JP5067995B2 - 懸濁液を測定するための方法と測定装置 - Google Patents

懸濁液を測定するための方法と測定装置 Download PDF

Info

Publication number
JP5067995B2
JP5067995B2 JP2001554049A JP2001554049A JP5067995B2 JP 5067995 B2 JP5067995 B2 JP 5067995B2 JP 2001554049 A JP2001554049 A JP 2001554049A JP 2001554049 A JP2001554049 A JP 2001554049A JP 5067995 B2 JP5067995 B2 JP 5067995B2
Authority
JP
Japan
Prior art keywords
suspension
concentration
measuring
measurement
whiteness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001554049A
Other languages
English (en)
Other versions
JP2003520960A (ja
Inventor
カルキ,パシ
ケンパイネン,アンチ
ラヒカラ,アルボ
Original Assignee
メトソ オートメーション オイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メトソ オートメーション オイ filed Critical メトソ オートメーション オイ
Publication of JP2003520960A publication Critical patent/JP2003520960A/ja
Application granted granted Critical
Publication of JP5067995B2 publication Critical patent/JP5067995B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/34Paper
    • G01N33/343Paper pulp
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C7/00Digesters
    • D21C7/12Devices for regulating or controlling
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1026Other features in bleaching processes
    • D21C9/1052Controlling the process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
(発明の分野)
本発明は、木繊維懸濁液の測定、詳しくはカッパー価と白色度の光学的測定に関連する。
【0002】
(発明の背景)
紙とパルプの測定の目的は、良質の最終製品を保証することである。パルプ産業では、パルプリグニン含有量の測定は、パルプ品質の最も重要な基底変数の一つである。リグニン含有量は、炭素水和物を酸で加水分解し、実験室で重量測定により測定すること、または、「カッパー価」を用いることにより得ることができる。規格ではカッパー価は、規格に定められた条件で1グラムの乾燥パルプが消費する20ミリモル/lの過マンガン酸カリウム溶液のミリリットル量として定義される。この測定は、規格SCAN−C 1:77(参照文献)に一層詳しく記されている。パルプにもよるが、リグニン含有量はカッパー価の約0.15から0.2倍である。パルプの測定では、様々なプロセス段階でのリアルタイムな情報を入手することが重要であり、これにより迅速なプロセス制御が可能となる。しかしカッパー価の実験室測定によって非常に迅速な測定とプロセス制御を行なうのは不可能である。
【0003】
実験室測定の代わりに、最近では、紫外線放射によりリグニンを測定する光学的オンラインカッパ分析装置を使用するのが普通である。一般的に、測定はランベルト−ベールの法則に基づいている、つまり濃度cと放射線が懸濁液中を移動した距離Lと吸光定数とにより懸濁液の吸光度Aを測定することにより、測定が実施されるのである。吸光度Aは数学的には、A=c*L*αで表すことができる。言い換えると、所望の濃度を持つパルプからの紫外線放射の吸光度を測定で判定するのである。このような光学的測定に関連して特に問題となるのは、濃度cとして表される繊維の相対数にリグニン含有量の測定が左右されることである。繊維懸濁液の測定では濃度が変動するため、濃度を正確に測定することはもちろん、濃度を或る値に設定することは非常に困難である。そのため、カッパー価の測定結果が不正確となってしまう。
【0004】
パルプまたは紙の白色度は、ISO白色度により測定されることが多い。この測定は、規格SCAN−P 3:93(参照文献)にさらに詳しく説明されている。規格に定められた白色度の実験室測定では、白色度は乾燥パルプシートから判定される。紙またはパルプの白色度が457nmの波長を持つ光学放射線により測定されることを除いて、パルプ白色度の測定もやはり、カッパー価の光学的測定と同じように、ランベルト−ベールの法則に基づいている。カッパー価の測定に関連するのと同様の問題が生じる。白色度の測定精度は濃度の測定精度に左右され、濃度を或る値に設定することが困難なので、白色度の測定結果が不正確となる。また白色度信号により提供される情報は、濃度に左右される或る最適条件を持つ。
【0005】
(発明の簡単な説明)
本発明の目的は、上述した問題点を減少または回避するための改良方法と、この方法を実行する装置とを提供することである。これは木繊維を含有する懸濁液を測定する方法により達成され、同方法は、懸濁液紫外線、更には光学放射線を照射して懸濁液により放射された紫外線、更には光学放射線を測定することを含む。この方法は、カッパー価、更には白色度との2種類の性質を測定することを特徴とし、所望の初期濃度から所望の最終濃度にわたる所望の濃度範囲で懸濁液濃度を変化させることと、懸濁液濃度を測定することと、所望の濃度範囲の様々な濃度において紫外線、更には光学放射線からの所望の波長の強度を測定することと、測定点にしたがって所望の種類の関数のパラメータを適合させることにより関数により測定点をモデル化することと、モデル化関数により、カッパー価、更には白色度を判定することとを含む方法である。
【0006】
本発明は、木繊維を含有する懸濁液を測定するための測定装置にも関連し、同測定装置は、紫外線、更には光学放射線を懸濁液に照射するための光学出力源と、懸濁液により放射された紫外線、更には光学放射線を測定するための少なくとも1台の検出器とを含む。本発明による測定装置は、カッパー価、更には白色度を測定するように構成され、測定装置は、所望の初期濃度から所望の最終濃度にわたる所望の濃度範囲において懸濁液濃度を変化させるように構成され、測定装置は、懸濁液濃度を測定し、所望の範囲の異なる濃度において紫外線、更には光学放射線からの所望の波長の強度を測定し、測定点にしたがって所望の種類の関数のパラメータを適合させることにより関数で測定点をモデル化し、モデル化関数により懸濁液のカッパー価、更には白色度を判定するように構成されていることを特徴とする。
【0007】
本発明の好適な実施例は、従属クレームに開示されている。
【0008】
本発明は、懸濁液の濃度を変化させることと、紫外線、更には光学放射線の強度を連続的かつ同時に測定することに基づき、これにより、所望の濃度範囲における紫外線、更には光学放射線の強度について測定点の集合が得られる。測定点集合に連続関数が適合すると、所望の濃度範囲における濃度と紫外線または光学放射線の強度との連続的従属性が得られる。最後に、連続関数の特性からカッパー価や白色度などの所望の懸濁液性質が判定される。
【0009】
本発明による方法と装置には、幾つかの長所が見られる。測定のために濃度が或る値に設定されずに濃度をスライドさせることにより光学測定が実行されるため、測定は短時間で行なわれる。これは測定の再現性と精度とを高める。測定が流動懸濁液から実行されるという事実が、さらにこれを向上させる。
【0010】
(発明の詳細な説明)
本発明による解決法は、木繊維を含有する懸濁液のカッパー価と白色度とを測定するのに特に適しているが、これに限定されるわけでは決してない。
【0011】
本出願において「光学放射線」とは、約40nmから1mmの波長を持つ電磁放射線を意味し、「紫外線放射」とは、約40nmから400nmの波長を持つ電磁放射線を意味する。
【0012】
最初に、パルプ・紙産業への本発明の応用を示す図1Aと1Bを参照して、測定装置の説明を行なう。木繊維を含有する懸濁液つまり木繊維パルプが中を流れるパイプ100から、見本抽出検査装置102によりサンプルが採取される。見本抽出検査装置102は、例えばピストンとシリンダ等により、周知の解決手段である。パイプ100内の懸濁液濃度は本発明による測定には高すぎる(通常は約10%)ので、ブロック104でパルプに水を追加することにより濃度が下げられ、その場合、所望の懸濁液濃度は例えば1%である。その後、ブロック106で実際のサンプル処理が実行されるが、ここでは、薄片、切りくず、金属片、石など、繊維より大きな固体粒子がサンプルから除去される。サンプルは1箇所以上から採取することができ、サンプル処理段階で、ひとつのサンプルが一度に幾つかのサンプルから選択される(矢印は異なるサンプルの入力を示す)。この後、洗浄ブロック108ではサンプルの洗浄が行なわれるが、ここでは水中に溶解した化学残留物とリグニンとがサンプルから除去される。洗浄されたサンプルは、洗浄ブロック108と測定ブロック110,112,114との間を循環する。ブロック110ではカッパー価の光学的測定が実施され、ブロック112ではサンプルの濃度が測定され、ブロック114ではサンプルの白色度が光学的に測定される。本発明による解決法は常に、濃度測定ブロック112を含む。さらに、測定ブロック110と114のうち一方つまりカッパー価の測定ブロック110と白色度の測定ブロック114のいずれか、またはその両方が、常に本発明による解決法に含まれる。測定中には、圧縮空気により、サンプル中の気泡が水中で溶解するほど、高く圧力が上昇されている。
【0013】
図1Bは、木繊維懸濁液の洗浄部のより詳細な図であるが、その構造自体は本発明に関連しない。サンプルは、パイプ154からバルブ152を通って洗浄部に流入する。大きな固体粒子はスクリーンまたはワイヤ156によりサンプルから除去されて、排出パイプ158に吸引される。実サンプルは、サンプル中の繊維がワイヤ160を通過しないほどの密度を持つフィルタ160を通る。加圧水スプレーをパイプ162からサンプルに噴霧することにより、サンプルは洗浄される。サンプルを混合するのに、圧縮空気流も使用できる。洗浄中に凝集した繊維は、相互に分離される。洗浄中、化学残留物と水に溶解した物質は、ワイヤ160を通りパイプ164から排出する。測定を実施するため、洗浄および測定部150,110〜114は圧縮空気により加圧される。測定されるサンプルはパイプ168内を循環する。サンプルからカッパー価および/または白色度が数回測定され、サンプルが循環する際に、水の追加または除去により濃度が変化する。測定が実施された後、排出パイプ170からサンプルが除去される。測定ブロック110から114により収集された情報は、測定結果のための処理ブロック172に送られ、ここで本発明の方法にしたがって測定結果が処理される。測定結果のための処理ブロック172の機能は、パルプの製造に使用される自動プロセス制御コンピュータに接続されている。
【0014】
図1A,1B,2Aを参照して、発明性を有する本方法の特徴を説明する。測定される懸濁液紫外線、更には光学放射線が照射され、懸濁液により放射される紫外線または光学放射線の強度が測定される。本発明の方法では、カッパー価を測定するために紫外線を、白色度を測定するために光学放射線を使用する。白色度はISO白色度として測定されることが望ましい。本発明による解決法によって、少なくとも2から130の間のカッパー価が測定でき、少なくとも30から95の間の白色度が測定できる。この方法では、測定される懸濁液は、測定ブロック110から114までパイプ168を循環し、ここで濃度に加えてカッパー価と白色度とが測定される。循環中に懸濁液濃度が変化し、ブロック112で測定された濃度が所望の初期値SAである時にカッパー価と白色度との測定が開始される。ブロック112で測定された濃度が所望の最終値SLに達するまで、カッパー価と白色度の測定が続く。所望の濃度範囲の全濃度を連続的に通過するように、懸濁液濃度が変化する。水の追加または除去により、濃度が変化する。水は一定の流れとして追加または除去される。例えば濃度を初期値SA=0.7%に設定することと、水の追加により濃度を最終値SL=0.3%に低下させることにより、測定を実施できる。純水と比較した懸濁液の作用が明らかであるように最終濃度が高い、そして、測定可能な量の光学放射線を懸濁液が検出器に放射するように初期濃度が低くなければならないということで、測定範囲が上記と異なることもある。このように、測定の濃度範囲は、所望の濃度初期値SAから所望の濃度最終値SLにわたるのである。カッパー価と白色度をともに測定するには、所望の濃度範囲の濃度において所望の波長で紫外線、光学放射線の強度を連続的に測定する。
【0015】
図2Aには、例えば図2Bに挙げられた表にしたがって各測定点が配置されている。コラムSは濃度、コラムPは測定された放射線強度、Sk1は平均濃度、Pk1は平均放射線強度、Sk2は平均濃度Sk1の平均、Pk2は平均放射線強度Pk1の平均を表す。最初に、5個の測定濃度値(例えばx1からx5)と5個の光学放射線強度(例えばy1からy5)の平均が求められる。その後、10個の平均結果(例えばX1からX10とY1からY10)の平均がさらに求められて、図2Aに図示された1個の測定点(例えばS1,P1)について、濃度値と光学放射線強度値とが得られる。次の点(S2,P2)は、X2からX11とY2からY11の結果から配置される、つまり測定結果は、スライド平均として配置されるのである。一定の流れとして水を追加することにより濃度が変化すると、1個の測定点を配置する間でも実際の濃度が変化する。
【0016】
配置された測定点は、所望の種類の関数200によりモデル化され、その場合、測定点はこの関数200に適合している。適合は、例えば最小二乗法により、それ自体周知の方法で行われる。適合した関数と測定点との相関関係が所定の閾値(つまり関数値と測定点との差の二乗)より低い場合には、測定は不正確であると解釈され、却下される。所望の関数200は初等関数でも、高次関数でもよい。例えば、多項関数、特に二次多項関数は、所望の種類の関数として適している。発明性を有する本解決法では、多項関数が測定点に適合され、これにより、濃度から紫外線または光学放射線の強度までの連続関数つまりP=f(S)=aS2+bS+cが得られ、ここでPは紫外線または光学放射線の強度、Sは濃度、f(S)は所望の濃度関数、aは二次係数、bは一次係数、cは定数項である。係数をあてはめる際には、関数が、濃度の関数として測定された点の集合の特性を最もよく表すようにa,b,cが選択される。適当な関数がモデル化された後、モデル化関数に基づいて懸濁液からカッパー価および/または白色度が判定される。
【0017】
以下では、カッパー価の決定についてより詳しく説明する。本発明によれば、カッパー価の決定では、作成された連続関数から2個の測定点202と204が選択されることが望ましい。測定点は、カッパー価Kの計算に使用される、つまりK=OK(値202,値204)であり、OKは、測定点をカッパー価に写像する演算である。演算OKでは、カッパー価と一次関係にある2個の測定点から解が求められる。この解が次に、演算OKにより実際のカッパー価に写像される。演算OKは、散乱の法則と経験とに基づく。本発明によれば、白色度の測定では、白色度が計算される1個の測定点206つまりB=OB(値206)のみが好ましく選択される。演算OBでは、一次従属により測定点を白色度に写像する。演算OKとOBとは、周知の性質を持つパルプが測定される校正測定により、選択される。
【0018】
図3により特にカッパー価の測定に関して、本発明による光学測定装置をさらに詳しく説明する。この測定装置では、測定される懸濁液は、図に示された解決手段では丸い測定セル300中を垂直方向に流れるが、測定セルの形状は本発明には無関係である。測定セルの寸法も本発明に関係ない。しかしながら、散乱と吸収が検出器に到達する光学出力を低下させるため、測定セルの寸法が大きくなるほど、測定に必要とされる光学出力は大きくなる。一方、測定セルが薄くなるほど、測定される懸濁液が光学放射線に与える影響は小さくなる。ゆえに測定セルの寸法は、測定される物質に応じて最適化されるものである。カッパー価は通常、紫外線で測定され、そのため光学放射線源302は少なくとも紫外線を放射しなければならない。光学放射線源302は、例えばキセノンランプでもよい。本発明によれば、放射線源302は測定セルを連続的に照射せずに、放射線源302はパルス動作を行なうことが望ましい。懸濁液を測定するため、測定セルには光学出力パルスが送られる。紫外線は、放射線源302で平行にされることが望ましい。平行となった放射は、基準測定のために設けられた半反射鏡304に当たる。反射鏡304から光学放射線は、基準検出器308へと反射される。基準検出器308は、所望の紫外線放射のみを検出器の検出面へ通過させる光学フィルタ3080を含む。基準検出器308は、光学放射線源302により生じた放射出力の変化がカッパー価の変化として解釈されないように、光学放射線源302の光学出力変化を監視するために使用される。平行になった紫外線はさらに、測定セル300と測定セル内部を流れる懸濁液に向けられる。紫外線は、散乱して懸濁液に吸収される。検出器310,312,314,316は、懸濁液から散乱した紫外線と、散乱せずに懸濁液を通過した紫外線とを測定するため、測定セルの様々な側に設けられる。各検出器310,312,314,316は、所望の紫外線を通過させる光学フィルタ3100,3120,3140,3160を含む。
【0019】
検出器314は、「水当量」を測定するのに使用される。つまり純水が測定セル300に供給されて、測定に対する純水と測定セル300の影響が測定されるのである(例えば汚染や吸収などにより引き起こされる散乱の影響)。この情報は、カッパー価の測定結果を校正し、特定するために使用できる。検出器312と314は、高カッパー価を測定するのにも使用される。様々な検出器の前のフィルタは、同一または異なる平均波長を持つ波長帯域を検出器の検出面上に通過させる。例えば本発明による解決法では、3種類の異なる波長が使用できる。その場合、例えば高カッパー価は長い波長により、低カッパー価は短い波長により測定される。両数の間のカッパー価は、短い波長と長い波長の間の波長で測定される。本発明の解決法では、望ましくは200nmから400nmの範囲から、使用すべき紫外線放射の波長が選択される。カッパー価を測定するのに使用される紫外線の一般的波長は、205nmと280nmであるが、本発明はこれらの値に限定されない。
【0020】
本発明の解決法は、検出器310から316により、測定すべき懸濁液に対して試験測定が実施されるように、用いられる。懸濁液品質が変化しなければ、カッパー価は通常、プロセス中にあまり変化しないので、試験測定後の実際カッパー価測定では検出器が1台のみ使用される。関連するプロセス段階のカッパー価を最もよく示す測定を行なう検出器が、使用すべき検出器として選択される。
【0021】
図4を参照して、白色度の測定についてさらに詳しく説明する。白色度の測定は、カッパー価の測定とかなり類似している。この場合にはキセノンランプであることが望ましい光学出力源402もやはり、一方向性で望ましくはパルス状の放射を測定セル400に放射する。測定セル400の前では、半反射鏡404と、所望の光学帯域における所望の波長を検出器へ通過させる光学フィルタ4080を含む検出器408とを用いて、光学放射線からの基準出力が測定される。検出器410,412は、白色度を判定するため測定セル400で測定される懸濁液により放射される放射線を測定するもので、各々光学フィルタ4100と4120とを有する。フィルタ4100と4120は、望ましくは457nmの波長で標準ISO白色度により白色度が測定されるように、選択される。検出器410は水当量を測定するのに使用される。つまり純水、望ましくは脱イオン水を測定セル400に供給し、測定に対する純水と測定セル400の影響が測定される(例えば汚染や吸収などによる拡散の影響)。この情報は、白色度測定を校正し、特定するために使用される。
【0022】
図5は、濃度を測定する一方法を示す。この測定はそれ自体周知である。光学放射線源502は、測定セル500に放射線を放射する。測定セル500の前で、光学放射線は偏光子504により偏光される。測定セル500内の懸濁液は、偏光を混合し、光学放射線が測定セルを出る際には、偏光ビームスプリッタ506により二つの部分に分割される。この場合に検出器508は、一方向のみに偏光された放射線を受け取り、検出器510は、検出器508に到達した放射線と直交する偏光を持つ放射線のみを受け取る。測定セル500内の懸濁液濃度は、検出器508と510とにより検出された放射強度の差に基づいて、周知の方法で判定できる。
【0023】
本発明による解決法では、基準パルプに対する校正測定を実行することにより、正しく機能するように測定装置が校正される。校正は、測定装置が実際に使用される前に必要であり、時間の経過とともに、例えば、光学放射の経路が変化したり検出器反応が変化するかもしれないので、時々実施されなければならない。基準パルプは、実験室で測定されて時間に関して安定した性質を持つ木繊維パルプである。本発明による測定装置の校正のための市販基準パルプとしては、例えばカナダのメーカーによるPaprican standard reference pulp 5−96がある。
【0024】
以下の表は、本発明による測定装置の能力を実験室測定と比較したものである。下の表は、カッパー価の測定を、基準測定に相当する実験室測定と比較したものである。
【0025】
【表1】
Figure 0005067995
【0026】
以下の表は、白色度測定を、基準測定に相当する実験室測定と比較したものである。
【0027】
【表2】
Figure 0005067995
【0028】
表ではσLは基準実験室誤差であり、σは標準偏差である。本発明による解決法は基準による測定とよく対応することが、表からわかる。
【0029】
添付図面による例を参照して本発明を説明したが、これは発明を決して限定するものではなく、本発明は、添付された請求項に開示された発明性を有する概念の範囲内で様々に変形できる。
【図面の簡単な説明】
添付図面に関連して、本発明を好適な実施例により詳細に説明する。
【図1】 測定装置を示すブロック線図(図1A)及び測定装置(図1B)を示す。
【図2】 測定結果と適合関数(図2A)及び測定点の配置(図2B)を示す。
【図3】 カッパー価の光学的測定を示す。
【図4】 白色度の光学的測定を示す。
【図5】 濃度の測定を示す。

Claims (16)

  1. 木繊維を含有する懸濁液を測定する方法であって、流れている前記懸濁液紫外線を照射して前記懸濁液のカッパー価を測定することを特徴とする方法であり、
    所望の初期濃度から所望の最終濃度にわたる所望の濃度範囲において、懸濁液濃度を変化させる段階と、
    前記所望の濃度範囲内で前記懸濁液濃度を測定する段階と、
    前記所望の濃度範囲において、前記懸濁液から放射される前記紫外線少なくともひとつの所望の波長の強度を測定する段階と、
    前記懸濁液濃度と少なくともひとつの所望の波長の強度との間の連続関数を求める段階と、
    前記関数によりカッパー価を判定する段階を含む方法。
  2. 流れている前記懸濁液に光学放射線を照射して前記懸濁液の白色度を更に測定することを含み、該方法が、
    所望の濃度範囲において、懸濁液からの光学放射線の所望の波長の強度を測定する段階と、
    懸濁液濃度と所望の波長の強度との連続関数を求める段階と、
    連続関数により懸濁液の白色度を判定する段階と、を含むことを特徴とする請求項1記載の方法。
  3. 前記方法において、前記連続関数の所定の濃度に対応する2個の測定点(202,204)を決定して、2つの測定点(202,204)で懸濁液濃度のカッパー値を判定することにより、懸濁液の白色度が測定されることを特徴とする、請求項1に記載の方法。
  4. 前記方法において、前記連続関数の所定の濃度値に対応する測定点(206)を決定して、該測定点により懸濁液の白色度を判定することにより、懸濁液の白色度が測定されることを特徴とする、請求項に記載の方法。
  5. 457nmの平均波長を持つ波長帯域で白色度が測定されることを特徴とする、請求項に記載の方法。
  6. 測定結果を校正するため所定の性質を持つ基準懸濁液を測定するのに前記方法が使用されることを特徴とする、請求項1または2に記載の方法。
  7. 前記懸濁液濃度が前記所望の濃度範囲の全濃度を連続的に通過するように、該懸濁液濃度が変化することを特徴とする、請求項1または2に記載の方法。
  8. 前記測定点が懸濁液濃度と少なくともひとつの所望の波長の強度との間の二次多項関数によりモデル化されることを特徴とする、請求項1または2に記載の方法。
  9. 木繊維を含有する懸濁液を測定するための測定装置であって、流れている懸濁液に紫外線を照射するための光学出力源(302,402)を備え、カッパー値を測定するための測定装置であって、
    所望の初期濃度から所望の最終濃度にわたる所望の濃度範囲において、懸濁液濃度を変化させる手段と、
    前記所望の濃度範囲内で前記懸濁液濃度を測定する手段と、
    前記所望の濃度範囲において、前記懸濁液から放射される前記紫外線の少なくともひとつの所望の波長の強度を測定するための少なくとも1つの検出手段(308〜316)と、
    前記懸濁液濃度と少なくともひとつの所望の波長の強度との間の連続関数を求める処理手段とを有し、
    前記連続関数により前記懸濁液のカッパー価を判定する装置
  10. 前記測定装置が、更に、流れている懸濁液に光学放射線を照射するための光学出力源と、所望の濃度範囲において前記懸濁液からの光学放射線の所望の波長の強度を測定するための少なくとも1台の検出器(408〜412)と、所望の波長の強度と懸濁液濃度の間の連続関数を求めるための処理手段とを有し、前記連続関数により前記懸濁液の白色度を更に判定するように構成されたことを特徴とする、請求項9に記載の装置
  11. 前記測定装置が、前記連続関数の所定の濃度に対応する2個の測定点(202,204)を決定するために配置され、該測定点により懸濁液のカッパー値を判定するように構成されたことを特徴とする、請求項9に記載の装置。
  12. 前記測定装置が、前記連続関数の所定の濃度に対応する測定点を決定するために配置され、該測定点により懸濁液の白色度を判定するように構成されたことを特徴とする、請求項10に記載の測定装置。
  13. 前記測定装置が、457nmの平均波長を持つ波長帯域で白色度を測定するように構成されたことを特徴とする、請求項10に記載の測定装置。
  14. 前記測定装置が、測定結果の校正を行なうため所定の性質を持つ基準懸濁液を測定するように構成されたことを特徴とする、請求項9または10に記載の測定装置。
  15. 前記測定装置が、懸濁液濃度が前記所望の濃度範囲の全濃度を連続的に通過するように懸濁液濃度を変化させるように構成されたことを特徴とする、請求項9または10に記載の測定装置。
  16. 前記測定装置が、懸濁液濃度と少なくともひとつの所望の波長の強度の間の二次多項関数により測定点をモデル化するように構成されたことを特徴とする、請求項9または10に記載の測定装置。
JP2001554049A 2000-01-21 2001-01-19 懸濁液を測定するための方法と測定装置 Expired - Lifetime JP5067995B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20000126 2000-01-21
FI20000126A FI116699B (fi) 2000-01-21 2000-01-21 Menetelmä ja mittalaite mitata suspensiota
PCT/FI2001/000046 WO2001053810A1 (en) 2000-01-21 2001-01-19 Method and measurement device for measuring suspension

Publications (2)

Publication Number Publication Date
JP2003520960A JP2003520960A (ja) 2003-07-08
JP5067995B2 true JP5067995B2 (ja) 2012-11-07

Family

ID=8557158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001554049A Expired - Lifetime JP5067995B2 (ja) 2000-01-21 2001-01-19 懸濁液を測定するための方法と測定装置

Country Status (7)

Country Link
US (1) US6703618B2 (ja)
EP (1) EP1252502A1 (ja)
JP (1) JP5067995B2 (ja)
AU (1) AU2001230272A1 (ja)
CA (1) CA2398232C (ja)
FI (1) FI116699B (ja)
WO (1) WO2001053810A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508509B2 (en) * 2004-05-04 2009-03-24 Metso Automation Oy Measurement of an object from an image consisting of a pixel matrix
FI120163B (fi) * 2005-04-04 2009-07-15 Metso Automation Oy Sakeuden muuttaminen ja mittaaminen
US7528951B2 (en) * 2006-03-23 2009-05-05 Hach Company Optical design of a measurement system having multiple sensor or multiple light source paths
JP2014153122A (ja) * 2013-02-06 2014-08-25 Azbil Corp 粒子計数器の試験方法、エアロゾル発生装置、及びエアロゾルの発生方法
SE537725C2 (sv) * 2013-04-02 2015-10-06 Btg Instr Ab Metod för bestämning av egenskaper hos heterogena media
SE537452C2 (sv) 2013-04-02 2015-05-05 Btg Instr Ab Provtagnings-och analysanordning
WO2015118954A1 (ja) * 2014-02-05 2015-08-13 株式会社村田製作所 被測定物の測定方法、測定器具および測定装置
TW201544652A (zh) * 2014-05-20 2015-12-01 Georgia Pacific Consumer Prod 非木材纖維之漂白及植物性雜質減量方法
US10031177B2 (en) * 2015-08-18 2018-07-24 Juniper Networks, Inc. Methods and apparatus for optical transceiver calibration and test
FI127260B (en) 2016-12-08 2018-02-15 Valmet Automation Oy Method and measuring device for measuring suspension
FI127733B (en) 2016-12-19 2019-01-15 Valmet Automation Oy Apparatus and Method for Measuring Optically Fluidal Material Containing Fluid and Insoluble Particles as a Medium
FI128736B (en) * 2018-03-09 2020-11-13 Valmet Automation Oy Method and measuring device for measuring the suspension
CZ35574U1 (cs) * 2021-10-19 2021-11-22 PBT Works s.r.o. Zařízení k měření obsahu organických látek ve vodních emulzích a roztocích
FI130730B1 (fi) * 2021-12-23 2024-02-15 Valmet Automation Oy Menetelmä ja laite selluloosaprosessin ohjaamiseen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507556A (en) * 1982-12-08 1985-03-26 St. Regis Paper Company Apparatus and method for determining pulp stock consistency
US4838692A (en) * 1986-03-24 1989-06-13 Champion International Corporation Temperature-compensated apparatus and method for determining pulp stock consistency
SE463118B (sv) * 1988-02-26 1990-10-08 Btg Kaelle Inventing Ab Foerfarande och anordning foer bestaemning av koncentrationen av ett aemne som aer bundet till partiklar i ett stroemmande medium
US5498534A (en) * 1992-03-25 1996-03-12 The United States Of America As Represented By The Secretary Of Agriculture Method of removing color from wood pulp using xylanase from streptomyces roseiscleroticus NRRL B-11019
US5416577A (en) * 1993-07-02 1995-05-16 Honeywell Inc. Color sensor for optically measuring consisting and brightness of materials
US5420682A (en) * 1993-07-02 1995-05-30 Honeywell Inc. Method and apparatus for compensating spectral data with a color sensor
US5500735A (en) * 1994-07-18 1996-03-19 Pulp And Paper Research Institute Of Canada Method and apparatus for on-line measurement of pulp fiber surface development
US5786894A (en) * 1996-10-25 1998-07-28 International Paper Company Measurement of paper pulp and fiber visual characteristics
US6273994B1 (en) * 1998-01-30 2001-08-14 Iogen Corporation Method and device for measuring bleach requirement, bleachability, and effectivenss of hemicellulase enzyme treatment of pulp
US6551451B2 (en) * 1999-12-23 2003-04-22 Pulp And Paper Research Institute Of Canada Method for determining liquid content in chemical pulps using ramen spectrometry

Also Published As

Publication number Publication date
CA2398232A1 (en) 2001-07-26
WO2001053810A1 (en) 2001-07-26
FI20000126A (fi) 2001-07-22
CA2398232C (en) 2007-05-15
US6703618B2 (en) 2004-03-09
FI116699B (fi) 2006-01-31
US20030030005A1 (en) 2003-02-13
EP1252502A1 (en) 2002-10-30
JP2003520960A (ja) 2003-07-08
AU2001230272A1 (en) 2001-07-31
FI20000126A0 (fi) 2000-01-21

Similar Documents

Publication Publication Date Title
JP5067995B2 (ja) 懸濁液を測定するための方法と測定装置
EP0786082B1 (en) A method of determining the organic content in pulp and paper mill effluents
JP5683836B2 (ja) 光学測定キュベットの汚染物質の検出方法
KR101684407B1 (ko) 광학 센서를 이용한 수질 오염 측정 시스템 및 수질 오염 측정 장치
CA1322866C (en) Method and apparatus for determining the concentration of a substance which is bonded to particles in a flowing medium
WO1993005384A1 (en) A method and arrangement for determining fibre properties by near-infrared-spectroscopy
JP2009168747A (ja) 食品検査方法及び食品検査装置
JP2016191677A (ja) 検体分析装置、血液凝固分析装置、検体分析方法、及びコンピュータプログラム
ES2237487T3 (es) Determinacion del indice kappa en pulpas quimicas por espectrometria raman.
CN109799224A (zh) 快速检测中药提取液中蛋白质浓度的方法及应用
JPWO2009110463A1 (ja) 全反射減衰型遠紫外分光法およびそれを用いた濃度測定装置
CN108181253B (zh) 用于测量悬浮液的方法和测量装置
JP5468344B2 (ja) 水溶液中の水溶性ラジカル種濃度の測定方法、及び、水溶性ラジカル種濃度測定装置
JPH0235338A (ja) 処理される水/セルロース・スラリー中の化学成分の保有量を監視し、制御する方法
CA2908584A1 (en) A method of determining a property of a heterogeneous medium
CN110243774B (zh) 用于测量悬浮液的方法和测量设备
JPH0136571B2 (ja)
JP7314456B2 (ja) 牛乳の検査装置
JP6687217B2 (ja) 分光分析装置および方法
JP2005172780A (ja) 精米の検査方法
JP2001272338A (ja) 非破壊的熟度測定法
JPH05273125A (ja) 近赤外線によるナチュラルチーズの熟成度合の非破壊的測定法
CN113624698A (zh) 一种快速测定卷烟纸白水中碳酸钙与纤维含量的方法
Zhao et al. Determination of optical parameters of pulp suspensions by time-resolved detection of photoacoustic signals and total diffuse reflectance measurements
JPH05118983A (ja) 分光分析装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5067995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term