminated film at a magnification of 200,000 using a transmission electron microscope (JEM2010 (manufactured by JEOL Ltd.)). The film thickness was 100 nm.
<ハードコート層の作製>
 上記のようにして得られた易接着層にコロナ処理を施した後、ハードコート層形成用水性組成物を塗布した。そしてこれを150℃で2分乾燥させ、アルコキシシランの加水分解縮合物を含むハードコート層を形成した。ハードコート層の膜厚は1μmであった。この方法で作製したハードコート層を、下記表には「ゾルゲル」と記載した。
<Preparation of hard coat layer>
The easy-adhesion layer obtained as described above was subjected to corona treatment, and then an aqueous composition for forming a hard coat layer was applied. And this was dried at 150 degreeC for 2 minutes, and the hard-coat layer containing the hydrolysis-condensation product of an alkoxysilane was formed. The film thickness of the hard coat layer was 1 μm. The hard coat layer produced by this method is described as “sol gel” in the following table.
 水性組成物は、以下の処方を用いた。
 酢酸水溶液                          100質量部
(ダイセル化学工業(株)製、工業用酢酸の1%水溶液)
3-グリシドキシプロピルトリエトキシシラン            80質量部
(信越化学工業(株)製、KBE-403)
 テトラエトキシシラン                      20質量部
(信越化学工業(株)製、KBE-04)
 アルミニウムキレート錯体                  22.1質量部
(川研ファインケミカル製、アルミキレートD)
 無機微粒子                          200質量部
(日産化学工業(株)製、スノーテックスO-33)
 界面活性剤A                         0.2質量部
(三洋化成工業(株)製、サンデッドBLの10%水溶液、アニオン性)
 界面活性剤B                         0.2質量部
(三洋化成工業(株)、ナロアクティーCL-95の10%希釈液、ノニオン性)
マット剤                           0.02質量部
(日本触媒(株)製、シーホスターKE-P250)
The following formulation was used for the aqueous composition.
Acetic acid aqueous solution 100 parts by mass (manufactured by Daicel Chemical Industries, Ltd., 1% aqueous solution of industrial acetic acid)
80 parts by mass of 3-glycidoxypropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-403)
20 parts by mass of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBE-04)
Aluminum chelate complex 22.1 parts by mass (made by Kawaken Fine Chemicals, aluminum chelate D)
200 parts by mass of inorganic fine particles (manufactured by Nissan Chemical Industries, Snowtex O-33)
Surfactant A 0.2 parts by mass (manufactured by Sanyo Chemical Industries, Ltd., 10% aqueous solution of sanded BL, anionic)
Surfactant B 0.2 parts by mass (Sanyo Chemical Industry Co., Ltd., 10% diluted solution of NAROACTY CL-95, nonionic)
Matting agent 0.02 parts by mass (Nippon Shokubai Co., Ltd., Seahoster KE-P250)
 調液は以下の手順で行った。100質量部の1%酢酸に3-グリシドキシプロピルトリエトキシシラン(KBE-403)を添加して十分に加水分解した後、テトラアルコキシシラン(KBE-04)を添加した。アルミニウムキレート錯体をエポキシ基含有アルコキシシランに対して必要な質量部添加し、ここに無機微粒子(スノーテックスO-33)を添加した。界面活性剤A(サンデットBL)の10%希釈液と界面活性剤B(ナロアクティーCL-95)の10%希釈液を0.2質量部ずつ添加し、マット剤(シーホスターKE-P250)を添加し、固形分濃度が15%になるように水を添加し水性組成物とした。 Preparation was performed according to the following procedure. 3-Glycidoxypropyltriethoxysilane (KBE-403) was added to 100 parts by mass of 1% acetic acid and sufficiently hydrolyzed, and then tetraalkoxysilane (KBE-04) was added. A necessary part by mass of the aluminum chelate complex with respect to the epoxy group-containing alkoxysilane was added, and inorganic fine particles (Snowtex O-33) were added thereto. Add 0.2 parts by mass of 10% dilution of Surfactant A (Sandet BL) and 10% dilution of Surfactant B (Naroacty CL-95), and add matting agent (Seahoster KE-P250) And water was added so that solid content concentration might be 15%, and it was set as the aqueous composition.
<保護層の形成>
 ハードコート層を形成しない面に、下記の組成によって調製した保護層用塗布液を、塗布量を変更しながら、10μmの膜厚になるように調整し、塗布、乾燥させて、保護層を形成し、カバーフイルム(厚さ12μmポリプロピレンフィルム)を圧着した。
<Formation of protective layer>
On the surface where the hard coat layer is not formed, the protective layer coating solution prepared by the following composition is adjusted to a film thickness of 10 μm while changing the coating amount, and coated and dried to form a protective layer. Then, a cover film (12 μm thick polypropylene film) was pressure-bonded.
 以上のようにして、ハードコート層/易接着層/PETフィルム/易接着層/保護層/カバーフイルムからなる飛散防止機能付き、積層材料を作製した。 As described above, a laminated material with a function of preventing scattering consisting of a hard coat layer / easy adhesion layer / PET film / easy adhesion layer / protective layer / cover film was produced.
(保護層の塗布液組成)
Figure JPOXMLDOC01-appb-T000003
(Coating solution composition for protective layer)
Figure JPOXMLDOC01-appb-T000003
ポリマー溶液2
Figure JPOXMLDOC01-appb-C000004
Polymer solution 2
Figure JPOXMLDOC01-appb-C000004
<積層体の作製>
 前述の、加飾パターン、第一の透明電極パターン、絶縁層パターン、第二の透明電極パターン、第一および第二の透明電極パターンとは別の導電性要素を形成した基板を、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3質量%水溶液、商品名:KBM603、信越化学工業(株)製)をシャワーにより20秒間吹き付け、純水シャワー洗浄した。この基板を基材予備加熱装置で140℃2分間加熱した。得られたシランカップリング処理基板に、あらかじめ基板の所望の形状に裁断した、上述の飛散防止機能付き積層材料からカバーフィルムを除去し、除去後に露出した硬化性透明樹脂層の表面と前記シランカップリング処理基板の表面とが接するように重ね合わせ、ラミネータ((株)日立インダストリイズ製(LamicII型))を用いて、前記140℃で加熱した基材に、ゴムローラー温度130℃、線圧100N/cm、搬送速度2.2m/分でラミネートし、150℃60分加熱硬化処理を実施した。
<Production of laminate>
A substrate on which a conductive element different from the decorative pattern, the first transparent electrode pattern, the insulating layer pattern, the second transparent electrode pattern, and the first and second transparent electrode patterns is formed at 25 ° C. The adjusted glass cleaner solution was washed with a rotating brush having nylon bristles while spraying the glass cleaner solution for 20 seconds by showering, and after pure water shower washing, a silane coupling solution (N-β (aminoethyl) γ-aminopropyltrimethoxysilane. A 3% by weight aqueous solution, trade name: KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was sprayed for 20 seconds with a shower and washed with pure water. The substrate was heated at 140 ° C. for 2 minutes with a base material preheating device. The surface of the curable transparent resin layer exposed after the removal of the cover film from the above-mentioned laminated material with an anti-scattering function, which has been cut into a desired shape of the substrate in advance to the obtained silane coupling treatment substrate, and the silane cup The substrate was heated so as to be in contact with the surface of the ring-treated substrate, and the substrate heated at 140 ° C. using a laminator (manufactured by Hitachi Industries (Lamic II type)), rubber roller temperature 130 ° C., linear pressure Lamination was performed at 100 N / cm and a conveyance speed of 2.2 m / min, and a heat curing treatment was performed at 150 ° C. for 60 minutes.
[実施例2]
 保護層を製膜後、UVランプ照射(露光量300mJ/cm2、メタンハライドランプ)を照射した。その後、下記材料-8の組成の塗布液(屈折率1.72)を膜厚52nmとなるように保護層の上に反射防止層を製膜した。
 これ以外は実施例1と同様に積層材料を作製した。
Figure JPOXMLDOC01-appb-T000005
[Example 2]
After the protective layer was formed, UV lamp irradiation (exposure amount 300 mJ / cm 2 , methane halide lamp) was irradiated. Thereafter, an antireflection layer was formed on the protective layer with a coating solution (refractive index: 1.72) having the composition of the following material-8 so as to have a film thickness of 52 nm.
A laminated material was produced in the same manner as in Example 1 except for this.
Figure JPOXMLDOC01-appb-T000005
[実施例3]
実施例1のPETフィルムを厚み80μmのTACフィルム(富士フイルム社製、フジタック)に変えた以外は実施例1と同様にして積層体を作製した。
[Example 3]
A laminate was produced in the same manner as in Example 1 except that the PET film of Example 1 was changed to a TAC film having a thickness of 80 μm (Fuji Film, Fujitac).
[実施例4]
実施例1のPETフィルムを厚み40μmのTACフィルム(富士フイルム社製、フジタック)に変えた以外は実施例1と同様にして積層体を作製した。
[Example 4]
A laminate was prepared in the same manner as in Example 1 except that the PET film of Example 1 was changed to a TAC film having a thickness of 40 μm (Fujifilm, Fujitac).
[実施例5]
実施例1のPETフィルムを延伸し、厚さ50μmで3000nmのリタデーション(Re/Rth=1.03)のフィルムを用いた以外は実施例1と同様にして積層体を作製した。なお、リタデーションは、KOBRA 21ADHにより測定した。
[Example 5]
The PET film of Example 1 was stretched, and a laminate was produced in the same manner as in Example 1 except that a film having a thickness of 50 μm and a retardation of 3000 nm (Re / Rth = 1.03) was used. The retardation was measured by KOBRA 21ADH.
[実施例6]
 実施例1のPETフィルムを延伸し、厚さ100μmで12000nmのリタデーション(Re/Rth=0.78)を有するフィルムを用いた以外は実施例1と同様にして積層体を作製した。
[Example 6]
A laminate was produced in the same manner as in Example 1 except that the PET film of Example 1 was stretched and a film having a thickness of 100 μm and a retardation of 12000 nm (Re / Rth = 0.78) was used.
[実施例7]
実施例1のPETフィルムを厚み66μmのポリカーボネートフィルム(カネカ社製、エルメック)に変えた以外は実施例1と同様にして積層体を作製した。
[Example 7]
A laminate was prepared in the same manner as in Example 1 except that the PET film of Example 1 was replaced with a 66 μm thick polycarbonate film (manufactured by Kaneka Corporation, Elmec).
[実施例8]
 実施例1において、ハードコート層を形成していない積層材料を用いた以外は実施例1と同様にして積層体を作製した。
[Example 8]
In Example 1, a laminate was produced in the same manner as in Example 1 except that a laminate material without a hard coat layer was used.
[実施例9]
 以下のように作製したアクリル樹脂を含むハードコート層を形成した積層材料を用いた以外は実施例1と同様にして積層体を作製した。なお、下記表には、「アクリル」と記載した。
[Example 9]
A laminate was produced in the same manner as in Example 1 except that a laminate material having a hard coat layer containing an acrylic resin produced as follows was used. In the table below, “acrylic” was indicated.
<硬化性アクリルポリマーの合成>
 特許第2574201号の記載に準じて、還流冷却機、攪拌機、温度計、温度調節装置、及び水分離機を備えた反応機に、多分岐ポリマー(HB-1)としてベルストルプ アー・ベー社製BOLTORN H20(OH価:510mgKOH/g)55.0gと、アクリル酸39.6g(0.55モル)、反応溶媒としてトルエン63.4g、重合禁止剤としてハイドロキノン0.143g、酸触媒としてメタンスルホン酸0.953gを仕込み、反応温度100~115℃で生成水を溶媒と共沸除去しながら反応させ、生成水が1.35mlに達したところで反応を終了した。反応混合物をトルエン40gに溶解し、25%苛性ソーダ水溶液で中和した後、15%食塩水20gで3回洗浄した。溶媒を減圧留去して硬化性多分岐ポリマー(RHB-1)を得た。硬化性多分岐ポリマー(RHB-1)のOH価は434mgKOH/gであり、反応性基である水酸基から硬化性反応基への変換率は15モル%であった。
<Synthesis of curable acrylic polymer>
In accordance with the description in Japanese Patent No. 2574201, a reactor equipped with a reflux cooler, a stirrer, a thermometer, a temperature control device, and a water separator is used as a multi-branched polymer (HB-1) as a BOLTORN manufactured by Belstruer Baer. 55.0 g of H20 (OH value: 510 mg KOH / g), 39.6 g (0.55 mol) of acrylic acid, 63.4 g of toluene as a reaction solvent, 0.143 g of hydroquinone as a polymerization inhibitor, 0 methanesulfonic acid as an acid catalyst .953 g was charged, and the reaction was performed while removing the produced water azeotropically with the solvent at a reaction temperature of 100 to 115 ° C., and the reaction was terminated when the produced water reached 1.35 ml. The reaction mixture was dissolved in 40 g of toluene, neutralized with 25% aqueous sodium hydroxide solution, and then washed 3 times with 20 g of 15% brine. The solvent was distilled off under reduced pressure to obtain a curable multi-branched polymer (RHB-1). The OH value of the curable multi-branched polymer (RHB-1) was 434 mgKOH / g, and the conversion rate from the reactive hydroxyl group to the curable reactive group was 15 mol%.
<塗布液の調整>
 上記ポリマー(RHB-1)              40質量部
 DPHA(ジペンタエリスリトールヘキサアクリレート 日本化薬(株)製)
                            10質量部
 イルガキュア907(BASF社製)         2.5質量部
 メチルエチルケトン                  20質量部
 メチルイソブチルケトン                30質量部
<Adjustment of coating solution>
40 parts by mass of the polymer (RHB-1) DPHA (dipentaerythritol hexaacrylate manufactured by Nippon Kayaku Co., Ltd.)
10 parts by mass Irgacure 907 (manufactured by BASF) 2.5 parts by mass Methyl ethyl ketone 20 parts by mass Methyl isobutyl ketone 30 parts by mass
 上記の組成に従い、十分に混合した各液を、孔径30μmのポリプロピレン製フィルターでろ過して調整した。
<ハードコート層の塗設>
 バーコート法により、膜厚1μmになるように塗布し、30℃15秒間、90℃で20秒間乾燥させ、更に窒素パージ下で160W/cm2の紫外線を照射して塗布膜を硬化させて、ポリマー層上にハードコート層を形成した。
In accordance with the above composition, each well-mixed solution was filtered and adjusted with a polypropylene filter having a pore size of 30 μm.
<Coating of hard coat layer>
It is applied by a bar coating method so as to have a film thickness of 1 μm, dried at 30 ° C. for 15 seconds and 90 ° C. for 20 seconds, and further irradiated with 160 W / cm 2 of UV under a nitrogen purge to cure the coating film, A hard coat layer was formed on the polymer layer.
[実施例10]
 易接着層を形成していない積層材料を用いた以外は実施例1と同様にして積層体を作製した。
[Example 10]
A laminate was produced in the same manner as in Example 1 except that a laminate material without an easy-adhesion layer was used.
[実施例11]
 ハードコート層として以下の方法で形成したジルコニウムを含む屈折率1.64のハードコート層を用い、かつ、以下の表の組成を有する塗布液から作製した屈折率1.65の易接着層を形成した、ハードコート層との屈折率差が0.02以下であり、かつ、ポリマー層との屈折率差が0.02以下である易接着層を有する積層材料を用いた以外は実施例1と同様にして積層体を作製した。
[Example 11]
Using a hard coat layer having a refractive index of 1.64 containing zirconium formed by the following method as a hard coat layer, and forming an easy adhesion layer having a refractive index of 1.65 prepared from a coating solution having the composition shown in the following table The difference between the refractive index difference with the hard coat layer is 0.02 or less, and the difference between the refractive index difference with the polymer layer is 0.02 or less and a laminated material having an easy-adhesion layer is used. A laminate was produced in the same manner.
<ジルコニウムを含むハードコート層の形成>
 下記組成のハードコート層用塗布液をバーコート法によりWET厚さが約2μmとなるように塗布した。90℃で1分乾燥した後に、高圧水銀灯を用いて照射量1600mJ/cm2で紫外線を照射することにより樹脂を硬化させた。これにより下記に記述する易接着層の表面上にハードコート層を作製した。ハードコート層の厚さは1μm、屈折率は1.64であった。
紫外線硬化樹脂(JSR(株)製、Z7410B)         100質量部無機微粒子(酸化ジルコニウム 日産化学工業(株)製 OZ-S30K  20質量部
<Formation of hard coat layer containing zirconium>
A hard coat layer coating solution having the following composition was applied by a bar coating method to a WET thickness of about 2 μm. After drying at 90 ° C. for 1 minute, the resin was cured by irradiating ultraviolet rays at a dose of 1600 mJ / cm 2 using a high-pressure mercury lamp. This produced the hard-coat layer on the surface of the easily bonding layer described below. The hard coat layer had a thickness of 1 μm and a refractive index of 1.64.
UV curable resin (manufactured by JSR Corporation, Z7410B) 100 parts by mass Inorganic fine particles (zirconium oxide manufactured by Nissan Chemical Industries, Ltd. OZ-S30K 20 parts by mass
<易接着層の組成>
Figure JPOXMLDOC01-appb-T000006
<Composition of easy-adhesion layer>
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[実施例12]
 実施例1のPETフィルムを厚み60μmで、リタデーションが140nmであるシクロオレフィンポリマーフィルム(日本ゼオン社製、ゼオノアフイルムZD14)に変えた以外は実施例1と同様にして積層体を作製した。また、この透明積層体を、液晶表示装置(液晶セルが2枚の偏光板にはさまれた構成を有する)の上に、偏光板の吸収軸とポリマーフイルムの遅相軸とが45度の角度になるようにおき、サングラスなどの偏光板を通して画像を視認したときの、視認性は良好であった。
[Example 12]
A laminate was produced in the same manner as in Example 1 except that the PET film of Example 1 was changed to a cycloolefin polymer film (Zeon Corporation, Zeon film ZD14) having a thickness of 60 μm and a retardation of 140 nm. In addition, the transparent laminate is placed on a liquid crystal display device (a liquid crystal cell is sandwiched between two polarizing plates) with an absorption axis of the polarizing plate and a slow axis of the polymer film of 45 degrees. Visibility was good when the image was viewed through a polarizing plate such as sunglasses.
[比較例1]
 ポリマー層を形成せず、実施例1で用いたものと同様の組成の保護層を塗布により形成し、易接着層をバーコーターを用いて表記載の膜厚になるように塗布し150℃2分乾燥して形成し、ハードコート層をバーコート法により1μmの膜厚になるように塗布し150℃2分乾燥して形成し、積層体を作製した。
[Comparative Example 1]
Without forming a polymer layer, a protective layer having the same composition as that used in Example 1 was formed by coating, and an easy-adhesion layer was coated using a bar coater so as to have a film thickness described in the table. It was formed by partial drying, and the hard coat layer was applied by a bar coating method to a thickness of 1 μm and dried at 150 ° C. for 2 minutes to form a laminate.
[評価]
<飛散防止性能>
 ガラス基板に積層して得られた各実施例および比較例の透明積層体を、JIS K 7211の落鐘衝撃試験方法に準じて、耐衝撃強度の測定を行い衝撃エネルギー(E50)として算出した。(ただし、使用した重鐘の先端部分の直径は4mmである。)
A:(良好) :衝撃エネルギー(E50)≧1.00(J)
B:(使用可) :1.00>衝撃エネルギー(E50)≧0.45(J)
C:(使用不可) :衝撃エネルギー(E50)<0.45(J)
[Evaluation]
<Spattering prevention performance>
The transparent laminates of Examples and Comparative Examples obtained by laminating on a glass substrate were subjected to impact resistance measurement according to JIS K 7211 drop impact test method and calculated as impact energy (E50). (However, the diameter of the tip of the heavy bell used is 4 mm.)
A: (Good): Impact energy (E50) ≧ 1.00 (J)
B: (usable): 1.00> impact energy (E50) ≧ 0.45 (J)
C: (Unusable): Impact energy (E50) <0.45 (J)
<ヘイズ>
 ガラス基板に転写する前の積層材料に対して、ヘイズの150℃10分加熱処理前後での変化量を測定し、この測定結果より評価した。ヘイズは、ヘイズメーター(NDH-2000、日本電色工業(株))を用いて、JIS-K-7105に準じて測定した。
ヘイズの加熱処理前後での変化量(単位:%)については、所定条件での加熱処理の前(つまり加熱処理無し)と後との両方につきヘイズをそれぞれ測定し、加熱処理前のヘイズをH1、加熱処理後のヘイズをH2とするときに、
|H2-H1|/H1 ×100 の式で求めた。
ヘイズ測定における加熱処理は、サンプルを内部の温度を150℃に設定したオーブンの中に入れて、10分間保持することにより行った。なお、加熱処理後のヘイズ測定は、オーブンから取り出したサンプルを冷却してから実施した。
A:(良好):0.5%以下
B:(好ましく使用可):0.5~1%未満
C:(使用可):1%以上
<Haze>
The amount of change of the haze before and after the heat treatment at 150 ° C. for 10 minutes was measured on the laminated material before being transferred to the glass substrate, and the measurement result was evaluated. Haze was measured according to JIS-K-7105 using a haze meter (NDH-2000, Nippon Denshoku Industries Co., Ltd.).
Regarding the amount of change in haze before and after heat treatment (unit:%), the haze before and after the heat treatment under a predetermined condition (that is, no heat treatment) was measured, and the haze before the heat treatment was determined as H1. When the haze after heat treatment is H2,
| H2-H1 | / H1 × 100.
The heat treatment in the haze measurement was performed by placing the sample in an oven whose internal temperature was set to 150 ° C. and holding it for 10 minutes. In addition, the haze measurement after heat processing was implemented after cooling the sample taken out from oven.
A: (Good): 0.5% or less B: (Preferably usable): Less than 0.5 to 1% C: (Useable): 1% or more
<透明性(透過率)>
 ガラス基板に転写する前の積層材料に対して、440nmの透過率を評価した。分光光度計(UV2100、島津製作所社製)を用いて測定した。
A:(良好):95%以上
B:(好ましく使用可):90~95%未満
C:(使用可):90%未満
<Transparency (transmittance)>
The transmittance of 440 nm was evaluated for the laminated material before being transferred to the glass substrate. Measurement was performed using a spectrophotometer (UV2100, manufactured by Shimadzu Corporation).
A: (Good): 95% or more B: (Preferably usable): 90 to less than 95% C: (Useable): Less than 90%
<鉛筆硬度>
 耐傷性の指標としてJIS K 5400に記載の鉛筆硬度評価を行った。ガラス基板に転写製膜して得られた各実施例および比較例の透明積層体を、温度25℃、相対湿度60%で1時間調湿した後、JIS S 6006に規定する2Hの試験用鉛筆を用いて、
500gの荷重にてn=7の評価を行った。
A:傷が3つ未満である。
B:傷が3つ以上、5つ未満である。
C:傷が5つ以上、6つ未満である。
D:傷が6つ以上である。
<Pencil hardness>
As an index of scratch resistance, pencil hardness evaluation described in JIS K 5400 was performed. The transparent laminates of Examples and Comparative Examples obtained by transfer film formation on a glass substrate were conditioned for 1 hour at a temperature of 25 ° C. and a relative humidity of 60%, and then a 2H test pencil specified in JIS S 6006. Using,
Evaluation of n = 7 was performed with a load of 500 g.
A: There are less than 3 scratches.
B: There are 3 or more and less than 5 scratches.
C: There are 5 or more and less than 6 scratches.
D: There are 6 or more scratches.
<透明電極パターン視認性>
 各実施例および比較例の透明積層体を、透明接着テープ(3M社製、商品名、OCAテープ8171CL)を介して、透明積層体と黒色PET材と接着させ、基板全体を遮光した。
 透明電極パターン視認性は、暗室において、蛍光灯(光源)と作成した基板を、ガラス面側から光を入射させ、ガラス表面からの反射光を、斜めから目視観察することにより行った。
A:透明電極パターンが全く見えない。
B:透明電極パターンがわずかに見えるが、ほとんど見えない。
C:透明電極パターンが見える(分かりにくい)。
D:透明電極パターンが見えるが、実用上許容できる。
E:透明電極パターンがはっきり見える(分かりやすい)。
<Transparent electrode pattern visibility>
The transparent laminated body of each Example and Comparative Example was bonded to the transparent laminated body and the black PET material via a transparent adhesive tape (trade name, OCA tape 8171CL, manufactured by 3M), and the entire substrate was shielded from light.
The visibility of the transparent electrode pattern was performed by making light incident on the fluorescent lamp (light source) and the prepared substrate from the glass surface side and visually observing reflected light from the glass surface obliquely in a dark room.
A: The transparent electrode pattern is not visible at all.
B: The transparent electrode pattern is slightly visible but hardly visible.
C: A transparent electrode pattern is visible (unclear).
D: Although a transparent electrode pattern can be seen, it is practically acceptable.
E: The transparent electrode pattern is clearly visible (easy to understand).
<偏光サングラスでの視認性>
各実施例および比較例の透明積層体を、白色LED光源を用いた液晶表示装置(液晶セルが2枚の偏光板にはさまれた構成を有する)の上におき、サングラスなどの偏光板を通して画像を視認した。
A:表示画面の視認性が良好
B:干渉色が認識される
C:偏光サングラスの向きにより、全面が暗くなる
<Visibility with polarized sunglasses>
The transparent laminated body of each Example and Comparative Example is placed on a liquid crystal display device using a white LED light source (a liquid crystal cell has a configuration sandwiched between two polarizing plates) and passed through a polarizing plate such as sunglasses. I visually confirmed the image.
A: Visibility of display screen is good B: Interference color is recognized C: The whole surface becomes dark depending on the direction of polarized sunglasses
<密着性>
 各実施例および比較例の透明積層体の表面に片刃カミソリを用いて縦、横それぞれ11本のキズをつけて100個の桝目を形成した。次いで、この上にセロハンテープ(ニチバン(株)製405番、24mm幅)を貼り付けて、その上からケシゴムでこすって完全に付着させた後、90度方向に剥離させて、剥離した桝目の数を求めることにより、下記のランク付けを行って密着性を評価した。なお、上記のキズの幅は、縦、横とも1mmとした。
A: 剥れなしの場合
B: 剥離した桝目数が5未満の場合
C: 剥離した桝目数が5以上10未満の場合
D: 剥離した桝目数が10以上30未満の場合
E: 剥離した桝目数が30以上の場合
<Adhesion>
Using a single-blade razor on the surface of the transparent laminates of each Example and Comparative Example, 11 vertical and horizontal scratches were made to form 100 squares. Next, a cellophane tape (No. 405 manufactured by Nichiban Co., Ltd., 24 mm width) is applied on this, and then completely adhered by rubbing with poppy rubber from above, and then peeled off in the direction of 90 ° to peel off the peeled-off mesh By determining the number, the following ranking was performed to evaluate the adhesion. The width of the scratch was 1 mm both vertically and horizontally.
A: When there is no peeling B: When the number of peeled squares is less than 5 C: When the number of peeled squares is 5 or more and less than 10 D: When the number of peeled squares is 10 or more and less than 30 E: Number of peeled squares When is 30 or more
<干渉ムラ>
 各実施例および比較例の透明積層体を、黒色ドスキン布を張り合わせた机上においてから、乳白色のアクリル板を通した三波長蛍光灯の拡散光を、積層体のガラス基板と反対側の面に照射し、発生する反射光を目視により観察した。そして、このとき観察される虹色の干渉ムラを目視で観察することにより、下記の評価基準でランク付けを行い、積層体の干渉ムラを評価した。また、目視観察にあたり、強制条件として各積層体に対して黒化処理を行い、500nm光の透過率を1%以下となるように調整したものも別途評価した。なお、黒化処理としては、観察する面とは反対面(ガラス基板面)にマジックインキ(artline 油性マーカー補充インキ KR-20クロ、shachihata(株)製)を塗工したあと、これを乾燥させた。
A:黒化処理後の試料および未処理の試料の双方において、虹色干渉ムラが目視で観察されない。
C:黒化処理後の試料および未処理の試料の双方において、虹色干渉ムラが目視で観察される。
<Interference unevenness>
Irradiate the surface of the laminate opposite to the glass substrate with the diffused light of the three-wavelength fluorescent lamp through the milky white acrylic plate from the transparent laminated body of each Example and Comparative Example on a desk with a black doskin cloth laminated The generated reflected light was visually observed. And by visually observing the rainbow-colored interference unevenness observed at this time, ranking was performed according to the following evaluation criteria, and the interference unevenness of the laminate was evaluated. In addition, when visually observing, each laminate was subjected to a blackening treatment as a compulsory condition, and a 500 nm light transmittance adjusted to 1% or less was separately evaluated. As the blackening treatment, magic ink (artline oil marker supplementary ink KR-20 black, manufactured by shachihata Co., Ltd.) is applied to the surface (glass substrate surface) opposite to the surface to be observed, and then dried. It was.
A: Iridescent interference unevenness is not visually observed in both the sample after the blackening treatment and the untreated sample.
C: Iridescent interference unevenness is visually observed in both the blackened sample and the untreated sample.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5から、本発明のタッチパネル用積層体は、ガラス飛散を防止できることがわかった。
 また、本発明のタッチパネル用積層体の好ましい実施態様では、ヘイズ、透明性、鉛筆硬度、および視認性も優れる性質を持たせられたことがわかる。
From Table 5, it turned out that the laminated body for touchscreens of this invention can prevent glass scattering.
Moreover, in the preferable embodiment of the laminated body for touchscreens of this invention, it turns out that the property which is excellent also in haze, transparency, pencil hardness, and visibility was given.
 1 前面板
1a 前面板の非接触側
2a 加飾層
2b マスク層
 3 第一の透明電極パターン
3a パッド部分
3b 接続部分
 4 第二の透明電極パターン
 5 絶縁層
 6 導電性要素
 7 透明保護層
 8 開口部
10 静電容量型入力装置
11 強化処理ガラス
C  第1の方向
D  第2の方向
100 ガラス基板
101 透明導電層
102 保護層
103 ポリマー層
104 易接着層
105 ハードコート層
106 易接着層
107 加飾層
DESCRIPTION OF SYMBOLS 1 Front plate 1a Non-contact side 2a of front plate Decorating layer 2b Mask layer 3 1st transparent electrode pattern 3a Pad part 3b Connection part 4 2nd transparent electrode pattern 5 Insulating layer 6 Conductive element 7 Transparent protective layer 8 Opening Part 10 Capacitive input device 11 Tempered glass C First direction D Second direction 100 Glass substrate 101 Transparent conductive layer 102 Protective layer 103 Polymer layer 104 Easy adhesion layer 105 Hard coat layer 106 Easy adhesion layer 107 Decoration layer

Claims (39)

  1.  ガラス基板と、
     透明電極層と、
     前記透明電極層を覆う保護層と、
     ポリマー層と、
    をこの順で有し、
     前記ガラス基板が、ガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をされてなることを特徴とするタッチパネル用積層体。
    A glass substrate;
    A transparent electrode layer;
    A protective layer covering the transparent electrode layer;
    A polymer layer;
    In this order,
    A laminate for a touch panel, wherein the glass substrate is subjected to a chemical strengthening treatment in which a part or all of ions having an ion radius smaller than that of potassium ions in the glass are replaced with potassium ions.
  2.  さらに、前記ポリマー層の、前記保護層が形成されている面の反対側の面にハードコート層を有する、請求項1に記載のタッチパネル用積層体。 Furthermore, the laminated body for touchscreens of Claim 1 which has a hard-coat layer in the surface on the opposite side to the surface in which the said protective layer is formed of the said polymer layer.
  3.  前記保護層と前記ポリマー層との間、および前記ポリマー層と前記ハードコート層との間の少なくとも一方に易接着層を有する、請求項2に記載のタッチパネル用積層体。 The touch panel laminate according to claim 2, further comprising an easy-adhesion layer between at least one of the protective layer and the polymer layer, and between the polymer layer and the hard coat layer.
  4.  前記透明電極層と前記保護層との間に、反射防止層を有する、請求項1に記載のタッチパネル用積層体。 The touch panel laminate according to claim 1, further comprising an antireflection layer between the transparent electrode layer and the protective layer.
  5.  前記ハードコート層が、硬化性樹脂またはアルコキシシランの加水分解縮合物を含む、請求項2に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 2, wherein the hard coat layer contains a hydrolysis condensate of a curable resin or an alkoxysilane.
  6.  前記保護層が、アクリル系ポリマーを含む、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the protective layer contains an acrylic polymer.
  7.  厚みが0.3~1mmである請求項1~6のいずれか1項に記載のタッチパネル用積層体。 The laminate for a touch panel according to any one of claims 1 to 6, wherein the thickness is 0.3 to 1 mm.
  8.  前記反射防止層の厚みが、500nm以下である、請求項4に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 4, wherein the antireflection layer has a thickness of 500 nm or less.
  9.  前記反射防止層の屈折率が、1.6以上である、請求項4に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 4, wherein a refractive index of the antireflection layer is 1.6 or more.
  10.  前記保護層と前記ポリマー層との間に有する前記易接着層の屈折率と、該易接着層に隣接する前記保護層および前記ポリマー層の屈折率との屈折率差が、0.02以下である、請求項3に記載のタッチパネル用積層体。 The refractive index difference between the refractive index of the easy adhesion layer between the protective layer and the polymer layer and the refractive index of the protective layer and the polymer layer adjacent to the easy adhesion layer is 0.02 or less. The laminated body for touchscreens of Claim 3 which exists.
  11.  前記ポリマー層の厚みが、20~150μmである、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the polymer layer has a thickness of 20 to 150 µm.
  12.  前記ポリマー層と前記ハードコート層との間に有する前記易接着層の屈折率と、該易接着層に隣接する前記ポリマー層および前記ハードコート層の屈折率との屈折率差が、0.02以下である、請求項3に記載のタッチパネル用積層体。 The refractive index difference between the refractive index of the easy adhesion layer between the polymer layer and the hard coat layer and the refractive index of the polymer layer and the hard coat layer adjacent to the easy adhesion layer is 0.02. The laminated body for touchscreens of Claim 3 which is the following.
  13.  前記ポリマー層が、ポリエチレンテレフタレート、ポリカーボネート、または、シクロオレフィンポリマーを含む、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the polymer layer contains polyethylene terephthalate, polycarbonate, or cycloolefin polymer.
  14.  前記ポリマー層のリタデーションが3000~12000nmである、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the retardation of the polymer layer is 3000 to 12000 nm.
  15.  前記ポリマー層のリタデーションが100から200nmである、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the retardation of the polymer layer is 100 to 200 nm.
  16.  前記ポリマー層の屈折率が1.60~1.75である、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the polymer layer has a refractive index of 1.60 to 1.75.
  17.  前記ポリマー層の表面から40~330nmの範囲内のいずれかの深さまでの厚みの表面改質層を有す、請求項1に記載のタッチパネル用積層体。 2. The touch panel laminate according to claim 1, further comprising a surface modification layer having a thickness ranging from the surface of the polymer layer to any depth within a range of 40 to 330 nm.
  18.  前記表面改質層が、前記ポリマー層の表面にグロー放電処理を施して形成されてなる、請求項17に記載のタッチパネル用積層体。 The touch panel laminate according to claim 17, wherein the surface modification layer is formed by performing glow discharge treatment on a surface of the polymer layer.
  19.  前記表面改質層が、Tg以上に加熱された前記ポリマー層の表面にグロー放電処理を施して形成されてなる、請求項17に記載のタッチパネル用積層体。 The touch panel laminate according to claim 17, wherein the surface-modified layer is formed by performing glow discharge treatment on the surface of the polymer layer heated to Tg or more.
  20.  前記ハードコート層に含まれる前記アルコキシシランの加水分解縮合物は、エポキシ基含有アルコキシシランとエポキシ基非含有アルコキシシランの加水分解縮合物である、請求項5に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 5, wherein the hydrolysis condensate of the alkoxysilane contained in the hard coat layer is a hydrolysis condensate of an epoxy group-containing alkoxysilane and an epoxy group-free alkoxysilane.
  21.  前記ハードコート層がアルコキシシランを加水分解し、該加水分解したアルコキシシランを縮合して形成してなる、請求項5に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 5, wherein the hard coat layer is formed by hydrolyzing alkoxysilane and condensing the hydrolyzed alkoxysilane.
  22.  前記ハードコート層の屈折率が、1.64以上2.10以下である、請求項4に記載のタッチパネル用積層体。 The laminated body for touchscreens of Claim 4 whose refractive index of the said hard-coat layer is 1.64 or more and 2.10 or less.
  23.  前記反射防止層が粒子を含む、請求項4に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 4, wherein the antireflection layer contains particles.
  24.  前記反射防止層が屈折率1.60~3.00である粒子を含む、請求項4に記載のタッチパネル用積層体。 The touch panel laminate according to claim 4, wherein the antireflection layer comprises particles having a refractive index of 1.60 to 3.00.
  25.  前記反射防止層が金属酸化物粒子を含む、請求項4に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 4, wherein the antireflection layer contains metal oxide particles.
  26.  前記反射防止層が酸化錫または酸化ジルコニウムの粒子を含む、請求項4に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 4, wherein the antireflection layer contains particles of tin oxide or zirconium oxide.
  27.  前記反射防止層が、前記反射防止層に含まれる固形分に対し、40~80質量%の粒子を含む、請求項4に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 4, wherein the antireflection layer contains 40 to 80% by mass of particles with respect to the solid content contained in the antireflection layer.
  28.  前記透明電極層として、下記(3)~(5)の要素を有する、請求項1に記載のタッチパネル用積層体。
    (3)複数のパッド部分が接続部分を介して第一の方向に延在して形成された複数の第一の透明電極パターン
    (4)前記第一の透明電極パターンと電気的に絶縁され、前記第一の方向に交差する方向に延在して形成された複数のパッド部分からなる複数の第二の電極パターン
    (5)前記第一の透明電極パターンと前記第二の電極パターンとを電気的に絶縁する絶縁層
    The touch panel laminate according to claim 1, wherein the transparent electrode layer includes the following elements (3) to (5).
    (3) A plurality of first transparent electrode patterns formed by extending a plurality of pad portions in a first direction via connection portions (4) electrically insulated from the first transparent electrode pattern, A plurality of second electrode patterns comprising a plurality of pad portions formed extending in a direction intersecting the first direction (5) electrically connecting the first transparent electrode pattern and the second electrode pattern Insulating layer
  29.  (6)前記第一の透明電極パターンおよび前記第二の電極パターンの少なくとも一方に電気的に接続され、前記第一の透明電極パターンおよび前記第二の電極パターンとは別の導電性要素を有する、請求項28に記載のタッチパネル用積層体。 (6) It is electrically connected to at least one of the first transparent electrode pattern and the second electrode pattern, and has a conductive element different from the first transparent electrode pattern and the second electrode pattern. The laminated body for touchscreens of Claim 28.
  30.  前記第二の電極パターンが透明電極パターンである、請求項28に記載のタッチパネル用積層体。 29. The touch panel laminate according to claim 28, wherein the second electrode pattern is a transparent electrode pattern.
  31.  (1)加飾層を有する、請求項1に記載のタッチパネル用積層体。 (1) The laminated body for touchscreens of Claim 1 which has a decoration layer.
  32.  厚みが1~40μmである(1)加飾層を有する、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the laminate has (1) a decorative layer having a thickness of 1 to 40 µm.
  33.  (2)マスク層を有する、請求項1に記載のタッチパネル用積層体。 (2) The laminate for a touch panel according to claim 1, comprising a mask layer.
  34.  前記ガラス基板の表面に表面処理を施してなる、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the surface of the glass substrate is subjected to a surface treatment.
  35.  前記ガラス基板の表面にシラン化合物を用いて表面処理を施してなる、請求項1に記載のタッチパネル用積層体。 The touch panel laminate according to claim 1, wherein the surface of the glass substrate is subjected to a surface treatment using a silane compound.
  36.  前記ガラス基板が、少なくとも一部に開口部を有する、請求項1に記載のタッチパネル用積層体。 The laminate for a touch panel according to claim 1, wherein the glass substrate has an opening at least in part.
  37.  ガラス基板と透明電極層を有する透明電極層付き前面板に、保護層とポリマー層とをこの順で有する積層材料を、前記透明電極層側の表面と前記保護層側の表面とが対向するように積層する工程を含み、
     前記ガラス基板が、ガラス中のカリウムイオンよりもイオン半径が小さいイオンの一部または全部をカリウムイオンに置換する化学強化処理をされてなることを特徴とする請求項1~36のいずれか1項に記載のタッチパネル用積層体の製造方法。
    A laminated material having a protective layer and a polymer layer in this order on a front plate with a transparent electrode layer having a glass substrate and a transparent electrode layer so that the surface on the transparent electrode layer side and the surface on the protective layer side face each other Including the step of laminating
    37. The glass substrate according to claim 1, wherein the glass substrate is subjected to a chemical strengthening treatment in which a part or all of ions having an ion radius smaller than that of potassium ions in the glass are replaced with potassium ions. The manufacturing method of the laminated body for touchscreens of description.
  38.  前記透明電極層を、硬化性樹脂組成物によって形成されたエッチングパターンを用いて透明導電材料をエッチング処理することによって形成する、請求項37に記載のタッチパネル用積層体の製造方法。 The manufacturing method of the laminated body for touchscreens of Claim 37 which forms the said transparent electrode layer by etching a transparent conductive material using the etching pattern formed with the curable resin composition.
  39.  前記透明電極層を、導電性硬化性樹脂組成物を用いて形成する、請求項37に記載のタッチパネル用積層体の製造方法。 The manufacturing method of the laminated body for touchscreens of Claim 37 which forms the said transparent electrode layer using a conductive curable resin composition.
PCT/JP2014/055298 2013-03-15 2014-03-03 Laminate for use in touch panel and manufacturing method of laminate for use in touch panel WO2014141921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013052749A JP6121204B2 (en) 2013-03-15 2013-03-15 Touch panel laminate and method for manufacturing touch panel laminate
JP2013-052749 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141921A1 true WO2014141921A1 (en) 2014-09-18

Family

ID=51536594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055298 WO2014141921A1 (en) 2013-03-15 2014-03-03 Laminate for use in touch panel and manufacturing method of laminate for use in touch panel

Country Status (2)

Country Link
JP (1) JP6121204B2 (en)
WO (1) WO2014141921A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025537A (en) * 2015-09-29 2018-05-11 富士胶片株式会社 Transfer film, the electrode protective membrane of capacitive input device, layered product and capacitive input device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367449A (en) * 1989-08-04 1991-03-22 Akashi Biimu Technol Kk Aperture cleaning method for particle beam device and device thereof
JP6471406B2 (en) * 2013-12-18 2019-02-20 大日本印刷株式会社 Optical laminate
JP6639098B2 (en) * 2015-03-20 2020-02-05 富士フイルム株式会社 Touch panel member, touch panel, and touch panel display device
CN108027675B (en) 2015-09-30 2021-10-08 富士胶片株式会社 Capacitance type input device, electrode protection film for capacitance type input device, composition for electrode protection film, transfer film, laminate, and image display device
JP6474713B2 (en) * 2015-12-09 2019-02-27 富士フイルム株式会社 Transfer material, transfer material manufacturing method, touch panel manufacturing method, and touch panel
JP6716912B2 (en) * 2015-12-25 2020-07-01 大日本印刷株式会社 Substrate for display device
CN114981767A (en) * 2020-02-21 2022-08-30 富士胶片株式会社 Forming method of conductive pattern, transfer printing film and touch panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054122A (en) * 2009-09-04 2011-03-17 Dainippon Printing Co Ltd Substrate and method for manufacturing the same
JP2012025158A (en) * 2010-06-25 2012-02-09 Gunze Ltd Transparent planar body, and transparent touch panel
WO2012023359A1 (en) * 2010-08-20 2012-02-23 シャープ株式会社 Position input device, display device, and method for manufacturing position input devices
WO2012099394A2 (en) * 2011-01-19 2012-07-26 Lg Innotek Co., Ltd. Touch panel and method for manufacturing the same
JP5051328B1 (en) * 2012-01-27 2012-10-17 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
JP2013015989A (en) * 2011-07-04 2013-01-24 Daiwa Sangyo:Kk Capacitive touch panel and manufacturing method therefor
JP5133449B1 (en) * 2011-11-04 2013-01-30 Smk株式会社 Transparent touch panel
JP2013023611A (en) * 2011-07-22 2013-02-04 Adeka Corp Aqueous polyurethane resin composition and easily adhesive polyester film applied with the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203072B2 (en) * 2008-07-07 2013-06-05 東洋紡株式会社 Upper electrode for touch panel
KR20100084252A (en) * 2009-01-16 2010-07-26 삼성모바일디스플레이주식회사 Touch screen panel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054122A (en) * 2009-09-04 2011-03-17 Dainippon Printing Co Ltd Substrate and method for manufacturing the same
JP2012025158A (en) * 2010-06-25 2012-02-09 Gunze Ltd Transparent planar body, and transparent touch panel
WO2012023359A1 (en) * 2010-08-20 2012-02-23 シャープ株式会社 Position input device, display device, and method for manufacturing position input devices
WO2012099394A2 (en) * 2011-01-19 2012-07-26 Lg Innotek Co., Ltd. Touch panel and method for manufacturing the same
JP2013015989A (en) * 2011-07-04 2013-01-24 Daiwa Sangyo:Kk Capacitive touch panel and manufacturing method therefor
JP2013023611A (en) * 2011-07-22 2013-02-04 Adeka Corp Aqueous polyurethane resin composition and easily adhesive polyester film applied with the same
JP5133449B1 (en) * 2011-11-04 2013-01-30 Smk株式会社 Transparent touch panel
JP5051328B1 (en) * 2012-01-27 2012-10-17 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108025537A (en) * 2015-09-29 2018-05-11 富士胶片株式会社 Transfer film, the electrode protective membrane of capacitive input device, layered product and capacitive input device
CN108025537B (en) * 2015-09-29 2019-12-03 富士胶片株式会社 Transfer film, the electrode protective membrane of capacitive input device, laminated body and capacitive input device

Also Published As

Publication number Publication date
JP6121204B2 (en) 2017-04-26
JP2014178922A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP6121204B2 (en) Touch panel laminate and method for manufacturing touch panel laminate
US10336043B2 (en) Transfer film, transparent laminate, method for producing transparent laminate, capacitive input device, and image display device
TWI498212B (en) Optical laminate and hardcoat film
JP5857013B2 (en) SUBSTRATE WITH DECORATION MATERIAL AND ITS MANUFACTURING METHOD, TOUCH PANEL AND INFORMATION DISPLAY DEVICE
JP6225053B2 (en) Photosensitive laminate, transfer material, patterned photosensitive laminate and method for producing the same, touch panel, and image display device
WO2015133599A1 (en) Decorative material-mounting substrate and manufacturing method therefor, touch panel, information display device
CN107710123B (en) Composite with transparent electrode, transfer film, method for manufacturing composite with transparent electrode, and capacitive input device
JP5935802B2 (en) Method for producing antiglare film
KR20130031910A (en) Resin film with adhesive layer, laminated film, and touchpanel
WO2014175312A1 (en) Transfer material, substrate with transfer layer, touch panel, manufacturing methods therefor, and information display device
KR20120117646A (en) Transparent conductive film with adhesive layer, laminate film and touch panel
TWI537130B (en) The manufacturing method of laminated film
CN108367560B (en) Decorative film, image display device, touch panel, and method for manufacturing decorative film
TW201736135A (en) Hard coat film and application of same
JPWO2012124323A1 (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate, and image display device
WO2014115415A1 (en) Transparent layered body and method for manufacturing same
CN108351722B (en) Thin film touch sensor
JP2009185282A (en) Hard coat film and method of producing the same, optical element, and image display device
TW201518093A (en) Hard coat film, transparent conductive film, and capacitive touch panel
WO2012073437A1 (en) Optical film, image display device, and image display device comprising touch panel
KR101544163B1 (en) Film for a display
TWI582469B (en) Transparent conductive optical sheet having high invisibility of pattern
JP2010143213A (en) Hard coat film, method for manufacturing hard coat film, transparent conductive laminate, optical element, and electronic instrument
JP2006030837A (en) Antireflective lamination film and display medium using the same
JP2014100882A (en) Double-side coated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14765630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14765630

Country of ref document: EP

Kind code of ref document: A1