CN107534294B - 具有有功和无功功率控制的暂态功率稳定化设备 - Google Patents
具有有功和无功功率控制的暂态功率稳定化设备 Download PDFInfo
- Publication number
- CN107534294B CN107534294B CN201580077204.8A CN201580077204A CN107534294B CN 107534294 B CN107534294 B CN 107534294B CN 201580077204 A CN201580077204 A CN 201580077204A CN 107534294 B CN107534294 B CN 107534294B
- Authority
- CN
- China
- Prior art keywords
- grid
- active power
- frequency
- voltage
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001052 transient effect Effects 0.000 title claims description 27
- 230000006641 stabilisation Effects 0.000 title description 6
- 238000011105 stabilization Methods 0.000 title description 6
- 230000004044 response Effects 0.000 claims abstract description 24
- 238000004146 energy storage Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 11
- 230000008859 change Effects 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/18—Arrangements for adjusting, eliminating or compensating reactive power in networks
- H02J3/1821—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
- H02J3/1835—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
- H02J3/1842—Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
- H02J3/241—The oscillation concerning frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/50—Controlling the sharing of the out-of-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/10—The dispersed energy generation being of fossil origin, e.g. diesel generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/20—Active power filtering [APF]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
一种系统包括被配置成耦合在能量存储单元与电网之间的转换器,以及被配置成检测电网的频率和电压变化并且响应性地使得转换器向电网和/或从电网输送功率和无功分量的控制电路。控制电路可以实现具有内部频率控制回路的功率控制回路和具有内部电压控制回路的无功分量控制回路。控制电路可以从内部频率控制回路向内部电压控制回路提供前馈以响应于由于能量存储单元与电网之间的功率输送所致的电网的电压变化偏差而抑制无功分量输送。
Description
相关申请
本申请要求享有2014年12月30日提交的美国临时申请序列号62/097,691的利益,其内容通过引用整体地并入本文。
技术领域
本发明主题一般涉及电力系统和操作所述电力系统的方法,并且更特别地涉及由发电机驱动的电力系统和操作所述电力系统的方法。
背景技术
在岛式电网应用中,发电资产,诸如柴油或气体供电的发电机和涡轮机,可能经历暂态负载条件,所述暂态负载条件可以导致电网频率和电压中的改变。这些暂态条件可以包括例如大负载改变和功率源可用性中的突然改变,诸如燃料供电的发电机关机或来自诸如风或太阳能发电机之类的发电资产的供给中的变化。线路频率中的此类变化可以导致下降的负载或受损的装备。此类问题在使用由天然气或其它较低能量密度燃料供电的发动机/发电机组的系统中可能特别显著。
岛式电网发电机通常被定有明显过量的额定连续功率容量的大小,以便承载峰值负载、对大的暂态负载阶跃进行响应并且在任务关键的操作的支持中提供冗余度。它们可以以非常高的利用率(例如一天24小时、一周7天、一年365天)但是以相对低的实际负载因子(通常在非峰值时间的延伸时段内在15-50%之间)来操作。另外,由于自己强加的手动负载组的使用,制造商担保要求可能导致附加的成本。该操作分布(profile)可以导致较低的燃料效率、对发电机的过量磨损以及由于柴油或天然气燃料的不完全燃烧所致的颗粒物(PM)和碳氢化合物(HC)排放中的明显增加。
在岛式电网和其它离网应用中,负载阶跃的幅度可以超过可用发电的递增的阶跃能力。在这些情况下,负载阶跃可以导致负载总线的电压或频率不足/过电压或频率。这可以导致对任何电网连接的设备(诸如电动机和变压器等)的损害,所述设备典型地被设计成以标称电压和频率或在标称电压和频率附近操作。由于此类损害的潜在性,发电机可以具有将发电机从负载总线断开的保护电路,从而保护此类装备但是导致可能的断电或负载损耗。在一些高需求的应用中,存在要求巨大电流幅度的负载,所述负载将要求多个并联发电机以满足该需求以启动这些高需求的负载并且在暂态条件下将功率和无功分量维持在发电机规范内。一旦负载被启动,稳态负载就相对小,其不要求所有这些发电机的操作。负载阶跃可以主要是电阻性的,这导致有功功率中的改变。负载阶跃还可以是无功的,这导致伏特-安培无功(VAR)中的改变。
发明内容
本发明主题的一些实施例提供了一种系统,包括被配置成耦合在能量存储单元与电网之间的转换器,以及被配置成检测电网的频率和电压变化并且响应性地使得转换器向其输送功率和无功分量的控制电路。在一些实施例中,控制电路可以实现具有内部频率控制回路的功率控制回路和具有内部电压控制回路的无功分量控制回路。控制电路可以从内部频率控制回路向内部电压控制回路提供前馈以响应于电网的电压变化偏差而抑制无功分量输送。
在一些实施例中,功率和无功分量控制回路被配置成当电网的频率和电压满足预定准则时将由转换器进行的功率和无功输送驱动到基本为零。在另外的实施例中,控制电路可以被配置成当电网的频率和电压满足预定准则时通过改变被提供给功率控制回路的功率参考来从电网向能量存储单元提供功率流。控制电路可以被配置成使得转换器响应于耦合到电网的电动机的启动而将电网的频率和电压维持在防止驱动电网的发动机/发电机组关机的范围内。
在一些实施例中,控制电路可以被配置成响应于由于电网与能量存储单元之间的功率输送所致的电压变化偏差而抑制无功分量输送。
在另外的实施例中,控制电路可以被配置成检测与电网上的电动机负载的启动相关联的电网的暂态频率和电压变化并且响应性地使得转换器输送功率和无功分量,直到电动机负载达到稳态。
一些实施例提供了一种系统,包括耦合到电网的至少一个发动机/发电机组以及暂态频率和电压稳定化系统,所述暂态频率和电压稳定化系统包括能量存储单元并且被配置成检测电网的频率变化和电压变化偏差并且响应性地执行能量和对其的补偿无功分量的短时输送。可以解耦由于功率分量所致的电网的电压变化偏差,从而抑制补偿无功分量被注入而扰乱电网。
在一些实施例中,暂态频率和电压稳定化系统可以被配置成响应于电动机负载的启动而检测电网的频率变化和电压变化并且响应性地执行能量和补偿无功分量的短时输送。
另外的实施例提供了方法,包括检测由于与电网上的电动机负载的启动相关联的电网的频率和电压变化,以及使得转换器响应于所检测到的频率和电压变化而向和/或从电网输送功率和无功分量。使得转换器输送功率和无功分量之后可以跟随有响应于变化的减少而减少功率和无功分量的输送。
附图说明
图1是图示了示例性1MW压缩机启动电流轮廓(功率和无功分量)的图。
图2是图示了用于发动机/发电机组的典型调速器控制架构的图。
图3是图示了用于发动机/发电机组的典型自动电压调节器(AVR)的框图。
图4是图示了根据本发明主题的一些实施例的发动机/发电机组(G)、电动机(M)和固态发电机(SSG)的框图。
图5是图示了根据另外的实施例的简化SSG控制器的框图。
具体实施方式
以下将参照随附各图更加全面地描述本发明主题,在附图中示出本发明主题的实施例。然而,本发明主题可以以许多替换形式来体现并且不应当被解释为限于本文所阐述的实施例。
相应地,虽然本发明主题容许各种修改和替换形式,但是通过示例的方式在附图中示出其特定实施例,并且在本文中将详细描述所述特定实施例。然而,应当理解的是,不存在将本发明主题限制到所公开的特定形式的意图,而是相反,本发明主题要覆盖落在如由权利要求限定的发明主题的精神和范围内的所有修改、等同方案和替换方案。贯穿各图的描述,相同的数字指代相同的元件。
本文所使用的术语仅仅是出于描述特定实施例的目的而不意图限制发明主题。如本文所使用的,单数形式“一”、“一个”和“该”意图也包括复数形式,除非上下文以其它方式明确指示。还将理解的是,术语“包括”、“包括有”、“包含”和/或“包含有”当使用在本说明书中时,指定所陈述的特征、整体、步骤、操作、元件和/或组件的存在,但是不排除一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组的存在或添加。而且,在将元件称为“响应于”或“连接到”另一元件时,该元件可以直接响应于或连接到所述另一元件,或者可以存在居间元件。相比之下,在将元件称为“直接响应于”或“直接连接到”另一元件时,不存在居间元件。如本文所使用的,术语“和/或”包括相关联地列出的项目中的一个或多个中的任何或全部组合,并且可以缩写为“/”。
除非以其它方式进行限定,否则本文所使用的所有术语(包括技术和科学术语)具有与本发明主题所属领域中的普通技术人员通常理解的相同的含义。还将理解的是,本文所使用的术语应当解释为具有与其在本说明书的上下文和相关领域中的含义一致的含义,而将不以理想化或过于正式的含义来解释,除非本文明确地如此限定。
将理解的是,尽管术语第一、第二等可以在本文中用于描述各种元件,但是这些元件不应当受这些术语限制。这些术语仅用于将一个元件与另一个区分开。例如,第一元件可以称为第二元件,并且类似地,第二元件可以称为第一元件而不脱离本公开的教导。尽管一些图包括通信路径上的箭头以示出通信的主要方向,但是要理解的是,通信可以在与所描绘的箭头相反的方向上发生。
如以上所讨论的,在一些高需求的应用中,存在要求巨大电流幅度的负载,这将要求多个并联发电机以满足该需求以启动这些高需求的负载并且在暂态条件下将功率和无功分量维持在发电机规范内。一旦负载被启动,稳态负载就相对小,这不要求所有这些发电机的操作。负载阶跃可以主要是电阻性的,这导致有功功率(W)中的改变,或者负载阶跃可以是无功的,这导致伏特-安培无功(VAR)中的改变,或者二者的组合。
相应地,本发明主题的一些实施例提供了暂态频率和电压稳定化系统和方法,其可以使用在岛式电网、公用电网、离网、电网边缘和其它应用中。在此类应用中,减少或可能地消除支持启动这些高需求的负载的暂态并且在暂态和稳态操作下将功率和无功分量维持在发电机规范内所必需的附加发电机数目可以是可能的。
根据一些实施例,固态发电机(SSG)提供了一种解决方案,其供给由负载必需的负载暂态,从而允许发电机对将使负载电压和频率维持在规范内的负载应用的较低速率进行响应。对于主要是电阻性的负载阶跃,负载阶跃的时间漂移可以通过使用诸如电容器或电化学存储之类的能量储存形式来达成。对于无功分量的补偿可以不要求任何大能量储存。在一些实施例中,负载阶跃的电阻和无功分量可以通过观察SSG功率端子的端子特性来补偿而不要求对发电机的控制电路的接入。因此,根据一些实施例的暂态稳定化系统可以被配置为“插入式(drop-in)”设备,其可以连接到电网而不要求与发动机/发电机组和/或系统控制器的通信。
在离网或岛式电网应用上,来自电动机或压缩机启动的大负载阶跃呈现可成形的挑战。发动机/发电机组在电阻负载阶跃能力方面是受限的。例如,柴油发动机发电机组可以典型地接受最大值50%负载阶跃而同时维持小于5%(例如,+-2.5Hz)频率改变。如果发动机发电机组是天然气,则维持相同频率边界的典型最大值负载阶跃被限制为仅10%。负载的无功分量还可以针对发动机/发电机组的电压调节器呈现出问题。
超过发电机的无功分量能力可能使得发电机跳开线路或从负载总线断开。尽管我们已经讨论了如涉及在发动机/发电机组中发现的原动机的问题,但是问题可以关于各种类型的发电机而发生,包括使用涡轮机、微型涡轮机、线性/自由活塞发动机、Wankel、燃料电池等的那些。
在电动机启动期间,典型地必须向负载供给大量电阻和无功分量,否则负载总线将偏离到可接受的范围之外,这可能导致发动机/发电机组跳开。图1图示了其中启动1.0MW压缩机的示例。压缩机启动事件在点A处开始并且在点B处结束。在软起动器的情况下,该启动事件的持续时间为20秒并且负载具有2.0 MW功率和15 MVA无功分量的峰值需求,这远远超出典型发动机/发电机组的能力。
图2图示了用于发动机/发电机组的典型调速器。发动机/发电机组的阶跃加载使得负载总线频率和输出电压因为发电机减速而下降。典型的调节器不能够用20秒足够快地增加发动机/发电机组功率以防止总线电压和频率脱离规范,其中响应时间取决于发电机阀门/门控制的时间常数。
在压缩机启动时段期间,负载电流轮廓针对感应发电机呈现出大问题,因为其感应阻抗和线路阻抗可以是相当大的。由于负载中的暂态无功分量的大幅度,因此总线电压将在压缩机启动事件期间下降。
电压下降的量可以使用以下等式来估计:
ΔU=R*ΔPe + X*ΔQe 等式(1)
其中,
ΔU=总线电压下降;
R=系统电阻阻抗,包括发电机电阻;
X=系统无功阻抗,包括发电机无功电阻;
ΔPe=暂态功率阶跃;以及
ΔQe=暂态无功阶跃。
图3图示了用于发动机/发电机组自动电压调节器(AVR)的典型控制架构。在压缩机启动期间,AVR可能由于激励系统响应中的延迟而不能够足够快地调节电压。
为了缓解启动电流,典型地使用软启动用于比如电动机或压缩机之类的大负载。如图1中可以看到的,功率在启动事件期间逐渐增加,从而允许发电机供给负载要求。不幸的是,这不可以缓解关于负载电流轮廓的无功分量的问题。大幅度无功分量的存在可以使得发动机/发电机组的电压调节器更改负载总线电压和频率,这可以使得发电机跳开。为了补偿负载电流的无功分量,已经尝试了添加补偿电容器VAR补偿的尝试。大电容器的接通/关断或负载总线上的所维持的存在可以导致关于发动机/发电机组调节器的其它稳定性问题。
在一些实施例中,SSG可以提供一种解决方案,其供给负载所必需的负载暂态但是将发动机/发电机组从瞬时负载电流需求隔离并且允许发动机/发电机组以较低速率的负载应用进行响应。响应于无功负载阶跃,SSG可以供给负载电流的无功分量,其可以帮助发动机/发电机组与关于过量无功电流的问题相隔离。频率中的改变可以在SSG的端子处检测,并且SSG可以通过从能量储存向负载供给功率而响应性地限制频率的改变速率。当发动机/发电机组采用更多负载时,SSG可以减少所供给的功率,直到负载由发动机/发电机组单独支持。在SSG的端子处观察到,电压改变可以通过供给无功功率并且当总线电压恢复时减少所供给的无功功率来进行限制。
图4是图示了根据一些实施例的SSG的应用的简化框图。发动机/发电机组10经由AC总线15向电动机负载20供给功率,AC总线15可以是例如岛式电网或其它功率分发电网。SSG 410可以包括具有5个功率端子的3相DC/AC功率转换器;正、负端子耦合到能量储存420并且三个端子通过相应电感器耦合到AC总线15的相应相。尽管将SSG 410示出为连接到电池,但是能量储存420可以采取数个不同形式中的任何,诸如锂离子电池组、超级电容器组、飞轮存储等。还应当理解的是,DC/DC转换器可以用于将能量储存420与SSG 410的DC/AC功率转换器对接。这可以改进能量储存420的使用,因为能量储存420的端子电压可以不同于由DC/AC功率转换器所使用的DC总线的电压。DC/DC转换器连接在能量储存420与可以从AC总线递送或接收功率的由DC/AC功率转换器总线使用的正和负端子(DC总线)之间。SSG 410的双向DC/AC功率转换器能够使用DC总线并且产生3相AC电压以支持负载并且它可以从AC总线15向DC总线输送功率。因此,3相转换器可以取决于如何控制各分支而看起来如同源或负载。
SSG 410连接到AC总线15并且可以提供针对负载20的功率和无功分量的毫秒响应时间。该毫秒响应时间可以将实际的负载暂态从发动机/发电机组10掩蔽,因此AC 15的电压和频率保持在规范中。
图5图示了可以用于控制SSG 410的DC/AC转换器412的控制器414。控制器414包括生成控制信号a、b、c的转换器控制器415,所述控制信号a、b、c用于操作转换器412中的开关电路以控制输出相,所述输出相应用于由电动机/发电机组10驱动并且具有相应相电压Va、Vb、Vc的AC总线15。控制器414具有内部频率回路,所述内部频率回路可以检测暂态频率并且生成用于转换器控制器415的频率命令信号P,响应于所述频率命令信号P,DC/AC功率转换器412提供在发动机/发电机组进行其缓慢响应之前补偿系统所需要的实际功率。外部功率控制回路向内部频率回路提供输入并且具有回路补偿G p ,回路补偿G p 可以具有形式为Kp1/(1+Tp1*s)的传输函数,其中Kp1和Tp1是常数。用于功率控制回路的参考输入P ref 可以例如被设置成零,使得当AC电网的频率从参考频率w ref 偏离时,控制器暂态地提供功率。沿此类线路的功率控制回路结构在Taimela等人的美国专利申请公开号2014/0103727中解释,藉此将其内容整体地通过引用并入。
根据一些实施例,控制器414还实现内部电压回路,所述内部电压回路检测暂态电压并且生成用于控制器415的电压命令信号Q,响应于所述电压命令信号Q,DC/AC功率转换器412提供在发动机/发电机组能够响应之前补偿负载需求所需要的无功分量。具有回路补偿G Q (其可以具有形式为Kq1/(1+Tq1*s)的传输函数,其中Kq1和Tq1是常数)的外部无功分量控制回路响应于无功分量参考信号Q ref 而向内部电压回路提供输入。当阻抗网络典型地不如在岛式电力系统中那样复杂时,一旦无功分量需求阶跃发生(如转换器412的输出电压v相对于参考电压v ref 的偏差所指示的),SSG 410就可以相对快速地响应并且向总线补偿无功分量,以便在大量无功分量改变之下调节总线电压。该补偿方法在这样的大量无功分量阶跃加载之下通常是足够的。然而,由于功率负载阶跃所致的总线电压偏差的影响(其可以降低总线电压),可以通过向无功分量补偿添加频率相关总线电压改变来解耦,因此没有向仅功率分量的阶跃负载生成误差信号。该解耦补偿器在图5中示出,其耦合在P命令和Q命令之间。
对于功率控制,内部频率回路检测总线频率偏差并且通过快速补偿器递送/吸收功率。内部频率回路的增益可以基于系统的频率偏差要求和惯性来设置。在相对低惯性的系统中(诸如岛式微型电网),有源负载阶跃可能产生多得多的频率偏差,并且因而可能要求较小的增益。内部频率回路的增益G w 可以使用以下等式来估计计算:
其中Δw是目标频率偏差。增益G w 可以具有形式为Kp2/(1+Tp2*s)的传输函数,其中Kp2和Tp2是常数。
外部功率控制回路提供稳态功率流控制。在正常的稳态中,当总线中不存在暂态偏差时,SSG 410基本上不向总线中递送功率,这可以降低半导体损耗并且延长系统寿命。功率参考可以在充电状态期间被设置成负的,以便让发电机对能量储存420进行缓慢的充电。这可以在其中不存在暂态负载阶跃条件的时段期间进行。在一些模式中,能量储存420的再充电可以为了功率峰值抑制而被延迟。峰值抑制功能的持续时间可以是基于能量储存420的大小和充电状态。
功率和无功分量可以影响电压稳定性。当无功分量可以是针对电压不稳定性的主要原因时,可以实现快速内部电压回路以用于无功VAR补偿。内部无功分量补偿的增益G v 可以使用以下等式来估计:
其中Δv是目标电压偏差范围,或者
其中X是系统的电抗无功电阻。Gv可以具有形式为Kq2/(1+Tq2*s)的传输函数,其中Kq2和Tq2是常数。
在一些实施例中,为了抵消掉来自功率分量的电压影响,可以提供从功率误差信号到无功分量误差信号的前馈路径。因此,如果仅有功率需求导致电压下降,则将抑制无功分量的注入以减少系统扰动。该交叉前馈的增益可以通过以下等式给出:
其中R是系统的电阻。交叉前馈增益Gp2q可以具有形式为Kpq/(1+Tpq*s)的传输函数,其中Kpq和Tpq是常数。
由于无功分量在不存在电压偏差时可能不提供稳态中的任何益处,因此外部缓慢无功分量回路可以被配置成使得无功分量在长期基本上为零,以便降低损耗并且延长SSG410的寿命。如果暂态条件保持短暂,则系统成本可以通过基于额定过载量确定组件的大小来降低。例如,使用5 MVA额定设备以用于10 MVA暂态要求可以是可能的。
理解到用于无功分量的补偿不要求任何大量能量存储,因此除了暂态能力之外,SSG 410可以提供一定水平的连续无功分量。特别地,SSG 410可以被命令提供固定水平的无功分量补偿,从而导致由发动机/发电机组处置的减少的无功分量。
来自大电动机的无功分量往往主要在基频处。然而,其它类型的无功分量可以与基频谐波相关。这些谐波相关的无功分量典型地由具有非正弦电流消耗的负载产生。结果得到的电流波形可以使用傅里叶级数分析而简化成出现在基频的整数倍处的一系列简单的正弦曲线。因此,无功分量可以如在大电动机启动事件中那样步进式应用,或者作为由于来自负载的非正弦电流消耗所致的临时或持续无功分量。相应地,如本文所描述的无功补偿适用于基频和谐波分量。还将理解的是,如本文所描述的无功补偿技术可以用于补偿除电动机负载之外的无功负载,诸如补偿切入和切出电网的电容器。例如,沿本文所描述的线路的技术可以用于补偿耦合到电网的其它无功电阻,并且可以结合其它补偿技术一起使用,诸如连接到电网的无功补偿电容器。
控制器414可以包括数字硬件,诸如使用CompactRio或MicroZedTM控制平台的处理器和现场可编程门阵列FPGA。
在附图和说明书中,已经公开了本发明主题的示例性实施例。然而,可以对这些实施例做出许多变化和修改而基本上不脱离本发明主题的原理。相应地,尽管使用特定术语,但是它们仅以一般性且描述性的含义来使用并且不用于限制的目的,发明主题的范围由以下权利要求限定。
Claims (10)
1.一种用于功率控制的系统,包括:
转换器,其被配置成耦合在能量存储单元与电网之间;
转换器控制器,其被配置成响应于分别使得转换器输送有功功率分量和无功功率分量的有功功率命令和无功功率命令来控制转换器;以及
控制电路,其被配置成检测电网的频率和电压变化,并响应性地生成有功功率命令和无功功率命令,其中,控制电路实现:
有功功率控制回路,其被配置成响应于电网的频率、频率参考、和有功功率参考来生成有功功率命令;以及
无功功率控制回路,其被配置成响应于电网的电压、电压参考、无功功率参考和有功功率命令的前馈而生成无功功率命令。
2.根据权利要求1所述的系统,其中,电网的频率是测得频率,并且其中,无功功率控制回路通过交叉增益耦合到有功功率控制回路,所述交叉增益接收有功功率命令并产生前馈。
3.根据权利要求1所述的系统,其中,响应于由于电网上的有功功率需求的变化而导致的电网的电压变化偏差,有功功率命令的前馈抑制转换器与电网之间的无功分量输送。
4.根据权利要求1所述的系统,其中,有功功率和无功功率控制回路被配置成当电网的频率和电压满足预定准则时将由转换器进行的有功功率和无功功率输送驱动到基本为零。
5.根据权利要求1所述的系统,其中,控制电路被配置成当电网的频率和电压满足预定准则时通过改变被提供给有功功率控制回路的有功功率参考来从电网向能量存储单元提供有功功率流。
6.根据权利要求1所述的系统,其中,控制电路被配置成使得转换器响应于耦合到电网的电动机的启动而将电网的频率和电压维持在防止驱动电网的发动机/发电机组关机的范围内。
7.根据权利要求1所述的系统,其中,控制电路被配置成检测与电网上的电动机负载的启动相关联的电网的暂态频率和电压变化并且响应性地使得转换器输送有功功率和无功功率,直到电网的电压和频率达到预定状态。
8.一种用于功率控制的方法,包括:
有功功率控制回路响应于电网的频率、频率参考、和有功功率参考而生成有功功率命令;
无功功率控制回路响应于电网的电压、电压参考、无功功率参考、和来自有功功率控制回路的有功功率命令的前馈而生成无功功率命令;以及
转换器分别响应于有功功率命令和无功功率命令而在能量存储装置与电网之间输送有功功率和无功功率。
9.根据权利要求8所述的方法,其中,电网的频率是测得频率,并且其中,无功功率控制回路通过交叉增益耦合到有功功率控制回路,所述交叉增益接收有功功率命令并响应性地产生前馈。
10.根据权利要求8所述的方法,其中,响应于由于电网上的有功功率需求的增大而导致的电网的电压变化偏差,有功功率命令的前馈抑制转换器与电网之间的无功分量输送。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462097691P | 2014-12-30 | 2014-12-30 | |
US62/097691 | 2014-12-30 | ||
PCT/US2015/067347 WO2016109330A1 (en) | 2014-12-30 | 2015-12-22 | Transient power stabilization device with active and reactive power control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107534294A CN107534294A (zh) | 2018-01-02 |
CN107534294B true CN107534294B (zh) | 2021-07-30 |
Family
ID=56284943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580077204.8A Active CN107534294B (zh) | 2014-12-30 | 2015-12-22 | 具有有功和无功功率控制的暂态功率稳定化设备 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10574055B2 (zh) |
EP (1) | EP3241262B1 (zh) |
CN (1) | CN107534294B (zh) |
AU (1) | AU2015374405A1 (zh) |
CA (1) | CA2972897C (zh) |
ES (1) | ES2819248T3 (zh) |
WO (1) | WO2016109330A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2017316B1 (en) | 2016-08-15 | 2018-02-21 | Danvest Energy As | Renewable energy supply system, island operation powerline and method |
CN107508312B (zh) * | 2017-07-13 | 2019-10-15 | 中国电力科学研究院 | 储能变流器并离网模式运行控制器及其控制方法和装置 |
CN107528329B (zh) * | 2017-07-13 | 2019-10-15 | 中国电力科学研究院 | 一种含储能单元的虚拟同步机控制器及其控制方法和装置 |
CN107591797A (zh) * | 2017-08-18 | 2018-01-16 | 天津大学 | 一种智能软开关的集中和就地联合控制策略整定方法 |
WO2019096631A1 (de) | 2017-11-16 | 2019-05-23 | Sma Solar Technology Ag | Einspeisen von elektrischer leistung einer photovoltaikanlage in ein wechselstromnetz geringer kurzschlussleistung |
US11394231B2 (en) * | 2019-02-01 | 2022-07-19 | Moser Energy Systems | Hybrid generator system and method of operation and control |
CN110231787B (zh) * | 2019-05-21 | 2021-01-05 | 国网浙江省电力有限公司电力科学研究院 | 基于CompactRIO的磁阀式可控电抗器测控系统及测控方法 |
DE102020104324B4 (de) * | 2020-02-19 | 2022-01-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Betreiben eines elektrischen Inselstromnetzes |
CN111817322B (zh) * | 2020-06-19 | 2021-09-03 | 中冶南方都市环保工程技术股份有限公司 | 孤网中基于储能及无功补偿系统的负荷平衡方法及装置 |
CN112003320A (zh) * | 2020-07-31 | 2020-11-27 | 国网上海市电力公司 | 一种城市电网空心化趋势下的电压稳定方法 |
CN114172176A (zh) * | 2021-11-19 | 2022-03-11 | 国网内蒙古东部电力有限公司电力科学研究院 | 应用于风力发电机组的飞轮储能阵列控制方法及系统 |
CN114640141B (zh) * | 2022-05-17 | 2022-08-05 | 浙江大学 | 海上风电二极管整流单元送出系统的构网型风机控制方法 |
US11641109B2 (en) | 2022-05-17 | 2023-05-02 | Zhejiang University | Grid-forming wind turbine control method for diode rectifier unit-based offshore wind power transmission system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103490450A (zh) * | 2013-10-14 | 2014-01-01 | 北京艾科迈新能源科技有限公司 | 用于中低压微电网的储能并联控制方法和装置 |
Family Cites Families (213)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3311299A1 (de) * | 1983-03-28 | 1984-10-04 | Siemens AG, 1000 Berlin und 8000 München | Verfahren und vorrichtung zum stabilisieren von frequenz und spannung eines aus einem antriebsaggregat gespeisten netzes |
US4992920A (en) | 1989-09-13 | 1991-02-12 | Davis Donald E | Regulated AC power system energized by variable speed prime mover |
JP3019570B2 (ja) | 1992-01-08 | 2000-03-13 | 富士電機株式会社 | Cvcfインバータの制御方法 |
WO1995020836A1 (en) | 1994-01-26 | 1995-08-03 | Onan Corporation | Generator power system and method |
US5734205A (en) | 1996-04-04 | 1998-03-31 | Jeol Ltd. | Power supply using batteries undergoing great voltage variations |
ES2167809T5 (es) | 1996-12-20 | 2013-06-20 | Manuel Dos Santos Da Ponte | Aparato generador híbrido |
US5907192A (en) | 1997-06-09 | 1999-05-25 | General Electric Company | Method and system for wind turbine braking |
US5929538A (en) | 1997-06-27 | 1999-07-27 | Abacus Controls Inc. | Multimode power processor |
US6784565B2 (en) * | 1997-09-08 | 2004-08-31 | Capstone Turbine Corporation | Turbogenerator with electrical brake |
WO1999032762A1 (en) | 1997-12-19 | 1999-07-01 | Alliedsignal Inc. | An uninterruptible microturbine power generating system |
US6870279B2 (en) | 1998-01-05 | 2005-03-22 | Capstone Turbine Corporation | Method and system for control of turbogenerator power and temperature |
EP1638184A3 (en) | 1998-04-02 | 2009-03-25 | Capstone Turbine Corporation | Power controller |
US6958550B2 (en) | 1998-04-02 | 2005-10-25 | Capstone Turbine Corporation | Method and system for control of turbogenerator power and temperature |
US6128204A (en) | 1998-08-26 | 2000-10-03 | Northrop Grumman Corporation | Line power unit for micropower generation |
US6038118A (en) | 1998-11-10 | 2000-03-14 | Guerra; Charles R. | Lightning protector system |
US6252753B1 (en) | 1998-12-18 | 2001-06-26 | Southern California Edison Co. | Energy service stabilizer |
JP2997782B1 (ja) | 1999-02-04 | 2000-01-11 | 大阪大学長 | 品質別電力供給装置 |
JP3487780B2 (ja) | 1999-03-01 | 2004-01-19 | 株式会社岡村研究所 | 接続切り換え制御キャパシタ電源装置 |
EP1205022A4 (en) | 1999-06-11 | 2004-07-14 | Pri Automation Inc | ULTRA-CAPACITOR POWER SUPPLY FOR AN ELECTRIC VEHICLE. |
JP2002034179A (ja) | 2000-07-14 | 2002-01-31 | Toshiba Corp | 電力制御装置 |
US6410992B1 (en) | 2000-08-23 | 2002-06-25 | Capstone Turbine Corporation | System and method for dual mode control of a turbogenerator/motor |
US20020190525A1 (en) | 2001-06-18 | 2002-12-19 | Solectria Corporation | Inverter controlled, parallel connected asynchronous generator for distributed generation |
JP2003079054A (ja) | 2001-08-31 | 2003-03-14 | Sanyo Electric Co Ltd | 蓄電池を備えた太陽光発電システム |
US6737762B2 (en) | 2001-10-26 | 2004-05-18 | Onan Corporation | Generator with DC boost for uninterruptible power supply system or for enhanced load pickup |
US6703722B2 (en) | 2001-12-14 | 2004-03-09 | Avista Laboratories, Inc. | Reconfigurable plural DC power source power system responsive to changes in the load or the plural DC power sources |
DE10210099A1 (de) | 2002-03-08 | 2003-10-02 | Aloys Wobben | Inselnetz und Verfahren zum Betrieb eines Inselnetzes |
GB0207396D0 (en) | 2002-03-28 | 2002-05-08 | Bg Intellectual Pty Ltd | A power distribution/generation system |
US7116010B2 (en) | 2002-09-17 | 2006-10-03 | Wisconsin Alumni Research Foundation | Control of small distributed energy resources |
EP1559179A4 (en) | 2002-10-22 | 2006-07-12 | Youtility Inc | HYBRID VARIABLE SPEED GENERATOR / POWER SUPPLY CONVERTER WITHOUT INTERRUPTION |
US6879053B1 (en) | 2002-10-22 | 2005-04-12 | Youtility, Inc. | Transformerless, load adaptive speed controller |
JP2006509489A (ja) | 2002-12-06 | 2006-03-16 | エレクトリック パワー リサーチ インスチテュート インコーポレイテッド | 無停電源及び発電システム |
US6858953B2 (en) | 2002-12-20 | 2005-02-22 | Hawaiian Electric Company, Inc. | Power control interface between a wind farm and a power transmission system |
JP4071675B2 (ja) | 2003-05-27 | 2008-04-02 | 東芝三菱電機産業システム株式会社 | 無停電電源装置の並列運転システム |
US20050043859A1 (en) | 2003-08-13 | 2005-02-24 | Chia-Ming Tsai | Modular uninterruptible power supply system and control method thereof |
JP2007503191A (ja) | 2003-08-15 | 2007-02-15 | ビーコン・パワー・コーポレーション | 可変負荷および/または電力生成を有するフライホイールエネルギー格納システムを使用する生成された電力の周波数を調整するための方法、システム、および装置 |
ES2668356T3 (es) | 2003-10-06 | 2018-05-17 | Powersys, Llc | Sistemas de generación energía y métodos de generación de energía |
GB0408641D0 (en) | 2004-04-16 | 2004-05-19 | Energy Solutions Ltd | An electrical power supply system |
DE102004046701A1 (de) | 2004-09-24 | 2006-04-06 | Aloys Wobben | Regeneratives Energiesystem |
US7411308B2 (en) | 2005-02-26 | 2008-08-12 | Parmley Daniel W | Renewable energy power systems |
US20060192433A1 (en) | 2005-02-28 | 2006-08-31 | Fuglevand William A | Uninterruptible power supply and method for supplying uninterruptible power to a load |
PT1866717E (pt) | 2005-03-01 | 2012-08-29 | Beacon Power Llc | Método e dispositivo para isolar de forma intencional fontes de produção de energia distribuídas |
CA2544910C (en) | 2005-04-25 | 2013-07-09 | Railpower Technologies Corp. | Multiple prime power source locomotive control |
DE102005030709A1 (de) | 2005-06-29 | 2007-01-04 | Bosch Rexroth Ag | Stellantrieb und Notenergieversorgungseinrichtung |
WO2007018830A2 (en) | 2005-07-23 | 2007-02-15 | Parmley Daniel W | Renewable energy power systems |
US8099198B2 (en) | 2005-07-25 | 2012-01-17 | Echogen Power Systems, Inc. | Hybrid power generation and energy storage system |
US7680562B2 (en) | 2005-09-08 | 2010-03-16 | General Electric Company | Power generation system |
US7378820B2 (en) | 2005-12-19 | 2008-05-27 | General Electric Company | Electrical power generation system and method for generating electrical power |
CN101102050A (zh) | 2006-02-02 | 2008-01-09 | 密尔沃基电动工具公司 | 发电系统及其方法 |
US7638899B2 (en) | 2006-03-10 | 2009-12-29 | Eaton Corporation | Nested redundant uninterruptible power supply apparatus and methods |
US7184903B1 (en) | 2006-03-16 | 2007-02-27 | Vrb Power Systems Inc. | System and method for a self-healing grid using demand side management techniques and energy storage |
US20070228836A1 (en) | 2006-03-30 | 2007-10-04 | Ralph Teichmann | Power generation system and method |
JP5208374B2 (ja) | 2006-04-18 | 2013-06-12 | シャープ株式会社 | 系統連系パワーコンディショナおよび系統連系電源システム |
US7476987B2 (en) | 2006-04-25 | 2009-01-13 | The University Of New Brunswick | Stand-alone wind turbine system, apparatus, and method suitable for operating the same |
US20070267871A1 (en) | 2006-05-18 | 2007-11-22 | Todd Michael Gregory | Energy Myzer Hybrid Generator |
US7474016B2 (en) | 2006-05-23 | 2009-01-06 | Continental Automotive Systems Us, Inc. | System and method for responding to abrupt load changes on a power system |
US7391126B2 (en) | 2006-06-30 | 2008-06-24 | General Electric Company | Systems and methods for an integrated electrical sub-system powered by wind energy |
JP4905300B2 (ja) | 2006-09-28 | 2012-03-28 | トヨタ自動車株式会社 | 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体 |
WO2008039725A2 (en) | 2006-09-25 | 2008-04-03 | Rexorce Thermionics, Inc. | Hybrid power generation and energy storage system |
US7642755B2 (en) | 2006-12-19 | 2010-01-05 | Bradley Wayne Bartilson | Method and apparatus to maximize stored energy in UltraCapacitor Systems |
JP4796974B2 (ja) | 2007-01-26 | 2011-10-19 | 株式会社日立産機システム | 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置 |
US20120143383A1 (en) | 2007-02-02 | 2012-06-07 | Inovus Solar, Inc. | Energy-efficient utility system utilizing solar-power |
US20080203734A1 (en) | 2007-02-22 | 2008-08-28 | Mark Francis Grimes | Wellbore rig generator engine power control |
US7787272B2 (en) | 2007-03-01 | 2010-08-31 | Wisconsin Alumni Research Foundation | Inverter based storage in dynamic distribution systems including distributed energy resources |
JP4949902B2 (ja) | 2007-03-16 | 2012-06-13 | 日本碍子株式会社 | 二次電池の電力制御方法 |
US9721312B2 (en) | 2007-03-21 | 2017-08-01 | Steven Y. Goldsmith | Customized electric power storage device for inclusion in a microgrid |
IE20080291A1 (en) | 2007-04-17 | 2008-11-26 | Timothy Patrick Cooper | A load management controller for a household electrical installation |
US8452688B1 (en) | 2007-06-27 | 2013-05-28 | Siemens Industry, Inc. | Dynamic demand aggregation |
US9031708B2 (en) * | 2007-07-17 | 2015-05-12 | Gridpoint, Inc. | Utility interactive inverter with VAR dispatch capabilities |
TW200915702A (en) | 2007-09-19 | 2009-04-01 | Delta Electronics Inc | Uninterruptible power supply system and controlling method thereof |
US20100017045A1 (en) | 2007-11-30 | 2010-01-21 | Johnson Controls Technology Company | Electrical demand response using energy storage in vehicles and buildings |
US8987939B2 (en) | 2007-11-30 | 2015-03-24 | Caterpillar Inc. | Hybrid power system with variable speed genset |
US8872379B2 (en) | 2007-11-30 | 2014-10-28 | Johnson Controls Technology Company | Efficient usage, storage, and sharing of energy in buildings, vehicles, and equipment |
MX2010006459A (es) | 2007-12-12 | 2010-11-30 | Pareto Energy Ltd | Metodos y aparatos de distribucion de potencia electrica. |
US7612466B2 (en) | 2008-01-28 | 2009-11-03 | VPT Energy Systems | System and method for coordinated control and utilization of local storage and generation, with a power grid |
US8373312B2 (en) | 2008-01-31 | 2013-02-12 | General Electric Company | Solar power generation stabilization system and method |
US20090195074A1 (en) | 2008-01-31 | 2009-08-06 | Buiel Edward R | Power supply and storage device for improving drilling rig operating efficiency |
US8527106B2 (en) * | 2008-04-11 | 2013-09-03 | Meidensha Corporation | System stabilization device |
WO2009128082A1 (en) | 2008-04-17 | 2009-10-22 | Eran Ofek | Dynamically configuring properties of battery packs |
WO2009144737A1 (en) | 2008-05-05 | 2009-12-03 | Mckinney, Hina | Wind turbine system with steady electric power output using air battery. |
GB0810512D0 (en) | 2008-06-10 | 2008-07-09 | Rolls Royce Plc | An electrical generator network and a local electrical system |
US20090312885A1 (en) | 2008-06-11 | 2009-12-17 | Buiel Edward R | Management system for drilling rig power supply and storage system |
GB0818174D0 (en) | 2008-10-03 | 2008-11-12 | Leaneco Aps | Emergency power supply apparatus |
EP2396761A4 (en) | 2008-11-14 | 2013-09-25 | Thinkeco Power Inc | SYSTEM AND METHOD FOR DEMOCRATIZING POWER TO PRODUCE A META EXCHANGE |
US9093862B2 (en) | 2009-01-16 | 2015-07-28 | Zbb Energy Corporation | Method and apparatus for controlling a hybrid power system |
ES2618029T3 (es) | 2009-04-03 | 2017-06-20 | Xemc Darwind B.V. | Operación de un parque eléctrico conectado en red eléctrica independiente |
US20100264739A1 (en) | 2009-04-15 | 2010-10-21 | Monte Errington | Modular adaptive power matrix |
US8022572B2 (en) | 2009-04-22 | 2011-09-20 | General Electric Company | Genset system with energy storage for transient response |
US8315745B2 (en) | 2009-04-24 | 2012-11-20 | Hunter Defense Technologies, Inc. | Mobile micro-grid power system controller and method |
CN201438640U (zh) | 2009-05-27 | 2010-04-14 | 比亚迪股份有限公司 | 一种用于平衡电网负荷的储能系统 |
WO2011008505A2 (en) | 2009-06-29 | 2011-01-20 | Powergetics, Inc | High speed feedback adjustment of power charge/discharge from energy storage system |
ES2561842T3 (es) | 2009-06-29 | 2016-03-01 | Vestas Wind Systems A/S | Turbina eólica que proporciona soporte a la red de distribución |
WO2011008506A2 (en) | 2009-06-29 | 2011-01-20 | Powergetics, Inc. | High speed feedback for power load reduction using a variable generator |
DE102009038033A1 (de) | 2009-08-19 | 2011-02-24 | Wobben, Aloys | Elektrische Ladevorrichtung |
WO2011020149A1 (en) | 2009-08-21 | 2011-02-24 | Renergyx Pty Limited | Electrical energy distribution system with ride-through capability |
DE102009040091A1 (de) | 2009-09-04 | 2011-03-10 | Voltwerk Electronics Gmbh | Inseleinheit eines Inselenergienetzes zum Kommunizieren von Energieanfragen mit einer weiteren Inseleinheit |
DE102009040090A1 (de) | 2009-09-04 | 2011-03-10 | Voltwerk Electronics Gmbh | Inseleinheit für ein Energienetz mit einer Steuereinheit zum Steuern eines Energieflusses zwischen der Energieerzeugungseinheit, der Energiespeichereinheit, der Lasteinheit und/oder dem Energienetz |
US9388753B2 (en) | 2009-09-17 | 2016-07-12 | General Electric Company | Generator control having power grid communications |
US8227929B2 (en) | 2009-09-25 | 2012-07-24 | General Electric Company | Multi-use energy storage for renewable sources |
EP2325970A3 (en) | 2009-11-19 | 2015-01-21 | Samsung SDI Co., Ltd. | Energy management system and grid-connected energy storage system including the energy management system |
US20130116844A1 (en) | 2009-12-03 | 2013-05-09 | A123 Systems, Inc. | Grid load synchronization device and method |
KR101084214B1 (ko) | 2009-12-03 | 2011-11-18 | 삼성에스디아이 주식회사 | 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법 |
US9065300B2 (en) | 2009-12-04 | 2015-06-23 | Kevin R. Williams | Dual fuel system and method of supplying power to loads of a drilling rig |
KR101097259B1 (ko) | 2009-12-11 | 2011-12-21 | 삼성에스디아이 주식회사 | 전력 저장을 위한 장치 및 제어 방법 |
KR101097260B1 (ko) | 2009-12-15 | 2011-12-22 | 삼성에스디아이 주식회사 | 계통 연계형 전력 저장 시스템 및 전력 저장 시스템 제어 방법 |
KR101146670B1 (ko) | 2009-12-16 | 2012-05-23 | 삼성에스디아이 주식회사 | 에너지 관리 시스템 및 이의 제어 방법 |
KR101084215B1 (ko) | 2009-12-16 | 2011-11-17 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101097261B1 (ko) | 2009-12-17 | 2011-12-22 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어 방법 |
KR101156533B1 (ko) | 2009-12-23 | 2012-07-03 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101084216B1 (ko) | 2009-12-23 | 2011-11-17 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101097265B1 (ko) | 2010-02-25 | 2011-12-22 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어방법 |
US8338987B2 (en) | 2010-02-26 | 2012-12-25 | General Electric Company | Power generation frequency control |
US8866334B2 (en) | 2010-03-02 | 2014-10-21 | Icr Turbine Engine Corporation | Dispatchable power from a renewable energy facility |
US8446024B2 (en) | 2010-03-16 | 2013-05-21 | Hamilton Sundstrand Corporation | Electrical machines with integrated power and control and including a current source inverter |
GB201005801D0 (en) | 2010-04-07 | 2010-05-26 | Cooper Timothy P | A localy based electricity supply management system and method |
KR101038274B1 (ko) | 2010-04-09 | 2011-06-01 | 그리드온(주) | 마이크로그리드를 위한 마이크로전원 및 그 제어방법 |
US8164217B1 (en) | 2010-04-15 | 2012-04-24 | Science Applications International Corporation | System and method for management of a DC and AC bus microgrid |
JP2011234458A (ja) | 2010-04-26 | 2011-11-17 | Honda Motor Co Ltd | ハイブリッド式発動発電機の出力制御装置 |
ES2777887T3 (es) * | 2010-05-03 | 2020-08-06 | Siemens Gamesa Renewable Energy As | Sistema para intercambiar energía eléctrica entre una batería y una red eléctrica y procedimiento respectivo |
WO2011162722A1 (en) | 2010-06-21 | 2011-12-29 | National University Of Singapore | Energy storage system |
US20120033473A1 (en) | 2010-07-12 | 2012-02-09 | Scharf Mesa P | Systems and methods for electrical power grid monitoring using loosely synchronized phasors |
US20120025614A1 (en) | 2010-07-28 | 2012-02-02 | Pasi Taimela | Uninterruptible Power Supply Apparatus and Methods Using Reconfigurable Energy Storage Networks |
EP2599183B1 (en) | 2010-07-29 | 2016-11-30 | Spirae Inc. | Dynamic distributed power grid control system |
US20120046798A1 (en) | 2010-08-19 | 2012-02-23 | Heat Assured Systems, Llc | Systems and Methods for Power Demand Management |
US8688281B2 (en) | 2010-08-31 | 2014-04-01 | Vestas Wind Systems A/S | Optimization of energy storage device usage in wind energy applications |
CN103081274B (zh) | 2010-09-09 | 2016-07-06 | Abb研究有限公司 | 检测电力网络中的孤岛状况 |
GB2483879B (en) | 2010-09-22 | 2013-07-10 | Qingchang Zhong | Robust droop controller for inverters to achieve exact proportional load sharing when connected in parallel |
JP5696877B2 (ja) | 2010-10-01 | 2015-04-08 | 清水建設株式会社 | 運転管理装置、運転管理方法、および運転管理プログラム |
US8498752B2 (en) | 2010-10-04 | 2013-07-30 | Osisoft, Llc | Decoupling controller for power systems |
US9240687B2 (en) | 2010-10-04 | 2016-01-19 | The Boeing Company | Smart microgrid |
KR101147206B1 (ko) | 2010-10-06 | 2012-05-25 | 삼성에스디아이 주식회사 | 계통 연계형 전력 저장 시스템 및 이를 위한 통합 제어기 |
US8849469B2 (en) | 2010-10-28 | 2014-09-30 | Microsoft Corporation | Data center system that accommodates episodic computation |
US8532834B2 (en) | 2010-10-29 | 2013-09-10 | Hatch Ltd. | Method for integrating controls for captive power generation facilities with controls for metallurgical facilities |
WO2012064906A2 (en) | 2010-11-09 | 2012-05-18 | Inovus Solar, Inc. | Energy-efficient utility system utilizing solar-power |
US8970176B2 (en) | 2010-11-15 | 2015-03-03 | Bloom Energy Corporation | DC micro-grid |
US20120147637A1 (en) | 2010-12-13 | 2012-06-14 | Northern Power Systems, Inc. | Methods, Systems, and Software for Controlling a Power Converter During Low (Zero)-Voltage Ride-Through Conditions |
KR101203842B1 (ko) | 2010-12-28 | 2012-11-21 | 엘지전자 주식회사 | 에너지 관리장치의 제어방법 |
US8766474B2 (en) | 2011-01-12 | 2014-07-01 | The Boeing Company | Smart microgrid reconfigurable AC interface |
US20120215368A1 (en) | 2011-02-23 | 2012-08-23 | Nec Laboratories America, Inc. | Storage integrated management systems for energy microgrids |
US8922062B2 (en) | 2011-03-14 | 2014-12-30 | Sunpower Corporation | Automatic voltage regulation for photovoltaic systems |
EP2501014B1 (en) | 2011-03-14 | 2016-05-11 | ABB Research Ltd. | Method and apparatus for detecting islanding conditions of distributed generator |
CN102694381B (zh) | 2011-03-25 | 2014-07-23 | 珠海优特电力科技股份有限公司 | 多级电网自愈控制方法 |
WO2012138235A2 (en) | 2011-04-08 | 2012-10-11 | Auckland Uniservices Limited | Local demand side power management for electric utility networks |
US20130062953A1 (en) | 2011-04-15 | 2013-03-14 | Abb Research Ltd. | Reconfigurable Power Converters, Systems and Plants |
US8831788B2 (en) | 2011-04-20 | 2014-09-09 | General Electric Company | Systems, methods, and apparatus for maintaining stable conditions within a power grid |
CN202059185U (zh) | 2011-05-05 | 2011-11-30 | 许继集团有限公司 | 微电网并离网控制装置 |
US8730691B2 (en) | 2011-05-11 | 2014-05-20 | Eaton Corporation | Power conversion apparatus and methods employing variable-level inverters |
US9026260B1 (en) | 2011-05-23 | 2015-05-05 | Shaw Intellectual Property Holdings, Inc. | Secure microgrid |
EP2721705B1 (en) | 2011-06-20 | 2015-03-11 | ABB Technology AG | A method for controlling power flow within a wind park system, controller, computer program and computer program products |
US9559520B2 (en) | 2011-06-20 | 2017-01-31 | The Aes Corporation | Hybrid electric generating power plant that uses a combination of real-time generation facilities and energy storage system |
EP2731223B1 (en) * | 2011-07-08 | 2016-06-08 | Kawasaki Jukogyo Kabushiki Kaisha | Power conversion apparatus directed to combined-cycle power generation system |
US20130015703A1 (en) | 2011-07-16 | 2013-01-17 | Rouse Gregory C | Microgrid |
US9207735B2 (en) | 2011-08-02 | 2015-12-08 | Gram Power, Inc. | Power management device and system |
US9172249B2 (en) | 2011-08-12 | 2015-10-27 | Rocky Research | Intelligent microgrid controller |
US8310105B2 (en) | 2011-08-30 | 2012-11-13 | Renewable Power Conversion, Inc. | Centralized islanding protection for distributed renewable energy generators |
SI2752955T1 (en) | 2011-08-30 | 2018-04-30 | Hitachi, Ltd. | SYSTEM FOR STABILIZATION OF THE ELECTRIC POWER SYSTEM |
EP2573896B1 (en) | 2011-09-21 | 2017-03-01 | GE Energy Power Conversion Technology Ltd | Methods of controlling a combined plant including at least one generator and an energy store |
CN103828166B (zh) | 2011-09-26 | 2016-07-20 | 紫稳电机株式会社 | 直流电源利用系统和采用该系统的直流型微电网网络 |
US8751036B2 (en) | 2011-09-28 | 2014-06-10 | Causam Energy, Inc. | Systems and methods for microgrid power generation management with selective disconnect |
EP2763265B1 (en) | 2011-09-28 | 2021-09-22 | Kyocera Corporation | Power conditioner system and storage battery power conditioner |
TWI437791B (zh) | 2011-10-06 | 2014-05-11 | Gcca Inc | 網路化直流供電系統 |
US9136732B2 (en) | 2011-10-15 | 2015-09-15 | James F Wolter | Distributed energy storage and power quality control in photovoltaic arrays |
US8946929B2 (en) | 2011-11-04 | 2015-02-03 | Honeywell International Inc. | Method and apparatus for effective utilization of energy storage components within a microgid |
DE102011055250A1 (de) | 2011-11-10 | 2013-05-16 | Evonik Degussa Gmbh | Verfahren zur Erbringung von Regelleistung unter Verwendung von Energiespeichern |
EP2782204B1 (en) | 2011-11-15 | 2017-05-10 | Kyocera Corporation | Power supply apparatus, power supply system, and method for controlling power supply system |
TWI481146B (zh) | 2011-12-02 | 2015-04-11 | Darfon Electronics Corp | 太陽能無電池離網型換流器系統及其控制方法 |
WO2013082698A1 (en) | 2011-12-05 | 2013-06-13 | Hatch Ltd. | System, method and controller for managing and controlling a micro-grid |
US20130158901A1 (en) | 2011-12-19 | 2013-06-20 | Zafer Sahinoglu | Method and System for Detecting Unbalance in Power Grids |
US9077208B2 (en) | 2011-12-30 | 2015-07-07 | Schneider Electric USA, Inc. | Method of detecting instability in islanded electrical systems |
US9455633B2 (en) | 2012-01-05 | 2016-09-27 | Ingeteam Power Technology, S.A. | Method and apparatus for controlling a frequency converter |
CA2861571C (en) * | 2012-01-17 | 2020-07-07 | Ecamion Inc. | A control, protection and power management system for an energy storage system |
US9026259B2 (en) | 2012-01-25 | 2015-05-05 | General Electric Company | Power generation optimization in microgrid including renewable power source |
CN102545711B (zh) | 2012-02-17 | 2015-06-24 | 振发能源集团有限公司 | 一种新型的离网/并网一体化太阳能发电系统与控制方法 |
US9552029B2 (en) | 2012-02-20 | 2017-01-24 | Engineered Electric Company | Micro grid power distribution unit |
KR20130104771A (ko) | 2012-03-15 | 2013-09-25 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 그의 제어 방법 |
US9431827B2 (en) | 2012-04-30 | 2016-08-30 | Green Charge Networks Llc | Load isolation consumption management systems and methods |
US10169832B2 (en) | 2013-05-08 | 2019-01-01 | Instant Access Networks, Llc | Method and instrumentation for sustainable energy load flow management system performing as resilient adaptive microgrid system |
US9465398B2 (en) | 2012-06-20 | 2016-10-11 | Causam Energy, Inc. | System and methods for actively managing electric power over an electric power grid |
US9246335B2 (en) | 2012-06-25 | 2016-01-26 | Honeywell International Inc. | Fuel efficiency optimization for microgrid systems employing multiple generators |
CN102723735B (zh) | 2012-06-29 | 2015-06-17 | 京东方科技集团股份有限公司 | 孤岛检测方法及系统 |
US9640997B2 (en) | 2012-07-30 | 2017-05-02 | Siemens Corporation | Power system stabilization using distributed inverters |
US9568901B2 (en) | 2012-08-27 | 2017-02-14 | Nec Corporation | Multi-objective energy management methods for micro-grids |
EP2896102B1 (en) | 2012-09-17 | 2017-02-22 | Vestas Wind Systems A/S | A method of determining individual set points in a power plant controller, and a power plant controller |
US10693294B2 (en) | 2012-09-26 | 2020-06-23 | Stem, Inc. | System for optimizing the charging of electric vehicles using networked distributed energy storage systems |
KR20140041089A (ko) | 2012-09-27 | 2014-04-04 | 엘에스산전 주식회사 | 분산전원 제어 장치 |
US9472954B2 (en) | 2012-10-08 | 2016-10-18 | Eaton Corporation | Generator dispatching or load shedding control method and system for microgrid applications |
US9411389B2 (en) | 2012-10-09 | 2016-08-09 | Nec Corporation | Distributed generation control for microgrid during islanding |
US10289080B2 (en) * | 2012-10-11 | 2019-05-14 | Flexgen Power Systems, Inc. | Multi-generator applications using variable speed and solid state generators for efficiency and frequency stabilization |
US9312699B2 (en) * | 2012-10-11 | 2016-04-12 | Flexgen Power Systems, Inc. | Island grid power supply apparatus and methods using energy storage for transient stabilization |
CA2829247C (en) | 2012-10-12 | 2017-03-14 | General Electric Company | System and method for wind power dispatch in a wind farm |
US20140103724A1 (en) | 2012-10-15 | 2014-04-17 | General Electric Company | Bidirectional power system, operation method, and controller for operating |
US20140129042A1 (en) | 2012-11-07 | 2014-05-08 | Dorazio Enterprises, Inc. | Community Based Energy Management System |
US9244446B2 (en) | 2012-11-29 | 2016-01-26 | International Business Machines Corporation | Configuring, optimizing and managing micro-grids |
US8975767B2 (en) | 2012-12-12 | 2015-03-10 | Caterpillar Inc. | Control system for load sharing between a generator set and an inverter-based energy storage |
KR101422361B1 (ko) | 2012-12-28 | 2014-07-22 | 엘에스산전 주식회사 | 분산전원 제어 방법 |
US9620994B2 (en) | 2013-01-17 | 2017-04-11 | Eaton Corporation | Method and system of anti-islanding of a microgrid in a grid-connected microgrid system |
US8957666B2 (en) | 2013-04-23 | 2015-02-17 | Virgina Tech Intellectual Properties, Inc. | Anti-islanding protection in three-phase converters using grid synchronization small-signal stability |
US9042141B2 (en) | 2013-02-07 | 2015-05-26 | Caterpillar Inc. | Control of energy storage system inverter system in a microgrid application |
US9490626B2 (en) | 2013-02-14 | 2016-11-08 | Aeg Power Solutions Bv | Methods for anti-islanding in distributed-source electrical power generation and distribution systems and electrical systems and apparatus using same |
US20140229031A1 (en) | 2013-02-14 | 2014-08-14 | Petra Solar, Inc. | Micro-Inverter Based AC-Coupled Photovoltaic Microgrid System with Wireless Smart-Grid Controls |
US9454137B2 (en) | 2013-03-01 | 2016-09-27 | Honeywell International Inc. | System and method of large area microgrid stability controls |
US9331487B2 (en) | 2013-03-14 | 2016-05-03 | Rockwell Automation Technologies, Inc. | Method and apparatus for islanding detection for grid tie converters |
KR101451009B1 (ko) | 2013-03-27 | 2014-10-15 | 주식회사 엘지씨엔에스 | 직렬 연결된 다수 개의 전지 직류 마이크로그리드 충방전 시스템 |
US9755430B2 (en) | 2013-04-11 | 2017-09-05 | Solantro Semiconductor Corp. | Virtual inverter for power generation units |
US20140306534A1 (en) | 2013-04-15 | 2014-10-16 | Nec Laboratories America, Inc. | Pmu based distributed generation control for microgrid during islanding process |
US9733657B2 (en) | 2013-06-19 | 2017-08-15 | Nec Corporation | Power system with an energy generator and a hybrid energy storage system |
US10079317B2 (en) | 2013-07-15 | 2018-09-18 | Constantine Gonatas | Device for smoothing fluctuations in renewable energy power production cause by dynamic environmental conditions |
EP2827467A3 (en) | 2013-07-18 | 2015-04-22 | Solantro Semiconductor Corp. | Stabilized power generation |
US9455577B2 (en) | 2013-07-25 | 2016-09-27 | Globalfoundries Inc. | Managing devices within micro-grids |
US9733623B2 (en) | 2013-07-31 | 2017-08-15 | Abb Research Ltd. | Microgrid energy management system and method for controlling operation of a microgrid |
US9280797B2 (en) | 2013-09-19 | 2016-03-08 | General Electric Company | System and method to minimize grid spinning reserve losses by pre-emptively sequencing power generation equipment to offset solar generation capacity based on geospatial regional solar and cloud conditions |
US20150094871A1 (en) | 2013-09-27 | 2015-04-02 | International Business Machines Corporation | Managing devices in micro-grids |
US9660455B2 (en) | 2013-10-03 | 2017-05-23 | Caterpillar Inc. | System and method for increasing efficiency of gensets in micro-grid systems |
JP6134970B2 (ja) * | 2013-10-22 | 2017-05-31 | 株式会社日立情報通信エンジニアリング | 電力変換システムおよび電力変換システムの単独運転検出方法 |
-
2015
- 2015-12-22 WO PCT/US2015/067347 patent/WO2016109330A1/en active Application Filing
- 2015-12-22 US US15/539,772 patent/US10574055B2/en active Active
- 2015-12-22 AU AU2015374405A patent/AU2015374405A1/en not_active Abandoned
- 2015-12-22 ES ES15876046T patent/ES2819248T3/es active Active
- 2015-12-22 CN CN201580077204.8A patent/CN107534294B/zh active Active
- 2015-12-22 CA CA2972897A patent/CA2972897C/en active Active
- 2015-12-22 EP EP15876046.2A patent/EP3241262B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103490450A (zh) * | 2013-10-14 | 2014-01-01 | 北京艾科迈新能源科技有限公司 | 用于中低压微电网的储能并联控制方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3241262A4 (en) | 2018-06-06 |
EP3241262A1 (en) | 2017-11-08 |
EP3241262B1 (en) | 2020-08-19 |
US20180013288A1 (en) | 2018-01-11 |
CA2972897C (en) | 2022-06-14 |
US10574055B2 (en) | 2020-02-25 |
WO2016109330A1 (en) | 2016-07-07 |
CN107534294A (zh) | 2018-01-02 |
AU2015374405A1 (en) | 2017-07-20 |
CA2972897A1 (en) | 2016-07-07 |
ES2819248T3 (es) | 2021-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107534294B (zh) | 具有有功和无功功率控制的暂态功率稳定化设备 | |
AU2003293372B2 (en) | Electrical power supply | |
Serban et al. | A control strategy for a distributed power generation microgrid application with voltage-and current-controlled source converter | |
Mohanty et al. | Stability analysis and reactive power compensation issue in a microgrid with a DFIG based WECS | |
US20140175886A1 (en) | Power System Having a Stabilized DC Link Voltage to Handle Transient Events | |
US20040051387A1 (en) | Control of small distributed energy resources | |
Pilehvar et al. | Smart loads for power quality and battery lifetime improvement in nanogrids | |
Elwakil et al. | Adaptive virtual synchronous generator control using optimized bang-bang for Islanded microgrid stability improvement | |
Esobinenwu et al. | Reactive power (VAR) compensation techniques in high voltage transmission lines | |
US11894682B2 (en) | Methods and systems for off-grid load stabilization of energy distribution systems | |
US10862310B2 (en) | Hybrid power generation system using generator with variable mechanical coupling and methods of operating the same | |
Jadhav et al. | Frequency regulation by electric vehicle | |
Hossain et al. | Active power control in an islanded microgrid using DC link voltage status | |
US9548693B2 (en) | Methods and voltage regulator for power distribution in a hybrid system | |
Jie et al. | Study on harmonic resonance mechanism and its suppression method in isolated network system | |
Fuhr et al. | Grid Supporting Inverter for Transient Load Relief in Islanded Microgrids | |
CZ35099U1 (cs) | Zařízení pro zvýšení životnosti a flexibility rotačního zdroje elektrické energie | |
CZ309418B6 (cs) | Způsob a zařízení pro zvýšení životnosti a flexibility rotačního zdroje elektrické energie | |
Rahman et al. | Provision of Inertial and Droop Response by Controlling the Charging Rate of Battery Pack | |
Ito et al. | Improvement of islanded operating stability for lean-burn gas engine by effective use of power storage device | |
Chou et al. | Study on voltage stability of island grid supplied by large grid with long submarine cables considering different load patterns | |
CN115549144A (zh) | 微电网及其控制方法 | |
Sharma et al. | Reactive Power Control of the Isolated Hybrid Power Systems with STATCOM | |
Sedaghati et al. | Application of STATCOM-SMES Compensator for Power System Dynamic Performance Improvement | |
Usunariz et al. | Research Article A Modified Control Scheme of Droop-Based Converters for Power Stability Analysis in Microgrids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |