JP5062325B2 - 系統安定化装置 - Google Patents

系統安定化装置 Download PDF

Info

Publication number
JP5062325B2
JP5062325B2 JP2010507279A JP2010507279A JP5062325B2 JP 5062325 B2 JP5062325 B2 JP 5062325B2 JP 2010507279 A JP2010507279 A JP 2010507279A JP 2010507279 A JP2010507279 A JP 2010507279A JP 5062325 B2 JP5062325 B2 JP 5062325B2
Authority
JP
Japan
Prior art keywords
current
signal
output
variation
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010507279A
Other languages
English (en)
Other versions
JPWO2009125834A1 (ja
Inventor
正和 宗島
一伸 大井
一成 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2010507279A priority Critical patent/JP5062325B2/ja
Publication of JPWO2009125834A1 publication Critical patent/JPWO2009125834A1/ja
Application granted granted Critical
Publication of JP5062325B2 publication Critical patent/JP5062325B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は系統安定化装置に関し、計測機器を削減しつつ制御動作が安定するように工夫したものである。
近年、太陽光や風力などの自然エネルギーによる発電が利用されてきている。
図7に、既存の電力系統(上位配電系統)1と配電系統(マイクログリッド)10とが、線路インピーダンスLsと遮断器2を介して接続された例を示す。
マイクログリッドである配電系統10には、分散電源11と負荷12が接続されている。分散電源11は、図7では1つの発電機として図示しているが、実際には、自然エネルギーを利用した自然エネルギー型発電設備(太陽光発電設備や風力発電設備など)と内燃機関により駆動される内燃機関型発電設備(ディーゼル発電設備など)とを含む、分散した複数の発電設備により構成されている。また、負荷12も、実際には分散した複数の負荷である。
図7に示すようなマイクログリッド10では、自然エネルギー型発電設備を持っているため、天候や風速などにより、発電量が大きく変動する。
そこで、この発電量の変動を吸収する目的で系統安定化装置が用いられる。
また、内燃機関型発電設備では、ガバナ制御により出力電力の調整をしている。しかし、ガバナ制御は応答が遅いため、負荷12で消費する電力が急に変動した場合には、このような電力の急変動(急な過不足)に対して、内燃機関型発電設備では追従することができない。
このような電力の急変動に応答性良く追従することにより、内燃機関型発電設備をアシストし、電力の需要と供給のバランスをとるといった目的のためにも、系統安定化装置が用いられている。
系統安定化装置は、電力蓄積機能を有する電力変換装置であり、配電系統に設置され、前述した電力補償を行なう装置である。
図8は、図7に示す配電系統(マイクログリッド)10に、系統安定化装置20を備えた例である。系統安定化装置20は、分散電源11及び負荷12に対して、並列に接続されている。
系統安定化装置20は、制御部21と、逆変換動作と順変換動作ができる電力変換器22(インバータ)と、電気二重層キャパシタなどの直流充電部23を、主要部として有している。
電力変換器22は、制御部21から送られてくるゲート信号gに応じて動作する。この電力変換器22は、順変換動作をするときには、配電系統10から得た交流電力を直流電力に変換し、この直流電力を直流充電部23に充電し、逆変換動作をするときには、直流充電部23に充電していた直流電力を交流電力に変換し、この交流電力を配電系統10に送る。
なお、電力変換器(インバータ)22から出力された電力は、フィルタ回路27を通過してから、配電系統10に送り出される。つまり、系統安定化装置20から配電系統10に送り出される電力は、電力変換器22から出力された電力が、フィルタ回路27によりフィルタリング処理された電力である。
フィルタ回路27は、リアクトル,コンデンサ及びトランス等から構成されており、電力変換器22が出力するパルス電圧を平滑にする機能を果たしている。
系統安定化装置20では、電力系統1から配電系統10に流入してくる系統電流Isを電流検出器24により検出し、配電系統10の電圧である系統電圧Vsを電圧検出器25により検出し、電力変換器22から出力される交流出力電流Iinvを電流検出器26により検出する。また、後述する理由により、系統安定化装置20から配電系統10に送り出される電流を検出する電流検出器AAを備えている。
電力系統1に故障などが発生していない正常時には、遮断器2が接続状態となり、系統安定化装置20では、配電系統10が電力系統1に繋がった状態で運転を行なう「系統連系運転」が行なわれる。この系統連系運転時には、電力系統1と分散電源11と系統安定化装置20により、負荷12に電力が供給される。
一方、電力系統1に故障が発生した異常時には、遮断器2が遮断状態となり、系統安定化装置20では、配電系統10が電力系統1から切り離された状態で運転を行なう「自立運転」が行なわれる。この自立運転時には、分散電源11と系統安定化装置20により負荷12に電力が供給される。
系統安定化装置20は、系統連系運転時と、自立運転時において、次のような動作をする。
(1)系統連系運転時には、系統安定化装置20は、配電系統10に流入する系統電流Isを検出し、この系統電流Isから系統電力を求めて、この系統電力の変動を抑制するように動作する。
(2)自立運転時には、系統安定化装置20は、配電系統10内の系統電圧Vsを検出し、この系統電圧Vsの電圧振幅と周波数が安定となるように補償動作を行なう。
ここで、系統安定化装置20の制御部21の詳細を、図9を参照して説明する。
位相同期回路(PLL)101は、系統電圧Vsから系統電圧Vsの位相を示す基準位相信号θを出力する。正弦波発生器102は、基準位相信号θに同期した定格電圧に相当する三相電圧波形{sin(θ),sin(θ−2/3π),sin(θ+2/3π)}を基準三相正弦波信号Kとして出力する。
切替スイッチ103は、系統連系運転時には図中で実線で示すように、可動接点103a,103bがA側に投入され、自立運転時には図中で点線で示すように、可動接点103a,103bがB側に投入される。
次に、系統連系時に作動する各機能ブロックの説明と、系統連系時の制御動作を併せて説明する。
dq変換部104は、系統電流Isを、基準位相信号θで示す位相で回転する回転座標系にdq変換して、系統電流の有効分Isdと系統電流の無効分Isqを出力する。
第1の変動検出ブロック105は、dq軸上の系統電流の有効分Isdの変動分を検出して、これを有効分の電流指令Irefdとして出力する。第2の変動検出ブロック106は、dq軸上の系統電流の無効分Isqの変動分を検出して、これを無効分の電流指令Irefqとして出力する。
変動検出ブロック105,106は、微分機能とフィルタ機能を有するバンドバスフィルタであり、その構造の詳細は後述する。
dq変換部107は、交流出力電流Iinvを、基準位相信号θで示す位相で回転する回転座標系にdq変換して、交流出力電流の有効分Iinvdと交流出力電流の無効分Iinvqを出力する。
減算部108は、有効分の電流指令Irefdから交流出力電流の有効分Iinvdを減算して、有効分の電流偏差Δdを出力する。減算部109は、無効分の電流指令Irefqから交流出力電流の無効分Iinvqを減算して、無効分の電流偏差Δqを出力する。
電流制御部110は、有効分の電流偏差Δdを比例積分(PI)制御して、有効分の電圧指令Vdを出力する。電流制御部111は、無効分の電流偏差Δqを比例積分(PI)制御して、無効分の電圧指令Vqを出力する。
dq逆変換器部112は、有効分の電圧指令Vdと無効分の電圧指令Vqに対して、dq逆変換を施して、固定座標系の電圧指令Vφを出力する。
加算部113は、電圧指令Vφに基準三相正弦波信号Kを加算して、最終的な電圧指令V*を出力する。
PWM(Pulse Width Modulation)変調器114は、電圧指令V*をPWM変調してゲート信号gを出力する。
このゲート信号gにより電力変換器22の動作制御が行なわれ、系統連系運転時において、系統電流Isの変動を抑制するために、電力変換器22から電力が出力される。
次に、自立運転時に作動する各機能ブロックの説明と、自立運転時の制御動作を併せて説明する。
周波数検出部121は、系統電圧Vsの周波数を検出して周波数信号Fを出力する。なお、系統電圧Vsの周波数は有効電力に対応しており、有効電力が低下すると系統電圧Vsの周波数が低下し、有効電力が増加すると系統電圧Vsの周波数が増加する対応関係になっている。
振幅検出部122は、系統電圧Vsの振幅を検出して振幅信号Lを出力する。なお、系統電圧Vsの振幅は無効電力に対応しており、無効電力が低下すると系統電圧Vsの振幅が低下し、無効電力が増加すると系統電圧Vsの振幅が増加する対応関係になっている。
第3の変動検出ブロック123は、周波数信号Fの変動分を検出して、これを有効分の電流指令Irefdとして出力する。第4の変動検出ブロック124は、振幅信号Lの変動分を検出して、これを無効分の電流指令Irefqとして出力する。
変動検出ブロック123,124は、微分機能とフィルタ機能を有するバンドバスフィルタであり、その構造の詳細は後述する。
減算部108は、有効分の電流指令Irefdから交流出力電流の有効分Iinvdを減算して、有効分の電流偏差Δdを出力する。減算部109は、無効分の電流指令Irefqから交流出力電流の無効分Iinvqを減算して、無効分の電流偏差Δqを出力する。
電流制御部110は、有効分の電流偏差Δdを比例積分(PI)制御して、有効分の電圧指令Vdを出力する。電流制御部111は、無効分の電流偏差Δqを比例積分(PI)制御して、無効分の電圧指令Vqを出力する。
dq逆変換器部112は、有効分の電圧指令Vdと無効分の電圧指令Vqに対して、dq逆変換を施して、固定座標系の電圧指令Vφを出力する。
加算部113は、電圧指令Vφに基準三相正弦波信号Kを加算して、最終的な電圧指令V*を出力する。
PWM(Pulse Width Modulation)変調器114は、電圧指令V*をPWM変調してゲート信号gを出力する。
このゲート信号gにより電力変換器22の動作制御が行なわれ、自立運転時において、系統電圧Vsの電圧振幅と周波数の変動を抑制するために、電力変換器22から電力が出力される。
変動検出ブロック105,106,123,124は、前述したように、バンドパスフィルタにより構成されている。
ここで、変動検出ブロック105,106,123,124として用いることができる、従来のバンドパスフィルタ50の構成を、図10を参照して説明する。なお図10においてsは微分機能を示すラプラス演算子である。
図10に示すように、このバンドパスフィルタ(変動検出ブロック)50は、ローパスフィルタ51とローパスフィルタ52と減算器53とで構成されている。
なお、バンドパスフィルタ50の通過帯域周波数は、各変動検出ブロック105,106,123,124に要求されるフィルタリング特性に応じて決定される。また、決定された通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2とする。
このため、ノイズ除去用ローパスフィルタ51は、その遮断周波数をf1としており、その時定数をT1としている。また、変動検出時間を設定するためのローパスフィルタ52は、その遮断周波数をf2としており、その時定数をT2としている。なおf1=1/T1となっており、f2=1/T2となっている。
ローパスフィルタ51は、一次遅れ特性を有するフィルタであり、その時定数は、ノイズ除去を目的として決定した時定数T1となっている。
ローパスフィルタ52は、一次遅れ特性を有するフィルタであり、その時定数は、変動検出する時間を設定する目的として決定した時定数T2となっている。
両フィルタ51,52は、入力信号が入力されると、それぞれのフィルタ特性を利用して、入力信号をフィルタリングする。
なお、バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック105であれば、入力信号は、系統電流の有効分Isdである。
バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック106であれば、入力信号は、系統電流の無効分Isqである。
バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック123であれば、入力信号は、周波数信号Fである。
バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック124であれば、入力信号は、振幅信号Lである。
減算器53は、ローパスフィルタ51から出力された信号から、ローパスフィルタ52から出力された信号を減算した信号を出力する。この減算器53から出力される信号が、変動分信号である。
バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック105であれば、変動分信号は、系統電流の有効分Isdの変動分である有効分の電流指令Irefdである。
バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック106であれば、変動分信号は、系統電流の無効分Isqの変動分である無効分の電流指令Irefqである。
バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック123であれば、変動分信号は、周波数信号Fの変動分である有効分の電流指令Irefdである。
バンドパスフィルタ(変動検出ブロック)50が変動検出ブロック124であれば、変動分信号は、振幅信号Lの変動分である無効分の電流指令Irefqである。
特開平10−14251号公報
ところで上記従来技術では、次のような問題があった。
系統連系運転時には、系統電流Isの変動を抑制するために、系統安定化装置20が作動して電力変換器22から電力を出力して電力補償する。このため、電力変換器22から電力補償のために出力した電流分だけ、次回に検出する系統電流Isの検出値が減少する。このように系統電流Isの検出値が減少してしまうと、系統電流Isの変動を確実に抑制することができなくなってしまう。
かかる不具合を防止するために、系統安定化装置20から配電系統10に送り出される電流、つまり電力変換器22から出力されフィルタ回路27にてフィルタリング処理されてから配電系統10に送り出される出力電流を検出して、この出力電流検出値を系統電流検出値に加算することで、系統電流検出値の減少分を相殺する方法が考えられている。
しかし、この場合には、系統安定化装置20から配電系統10に送り出される電流(フィルタ回路27を通過した後の電流)を検出する電流検出器AAが別途必要になるという問題がある。
また、上記の不具合を防止するために、変動検出ブロック105,106の出力側に比例積分(PI)アンプを備えて、電流指令Irefd,Irefqを増幅することで、系統電流検出値の減少分を相殺する方法も考えられている。しかし、電流指令Irefd,Irefqを増幅するPIアンプが別途必要になるという問題がある。
更に、PIアンプは、入力信号の直流成分に対するゲインが無限大になるという特徴があるため、変動分が零であっても、PIアンプ出力は零にならず系統安定化装置20から電力が出力され続けてしまう。この不具合を解消するため、PIアンプをリセットする必要がある。
しかし、急激にリセットすると系統安定化装置20から出力される電力が急激に零に変化し、系統等に悪影響を与えてしまう。このため、このような単純なリセットではなく、PIアンプの出力を少しづつ零に戻すといった複雑な制御処理が必要になる、という問題もある。
自立運転時には、系統電圧Vsの周波数と振幅の変動を抑制するために、系統安定化装置20が作動して電力変換器22から電力を出力して電力補償する。このため、電力変換器22から電力補償のために出力した電流分だけ、次回に検出する系統電圧Vsの周波数検出値や振幅検出値が減少する。このように系統電圧Vsの周波数検出値や振幅検出値が減少してしまうと、系統電圧Vsの変動を確実に抑制することができなくなってしまう。
そこで、上述したのと同様に、系統安定化装置20から配電系統10に送り出される電流、つまり電力変換器22から出力されフィルタ回路27にてフィルタリング処理されてから配電系統10に送り出される出力電流を検出して、この出力電流検出値を、系統電圧の周波数検出値や振幅検出値に加算したり、または、PIアンプを備えたりすることが考えられている。しかし、これも、上述したのと同様な問題が発生する。
本発明は、上記従来技術に鑑み、系統安定化装置の出力電流を検出する電流検出器や、PIアンプを用いることなく、安定した動作ができる系統安定化装置を提供することを目的とする。
上記課題を解決する本発明の構成は、
電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
前記制御部は、
前記電力系統が正常であるときには、
前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
前記電力系統に異常が発生したときには、
前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
しかも、第1から第4の変動検出ブロックは、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、遮断周波数をf2とした変動検出時間を設定するためのローパスフィルタの時定数をT2としたときに、時定数をT1とする一次遅れ特性の第1のフィルタと、時定数をT2とする一次遅れ特性の第2のフィルタと、第1のフィルタから出力された信号と第2のフィルタから出力された信号を減算して出力する減算器と、この減算器の出力を第1及び第2のフィルタにフィードバックするフィードバック回路とで構成されていることを特徴とする。
また本発明の構成は、前記の系統安定化装置において、
前記第1から第4の変動検出ブロックには、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数がf1として設定され、低周波数側の遮断周波数がf2として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、値が1/f2となっている変動検出時間を設定するための時定数がT2として設定されており、
前記第1から第4の変動検出ブロックは、演算処理プログラムを用いた演算処理により、
当該変動検出ブロックに入力される入力信号と、フィードバック信号を加算し、
加算された入力信号とフィードバック信号を、時定数をT1とした一次遅れフィルタ処理して、第1のフィルタ信号を求め、
加算された入力信号とフィードバック信号を、時定数をT2とした一次遅れフィルタ処理して、第2のフィルタ信号を求め、
第1のフィルタ信号から第2のフィルタ信号を減算して変動分を求め、前記変動分を電流指令として出力すると共に、前記変動分を前記フィードバック信号としてフィードバックすることを特徴とする。
また本発明の構成は、
電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
前記制御部は、
前記電力系統が正常であるときには、
前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
前記電力系統に異常が発生したときには、
前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
しかも、第1から第4の変動検出ブロックは、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、遮断周波数をf2とした変動検出時間を設定するためのローパスフィルタの時定数をT2、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、T2をαで除算した値をT4としたときに、時定数をT3とする一次遅れ特性の第1のフィルタと、時定数をT4とする一次遅れ特性の第2のフィルタと、第1のフィルタから出力された信号と第2のフィルタから出力された信号を減算して出力する減算器と、この減算器の出力にゲインGを乗算して出力するアンプとで構成され、
しかも、式(01)で示すζを1以上の値に設定して、式(01),(02),(03)を用いて、設定値αとゲインGが設定されていることを特徴とする。
Figure 0005062325
また本発明の構成は、
電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
前記制御部は、
前記電力系統が正常であるときには、
前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
前記電力系統に異常が発生したときには、
前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
しかも、第1から第4の変動検出ブロックは、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、遮断周波数をf2とした変動検出時間を設定するためのローパスフィルタの時定数をT2、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、T2をαで除算した値をT4としたときに、時定数をT3とする一次遅れ特性の第1のフィルタと、時定数をT4とする一次遅れ特性の第2のフィルタと、第1のフィルタから出力された信号と第2のフィルタから出力された信号を減算して出力する減算器と、この減算器の出力にゲインGを乗算して出力するアンプとで構成され、
しかも、ゲインGを任意の値に設定して、式(04)を用いて、設定値αが設定されていることを特徴とする。
Figure 0005062325
また本発明の構成は、前記の系統安定化装置において、
前記第1から第4の変動検出ブロックには、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数がf1として設定され、低周波数側の遮断周波数がf2として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、値が1/f2となっている変動検出時間を設定するための時定数がT2として設定され、振動係数がζとして設定され、設定数がαとして設定され、ゲインがGとして設定され、T1にαを乗算した値がT3として設定され、T2をαで除算した値がT4として設定されており、
前記第1から第4の変動検出ブロックは、演算処理プログラムを用いた演算処理により、
当該変動検出ブロックに入力される入力信号を、時定数をT3とした一次遅れフィルタ処理して、第1のフィルタ信号を求め、
当該変動検出ブロックに入力される入力信号を、時定数をT4とした一次遅れフィルタ処理して、第2のフィルタ信号を求め、
第1のフィルタ信号から第2のフィルタ信号を減算して減算信号を求め、
前記減算信号にゲインGを乗算して変動分を求め、この変動分を電流指令として出力することを特徴とする。
また本発明の構成は、
電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
前記制御部は、
前記電力系統が正常であるときには、
前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
前記電力系統に異常が発生したときには、
前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
しかも、第1から第4の変動検出ブロックは、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、任意の時間に設定したクッション時間をT5、1サンプル周期をTs、Xをリミット値としたときに、
時定数をT3とする一次遅れ特性のフィルタと、±(X/T5)Tsとなったリミット特性を有するリミッタと、入力された信号を1サンプル周期Tsだけ遅延させて出力する遅延回路と、第1の減算器と、第2の減算器と、加算器と、アンプとを有し
前記第1の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記遅延回路から出力された信号とを減算して前記リミッタに送り、
前記加算器は、前記リミッタから出力された信号と前記遅延回路から出力された信号とを加算して出力し、
前記遅延回路は、前記加算器から出力された信号を1サンプル周期Tsだけ遅延させて出力し、
前記第2の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記加算器から出力された信号とを減算して前記アンプに出力し、
前記アンプは前記加算器の出力にゲインGを乗算して出力し、
しかも、式(01)で示すζを1以上の値に設定して、式(01),(02),(03)を用いて、設定値αとゲインGが設定されていることを特徴とする。
Figure 0005062325
また本発明の構成は、
電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
前記制御部は、
前記電力系統が正常であるときには、
前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
前記電力系統に異常が発生したときには、
前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
しかも、第1から第4の変動検出ブロックは、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、任意の時間に設定したクッション時間をT5、1サンプル周期をTs、Xをリミット値としたときに、
時定数をT3とする一次遅れ特性のフィルタと、±(X/T5)Tsとなったリミット特性を有するリミッタと、入力された信号を1サンプル周期Tsだけ遅延させて出力する遅延回路と、第1の減算器と、第2の減算器と、加算器と、アンプとを有し
前記第1の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記遅延回路から出力された信号とを減算して前記リミッタに送り、
前記加算器は、前記リミッタから出力された信号と前記遅延回路から出力された信号とを加算して出力し、
前記遅延回路は、前記加算器から出力された信号を1サンプル周期Tsだけ遅延させて出力し、
前記第2の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記加算器から出力された信号とを減算して前記アンプに出力し、
前記アンプは前記加算器の出力にゲインGを乗算して出力し、
しかも、ゲインGを任意の値に設定して、式(04)を用いて、設定値αが設定されていることを特徴とする。
Figure 0005062325
また本発明の構成は、前記の系統安定化装置において、
前記第1から第4の変動検出ブロックには、
当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数がf1として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、振動係数がζとして設定され、設定数がαとして設定され、ゲインがGとして設定され、T1にαを乗算した値がT3として設定され、任意の時間に設定したクッション時間がT5として設定され、1サンプル周期がTsとして設定され、リミット値がXとして設定されており、
前記第1から第4の変動検出ブロックは、演算処理プログラムを用いた演算処理により、
当該変動検出ブロックに入力される入力信号を、時定数をT3とした一次遅れフィルタ処理して、フィルタ信号を求め、
前記フィルタ信号から遅延信号を減算して第1の減算信号を求め、
前記第1の減算信号を、±(X/T5)Tsとなったリミット特性によりリミット処理して、リミット信号を求め、
前記リミット信号と遅延信号を加算して加算信号を求め、
前記加算信号を1サンプル周期Tsだけ遅延させて、前記遅延信号とし、
前記フィルタ信号から前記加算信号を減算して第2の減算信号求め、
前記第2の減算信号に、ゲインGを乗算して変動分を求め、この変動分を電流指令として出力することを特徴とする。
本発明によれば、系統安定化装置が補償電力を出力することに起因して、系統電流検出値や系統電圧検出値が減少しようとしたときに、変動検出ブロック内においてフィードバック制御をしたり、信号増幅をしたりしている。
一般的に、電力変換器(インバータ)の交流出力側には、インバータから出力されるパルス電圧を平滑するために、フィルタ回路(リアクトル,コンデンサ及びトランス等から構成される)が付加されている。
本発明では、変動検出ブロック内においてフィードバック制御をしたり、信号増幅をしたりすることにより、前述の減少分を補償しているため、系統安定化装置から配電系統に送り出される電流、つまり電力変換器から出力されフィルタ回路にてフィルタリング処理されてから配電系統に送り出される出力電流を検出するための電流検出器AAや、PIアンプを用いることなく、系統安定化装置による安定した制御動作を確保することができる。
本発明の実施例1に係る変動検出ブロックを示す回路図。 本発明の実施例2に係る変動検出ブロックを示す回路図。 本発明の実施例4に係る変動検出ブロックを示す回路図。 実施例2と実施例4の特性比較のための波形図。 実施例2のフィルタをIIRフィルタで構成した場合の例を示す回路図。 実施例4のクッション部をIIRフィルタで構成した場合の例を示す回路図。 マイクログリッドを示す回路構成図。 系統安定化装置を備えたマイクログリッドを示す回路構成図。 系統安定化装置の制御部を示す回路図。 従来の変動検出ブロックを示す回路図。
以下、本発明の実施の形態について、実施例に基づき詳細に説明する。
図1は、本発明の実施例1に係る変動検出ブロック60を示す。この変動検出ブロック60は、系統安定化装置20の制御部21(図8参照)に組み込んだ、変動検出ブロック105,106,123,124(図9参照)に適用するものである。
図1に示すように、この変動検出ブロック60は、フィルタ61と、フィルタ62と、減算器63と、フィードバック回路64と、加算器65とで構成されている。
なお、変動検出ブロック60の通過帯域周波数は、各変動検出ブロック105,106,123,124に要求されるフィルタリング特性に応じて決定される。
また、決定された通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2としている。このため、ノイズ除去用ローパスフィルタ61は、その遮断周波数をf1としており、その時定数をT1としている。また、変動検出時間を設定するためのローパスフィルタ62は、その遮断周波数をf2としており、その時定数をT2としている。なおf1=1/T1となっており、f2=1/T2となっている。
ローパスフィルタ61は、一次遅れ特性を有するフィルタであり、その時定数は、ノイズ除去を目的として決定した時定数T1となっている。
ローパスフィルタ62は、一次遅れ特性を有するフィルタであり、その時定数は、変動検出する時間を設定する目的として決定した時定数T2となっている。
両フィルタ61,62は、入力信号及びフィードバック回路64を通ってフィードバックされたフィードバック信号が入力されると、それぞれのフィルタ特性を利用して、入力信号及びフィードバック信号をフィルタリングする。
なお、変動検出ブロック60が変動検出ブロック105であれば、入力信号は、系統電流の有効分Isdである。
変動検出ブロック60が変動検出ブロック106であれば、入力信号は、系統電流の無効分Isqである。
変動検出ブロック60が変動検出ブロック123であれば、入力信号は、周波数信号Fである。
変動検出ブロック60が変動検出ブロック124であれば、入力信号は、振幅信号Lである。
減算器63は、ローパスフィルタ61から出力された信号から、ローパスフィルタ62から出力された信号を減算した信号を出力する。
減算器63から出力された信号は、フィードバック回路64を通ってフィードバックされ、加算器65により入力信号に加算されてから、ローパスフィルタ61,62に入力される。
結局、減算器63からは、フィードバック信号が加算された入力信号に含まれている、変動分信号が出力される。
変動検出ブロック60が変動検出ブロック105であれば、変動分信号は、系統電流の有効分Isdの変動分である有効分の電流指令Irefdである。
変動検出ブロック60が変動検出ブロック106であれば、変動分信号は、系統電流の無効分Isqの変動分である無効分の電流指令Irefqである。
変動検出ブロック60が変動検出ブロック123であれば、変動分信号は、周波数信号Fの変動分である有効分の電流指令Irefdである。
変動検出ブロック60が変動検出ブロック124であれば、変動分信号は、振幅信号Lの変動分である無効分の電流指令Irefqである。
実施例1においては、フィードバック回路64によりフィードバックされるフィードバック信号は、交流出力電流Iinvに対応しているため、交流出力電流Iinvを入力信号に加算していることと等価になる。
系統安定化装置20(電力変換器22)が電力補償することに起因して、系統連系運転時における系統電流Isの検出値や、自立運転時における系統電圧Vsの検出値が減少しても、本実施例では、交流出力電流Iinvに対応したフィードバック信号を入力信号に加算しているため、前記の減少分をフィードバック信号により補完していることとなる。
この結果、系統電流Isの検出値や系統電圧Vsの検出値が減少しても、系統安定化装置20の制御動作が安定する。
しかも、系統安定化装置20から配電系統に送り出される電流、つまり電力変換器22から出力されフィルタ回路27にてフィルタリング処理されてから配電系統10に送り出される出力電流を検出するための電流検出器AAや、PIアンプを用いる必要はない。
なお、図1に示す実施例1の変動検出ブロック60の伝達関数は、次式(1)で示される。なお式(2)は遅れ要素の一般式である。
Figure 0005062325
式(1)から分かるように、変動検出ブロック60の伝達関数は、微分要素と、ゲイン要素と、遅れ要素に分解できる。そこで、式(1)の遅れ要素と、式(2)の遅れ要素との係数比較をすると、振動係数ζ=(T1/T2)1/2となる。
時定数T1は、ノイズ除去用の時定数であるため、非常に小さい値である。一方、時定数T2は、変動検出する時間を設定するための時定数であるため、通常、時定数T1よりも大きい値に設計するため、T2>>T1が成り立つ。
このようにT2>>T1となっているため、次式(3)に示すように、振動係数ζは1よりも小さくなり振動的になる。
Figure 0005062325
なお前記実施例1は、コンピュータに予め設定した演算処理プログラム(ソフトウエア)を用いて演算することにより、実現することもできる。
つまり、ソフトウエアを利用した実施例では、変動検出ブロック60としては、ハードウエアであるコンピュータに、変動検出ブロック60として必要な演算処理をする演算処理プログラム(ソフトエア)を組み込んだ(設定した)ものとして構成することができる。
このようなソフトウエアを利用した実施例に係る変動検出ブロック60では、次のような演算処理を、演算処理プログラムにより演算する。
(1) 演算処理プログラムにより、変動検出ブロック60の通過帯域周波数の高周波数側の遮断周波数がf1として設定され、低周波数側の遮断周波数がf2として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、値が1/f2となっている変動検出時間を設定するための時定数がT2として設定される。
(2) 上記設定が完了後、変動検出ブロック60は、演算処理プログラムを用いた演算処理により、
(2−1) 変動検出ブロック60に入力される入力信号と、フィードバック信号を加算し、
(2−2) 加算された入力信号とフィードバック信号を、時定数をT1とした一次遅れフィルタ処理して、第1のフィルタ信号を求め、
(2−3) 加算された入力信号とフィードバック信号を、時定数をT2とした一次遅れフィルタ処理して、第2のフィルタ信号を求め、
(2−4) 第1のフィルタ信号から第2のフィルタ信号を減算して変動分を求め、変動分を電流指令Irefd,Irefqとして出力すると共に、変動分を前記フィードバック信号としてフィードバックする。
このようにして、演算処理プログラムを用いた演算処理により求めた、有効電流指令Irefd及び無効電流指令Irefqを出力することができる。
図2は、本発明の実施例2に係る変動検出ブロック70を示す。この変動検出ブロック70は、系統安定化装置20の制御部21(図8参照)に組み込んだ、変動検出ブロック105,106,123,124(図9参照)に適用するものである。
実施例2の変動検出ブロック70は、実施例1の変動検出ブロック60を改良したものであり、実施例1の問題、即ち特性が振動的となる問題を解決したものである。
図2に示すように、この変動検出ブロック70は、ローパスフィルタ71と、ローパスフィルタ72と、減算器73と、アンプ74とで構成されている。
なお、変動検出ブロック70の通過帯域周波数は、各変動検出ブロック105,106,123,124に要求されるフィルタリング特性に応じて決定される。
また、決定された通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2としている。このため、ノイズ除去用ローパスフィルタ71は、その遮断周波数をf1としており、その時定数をT1としている。また、変動検出時間を設定するためのローパスフィルタ72は、その遮断周波数をf2としており、その時定数をT2とする。なおf1=1/T1となっており、f2=1/T2となっている。
更に、設定数αは、後述する式(6)で示す値であり、
T3=T1×α、T4=T2/αとして設定している。
ローパスフィルタ71は、一次遅れ特性を有するフィルタであり、その時定数は、時定数T3となっている。この時定数T3は、ノイズ除去を目的として決定した時定数T1に、設定数αを乗算した値である。
ローパスフィルタ72は、一次遅れ特性を有するフィルタであり、その時定数は、時定数T4となっている。この時定数T4は、変動検出する時間を設定する目的として決定した時定数T2を、設定数αで除算した値である。
両フィルタ71,72は、入力信号が入力されると、それぞれのフィルタ特性を利用して、入力信号をフィルタリングする。
なお、変動検出ブロック70が変動検出ブロック105であれば、入力信号は、系統電流の有効分Isdである。
変動検出ブロック70が変動検出ブロック106であれば、入力信号は、系統電流の無効分Isqである。
変動検出ブロック70が変動検出ブロック123であれば、入力信号は、周波数信号Fである。
変動検出ブロック70が変動検出ブロック124であれば、入力信号は、振幅信号Lである。
減算器73は、ローパスフィルタ71から出力された信号から、ローパスフィルタ72から出力された信号を減算した信号を出力する。
減算器73からは、入力信号に含まれている、変動分信号が出力される。
変動検出ブロック70が変動検出ブロック105であれば、変動分信号は、系統電流の有効分Isdの変動分である有効分の電流指令Irefdである。
変動検出ブロック70が変動検出ブロック106であれば、変動分信号は、系統電流の無効分Isqの変動分である無効分の電流指令Irefqである。
変動検出ブロック70が変動検出ブロック123であれば、変動分信号は、周波数信号Fの変動分である有効分の電流指令Irefdである。
変動検出ブロック70が変動検出ブロック124であれば、変動分信号は、振幅信号Lの変動分である無効分の電流指令Irefqである。
減算器73から出力される変動分信号は、アンプ74により増幅される。このアンプ74のゲインGは、後述する式(7)で示す値である。
実施例2おいては、変動分信号をアンプ74により増幅し、この増幅した信号を有効分の電流指令Irefdまたは無効分の電流指令Irefqとして出力する。
系統安定化装置20(電力変換器22)が電力補償することに起因して、系統連系運転時における系統電流Isの検出値や、自立運転時における系統電圧Vsの検出値が減少しても、本実施例では、変動分信号をアンプ74により増幅した信号を、有効分の電流指令Irefdまたは無効分の電流指令Irefqとして出力するため、前記の減少分をアンプ74により増幅することにより補完していることとなる。
この結果、系統電流Isの検出値や系統電圧Vsの検出値が減少しても、系統安定化装置20の制御動作が安定する。
しかも、系統安定化装置20から配電系統に送り出される電流、つまり電力変換器22から出力されフィルタ回路27にてフィルタリング処理されてから配電系統10に送り出される出力電流を検出するための電流検出器AAや、PIアンプを用いる必要はない。
ここで、変動検出ブロック70の特性を説明する。
変動検出ブロック70の伝達関数は次式(4)で示される。
Figure 0005062325
式(4)の遅れ要素の振動係数ζは次式(5)で示される。式(5)においてζ≧1となるように設計すれば、振動的でなくなる。
Figure 0005062325
また設定数αは式(5)を変形することにより、次式(6)として表すことができる。
ゲインGは、式(1)のゲインの項と、式(4)のゲインの項を比較することにより、次式(7)として表すことができる。
Figure 0005062325
変動検出ブロック70の各フィルタ71,72の設計手法としては、式(5)で示すζをζ≧1として、その後に、式(6)(7)を用いて設定数αとゲインGを決定する。
このようにすれば、ζ>1とすることができ、変動検出ブロック70の特性が振動的でなくなるという特徴を奏する。
実施例3では、変動検出ブロック70の構成自体は、実施例2と同じであるが、変動検出ブロック70の各フィルタ71,72の設計方法の手順が異なる。
実施例3の設計手法では、ゲインGを先に決定し、その後に設定数αを決定する。このようにすることで、振動係数ζを指標とした設計ではなく、ゲインGの項を優先した設定が可能となる。
具体的には、式(1)で示すゲインの項と、式(4)で示すゲインの項の係数比較を行なうと、ゲインGを先に設定した場合の設定数αは、次式(8)で表される。
Figure 0005062325
なお振動係数ζは、実施例2で示した式(5)と同じである。
なお前記実施例2,3は、コンピュータに予め設定した演算処理プログラム(ソフトウエア)を用いて演算することにより、実現することもできる。
つまり、ソフトウエアを利用した実施例では、変動検出ブロック70としては、ハードウエアであるコンピュータに、変動検出ブロック70として必要な演算処理をする演算処理プログラム(ソフトエア)を組み込んだ(設定した)ものとして構成することができる。
このようなソフトウエアを利用した実施例に係る変動検出ブロック70では、次のような演算処理を、演算処理プログラムにより演算する。
(1) 演算処理プログラムにより、変動検出ブロック70の通過帯域周波数の高周波数側の遮断周波数がf1として設定され、低周波数側の遮断周波数がf2として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、値が1/f2となっている変動検出時間を設定するための時定数がT2として設定され、振動係数がζとして設定され、設定数がαとして設定され、ゲインがGとして設定され、T1にαを乗算した値がT3として設定され、T2をαで除算した値がT4として設定される。
(2) 上記設定が完了後、変動検出ブロック70は、演算処理プログラムを用いた演算処理により、
(2−1) 変動検出ブロック70に入力される入力信号を、時定数をT3とした一次遅れフィルタ処理して、第1のフィルタ信号を求め、
(2−2) 変動検出ブロック70に入力される入力信号を、時定数をT4とした一次遅れフィルタ処理して、第2のフィルタ信号を求め、
(2−3) 第1のフィルタ信号から第2のフィルタ信号を減算して減算信号を求め、
(2−4) 減算信号にゲインGを乗算して変動分を求め、この変動分を電流指令Irefd,Irefqとして出力する。
このようにして、演算処理プログラムを用いた演算処理により求めた、有効電流指令Irefd及び無効電流指令Irefqを出力することができる。
図3は、本発明の実施例4に係る変動検出ブロック80を示す。この変動検出ブロック80は、系統安定化装置20の制御部21(図8参照)に組み込んだ、変動検出ブロック105,106,123,124(図9参照)に適用するものである。
図3に示すように、この変動検出ブロック80は、ローパスフィルタ81と、リミッタ82と、遅延回路83と、第1の減算器84と、第2の減算器85と、加算器86と、アンプ87とで構成されている。
なお変動検出ブロック80の通過帯域周波数は、各変動検出ブロック105,106,123,124に要求されるフィルタリング特性に応じて決定される。また、決定された通過帯域周波数の高周波数側の遮断周波数をf1、遮断周波数をf1としたノイズ除去用ローパスフィルタ81の時定数をT1とする。なおf1=1/T1となっている。
更に、設定数αは、前述した式(6)で示す値であり、T3=T1×αとして設定している。
ローパスフィルタ81は、一次遅れ特性を有するフィルタであり、その時定数は、T3となっている。時定数T3は、ノイズ除去を目的として決定した時定数T1に、設定数αを乗算した値である。
ローパスフィルタ81は、入力信号が入力されると、そのフィルタ特性を利用して、入力信号をフィルタリングする。
なお、変動検出ブロック80が変動検出ブロック105であれば、入力信号は、系統電流の有効分Isdである。
変動検出ブロック80が変動検出ブロック106であれば、入力信号は、系統電流の無効分Isqである。
変動検出ブロック80が変動検出ブロック123であれば、入力信号は、周波数信号Fである。
変動検出ブロック80が変動検出ブロック124であれば、入力信号は、振幅信号Lである。
リミッタ82は、±(X/T5)Tsとなったリミット特性を有している。
なお、T5は、任意の時間に設定したクッション時間であり、Tsは1サンプル周期であり、Xはリミット値である。
このリミッタ82は、1サンプル周期Tsあたりの変化量を制限するものである。リミッタ82は、リミッタ82に入力される信号の信号値が、+X(上限のリミット値)と−X(下限のリミット値)の間の値であるときには、その信号の信号値をそのまま保持して出力し、リミッタ82に入力される信号の信号値が、+X(上限のリミット値)以上である場合には、所定の時間は値が一定の傾きで増加し、その後は値を+Xに制限し、リミッタ82に入力される信号の信号値が、−X(下限のリミット値)以下である場合には、所定の時間は値が一定の傾きで減少し、その後は値を−Xに制限する。
遅延回路83は、入力された信号を1サンプル周期Tsだけ遅延させて出力する特性を有している。この遅延回路83は、例えば、Z-1となった特性を有するZ変換回路などにより構成することができる。
減算器84は、一次遅れ特性のフィルタ81から出力された信号から、遅延回路83から出力された信号を減算して、減算した信号をリミッタ82に送る。
つまり、遅延回路83の出力信号を、リミッタ82の前段で負帰還している。
加算器86は、リミッタ82から出力された信号と、遅延回路83から出力された信号とを加算して出力する。
つまり、遅延回路83の出力信号を、リミッタ82の後段で正帰還している。
遅延回路83は、加算器から出力された信号を、1サンプル周期Tsだけ遅延させて出力している。
このように、遅延回路83から出力された信号を、リミッタ82の前段で負帰還し、リミッタ83の後段で正帰還しているため、信号状態は次のようになる。
減算器84の出力は、「現在のサンプル値−1サンプル周期前のリミッタ処理後の値」となる。したがって、フィルタ81から減算器84に入力される信号値が、+X以下で−X以上である場合には、リミッタ82から出力される信号値は0となる。一方、フィルタ81から減算器84に入力される信号値が、+X以上または−X以下である場合には、リミッタ82から出力される信号値はリミット値(+X、−X)を越えた分の値となる。
加算器86の出力は、「リミッタの出力+1サンプル周期前のリミッタ処理後の値」となる。
減算器85は、一次遅れ特性のローパスフィルタ81から出力された信号から、加算器86から出力された信号を減算して出力する。この減算器85からは、入力信号に含まれている、変動分信号が出力される。
変動検出ブロック80が変動検出ブロック105であれば、変動分信号は、系統電流の有効分Isdの変動分である有効分の電流指令Irefdである。
変動検出ブロック80が変動検出ブロック106であれば、変動分信号は、系統電流の無効分Isqの変動分である無効分の電流指令Irefqである。
変動検出ブロック80が変動検出ブロック123であれば、変動分信号は、周波数信号Fの変動分である有効分の電流指令Irefdである。
変動検出ブロック80が変動検出ブロック124であれば、変動分信号は、振幅信号Lの変動分である無効分の電流指令Irefqである。
減算器85から出力される変動分信号は、アンプ87により増幅される。このアンプ87のゲインGは、前述した式(7)で示す値である。
実施例4においては、変動分信号をアンプ87により増幅し、この増幅した信号を有効分の電流指令Irefdまたは無効分の電流指令Irefqとして出力する。
系統安定化装置20(電力変換器22)が電力補償することに起因して、系統連系運転時における系統電流Isの検出値や、自立運転時における系統電圧Vsの検出値が減少しても、本実施例では、変動分信号をアンプ87により増幅した信号を、有効分の電流指令Irefdまたは無効分の電流指令Irefqとして出力するため、前記の減少分をアンプ87により増幅することにより補完していることとなる。
この結果、系統電流Isの検出値や系統電圧Vsの検出値が減少しても、系統安定化装置20の制御動作が安定する。
しかも、系統安定化装置20から配電系統に送り出される電流、つまり電力変換器22から出力されフィルタ回路27にてフィルタリング処理されてから配電系統10に送り出される出力電流を検出するための電流検出器AAや、PIアンプを用いる必要はない。
なお変動検出ブロック80のフィルタ81の設計手法としては、式(5)で示すζを、ζ≧1として、その後に、式(6)(7)を用いて設定数αとゲインGを決定する。
このようにすれば、ζ>1とすることができ、変動検出ブロック80の特性が振動的でなくなるという特徴を奏する。
ここで図3に示す変動検出ブロック80と、図2に示す変動検出ブロック70の信号特性を、図4を参照して説明する。
例えば、図4(a)に示すようなステップ状の信号が変動検出ブロック70,80に入力された場合を説明する。
この場合、図2に示す変動検出ブロック70では、ローパスフィルタ72の出力波形は図4(b)のようになり、アンプ74の出力波形は図4(c)のようになる。
一方、図3に示す変動検出ブロック80では、加算器86の出力波形は図4(d)のようになり、アンプ87の出力波形は図4(d)のようになる。
このように、図4(b)〜図4(e)を比較すると、ほぼ同等な動作が行われていることがわかる。
次に、図3に示す変動検出ブロック80と、図2に示す変動検出ブロック70の演算負荷を、図5と図6を参照して説明する。
図2に示す変動検出ブロック70のローパスフィルタ72を、IIR(Infinite Impulse Response)フィルタで実現すると、図5のようになる。図5から分かるように、ローパスフィルタ72をIIRフィルタで実現すると、乗算が3回、加算が2回、遅延が1回の演算が必要になる。
一方、図3に示す変動検出ブロック80のうち、リミッタ82,遅延回路83,減算器84,加算器86の部分(つまりクッション部)を、IIRフィルタで実現すると、図6のようになる。図6から分かるように、このクッション部をIIRフィルタで実現すると、乗算が0回、加算が2回、遅延が1回の演算が必要になる。
かかる見地からみて、図3に示す変動検出ブロック80の演算負荷は、図2に示す変動ブロック70の演算負荷に比べて軽いことが分かる。
実施例5では、変動検出ブロック80の構成自体は、実施例4と同じであるが、変動検出ブロック80のフィルタ81の設計方法の手順が異なる。
実施例5の設計手法では、ゲインGを先に決定し、その後に設定数αを決定する。このようにすることで、振動係数ζを指標とした設計ではなく、ゲインGの項を優先した設定が可能となる。
具体的には、式(1)で示すゲインの項と、式(4)で示すゲインの項の係数比較を行なうと、ゲインGを先に設定した場合の設定数αは、前述した式(8)で表される。
なお振動係数ζは、前述した式(5)と同じである。
なお前記実施例4,5は、コンピュータに予め設定した演算処理プログラム(ソフトウエア)を用いて演算することにより、実現することもできる。
つまり、ソフトウエアを利用した実施例では、変動検出ブロック80としては、ハードウエアであるコンピュータに、変動検出ブロック80として必要な演算処理をする演算処理プログラム(ソフトエア)を組み込んだ(設定した)ものとして構成することができる。
このようなソフトウエアを利用した実施例に係る変動検出ブロック80では、次のような演算処理を、演算処理プログラムにより演算する。
(1)演算処理プログラムにより、変動検出ブロック80の通過帯域周波数の高周波数側の遮断周波数がf1として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、振動係数がζとして設定され、設定数がαとして設定され、ゲインがGとして設定され、T1にαを乗算した値がT3として設定され、任意の時間に設定したクッション時間がT5として設定され、1サンプル周期がTsとして設定され、リミット値がXとして設定される。
(2) 上記設定が完了後、変動検出ブロック80は、演算処理プログラムを用いた演算処理により、
(2−1) 変動検出ブロック80に入力される入力信号を、時定数をT3とした一次遅れフィルタ処理して、フィルタ信号を求め、
(2−2) フィルタ信号から遅延信号を減算して第1の減算信号を求め、
(2−3) 第1の減算信号を、±(X/T5)Tsとなったリミット特性によりリミット処理して、リミット信号を求め、
(2−4) リミット信号と遅延信号を加算して加算信号を求め、
(2−5) 加算信号を1サンプル周期Tsだけ遅延させて、前記遅延信号とし、
(2−6) フィルタ信号から加算信号を減算して第2の減算信号求め、
(2−7) 第2の減算信号に、ゲインGを乗算して変動分を求め、この変動分を電流指令Irefd,Irefqとして出力する。
このようにして、演算処理プログラムを用いた演算処理により求めた、有効電流指令Irefd及び無効電流指令Irefqを出力することができる。
1 電力系統、2 遮断器、10 配電系統、11 分散電源、12 負荷、20 系統安定化装置、21 制御部、22 電力変換器、23 直流充電部、24,26 電流検出器、25 電圧検出器、60,70,80 変動検出ブロック、105,106,123,124 変動検出ブロック

Claims (8)

  1. 電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
    前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
    前記制御部は、
    前記電力系統が正常であるときには、
    前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
    第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    前記電力系統に異常が発生したときには、
    前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
    第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    しかも、第1から第4の変動検出ブロックは、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、遮断周波数をf2とした変動検出時間を設定するためのローパスフィルタの時定数をT2としたときに、時定数をT1とする一次遅れ特性の第1のフィルタと、時定数をT2とする一次遅れ特性の第2のフィルタと、第1のフィルタから出力された信号と第2のフィルタから出力された信号を減算して出力する減算器と、この減算器の出力を第1及び第2のフィルタにフィードバックするフィードバック回路とで構成されていることを特徴とする、
    ことを特徴とする系統安定化装置。
  2. 請求項1に記載の系統安定化装置において、
    前記第1から第4の変動検出ブロックには、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数がf1として設定され、低周波数側の遮断周波数がf2として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、値が1/f2となっている変動検出時間を設定するための時定数がT2として設定されており、
    前記第1から第4の変動検出ブロックは、演算処理プログラムを用いた演算処理により、
    当該変動検出ブロックに入力される入力信号と、フィードバック信号を加算し、
    加算された入力信号とフィードバック信号を、時定数をT1とした一次遅れフィルタ処理して、第1のフィルタ信号を求め、
    加算された入力信号とフィードバック信号を、時定数をT2とした一次遅れフィルタ処理して、第2のフィルタ信号を求め、
    第1のフィルタ信号から第2のフィルタ信号を減算して変動分を求め、前記変動分を電流指令として出力すると共に、前記変動分を前記フィードバック信号としてフィードバックする、
    ことを特徴とする系統安定化装置。
  3. 電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
    前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
    前記制御部は、
    前記電力系統が正常であるときには、
    前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
    第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    前記電力系統に異常が発生したときには、
    前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
    第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    しかも、第1から第4の変動検出ブロックは、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、遮断周波数をf2とした変動検出時間を設定するためのローパスフィルタの時定数をT2、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、T2をαで除算した値をT4としたときに、時定数をT3とする一次遅れ特性の第1のフィルタと、時定数をT4とする一次遅れ特性の第2のフィルタと、第1のフィルタから出力された信号と第2のフィルタから出力された信号を減算して出力する減算器と、この減算器の出力にゲインGを乗算して出力するアンプとで構成され、
    しかも、式(01)で示すζを1以上の値に設定して、式(01),(02),(03)を用いて、設定値αとゲインGが設定されていることを特徴とする、
    ことを特徴とする系統安定化装置。
    Figure 0005062325
  4. 電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
    前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
    前記制御部は、
    前記電力系統が正常であるときには、
    前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
    第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    前記電力系統に異常が発生したときには、
    前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
    第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    しかも、第1から第4の変動検出ブロックは、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、低周波数側の遮断周波数をf2、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、遮断周波数をf2とした変動検出時間を設定するためのローパスフィルタの時定数をT2、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、T2をαで除算した値をT4としたときに、時定数をT3とする一次遅れ特性の第1のフィルタと、時定数をT4とする一次遅れ特性の第2のフィルタと、第1のフィルタから出力された信号と第2のフィルタから出力された信号を減算して出力する減算器と、この減算器の出力にゲインGを乗算して出力するアンプとで構成され、
    しかも、ゲインGを任意の値に設定して、式(04)を用いて、設定値αが設定されていることを特徴とする、
    ことを特徴とする系統安定化装置。
    Figure 0005062325
  5. 請求項3または請求項4に記載の系統安定化装置において、
    前記第1から第4の変動検出ブロックには、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数がf1として設定され、低周波数側の遮断周波数がf2として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、値が1/f2となっている変動検出時間を設定するための時定数がT2として設定され、振動係数がζとして設定され、設定数がαとして設定され、ゲインがGとして設定され、T1にαを乗算した値がT3として設定され、T2をαで除算した値がT4として設定されており、
    前記第1から第4の変動検出ブロックは、演算処理プログラムを用いた演算処理により、
    当該変動検出ブロックに入力される入力信号を、時定数をT3とした一次遅れフィルタ処理して、第1のフィルタ信号を求め、
    当該変動検出ブロックに入力される入力信号を、時定数をT4とした一次遅れフィルタ処理して、第2のフィルタ信号を求め、
    第1のフィルタ信号から第2のフィルタ信号を減算して減算信号を求め、
    前記減算信号にゲインGを乗算して変動分を求め、この変動分を電流指令として出力する、
    ことを特徴とする系統安定化装置。
  6. 電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
    前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
    前記制御部は、
    前記電力系統が正常であるときには、
    前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
    第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    前記電力系統に異常が発生したときには、
    前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
    第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    しかも、第1から第4の変動検出ブロックは、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、任意の時間に設定したクッション時間をT5、1サンプル周期をTs、Xをリミット値としたときに、
    時定数をT3とする一次遅れ特性のフィルタと、±(X/T5)Tsとなったリミット特性を有するリミッタと、入力された信号を1サンプル周期Tsだけ遅延させて出力する遅延回路と、第1の減算器と、第2の減算器と、加算器と、アンプとを有し
    前記第1の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記遅延回路から出力された信号とを減算して前記リミッタに送り、
    前記加算器は、前記リミッタから出力された信号と前記遅延回路から出力された信号とを加算して出力し、
    前記遅延回路は、前記加算器から出力された信号を1サンプル周期Tsだけ遅延させて出力し、
    前記第2の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記加算器から出力された信号とを減算して前記アンプに出力し、
    前記アンプは前記加算器の出力にゲインGを乗算して出力し、
    しかも、式(01)で示すζを1以上の値に設定して、式(01),(02),(03)を用いて、設定値αとゲインGが設定されていることを特徴とする、
    ことを特徴とする系統安定化装置。
    Figure 0005062325
  7. 電力系統が正常であるときには前記電力系統に接続され、前記電力系統に異常が発生したときには前記電力系統から遮断され、しかも分散電源と負荷が接続された配電系統に備えられる系統安定化装置であって、
    前記系統安定化装置は、制御部と、前記制御部から送られてくるゲート信号に応じて順変換動作と逆変換動作をする電力変換器を有し、
    前記制御部は、
    前記電力系統が正常であるときには、
    前記電力系統から前記配電系統に流入する系統電流から、系統電流の有効分と系統電流の無効分を求め、
    第1の変動検出ブロックにより前記系統電流の有効分に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第2の変動検出ブロックにより前記系統電流の無効分に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    前記電力系統に異常が発生したときには、
    前記配電系統の系統電圧から、系統電圧の周波数を示す周波数信号と系統電圧の振幅を示す振幅信号を求め、
    第3の変動検出ブロックにより前記周波数信号に含まれる変動分を求めて、この変動分を有効分の電流指令とし、
    第4の変動検出ブロックにより前記振幅信号に含まれる変動分を求めて、この変動分を無効分の電流指令とし、
    更に、前記電力変換器から出力される交流出力電流から、交流出力電流の有効分と交流出力電流の無効分を求め、
    前記有効分の電流指令と前記交流出力電流の有効分との偏差である有効分の電流偏差を零とし、且つ、前記無効分の電流指令と前記交流出力電流の無効分との偏差である無効分の電流偏差を零とするゲート信号を出力し、
    しかも、第1から第4の変動検出ブロックは、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数をf1、遮断周波数をf1としたノイズ除去用ローパスフィルタの時定数をT1、ζを振動係数、αを設定数、Gをゲイン、T1にαを乗算した値をT3、任意の時間に設定したクッション時間をT5、1サンプル周期をTs、Xをリミット値としたときに、
    時定数をT3とする一次遅れ特性のフィルタと、±(X/T5)Tsとなったリミット特性を有するリミッタと、入力された信号を1サンプル周期Tsだけ遅延させて出力する遅延回路と、第1の減算器と、第2の減算器と、加算器と、アンプとを有し
    前記第1の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記遅延回路から出力された信号とを減算して前記リミッタに送り、
    前記加算器は、前記リミッタから出力された信号と前記遅延回路から出力された信号とを加算して出力し、
    前記遅延回路は、前記加算器から出力された信号を1サンプル周期Tsだけ遅延させて出力し、
    前記第2の減算器は、前記一次遅れ特性のフィルタから出力された信号と前記加算器から出力された信号とを減算して前記アンプに出力し、
    前記アンプは前記加算器の出力にゲインGを乗算して出力し、
    しかも、ゲインGを任意の値に設定して、式(04)を用いて、設定値αが設定されている、
    ことを特徴とする系統安定化装置。
    Figure 0005062325
  8. 請求項6または請求項7に記載の系統安定化装置において、
    前記第1から第4の変動検出ブロックには、
    当該変動検出ブロックの通過帯域周波数の高周波数側の遮断周波数がf1として設定され、値が1/f1となっているノイズ除去用の時定数がT1として設定され、振動係数がζとして設定され、設定数がαとして設定され、ゲインがGとして設定され、T1にαを乗算した値がT3として設定され、任意の時間に設定したクッション時間がT5として設定され、1サンプル周期がTsとして設定され、リミット値がXとして設定されており、
    前記第1から第4の変動検出ブロックは、演算処理プログラムを用いた演算処理により、
    当該変動検出ブロックに入力される入力信号を、時定数をT3とした一次遅れフィルタ処理して、フィルタ信号を求め、
    前記フィルタ信号から遅延信号を減算して第1の減算信号を求め、
    前記第1の減算信号を、±(X/T5)Tsとなったリミット特性によりリミット処理して、リミット信号を求め、
    前記リミット信号と遅延信号を加算して加算信号を求め、
    前記加算信号を1サンプル周期Tsだけ遅延させて、前記遅延信号とし、
    前記フィルタ信号から前記加算信号を減算して第2の減算信号求め、
    前記第2の減算信号に、ゲインGを乗算して変動分を求め、この変動分を電流指令として出力する、
    ことを特徴とする系統安定化装置。
JP2010507279A 2008-04-11 2009-04-10 系統安定化装置 Expired - Fee Related JP5062325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010507279A JP5062325B2 (ja) 2008-04-11 2009-04-10 系統安定化装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008103037 2008-04-11
JP2008103037 2008-04-11
JP2010507279A JP5062325B2 (ja) 2008-04-11 2009-04-10 系統安定化装置
PCT/JP2009/057340 WO2009125834A1 (ja) 2008-04-11 2009-04-10 系統安定化装置

Publications (2)

Publication Number Publication Date
JPWO2009125834A1 JPWO2009125834A1 (ja) 2011-08-04
JP5062325B2 true JP5062325B2 (ja) 2012-10-31

Family

ID=41161965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010507279A Expired - Fee Related JP5062325B2 (ja) 2008-04-11 2009-04-10 系統安定化装置

Country Status (3)

Country Link
US (1) US8527106B2 (ja)
JP (1) JP5062325B2 (ja)
WO (1) WO2009125834A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140916A1 (ja) 2012-03-19 2013-09-26 三菱電機株式会社 系統安定化装置
JP6368456B2 (ja) * 2012-08-23 2018-08-01 株式会社ダイヘン 電力動揺成分出力抑制装置
DK2945245T3 (en) * 2014-05-16 2018-11-05 Siemens Ag Method and device for reducing voltage fluctuations in a supply network
JP6335641B2 (ja) * 2014-05-23 2018-05-30 三菱電機株式会社 単独系統向け周波数安定化装置
CN107534294B (zh) * 2014-12-30 2021-07-30 弗莱斯金电力系统公司 具有有功和无功功率控制的暂态功率稳定化设备
US9919814B2 (en) 2015-02-26 2018-03-20 Spire Global, Inc. System and method for power distribution in a autonomous modular system
US10054686B2 (en) 2015-12-31 2018-08-21 Spire Global, Inc. System and method for remote satellite and ground station constellation management
PL3485552T3 (pl) * 2016-09-02 2021-09-13 Siemens Energy Global GmbH & Co. KG Urządzenie do dynamicznej stabilizacji częstotliwości napięcia sieci elektroenergetycznej do elektrycznego zasilania w energię
KR101769795B1 (ko) 2016-11-30 2017-09-05 인천대학교 산학협력단 마이크로그리드에서 와전류 손실 감소를 위한 초전도 전력 저장 시스템 및 그 제어 방법
JP7161398B2 (ja) * 2018-12-27 2022-10-26 川崎重工業株式会社 電力変換装置
CN111864800B (zh) * 2020-08-10 2022-05-13 华中科技大学 基于变换器并网装备的多尺度惯量控制方法及附加控制器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121599A (ja) * 1995-10-24 1997-05-06 Meidensha Corp 自動電圧調整装置
JP2001286062A (ja) * 2000-03-31 2001-10-12 Nissin Electric Co Ltd 系統安定化装置およびその制御方法
JP2008043151A (ja) * 2006-08-10 2008-02-21 Meidensha Corp 瞬低補償装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335437A (en) * 1980-04-15 1982-06-15 Westinghouse Electric Corp. Circuit interrupter with energy management functions
JPS60173605A (ja) * 1984-02-03 1985-09-07 Canon Inc 電子機器
US4855922A (en) * 1987-03-20 1989-08-08 Scientific-Atlanta, Inc. Apparatus and method for monitoring an energy management system
JPH1014251A (ja) 1996-06-27 1998-01-16 Fuji Electric Co Ltd 無停電電源装置の制御回路
US5835321A (en) * 1996-08-02 1998-11-10 Eaton Corporation Arc fault detection apparatus and circuit breaker incorporating same
AU2002212993A1 (en) * 2000-09-28 2002-04-08 Youtility Inc Local area grid for distributed power
US6745095B1 (en) * 2000-10-04 2004-06-01 Applied Materials, Inc. Detection of process endpoint through monitoring fluctuation of output data
US6670721B2 (en) * 2001-07-10 2003-12-30 Abb Ab System, method, rotating machine and computer program product for enhancing electric power produced by renewable facilities
GB0218452D0 (en) * 2002-08-08 2002-09-18 Lal Depak Energy consumption monitoring
US7116010B2 (en) * 2002-09-17 2006-10-03 Wisconsin Alumni Research Foundation Control of small distributed energy resources
CN100338869C (zh) * 2002-11-15 2007-09-19 轻风株式会社 风力发电装置
JP4102278B2 (ja) * 2003-03-19 2008-06-18 三菱電機株式会社 風力発電システム
US7233129B2 (en) * 2003-05-07 2007-06-19 Clipper Windpower Technology, Inc. Generator with utility fault ride-through capability
US7239044B1 (en) * 2004-12-09 2007-07-03 Sandia Corporation Enhanced distributed energy resource system
DE102006022266A1 (de) * 2005-11-04 2007-05-10 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Windenergieanlage
US7345373B2 (en) * 2005-11-29 2008-03-18 General Electric Company System and method for utility and wind turbine control
JP4764982B2 (ja) * 2006-05-09 2011-09-07 富士電機株式会社 電力貯蔵装置を用いた電力安定化システム
JP2009033892A (ja) * 2007-07-27 2009-02-12 Panasonic Corp 独立電源システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121599A (ja) * 1995-10-24 1997-05-06 Meidensha Corp 自動電圧調整装置
JP2001286062A (ja) * 2000-03-31 2001-10-12 Nissin Electric Co Ltd 系統安定化装置およびその制御方法
JP2008043151A (ja) * 2006-08-10 2008-02-21 Meidensha Corp 瞬低補償装置

Also Published As

Publication number Publication date
US20110098866A1 (en) 2011-04-28
US8527106B2 (en) 2013-09-03
JPWO2009125834A1 (ja) 2011-08-04
WO2009125834A1 (ja) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5062325B2 (ja) 系統安定化装置
KR101120367B1 (ko) 전력 제어 시스템의 단독 운전 방지 장치 및 방법
JP5218554B2 (ja) 系統安定化装置
JP5003819B2 (ja) 系統安定化装置
JP5141764B2 (ja) 系統安定化装置
US10819262B2 (en) Power generation system, system for suppressing sub-synchronous oscillation and method for controlling operation of power system
WO2013140916A1 (ja) 系統安定化装置
CN107394779B (zh) 一种微电网有源电力滤波器动态性能优化控制方法
KR101562848B1 (ko) 능동댐핑기반 반복제어기법을 이용한 무정전전원장치 제어 방법
JP5125274B2 (ja) 新エネルギー発電システム出力変動緩和装置
JP5077431B2 (ja) 系統安定化装置
CN104950202A (zh) 一种基于无功-频率正反馈的孤岛检测方法及系统
JP5398233B2 (ja) インバータの単独運転検出装置および単独運転検出方法
JP3130694B2 (ja) 電圧変動及び高調波の抑制装置
JP5239767B2 (ja) 系統安定化装置
CN112103970A (zh) 一种并网变流器间谐波振荡抑制方法及装置
JP4777914B2 (ja) 三相電圧型交直変換装置
JP5629613B2 (ja) 自励式無効電力補償装置の制御装置
JP4989499B2 (ja) 電力変換装置
JP6161985B2 (ja) 単独運転検出回路、単独運転検出方法、当該単独運転検出回路を備えたインバータ装置、および、電力システム
Shukl et al. Power Quality improvement using multilayer gamma filter based control for DSTATCOM under nonideal distribution system
Sharma et al. A robust Adaline based control of shunt active power filter without load and filter current measurement
JP2015037348A (ja) インバータ回路を停止させる停止回路、当該停止回路を備えたインバータ装置、当該インバータ装置を備えた電力システム、および、停止方法
JP2015084612A (ja) インバータ回路を制御する制御回路、当該制御回路を備えたインバータ装置、当該インバータ装置を備えた電力システム、および、制御方法
Ribeiro et al. A robust control strategy for regulating dc-link voltage of active power filter without load current measurements

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120723

R150 Certificate of patent or registration of utility model

Ref document number: 5062325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees