JP5058343B2 - 光送信器及び光ofdm通信システム - Google Patents
光送信器及び光ofdm通信システム Download PDFInfo
- Publication number
- JP5058343B2 JP5058343B2 JP2010544038A JP2010544038A JP5058343B2 JP 5058343 B2 JP5058343 B2 JP 5058343B2 JP 2010544038 A JP2010544038 A JP 2010544038A JP 2010544038 A JP2010544038 A JP 2010544038A JP 5058343 B2 JP5058343 B2 JP 5058343B2
- Authority
- JP
- Japan
- Prior art keywords
- signal
- unit
- optical
- distortion
- inverse fft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003287 optical effect Effects 0.000 title claims description 172
- 238000004891 communication Methods 0.000 title claims description 58
- 230000005540 biological transmission Effects 0.000 claims description 105
- 238000006243 chemical reaction Methods 0.000 claims description 41
- 239000013307 optical fiber Substances 0.000 claims description 41
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000000644 propagated effect Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 description 31
- 238000000034 method Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 26
- 239000006185 dispersion Substances 0.000 description 21
- 238000001228 spectrum Methods 0.000 description 20
- 238000001514 detection method Methods 0.000 description 14
- 125000004122 cyclic group Chemical group 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03821—Inter-carrier interference cancellation [ICI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2697—Multicarrier modulation systems in combination with other modulation techniques
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Description
本発明は、光送信器及び光OFDM通信システムに係り、特に、マルチキャリアを用いた光通信システムの光送信器に関し、より具体的には、直接検波受信方式を用いた光OFDM(Orthogonal Frequency Division Multiplexing、直交周波数分割多重)通信システムにおいてサブキャリア間干渉の影響を低減する光送信器及び光OFDM通信システムに関する。
今まで実用化されてきた光通信システムは、光の強度を用いた2値の変復調技術を適用している。具体的には、送信側でディジタル情報の「0」と「1」を光の強度のオン−オフに変換して光ファイバに送信し、光ファイバ中を伝播した光は受信側で光電変換されてもとの情報を復元している。近年、インターネットの爆発的普及に伴い、光通信システムに要求される通信容量は飛躍的に伸びている。通信容量の大容量化の要請に対して今までは、光のオン−オフする速度、つまり変調速度を上昇させることで対応してきた。しかしながら、この変調速度を上昇させて大容量化を実現するという手法では一般に、次に述べるような課題がある。
変調速度を上昇させると、光ファイバの波長分散によって制限される伝送可能な距離は短くなる、という課題がある。一般に波長分散によって制限される伝送距離はビットレートの二乗で短くなる。つまり、ビットレートが2倍になると、波長分散によって制限される伝送距離は1/4になる。同様に変調速度を上昇させると、光ファイバの偏波分散によって制限される伝送可能な距離が短くなる、という課題もある。一般にビットレートが2倍になると、偏波分散によって制限される伝送距離は1/2になる。波長分散の影響を具体的に示すと、ビットレートが10Gbpsで通常分散ファイバを用いると波長分散で制限される伝送距離は60kmであるが、ビットレートが40Gbpsのシステムになると、其の距離はおよそ4kmと短くなる。さらに次世代の100Gbpsシステムの場合は波長分散によって制限される伝送距離は0.6kmとなり、このままでは、伝送距離が500km程度の幹線光通信システムを実現することはできない。超高速な幹線光通信システムを構築するために現在は、伝送路の波長分散を打ち消すために負の波長分散を持ったいわゆる分散補償ファイバという特殊な光ファイバを中継器や送受信機に設置している。この特殊ファイバは高価であり、またその分散補償ファイバを各サイトにどれだけ(分散補償ファイバの長さ)設置するかという高度な設計が必要になり、これら両者が光通信システムの価格を押し上げている。
そこで最近、通信容量を増加させる光変復調方式として、OFDM技術を用いた光通信システムの研究が脚光を浴びている。OFDM技術は、1シンボル時間内で直交する、つまり1シンボル時間の逆数の整数倍の周波数を持つ、多数の正弦波(これをサブキャリアと呼ぶ)のそれぞれの振幅と位相を所定の値に設定することによって情報を乗せ(変調し)、これらのサブキャリアを束ねた信号でキャリアを変調し送信する技術である。このOFDM技術は、電話局と家庭の間で通信するVDSL(Very high bit rate Digital Subscriber Line)システムや、家庭内での電力線通信システム、さらには地上波ディジタルTVシステムで用いられ、実用化されている。さらには次世代の携帯電話システムでも用いられる予定である。
光OFDM通信システムは、光をキャリアとしてOFDM技術を適用した通信システムである。OFDM技術では、前述のように多数のサブキャリアを用いており、さらにおのおののサブキャリアの変調方式は、例えば、4−QAM、8−PSK、あるいは16−QAMなど多値変調方式が適用可能なため、1シンボル時間がビットレートの逆数より非常に長くなる。その結果として前述の波長分散や偏波分散によって制限される伝送距離が、光通信システムで想定される伝送距離(例えば、国内の幹線システムでは500km)より十分長くなり、前述の分散補償ファイバが不要となる。その結果、低コスト光通信システムが実現できる可能性がある。具体的な数値例を示すと、例えば10Gbpsのビットレートの光通信システムを光OFDM技術で実現する場合を考える。サブキャリア数を10本、各サブキャリアの変調を4−QAMとすると、1シンボル速度は、500MBaudとなる。この場合の波長分散によって制限される伝送距離は10Gbpsの光通信システムを従来のオン−オフ変調するOOK(On−Off Keying)方式の(10/0.5)2=400倍、つまり24000kmとなり、高価な分散補償ファイバを用いずに伝送距離500kmの国内幹線システムを実現でき、低コスト光通信システムを構築できる。
さて、光OFDM通信システムは光信号の受信方式によって2通りに分類できる。一つは直接検波受信方式であり、他はコヒーレント受信方式である。本発明は直接検波受信方式を用いた光OFDM通信システムに関するものである。
このシステムの構成図を図3に示す。本来通信すべきデータが送信器1に入力端子9より入力すると、送信器1の内部の送信信号処理部100でベースバンドOFDM信号に変換され、この信号はドライバアンプ2で増幅され光変調器4でキャリアである光に乗せられて光OFDM信号が生成される。この光OFDM信号は伝送路である光ファイバ5を通って受信器6に到達する。光OFDM信号はフォトダイオード7で直接検波受信されて電気信号に変換される。この電気信号は理想的には前述のベースバンドOFDM信号であり、この信号はプリアンプ6で増幅されて受信信号処理部200で本来通信すべきデータに復調されて出力端子10より出力される。
送信信号処理部100の機能構成図を図5に、受信信号処理部200の機能構成図を図6に示す。通信すべきデータは、まずシリアル−パラレル変換部110で2N個のパラレルデータに変換される。ここでNはデータを乗せるサブキャリアの本数である。サブキャリアの変調が4−QAMの場合は2N個のパラレルデータであるが、これが例えば16−QAMの場合は4N個となる。つまりシリアルデータは、「1シンボル辺りのビット数×サブキャリアの本数」個のパラレルデータに変換する。サブキャリア変調部120は、このパラレルデータを用いてN本のサブキャリアに変調をかける。この変調されたサブキャリアは逆FFT部130で時間軸のデータに変換され、パラレル−シリアル変換部140でシリアルデータに変換される。このシリアルデータはサイクリックプリフィックス挿入部150でサイクリックプリフィックスが挿入され、D/A変換部160を通過してアナログ信号としてドライバアンプへ信号を送出する。
受信信号処理部200では、プリアンプで増幅された受信電気信号をA/D変換部210でディジタル信号に変換し、サイクリックプリフィックス削除部220でサイクリックプリフィックスが削除され、シリアルーパラレル変換部230でN本のパラレルデータに変換される。これらのパラレルデータはFFT部240においてN本のサブキャリア信号に分離され、サブキャリア復調部250にて各サブキャリアに乗っているデータが復調され、パラレル−シリアル変換部260にてシリアルデータに変換される。
光ファイバ5を伝播する光OFDM信号のスペクトルは、光ファイバの波長分散の影響を避けるため、単一側帯波変調方式を用いる。この場合の光OFDM信号の光スペクトルを図8に示す。光のキャリアの高周波側にサブキャリア信号が並んでいる(低周波側にサブキャリアを配置しても良い)。この光OFDM信号の光スペクトルは、間隔が1シンボル時間Tsの逆数Δで等間隔に並んだ複数のサブキャリア信号を有する。光OFDM信号が占める信号帯域Bはサブキャリアの本数をNとするとおよそN×Δとなる。この信号を直接検波受信する場合、サブキャリア間のビート信号(うなり信号)がフォトダイオードで行われる直接検波、つまり光電変換によって発生し、これが本来受信しようとするサブキャリア信号に干渉し、受信信号を歪ませ、その結果受信感度劣化を起こす。
この課題(以下ではサブキャアリア間干渉(ICI)による感度劣化)は、今までに例えば、以下の4つの解決手法が示されている。
第一の手法は、例えば非特許文献1に示されているガードバンド方式である。この方式で生成したベースバンドOFDM信号のスペクトルの模式図とこの信号を直接検波受信した場合に発生する受信電気信号のスペクトルの模式図を、それぞれ図10(a)と(b)に示す。この方式では、本来通信する信号が乗せられたサブキャリア信号を信号帯域Bだけ、直流から離しガードバンドを設ける。これを光OFDM信号に変換して送信し、直接検波する。この場合、サブキャリア間干渉(ICI)は直流から信号帯域Bの間に発生し、本来通信しようとしていたデータが乗っているサブキャリアとは周波数が異なり干渉を起こさない。
第一の手法は、例えば非特許文献1に示されているガードバンド方式である。この方式で生成したベースバンドOFDM信号のスペクトルの模式図とこの信号を直接検波受信した場合に発生する受信電気信号のスペクトルの模式図を、それぞれ図10(a)と(b)に示す。この方式では、本来通信する信号が乗せられたサブキャリア信号を信号帯域Bだけ、直流から離しガードバンドを設ける。これを光OFDM信号に変換して送信し、直接検波する。この場合、サブキャリア間干渉(ICI)は直流から信号帯域Bの間に発生し、本来通信しようとしていたデータが乗っているサブキャリアとは周波数が異なり干渉を起こさない。
第二の手法は、非特許文献2に示されているガードバンド方式である。この方式では、ベースバンドOFDM信号のスペクトルにガードバンドを持たせるのは、第一の手法と同じであるが、本手法では、光変調器4のバイアス点を、光キャリアが発生しないいわゆる透過特性のゼロ点(トランスミッタンスヌル)に設定し、キャリアとしてベースバンドのある周波数(例えば−fc)成分を用い、このキャリアから信号帯域幅Bだけガードバンドを設定し、それより高周波側に信号が乗ったサブキャリアを配置する。具体的なベースバンドOFDM信号のスペクトルの模式図とこの信号を光伝送し、直接受信した場合の電気信号のスペクトルを図11の(a)と(b)にそれぞれ示す。本手法と上述の第一の手法の違いは、ベースバンドOFDM信号のスペクトルが−fcずれている点である。したがって、直接検波受信した電気信号のスペクトルは同じになる(図10(b)と図11(b)を参照)。
第三の手法は同じく非特許文献2に示されている。この解決手段では、第一、第二の手法のガードバンドを信号の乗ったサブキャリアの間に配置した信号を用いる。具体的な周波数配置を図12(a)と(b)に示す。送信側のベースバンドOFDM信号のスペクトル(a)では、信号の乗ったサブキャリアの間隔を2×Δに空ける。この信号を光OFDM信号に変換して送信し直接検波受信して発生する電気信号スペクトルは図12(b)となる。サブキャリア間干渉(ICI)は信号が乗ったサブキャリア成分の間に発生し、信号と干渉は起こさない。
第四の手法は、非特許文献3に示されており、光OFDM信号のスペクトルは図8のままである。受信器では、通常の信号処理を行ってサブキャリアの復調を行った後、この復調後のデータを用いて信号処理によってサブキャリア間干渉の歪成分を生成し、これを受信した信号から引き算することによってサブキャリア間干渉の影響を低減する手法である。
A.J.Lowery、L.Du、and J.Armstrong、「Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems」、OFC2006、Postdeadline Papers、PDP39、2006 W.Peng、X.Wu、and V.R.Arbab、et al、「Experimental Demonstration of a Coherently Modulated and Directly Detected Optical OFDM Systems Using an RF−Tone Insertion」、OFC2008、OMU2、2008 W.Peng、X.Wu、V.R.Arbab、et al、「Experimental Demonstration of 340km SSMF Transmission Using a Virtual Single Sideband OFDM Signal that Employs Carrier Suppressed and Iterative Detection Techniques」、OFC2008、OMU1、2008
A.J.Lowery、L.Du、and J.Armstrong、「Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems」、OFC2006、Postdeadline Papers、PDP39、2006 W.Peng、X.Wu、and V.R.Arbab、et al、「Experimental Demonstration of a Coherently Modulated and Directly Detected Optical OFDM Systems Using an RF−Tone Insertion」、OFC2008、OMU2、2008 W.Peng、X.Wu、V.R.Arbab、et al、「Experimental Demonstration of 340km SSMF Transmission Using a Virtual Single Sideband OFDM Signal that Employs Carrier Suppressed and Iterative Detection Techniques」、OFC2008、OMU1、2008
しかしながら、上記第一から第三の手法では、ガードバンドを使うことによって送信信号の帯域が、本来信号が持っている帯域Bの2倍に広がっている。これによって、この光OFDM伝送技術を波長多重伝送システムに適用した場合、一本の光ファイバで送ることができる総伝送容量は半分になってしまう、という課題がある。また上記第四の手法では、受信信号を復調した信号からサブキャリア間干渉による歪成分を抽出しているため、雑音によって誤った復調信号を使用して歪成分を抽出しており、正確な歪成分の抽出ができない、という課題がある。
本発明は、以上の点に鑑みてなされたものであり、直接検波受信方式を用いた光OFDM通信システムにおいて、伝送路や受信器での雑音に影響されずサブキャリア間干渉による受信信号の歪を小さくでき、受信感度劣化を低減できる光送信器及び光OFDM通信システムを提供することを目的のひとつとする。本発明は、また、光OFDM信号のスペクトル帯域幅を本来の元の信号帯域幅Bのままで通信することを目的のひとつとする。さらに、本発明は、この技術を用いて波長多重通信システムを構築した場合、1本の光ファイバで通信できる伝送容量は従来のガードバンドを用いる光OFDM通信システムの2倍にすることを目的のひとつとする。また、本発明は、光OFDM通信システムに用いられるデバイス、例えばフォトダイオード、光変調器、ドライバアンプ、プリアンプなどの特性の個体差、温度など環境の変化による特性変化、経時変化に依存せずに、光電変換によって発生するサブキャリア間干渉の影響を低減することを目的のひとつとする。
本発明では、送信信号処理部で光電変換時に発生するサブキャリア間干渉の歪成分を生成し、これを通信すべきデータが乗ったサブキャリア信号から引き算して送信する。本発明の光OFDM信号の光スペクトルは図8と同様であり、ベースバンドOFDM信号の片側スペクトルを図9に示す。以下に課題を解決するための手段をより具体的に記述する。
送信器内部の送信信号処理部に歪発生回路(歪生成部)を設け、この回路の入力信号としては、データで変調されたサブキャリア信号を用いる。歪生成部では、この入力信号を用いて逆FFT演算によってベースバンドOFDM信号を生成し、光電変換と同じ動作をさせるためにこの信号の絶対値の二乗をとり、FFT演算によってサブキャリア信号に戻す。この信号には光電変換で生成されるサブキャリア間干渉も含まれるので、入力信号、つまり通信すべき信号との差をとるとサブキャアリア間干渉によって発生する歪成分がとりだせる。歪生成部の出力は各サブキャリアの歪成分である。これを本来通信すべきデータで変調されたサブキャリア信号から引き算した信号を送信信号とする。このとき、送信信号は歪んだ状態で送信されることになるが、受信器のフォトダイオードで光電変換されると、その結果発生する電気信号のサブキャリア間干渉は、上記信号処理を施さない場合と比較すると小さくなる。
本発明に関わる歪の発生メカニズム及び歪の除去について数式を用いて以下に説明する。図8の光OFDM信号の電界は次式で表せる。
ここで、c0は光のキャリア振幅を、ckは各サブキャリアの変調成分(例えば4−QAM)を、Δはサブキャリアの周波数差を、f0は光のキャリア周波数を表す。
この信号を直接検波受信するとその光電流は次式(2)で表せる。
ここで、Rはフォトダイオードの量子効率や光ファイバとフォトダイオードとの光学的結合効率を含む比例常数であり、*は複素共役を表す。またδkは次式で与えられる。
式(2)から分かるように、直接検波受信した光電流には、通信したい本来の信号ckのほかに、δkという余分な成分が発生する。式(3)を見るとこの余分な成分は、キャリア間のビート信号の和となっているのが分かる。これが直接検波受信によって生成される歪成分である。
本発明は、例えばこの歪成分δkを送信器内部の歪生成回路で発生させ、本来送りたい情報信号ckから引き算して送ることによってこの歪成分を小さく抑えるものである。
本発明は、例えばこの歪成分δkを送信器内部の歪生成回路で発生させ、本来送りたい情報信号ckから引き算して送ることによってこの歪成分を小さく抑えるものである。
見通しをよくするため、サブキャリアの数(N)を2本に絞って本発明の動作原理を以下で説明する。送信器の内部で各サブキャリアに変調を掛けたあとシリアル信号に変換した信号V(t)は次式で表せる。
これを二乗検波すると次式となる。
この式で周波数Δの成分はc1以外に歪成分δ1が生成されている。ここで歪成分δ1は
である。これを見ると式(3)で求めた直接検波受信で発生するキャリア間干渉による歪式(3)が生成されているのが分かる。
この歪成分δ1を本来情報として送りたい信号c1から引き算する。この歪を引き算した信号をd1とする。
なお、信号c2は歪を受けないので、d2=c2である。
この歪んだ信号(d1、d2)を用いて光OFDM通信を行う。この場合の光OFDM信号は次式で表される。すなわち、
である。これを直接検波受信して得られる光電流は、
ここで周波数Δの成分は式(6)と(7)を用いると、
となり、歪成分δ1が確かに消えている。一般に|c0|2>>|c2|2であり、上式はほぼc1と等しい。これが、本発明の原理である。
この歪んだ信号(d1、d2)を用いて光OFDM通信を行う。この場合の光OFDM信号は次式で表される。すなわち、
なお、式(10)の右辺の小さな成分|c2|2/|c0|2は、サブキャリア数が大きくなると無視できなくなる。そのため、この送信側での歪発生を複数回行い、本来の送信信号から歪を複数回差し引いて送信することによってこの小さな歪成分も更にキャンセルするようにできる。これも本発明の一部である。また、スイッチを用いて歪の生成を繰り返す回数を制御するようにしてもよい。
式(10)を見ても分かる様に、本発明のプリディストーションによる歪成分のキャンセルは、式(2)のRに依存しない。つまり、本発明は、直接受信器の特性、例えばフォトダイオードの量子効率や光ファイバとフォトダイオードの光学的結合効率などに依存せずに動作する。また、送信器のデバイス、例えば変調器の動作点、駆動振幅などの特性に依存しないのも、上記原理説明から明白である。
本発明の第1の解決手段によると、
光送信器が、ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光OFDM通信システムにおける前記光送信器であって、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
該サブキャリア信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算してサブキャリア間干渉による歪成分を生成する歪生成部と、
前記変調部から出力されたサブキャリア信号から前記歪生成部で生成された歪成分を差し引いて送信信号を求める減算部と、
歪成分が差し引かれた該送信信号を逆FFT演算して時間軸の信号に変換する逆FFT部と、
前記逆FFT部で変換された送信信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と
を備えた前記光送信器が提供される。
光送信器が、ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光OFDM通信システムにおける前記光送信器であって、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
該サブキャリア信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算してサブキャリア間干渉による歪成分を生成する歪生成部と、
前記変調部から出力されたサブキャリア信号から前記歪生成部で生成された歪成分を差し引いて送信信号を求める減算部と、
歪成分が差し引かれた該送信信号を逆FFT演算して時間軸の信号に変換する逆FFT部と、
前記逆FFT部で変換された送信信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と
を備えた前記光送信器が提供される。
また、上述の光送信器において、前記減算部で求められた送信信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算して、該送信信号のサブキャリア間干渉による第2の歪成分を生成する第2の歪生成部と、
前記減算部の出力から前記第2の歪生成部で生成された第2の歪成分を差し引いて送信信号を求める第3の減算部と
をさらに備え、
前記逆FFT部は、前記歪成分及び前記第2の歪成分が差し引かれた送信信号を逆FFT演算して時間軸の信号に変換する。
前記減算部の出力から前記第2の歪生成部で生成された第2の歪成分を差し引いて送信信号を求める第3の減算部と
をさらに備え、
前記逆FFT部は、前記歪成分及び前記第2の歪成分が差し引かれた送信信号を逆FFT演算して時間軸の信号に変換する。
本発明の第2の解決手段によると、
光送信器が、ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光OFDM通信システムにおける前記光送信器であって、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
サブキャリア間干渉による歪成分を差引いた送信信号を生成するプリディストーション部と、
該送信信号を逆FFT演算してベースバンドOFDM信号を生成する逆FFT部と、
前記逆FFT部で生成されたベースバンドOFDM信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と、
前記変調部の出力か前記プリディストーション部の出力かどちらか一方を選択して前記プリディストーション部の入力に導く第一のスイッチと、
前記プリディストーション部の出力を、前記逆FFT部か、前記プリディストーション部の入力かどちらか一方に選択して導く第二のスイッチと、
前記第一及び第二のスイッチを切り替えるスイッチ制御部と
を備え、
前記プリディストーション部は、前記第一のスイッチを介して入力された信号を、該信号の絶対値を二乗演算して前記歪成分を生成する歪生成部に導き、前記プリディストーション部の入力信号から歪生成部の出力を差し引き新たな送信信号を生成する前記光送信器が提供される。
光送信器が、ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光OFDM通信システムにおける前記光送信器であって、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
サブキャリア間干渉による歪成分を差引いた送信信号を生成するプリディストーション部と、
該送信信号を逆FFT演算してベースバンドOFDM信号を生成する逆FFT部と、
前記逆FFT部で生成されたベースバンドOFDM信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と、
前記変調部の出力か前記プリディストーション部の出力かどちらか一方を選択して前記プリディストーション部の入力に導く第一のスイッチと、
前記プリディストーション部の出力を、前記逆FFT部か、前記プリディストーション部の入力かどちらか一方に選択して導く第二のスイッチと、
前記第一及び第二のスイッチを切り替えるスイッチ制御部と
を備え、
前記プリディストーション部は、前記第一のスイッチを介して入力された信号を、該信号の絶対値を二乗演算して前記歪成分を生成する歪生成部に導き、前記プリディストーション部の入力信号から歪生成部の出力を差し引き新たな送信信号を生成する前記光送信器が提供される。
本発明の第3の解決手段によると、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器と
を備え、
前記光送信器は、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
該サブキャリア信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算してサブキャリア間干渉による歪成分を生成する歪生成部と、
前記変調部から出力されたサブキャリア信号から前記歪生成部で生成された歪成分を差し引いて送信信号を求める減算部と、
歪成分が差し引かれた該送信信号を逆FFT演算して時間軸の信号に変換する逆FFT部と、
前記逆FFT部で変換された送信信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と
を有する光OFDM通信システムが提供される。
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器と
を備え、
前記光送信器は、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
該サブキャリア信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算してサブキャリア間干渉による歪成分を生成する歪生成部と、
前記変調部から出力されたサブキャリア信号から前記歪生成部で生成された歪成分を差し引いて送信信号を求める減算部と、
歪成分が差し引かれた該送信信号を逆FFT演算して時間軸の信号に変換する逆FFT部と、
前記逆FFT部で変換された送信信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と
を有する光OFDM通信システムが提供される。
また、例えば、上述の光OFDM通信システムにおいて、
前記減算部で求められた送信信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算して、該送信信号のサブキャリア間干渉による第2の歪成分を生成する第2の歪生成部と、
前記減算部の出力から前記第2の歪生成部で生成された第2の歪成分を差し引いて送信信号を求める第3の減算部と
をさらに備え、
前記逆FFT部は、前記歪成分及び前記第2の歪成分が差し引かれた送信信号を逆FFT演算して時間軸の信号に変換する。
前記減算部で求められた送信信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算して、該送信信号のサブキャリア間干渉による第2の歪成分を生成する第2の歪生成部と、
前記減算部の出力から前記第2の歪生成部で生成された第2の歪成分を差し引いて送信信号を求める第3の減算部と
をさらに備え、
前記逆FFT部は、前記歪成分及び前記第2の歪成分が差し引かれた送信信号を逆FFT演算して時間軸の信号に変換する。
本発明の第4の解決手段によると、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器とを備え、
前記光送信器は、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
サブキャリア間干渉による歪成分を差引いた送信信号を生成するプリディストーション部と、
該送信信号を逆FFT演算してベースバンドOFDM信号を生成する逆FFT部と、
前記逆FFT部で生成されたベースバンドOFDM信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と、
前記変調部の出力か前記プリディストーション部の出力かどちらか一方を選択して前記プリディストーション部の入力に導く第一のスイッチと、
前記プリディストーション部の出力を、前記逆FFT部か、前記プリディストーション部の入力かどちらか一方に選択して導く第二のスイッチと、
前記第一及び第二のスイッチを切り替えるスイッチ制御部と
を備え、
前記プリディストーション部は、前記第一のスイッチを介して入力された信号を、該信号の絶対値を二乗演算して前記歪成分を生成する歪生成部に導き、前記プリディストーション部の入力信号から歪生成部の出力を差し引き新たな送信信号を生成する光OFDM通信システムが提供される。
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器とを備え、
前記光送信器は、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
サブキャリア間干渉による歪成分を差引いた送信信号を生成するプリディストーション部と、
該送信信号を逆FFT演算してベースバンドOFDM信号を生成する逆FFT部と、
前記逆FFT部で生成されたベースバンドOFDM信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と、
前記変調部の出力か前記プリディストーション部の出力かどちらか一方を選択して前記プリディストーション部の入力に導く第一のスイッチと、
前記プリディストーション部の出力を、前記逆FFT部か、前記プリディストーション部の入力かどちらか一方に選択して導く第二のスイッチと、
前記第一及び第二のスイッチを切り替えるスイッチ制御部と
を備え、
前記プリディストーション部は、前記第一のスイッチを介して入力された信号を、該信号の絶対値を二乗演算して前記歪成分を生成する歪生成部に導き、前記プリディストーション部の入力信号から歪生成部の出力を差し引き新たな送信信号を生成する光OFDM通信システムが提供される。
本発明によると、直接検波受信方式を用いた光OFDM通信システムにおいて、伝送路や受信器での雑音に影響されずサブキャリア間干渉による受信信号の歪を小さくでき、受信感度劣化を低減できる光送信器及び光OFDM通信システムを提供することができる。また、本発明によると、光OFDM信号のスペクトル帯域幅が本来の元の信号帯域幅Bのままで通信ができる。このため、この技術を用いて波長多重通信システムを構築した場合、1本の光ファイバで通信できる伝送容量は従来のガードバンドを用いる光OFDM通信システムの2倍にできる。さらに本発明によると、光OFDM通信システムに用いられるデバイス、例えばフォトダイオード、光変調器、ドライバアンプ、プリアンプなどの特性の個体差、温度など環境の変化による特性変化、経時変化に依存せずに、光電変換によって発生するサブキャリア間干渉の影響を低減できる効果があり、広く一般的に適用可能である。
以下、本実施の形態を図1−図4、図7、図8、図13−図16に基づいて説明する。
1.第1の実施の形態
図1等を参照して第1の実施の形態を説明する。ここでは説明のためサブキャリアの変調は4−QAMと仮定するが、本実施の形態はこれに制限されるものではなく、任意のサブキャリア変調方式に対して適用可能である。またサブキャリアの本数はN本(Nは整数)とする。
1.第1の実施の形態
図1等を参照して第1の実施の形態を説明する。ここでは説明のためサブキャリアの変調は4−QAMと仮定するが、本実施の形態はこれに制限されるものではなく、任意のサブキャリア変調方式に対して適用可能である。またサブキャリアの本数はN本(Nは整数)とする。
図3に、光OFDM通信システムの構成図を示す。
光OFDM通信システムは、例えば、送信器(光送信器)1と、光ファイバ5と、受信器(光受信器)6とを備える。送信器1は、例えば、送信信号処理部100と、ドライバアンプ2と、レーザ3と、光変調器4とを有する。送信器1は、入力端子9を備えてもよい。受信器6は、例えば、フォトダイオード7と、プリアンプ8と、受信信号処理部200とを有する。受信器6は、出力端子10を備えてもよい。送信器1と受信器6は、光ファイバ5を介して接続される。なお、送信器1は、例えば、レーザ3及び光変調器4に変えて図4に示すように直接変調用半導体レーザ20及び光フィルタ30を備えてもよい。なお、本実施の形態において、ドライバアンプ2、レーザ3及び光変調器4を送信部と称することがある。
光OFDM通信システムは、例えば、送信器(光送信器)1と、光ファイバ5と、受信器(光受信器)6とを備える。送信器1は、例えば、送信信号処理部100と、ドライバアンプ2と、レーザ3と、光変調器4とを有する。送信器1は、入力端子9を備えてもよい。受信器6は、例えば、フォトダイオード7と、プリアンプ8と、受信信号処理部200とを有する。受信器6は、出力端子10を備えてもよい。送信器1と受信器6は、光ファイバ5を介して接続される。なお、送信器1は、例えば、レーザ3及び光変調器4に変えて図4に示すように直接変調用半導体レーザ20及び光フィルタ30を備えてもよい。なお、本実施の形態において、ドライバアンプ2、レーザ3及び光変調器4を送信部と称することがある。
図1は、第1の実施の形態における送信信号処理部100の構成図を示す。
送信信号処理部100は、例えば、シリアル−パラレル変換部(S/P)110と、サブキャリア変調部120と、逆FFT部(逆フーリエ変換部)130と、パラレル−シリアル変換部(P/S)140と、サイクリックプリフィックス挿入部(CPI)150と、ディジタル−アナログ変換部(D/A変換部)160と、歪生成部170と、減算部300とを備える。
本来通信すべきデータは、シリアル−パラレル変換部110で2N個のパラレルデータに変換される。サブキャリア変調部120は、このパラレルデータを用いてN本のサブキャリアに変調をかける。この変調されたサブキャリア(ck、k=1、2、・・・N)は3分割され、そのうち2つは歪生成部170の入力信号となる。残りは、減算部300で歪生成部170の出力信号(δk、k=1、2、・・・N)が引き算され、その結果(dk、k=1、2、・・・N)が逆FFT部130に入力される。入力された信号は、逆FFT部130で時間軸のデータに変換され、パラレルーシリアル変換部140でシリアルデータに変換される。このシリアルデータはサイクリックプリフィックス挿入部150でサイクリックプリフィックスが挿入され、D/A変換部160を通過してアナログ信号としてドライブアンプ2へ送出される。
送信信号処理部100は、例えば、シリアル−パラレル変換部(S/P)110と、サブキャリア変調部120と、逆FFT部(逆フーリエ変換部)130と、パラレル−シリアル変換部(P/S)140と、サイクリックプリフィックス挿入部(CPI)150と、ディジタル−アナログ変換部(D/A変換部)160と、歪生成部170と、減算部300とを備える。
本来通信すべきデータは、シリアル−パラレル変換部110で2N個のパラレルデータに変換される。サブキャリア変調部120は、このパラレルデータを用いてN本のサブキャリアに変調をかける。この変調されたサブキャリア(ck、k=1、2、・・・N)は3分割され、そのうち2つは歪生成部170の入力信号となる。残りは、減算部300で歪生成部170の出力信号(δk、k=1、2、・・・N)が引き算され、その結果(dk、k=1、2、・・・N)が逆FFT部130に入力される。入力された信号は、逆FFT部130で時間軸のデータに変換され、パラレルーシリアル変換部140でシリアルデータに変換される。このシリアルデータはサイクリックプリフィックス挿入部150でサイクリックプリフィックスが挿入され、D/A変換部160を通過してアナログ信号としてドライブアンプ2へ送出される。
この信号は図3のドライバアンプ2で増幅された後、光変調器4によってレーザ3からのレーザ光をキャリアとする光OFDM信号となって送信器1から光ファイバ5に出射される。光OFDM信号は伝送路である光ファイバ5を通って受信器6に入射する。ここでフォトダイオード7の光電変換作用によって電気信号に変換され、この電気信号はプリアンプ8で増幅された後、受信信号処理部200で復調されシリアルデータとして出力端子10から取り出される。受信信号処理部200の構成は例えば図6に示される構成と同様であり、通常のOFDM信号処理構成を用いることができる。
図2に本実施の形態の歪生成部170の構成図を示す。
歪生成部170は、例えば、逆FFT部171と、パラレルーシリアル変換部(P/S)172と、二乗演算部173と、シリアル−パラレル変換部(S/P)174と、FFT部(フーリエ変換部)175と、減算部176とを備える。
歪生成部170は、例えば、逆FFT部171と、パラレルーシリアル変換部(P/S)172と、二乗演算部173と、シリアル−パラレル変換部(S/P)174と、FFT部(フーリエ変換部)175と、減算部176とを備える。
図1のサブキャアリア変調部120の出力信号(ck、k=1、2、・・・N)の一部は、この歪生成部170に入力する。入力した信号は逆FFT部171で時間軸の信号に変換され、パラレルーシリアル変換部172でシリアルデータに変換される。これは基本的にベースバンドOFDM信号そのものである。次にこの信号をフォトダイオードの光電変換と同じ作用をする二乗演算部173で絶対値をとり二乗演算することによってサブキャリア間干渉を含んだ受信電気信号を生成することができる。なお、絶対値をとるのはベースバンドOFDM信号は一般には複素数のためである。この信号をシリアル−パラレル変換部174によってパラレルデータに変換し、これをFFT部175でサブキャリアに分解する。このFFT部175の出力は光電変換で発生するサブキャアリア間干渉による歪成分を含んだ信号(ck+δk、k=1、2、・・・N)となっているので、本来通信すべきデータで変調されたサブキャリア信号(ck、k=1、2、・・・N)、すなわち歪生成回路170の入力信号を減算部176で引き算することによって歪成分(δk、k=1、2、・・・N)を出力できる。
本実施の形態の効果をシミュレーションで評価した結果を次に示す。シミュレーションでは次のパラメータを用いて実施した。すなわち、サブキャリア本数は128本、各サブキャリアの変調は4−QAM、シンボル数は256、データは独立な2系列のPN15段擬似ランダム信号を用いた。サブキャリア間干渉による歪の大きさをEVM(Error Vector Magnitude)で評価した。本シミュレーションには伝送路での雑音や受信器内部の雑音を入れていないのでEVMは純粋にサブキャリア間干渉による受信信号の歪が表現されている。したがって、EVMが小さいほど、サブキャリア間干渉は小さく、受信感度が良くなる。
図15にシミュレーション結果をまとめて示す。
図15はI−Q平面における送受信信号のサブキャリアの信号点配置を表している。歪生成部なしの場合は、本実施の形態を適用しない通常の光OFDM通信の場合の信号点配置を表している。この場合の送信信号の信号点配置は、本来通信すべきデータの信号点配置を表しており、これが受信信号の信号点配置として現れる場合がまったく歪の無い理想的な通信が実現できた場合である。この信号を直接検波受信方式で受信した場合の信号点配置が、歪生成部なしの場合の受信信号として図15に表示されている。この表から直接検波における光電変換によるサブキャリア間干渉によって信号点がI−Q平面上に拡散して分布するのが分かる。この受信信号のEVMを計算すると17.6%となった。
図15はI−Q平面における送受信信号のサブキャリアの信号点配置を表している。歪生成部なしの場合は、本実施の形態を適用しない通常の光OFDM通信の場合の信号点配置を表している。この場合の送信信号の信号点配置は、本来通信すべきデータの信号点配置を表しており、これが受信信号の信号点配置として現れる場合がまったく歪の無い理想的な通信が実現できた場合である。この信号を直接検波受信方式で受信した場合の信号点配置が、歪生成部なしの場合の受信信号として図15に表示されている。この表から直接検波における光電変換によるサブキャリア間干渉によって信号点がI−Q平面上に拡散して分布するのが分かる。この受信信号のEVMを計算すると17.6%となった。
次に本実施の形態の場合のシミュレーション結果を示す。これが図15の歪生成部ありのコラムに示されている。送信信号の信号点配置は歪生成部で生成した歪を引き算された後の信号(dk)であり本来通信すべき信号の信号点配置とは非常に異なる。ところがこの信号を直接検波受信方式の受信器で受信した信号の信号点配置は図15の歪生成部ありの受信信号に表すように信号点の拡散が小さくなっている。実際EVMを計算すると6.6%に減少しており、本実施の形態の効果を定量的に確認できた。
本実施の形態では、例えば、サブキャリア間干渉による歪をディジタル信号処理で生成できるという特長がある。
本実施の形態では、例えば、サブキャリア間干渉による歪をディジタル信号処理で生成できるという特長がある。
2.第2の実施の形態
第2の実施の形態を図7等を参照して説明する。図7は第2の実施の形態における送信器1の送信信号処理部100の構成図を示す。第1の実施の形態と同様の構成については同じ符号を付し、説明を省略する。なお、システムの全体構成は第1の実施の形態と同様である。
第2の実施の形態を図7等を参照して説明する。図7は第2の実施の形態における送信器1の送信信号処理部100の構成図を示す。第1の実施の形態と同様の構成については同じ符号を付し、説明を省略する。なお、システムの全体構成は第1の実施の形態と同様である。
本実施の形態における送信信号処理部100は、歪生成部170’と減算部310とをさらに備える。本実施の形態では、第1の実施の形態で用いた歪生成部170を2回用いている(図7の歪生成部170と170’)。歪生成部170と170’は同様の構成を用いることができる。これは、歪生成部170を使って取りきれなかったサブキャリア間干渉の残留歪(上述の式(10)の右辺の|c2|2/|c0|2の項に相当)を歪生成部170’によってさらに生成して、生成された歪成分を減算部300の出力信号から減算部310でさらに引き算して其の信号を光OFDM信号として送信している。受信器は図3に示した従来の光OFDM通信用の受信器6と同じ構成である。図15の歪生成部ありの受信信号の信号点配置を見ても分かるように、歪生成部170を使っても残留歪が残る場合がある。そこで、この残留歪を更に歪生成部170’で生成して減算部300の出力信号から引き算して受信時の残留歪もさらに小さくする。
図16に、シミュレーションによって本実施の形態の効果を検証した結果を示す。歪生成部なしのコラムは従来の光OFDM通信システムを用いた場合の送信信号ならびに受信信号のI−Q平面での信号点配置であり、これは第1の実施の形態の図15の歪生成部なしの場合と同じである。本実施の形態を用いた場合の送信信号と受信信号の信号点配置を2個の歪生成部ありのコラムに示した。この図からわかる様にサブキャアリア間干渉による歪は明らかに低減しており、EVMの値は17.6%から3.8%に低減できている。さらに図15に示す第1の実施の形態の結果と比較するとEVMは1個の歪生成部を使ったシステムでは6.6%であるが、2個の歪生成部を使ったシステムでは3.8%に改善している。よって本実施の形態の効果が検証できた。
本実施の形態では、サブキャリア間干渉による歪を第1の実施の形態よりさらに低減できるという特長がある。なお、本実施の形態では歪生成部170を2回用いているが、歪成分が小さくなる限り何度用いても良い。
3.第3の実施の形態
第3の実施の形態を図13と図14等を参照して説明する。システムの全体構成は第1の実施の形態と同様である。第1の実施の形態と同様の構成については同じ符号を付し、説明を省略する。
第3の実施の形態を図13と図14等を参照して説明する。システムの全体構成は第1の実施の形態と同様である。第1の実施の形態と同様の構成については同じ符号を付し、説明を省略する。
図13は、第3の実施の形態の送信信号処理部の構成図である。
第3の実施の形態の送信信号処理部100は、例えば、シリアル−パラレル変換部(S/P)110と、サブキャリア変調部120と、逆FFT部130と、パラレル−シリアル変換部(P/S)140と、サイクリックプリフィックス挿入部(CPI)150と、ディジタル−アナログ変換部(D/A変換部)160と、プリディストーション部180と、サブキャリアに対応した2:1スイッチ(第一のスイッチ)181及び1:2スイッチ(第二のスイッチ)182と、スイッチ制御部190とを備える。
第3の実施の形態の送信信号処理部100は、例えば、シリアル−パラレル変換部(S/P)110と、サブキャリア変調部120と、逆FFT部130と、パラレル−シリアル変換部(P/S)140と、サイクリックプリフィックス挿入部(CPI)150と、ディジタル−アナログ変換部(D/A変換部)160と、プリディストーション部180と、サブキャリアに対応した2:1スイッチ(第一のスイッチ)181及び1:2スイッチ(第二のスイッチ)182と、スイッチ制御部190とを備える。
図14は、本実施の形態におけるプリディストーション部180の構成図である。
プリディストーション部180は、例えば、歪生成部170と、減算部320とを備える。
送信器1の内部の送信信号処理部100では、本来通信するデータをシリアル−パラレル変換部110によってパラレルデータに変換し、サブキャリア変調部120では、サブキャリアをこれらのパラレルデータで変調する。変調された各サブキャリア信号は、2:1スイッチ181を通過してプリディストーション部180に入力する。プリディストーション部180は、その入力信号を2分割し一方を歪生成部170に入力させる。歪生成部170は図2と同じ構成をしており、その入力信号から歪成分δkを生成して出力する。プリディストーション部180は先ほど2分割したその入力信号から、歪生成部170の出力信号である歪成分δkを減算部320で引き算し、出力する。プリディストーション部180の出力信号は、2:1スイッチ182を通過して逆FFT部130に導かれ、逆FFT部130によって時間軸のデータに変換され、パラレル−シリアル変換部140でシリアルデータとして出力される。この信号にCPI部150でサイクリックプリフィクスが付加されこのディジタルデータはD/A部160でアナログ信号に変換されてドライバアンプに送られる。これ以降光受信器からのデータの復元までは他の実施の形態と同じである。
プリディストーション部180は、例えば、歪生成部170と、減算部320とを備える。
送信器1の内部の送信信号処理部100では、本来通信するデータをシリアル−パラレル変換部110によってパラレルデータに変換し、サブキャリア変調部120では、サブキャリアをこれらのパラレルデータで変調する。変調された各サブキャリア信号は、2:1スイッチ181を通過してプリディストーション部180に入力する。プリディストーション部180は、その入力信号を2分割し一方を歪生成部170に入力させる。歪生成部170は図2と同じ構成をしており、その入力信号から歪成分δkを生成して出力する。プリディストーション部180は先ほど2分割したその入力信号から、歪生成部170の出力信号である歪成分δkを減算部320で引き算し、出力する。プリディストーション部180の出力信号は、2:1スイッチ182を通過して逆FFT部130に導かれ、逆FFT部130によって時間軸のデータに変換され、パラレル−シリアル変換部140でシリアルデータとして出力される。この信号にCPI部150でサイクリックプリフィクスが付加されこのディジタルデータはD/A部160でアナログ信号に変換されてドライバアンプに送られる。これ以降光受信器からのデータの復元までは他の実施の形態と同じである。
本実施の形態では、プリディストーション部180を複数回使って残留歪を小さくすることができる。プリディストーション部180を2回使う場合を説明する。この場合各ステップは次のようになる。まず各シンボルを歪生成部180に導くステップがある。このときは、スイッチ制御部190からの制御信号によって2:1スイッチ181は変調部出力をプリディストーション部180の入力に導くように設定される。2:1スイッチ181が変調部120の出力(ck)をプリディストーション部180に導くと、プリディストーション部180からは本来通信したい信号(ck)から光電変換で発生する歪成分(δk)を差引いた信号(ck−δk)が出力される。次のステップではスイッチ制御部190からの制御信号によって1:2スイッチ182はこの信号(ck−δk)を2:1スイッチ181に導き、2:1スイッチ181はこの信号をプリディストーション部180の入力に再度導くように設定される。プリディストーション部180はこの入力信号(ck−δk)を用いて光電変換で発生する歪成分を計算しそれを差引いた信号を出力する。このようにして2度プリディストーション部180を通過した信号は、次のステップでスイッチ制御部190からの制御信号によって制御された1:2スイッチ182を通過して、逆FFT部130以降に導かれる。したがってこれで2回プリディストーション部180によって歪を引き算された信号が送信される。3回以上歪を生成する場合も同様であり、変調部120から出力されたサブキャリア信号から、複数の歪成分δ1k、δ2k・・を順次差し引く。
なお、この各ステップのタイミングは、SW制御部190により、シンボルクロック(あるいはその整数倍)に合わせて、予め定められた回数歪生成部170による歪成分の生成と、減算部320による差し引きとを繰り返すように制御されることができる。
本実施の形態では、第2の実施の形態と比較して信号処理部の構成がシンプルになっており、また歪生成部を複数回使う場合でも回路規模は増大しない、という特長がある。
本実施の形態では、第2の実施の形態と比較して信号処理部の構成がシンプルになっており、また歪生成部を複数回使う場合でも回路規模は増大しない、という特長がある。
本発明は、例えば、受信側で光電変換、直接検波する光OFDM通信システムに利用可能である。
Claims (11)
- 光送信器が、ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光OFDM通信システムにおける前記光送信器であって、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
該サブキャリア信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算してサブキャリア間干渉による歪成分を生成する歪生成部と、
前記変調部から出力されたサブキャリア信号から前記歪生成部で生成された歪成分を差し引いて送信信号を求める減算部と、
歪成分が差し引かれた該送信信号を逆FFT演算して時間軸の信号に変換する逆FFT部と、
前記逆FFT部で変換された送信信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と
を備えた前記光送信器。 - 前記歪生成部は、
前記変調部からのサブキャリア信号を逆FFT演算してベースバンドOFDM信号を求める第2の逆FFT部と、
該ベースバンドOFDM信号の絶対値を二乗演算する二乗演算部と、
前記二乗演算部での演算結果をFFT演算してサブキャリア毎の信号に変換するFFT部と、
前記FFT部で変換された信号から、前記変調部からのサブキャリア信号を差し引いて歪信号を求める第2の減算部と
を有する請求項1に記載の光送信器。 - 前記歪生成部は、
前記第2の逆FFT部で変換されたベースバンドOFDM信号をシリアル信号に変換して前記二乗演算部に出力するパラレル−シリアル変換部と、
前記二乗演算部での演算結果をパラレル信号に変換して前記FFT演算部に出力するシリアル−パラレル変換部と
をさらに有する請求項2に記載の光送信器。 - 前記減算部で求められた送信信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算して、該送信信号のサブキャリア間干渉による第2の歪成分を生成する第2の歪生成部と、
前記減算部の出力から前記第2の歪生成部で生成された第2の歪成分を差し引いて送信信号を求める第3の減算部と
をさらに備え、
前記逆FFT部は、前記歪成分及び前記第2の歪成分が差し引かれた送信信号を逆FFT演算して時間軸の信号に変換する請求項1に記載の光送信器。 - 光送信器が、ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信し、
光受信器が、該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光OFDM通信システムにおける前記光送信器であって、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
サブキャリア間干渉による歪成分を差引いた送信信号を生成するプリディストーション部と、
該送信信号を逆FFT演算してベースバンドOFDM信号を生成する逆FFT部と、
前記逆FFT部で生成されたベースバンドOFDM信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と、
前記変調部の出力か前記プリディストーション部の出力かどちらか一方を選択して前記プリディストーション部の入力に導く第一のスイッチと、
前記プリディストーション部の出力を、前記逆FFT部か、前記プリディストーション部の入力かどちらか一方に選択して導く第二のスイッチと、
前記第一及び第二のスイッチを切り替えるスイッチ制御部と
を備え、
前記プリディストーション部は、前記第一のスイッチを介して入力された信号を、該信号の絶対値を二乗演算して前記歪成分を生成する歪生成部に導き、前記プリディストーション部の入力信号から歪生成部の出力を差し引き新たな送信信号を生成する前記光送信器。 - 前記スイッチ制御部は、シンボル時間に基づき、
はじめに前記第一のスイッチを、前記変調部からの信号が前記プリディストーション部に導かれるように設定し、
次に、前記プリディストーション部を通過した信号が前記第二のスイッチと第一のスイッチによって予め定められた回数だけ前記プリディストーション部を通過するように設定し、
さらに、予め定められた回数だけ前記プリディストーション部を通過した信号が、前記逆FFT部に導かれるように前記第二のスイッチを設定する、請求項5に記載の光送信器。 - 前記プリディストーション部は、その入力信号からその歪成分を差し引いた信号を出力し、再度この出力信号が前記プリディストーション部に入力されることによって、歪成分を差し引いた信号から第二の歪成分をさらに差し引き、
前記スイッチ制御部は、前記第二のスイッチを切り替えて、第二の歪成分が差し引かれた該プリディストーション部の出力を前記FFT部に導く請求項5に記載の光送信器。 - 前記プリディストーション部は、その入力信号に基づき前記歪生成部で出力される歪成分をその入力信号から減算部で差し引いて出力することを特徴とする、請求項5に記載の光送信器。
- ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器と
を備え、
前記光送信器は、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
該サブキャリア信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算してサブキャリア間干渉による歪成分を生成する歪生成部と、
前記変調部から出力されたサブキャリア信号から前記歪生成部で生成された歪成分を差し引いて送信信号を求める減算部と、
歪成分が差し引かれた該送信信号を逆FFT演算して時間軸の信号に変換する逆FFT部と、
前記逆FFT部で変換された送信信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と
を有する光OFDM通信システム。 - 前記減算部で求められた送信信号を逆FFT演算してベースバンドOFDM信号を生成し、該ベースバンドOFDM信号の絶対値を二乗演算して、該送信信号のサブキャリア間干渉による第2の歪成分を生成する第2の歪生成部と、
前記減算部の出力から前記第2の歪生成部で生成された第2の歪成分を差し引いて送信信号を求める第3の減算部と
をさらに備え、
前記逆FFT部は、前記歪成分及び前記第2の歪成分が差し引かれた送信信号を逆FFT演算して時間軸の信号に変換する請求項9に記載の光OFDM通信システム。 - ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、光ファイバを介して光信号で送信する光送信器と、
該光ファイバを伝播した光信号をフォトダイオードで光電変換して直接検波受信し、各サブキャリア信号を復調して元のディジタルデータを再生する光受信器とを備え、
前記光送信器は、
ディジタルデータをシンボル時間にわたって互いに直交する複数のサブキャリアにマッピングして変調し、変調されたサブキャリア信号を出力する変調部と、
サブキャリア間干渉による歪成分を差引いた送信信号を生成するプリディストーション部と、
該送信信号を逆FFT演算してベースバンドOFDM信号を生成する逆FFT部と、
前記逆FFT部で生成されたベースバンドOFDM信号に基づく光信号を前記光ファイバを介して前記光受信器に送信する送信部と、
前記変調部の出力か前記プリディストーション部の出力かどちらか一方を選択して前記プリディストーション部の入力に導く第一のスイッチと、
前記プリディストーション部の出力を、前記逆FFT部か、前記プリディストーション部の入力かどちらか一方に選択して導く第二のスイッチと、
前記第一及び第二のスイッチを切り替えるスイッチ制御部と
を備え、
前記プリディストーション部は、前記第一のスイッチを介して入力された信号を、該信号の絶対値を二乗演算して前記歪成分を生成する歪生成部に導き、前記プリディストーション部の入力信号から歪生成部の出力を差し引き新たな送信信号を生成する光OFDM通信システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010544038A JP5058343B2 (ja) | 2008-12-22 | 2009-12-18 | 光送信器及び光ofdm通信システム |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008326034 | 2008-12-22 | ||
JP2008326034 | 2008-12-22 | ||
PCT/JP2009/071139 WO2010073990A1 (ja) | 2008-12-22 | 2009-12-18 | 光送信器及び光ofdm通信システム |
JP2010544038A JP5058343B2 (ja) | 2008-12-22 | 2009-12-18 | 光送信器及び光ofdm通信システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2010073990A1 JPWO2010073990A1 (ja) | 2012-06-14 |
JP5058343B2 true JP5058343B2 (ja) | 2012-10-24 |
Family
ID=42287600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010544038A Expired - Fee Related JP5058343B2 (ja) | 2008-12-22 | 2009-12-18 | 光送信器及び光ofdm通信システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US8467687B2 (ja) |
EP (1) | EP2381605A1 (ja) |
JP (1) | JP5058343B2 (ja) |
CN (1) | CN102265540B (ja) |
WO (1) | WO2010073990A1 (ja) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005030299B4 (de) * | 2005-06-24 | 2010-08-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Dynamisches datenratenadaptives Signalverarbeitungsverfahren in einem drahtlosen Infarot-Datenübertragungssystem |
KR101280049B1 (ko) | 2005-10-12 | 2013-06-28 | 오피디엄 피티와이 엘티디. | 디지털 신호들의 광 전송을 위한 방법 및 장치 |
NZ578217A (en) | 2006-12-20 | 2011-06-30 | Ofidium Pty Ltd | Non-linearity compensation in an optical transmission |
JP5058343B2 (ja) * | 2008-12-22 | 2012-10-24 | 株式会社日立製作所 | 光送信器及び光ofdm通信システム |
JP5474515B2 (ja) * | 2009-12-10 | 2014-04-16 | 株式会社プランナーズランド | 可視光通信送信装置 |
JP5538137B2 (ja) * | 2010-08-25 | 2014-07-02 | 日本放送協会 | デジタル信号の送信装置 |
JP5583788B2 (ja) * | 2010-11-29 | 2014-09-03 | 株式会社日立製作所 | 光通信システム、光送信器及びトランスポンダ |
WO2012104982A1 (ja) * | 2011-01-31 | 2012-08-09 | 富士通株式会社 | 光送信器および光信号送信方法 |
US8787767B2 (en) | 2012-02-03 | 2014-07-22 | Raytheon Company | High-speed low-jitter communication system |
US9455788B2 (en) | 2014-02-10 | 2016-09-27 | Ciena Corporation | Hitless modulation scheme change systems and methods in optical networks |
US9258190B2 (en) | 2014-02-10 | 2016-02-09 | Ciena Corporation | Systems and methods for managing excess optical capacity and margin in optical networks |
US10257596B2 (en) | 2012-02-13 | 2019-04-09 | Ciena Corporation | Systems and methods for managing excess optical capacity and margin in optical networks |
CN102780669B (zh) * | 2012-06-11 | 2015-04-22 | 北京邮电大学 | 全光ofdm信号光层网络编码的实现方法和装置 |
US8737458B2 (en) * | 2012-06-20 | 2014-05-27 | MagnaCom Ltd. | Highly-spectrally-efficient reception using orthogonal frequency division multiplexing |
US10014975B2 (en) * | 2012-09-28 | 2018-07-03 | Infinera Corporation | Channel carrying multiple digital subcarriers |
US9014555B2 (en) | 2012-10-26 | 2015-04-21 | Industrial Technology Research Institute | Method and device for receiving optical signals |
EP2733879B1 (en) * | 2012-11-16 | 2018-06-20 | ADVA Optical Networking SE | Method and device for transmitting an optical digital WDM signal over an optical transmission link or a passive optical network |
US10003423B2 (en) * | 2013-05-16 | 2018-06-19 | Zte (Usa) Inc. | Half-cycled orthogonal frequency divisional multiplexing transmission and reception |
WO2016121341A1 (ja) * | 2015-01-28 | 2016-08-04 | 日本電気株式会社 | 光送信器、光通信システム、および光通信方法 |
CN107615728B (zh) * | 2015-06-25 | 2020-02-14 | 华为技术有限公司 | 基于正交频分复用技术的数据发送和接收方法、及装置 |
CN107294597B (zh) * | 2016-03-31 | 2019-11-08 | 富士通株式会社 | 光发射机和光接收机的频率响应特性的测量装置及方法 |
US9831947B2 (en) | 2016-04-20 | 2017-11-28 | Ciena Corporation | Margin determination systems and methods in optical networks |
US10601520B2 (en) | 2018-02-07 | 2020-03-24 | Infinera Corporation | Clock recovery for digital subcarriers for optical networks |
US11368228B2 (en) | 2018-04-13 | 2022-06-21 | Infinera Corporation | Apparatuses and methods for digital subcarrier parameter modifications for optical communication networks |
US11095389B2 (en) | 2018-07-12 | 2021-08-17 | Infiriera Corporation | Subcarrier based data center network architecture |
US10587339B1 (en) | 2018-11-27 | 2020-03-10 | Ciena Corporation | Systems and methods for achieving best effort home route capacity on protection paths during optical restoration |
US11075694B2 (en) | 2019-03-04 | 2021-07-27 | Infinera Corporation | Frequency division multiple access optical subcarriers |
US11258528B2 (en) | 2019-09-22 | 2022-02-22 | Infinera Corporation | Frequency division multiple access optical subcarriers |
US11336369B2 (en) | 2019-03-22 | 2022-05-17 | Infinera Corporation | Framework for handling signal integrity using ASE in optical networks |
US11418312B2 (en) | 2019-04-19 | 2022-08-16 | Infinera Corporation | Synchronization for subcarrier communication |
US11838105B2 (en) | 2019-05-07 | 2023-12-05 | Infinera Corporation | Bidirectional optical communications |
US11296812B2 (en) | 2019-05-14 | 2022-04-05 | Infinera Corporation | Out-of-band communication channel for subcarrier-based optical communication systems |
US10965378B2 (en) | 2019-05-14 | 2021-03-30 | Infinera Corporation | Out-of-band communication channel for sub-carrier-based optical communication systems |
US11489613B2 (en) | 2019-05-14 | 2022-11-01 | Infinera Corporation | Out-of-band communication channel for subcarrier-based optical communication systems |
US11190291B2 (en) | 2019-05-14 | 2021-11-30 | Infinera Corporation | Out-of-band communication channel for subcarrier-based optical communication systems |
US11239935B2 (en) | 2019-05-14 | 2022-02-01 | Infinera Corporation | Out-of-band communication channel for subcarrier-based optical communication systems |
US11476966B2 (en) | 2019-05-14 | 2022-10-18 | Infinera Corporation | Out-of-band communication channel for subcarrier-based optical communication systems |
US11483257B2 (en) | 2019-09-05 | 2022-10-25 | Infinera Corporation | Dynamically switching queueing schemes for network switches |
US12081269B2 (en) | 2019-10-10 | 2024-09-03 | Infinera Corporation | Hub-leaf laser synchronization |
CA3157806A1 (en) | 2019-10-10 | 2021-04-15 | Infinera Corporation | Network switches systems for optical communications networks |
CA3157060A1 (en) | 2019-10-10 | 2021-04-15 | Infinera Corporation | Optical subcarrier dual-path protection and restoration for optical communications networks |
US11329722B2 (en) | 2020-03-27 | 2022-05-10 | Relative Dynamics Incorporated | Optical terminals |
CN115001576B (zh) * | 2022-05-20 | 2023-08-15 | 复旦大学 | 基于可见光通信系统的micro-LED预失真方法、系统、存储介质及智能终端 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1051416A (ja) * | 1996-08-02 | 1998-02-20 | Matsushita Electric Ind Co Ltd | 伝送装置 |
WO2008074085A1 (en) * | 2006-12-20 | 2008-06-26 | Ofidium Pty Ltd | Non-linearity compensation in an optical transmission |
JP2008206064A (ja) * | 2007-02-22 | 2008-09-04 | Kddi Corp | 光伝送装置及び方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6574389B1 (en) | 1999-05-24 | 2003-06-03 | Broadband Royalty | Optical communication with pre-compensation for odd order distortion in modulation and transmission |
JP4439155B2 (ja) * | 1999-11-27 | 2010-03-24 | ドイッチェ テレコム アーゲー | 多重搬送波通信システムにおける同一チャンネルの干渉除去方法 |
EP1258080B1 (en) * | 2000-02-24 | 2003-07-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | System for reducing adjacent-channel interference by pre-linearization and pre-distortion |
US7307569B2 (en) * | 2001-03-29 | 2007-12-11 | Quellan, Inc. | Increasing data throughput in optical fiber transmission systems |
CN1212734C (zh) * | 2002-06-07 | 2005-07-27 | 三星电子株式会社 | 正交频分复用多载波调制数字广播信号的方法及发送器 |
CN100428627C (zh) * | 2002-11-14 | 2008-10-22 | 株式会社日立国际电气 | 失真补偿电路、失真补偿信号生成方法及功率放大器 |
JP4505238B2 (ja) * | 2004-02-25 | 2010-07-21 | 株式会社日立国際電気 | 歪補償回路 |
US7580630B2 (en) * | 2004-06-07 | 2009-08-25 | Nortel Networks Limited | Spectral shaping for optical OFDM transmission |
US7539125B2 (en) * | 2005-10-14 | 2009-05-26 | Via Technologies, Inc. | Method and circuit for frequency offset estimation in frequency domain in the orthogonal frequency division multiplexing baseband receiver for IEEE 802.11A/G wireless LAN standard |
US7623796B2 (en) * | 2006-02-27 | 2009-11-24 | Alcatel-Lucent Usa Inc. | Data-aided multi-symbol phase estimation for optical differential multilevel phase-shift keying signals |
US7639754B2 (en) * | 2006-03-29 | 2009-12-29 | Posdata Co., Ltd. | Method of detecting a frame boundary of a received signal in digital communication system and apparatus of enabling the method |
US7796898B2 (en) * | 2007-01-29 | 2010-09-14 | Ofidium Pty Ltd. | Methods and apparatus for generation and transmission of optical signals |
JP4872003B2 (ja) * | 2008-02-22 | 2012-02-08 | 日本電信電話株式会社 | 光ofdm受信器および光伝送システムおよびサブキャリア分離回路およびサブキャリア分離方法 |
US8204377B2 (en) * | 2008-10-23 | 2012-06-19 | Alcatel Lucent | System, method and apparatus for joint self phase modulation compensation for coherent optical polarization-division-multiplexed orthogonal-frequency division-multiplexing systems |
US8260156B2 (en) * | 2008-10-28 | 2012-09-04 | Nec Laboratories America, Inc. | Adaptive crossing frequency domain equalization (FDE) in digital PolMux coherent systems |
JP5058343B2 (ja) * | 2008-12-22 | 2012-10-24 | 株式会社日立製作所 | 光送信器及び光ofdm通信システム |
TWI360984B (en) * | 2009-03-25 | 2012-03-21 | Ind Tech Res Inst | Method for receiving an optical ofdm signal and re |
US8218979B2 (en) * | 2009-06-30 | 2012-07-10 | Alcatel Lucent | System, method and apparatus for coherent optical OFDM |
US8873971B2 (en) * | 2010-10-11 | 2014-10-28 | Nec Laboratories America, Inc. | Nonlinear compensation using an enhanced backpropagation method with subbanding |
-
2009
- 2009-12-18 JP JP2010544038A patent/JP5058343B2/ja not_active Expired - Fee Related
- 2009-12-18 US US13/140,355 patent/US8467687B2/en not_active Expired - Fee Related
- 2009-12-18 EP EP09834791A patent/EP2381605A1/en not_active Withdrawn
- 2009-12-18 CN CN200980151925.3A patent/CN102265540B/zh not_active Expired - Fee Related
- 2009-12-18 WO PCT/JP2009/071139 patent/WO2010073990A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1051416A (ja) * | 1996-08-02 | 1998-02-20 | Matsushita Electric Ind Co Ltd | 伝送装置 |
WO2008074085A1 (en) * | 2006-12-20 | 2008-06-26 | Ofidium Pty Ltd | Non-linearity compensation in an optical transmission |
JP2008206064A (ja) * | 2007-02-22 | 2008-09-04 | Kddi Corp | 光伝送装置及び方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2381605A1 (en) | 2011-10-26 |
WO2010073990A1 (ja) | 2010-07-01 |
CN102265540A (zh) | 2011-11-30 |
US8467687B2 (en) | 2013-06-18 |
CN102265540B (zh) | 2015-01-14 |
US20110249978A1 (en) | 2011-10-13 |
JPWO2010073990A1 (ja) | 2012-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5058343B2 (ja) | 光送信器及び光ofdm通信システム | |
Bo et al. | Toward practical Kramers-Kronig receiver: Resampling, performance, and implementation | |
JP5404925B2 (ja) | 光通信システム、光受信器、光トランスポンダ、波長多重光通信システム、波長多重受信装置及び波長多重光トランスポンダ | |
JP5296226B2 (ja) | 光通信システム、光送信器、光受信器及び光トランスポンダ | |
Kaneda et al. | Real-time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM | |
Pan et al. | Inter-channel crosstalk cancellation for Nyquist-WDM superchannel applications | |
US8718160B2 (en) | Multi-carrrier optical communication method and system based on DAPSK | |
JP2017517925A (ja) | 光ファイバ通信における非線形補償の方法 | |
CN102687475A (zh) | 用于在光学网络部件中处理数据的方法以及光学网络部件 | |
US10014954B2 (en) | Imaging cancellation in high-speed intensity modulation and direct detection system with dual single sideband modulation | |
JP2010041706A (ja) | 光直交周波数分割多重信号の位相変調方法及び装置 | |
Yang et al. | Optical OFDM basics | |
Wu et al. | Training symbol assisted in-band OSNR monitoring technique for PDM-CO-OFDM system | |
Qiu et al. | OFDM-PON optical fiber access technologies | |
Hussin et al. | Performance analysis of RF-pilot phase noise compensation techniques in coherent optical OFDM systems | |
Yu et al. | Dispersion tolerant 66.7-Gb/s SEFDM IM/DD transmission over 77-km SSMF | |
Yang et al. | CPFSK scheme with multiple modulation indices in optical OFDM communication system | |
Bernhard et al. | Multicarrier transmission using Hadamard transform for optical communications | |
Torres-Zugaide et al. | Hammerstein-based equalizer for nonlinear compensation in coherent OFDM long-reach PONs | |
JP6116001B2 (ja) | 光送信装置及び光受信装置 | |
EP3051761B1 (en) | Processing method and network device for orthogonal frequency division multiplexing signal | |
Zhang et al. | Demonstration of 24-Gb/s carrier-less amplitude and phase modulation (CAP) 64QAM radio-over-fiber system over 40-GHz Mm-wave fiber-wireless transmission | |
Guo et al. | Extended reach OFDM-PON using super-Nyquist image induced aliasing | |
Ye et al. | Capacity improvement by adaptive bit-loading and Volterra filtering in a DML-based IM/DD system | |
Wu et al. | 200-Gb/s optical SEFDM transmission using low-complexity log-MAP based detection for short reach optical interconnects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120731 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |