TWI360984B - Method for receiving an optical ofdm signal and re - Google Patents

Method for receiving an optical ofdm signal and re Download PDF

Info

Publication number
TWI360984B
TWI360984B TW098109808A TW98109808A TWI360984B TW I360984 B TWI360984 B TW I360984B TW 098109808 A TW098109808 A TW 098109808A TW 98109808 A TW98109808 A TW 98109808A TW I360984 B TWI360984 B TW I360984B
Authority
TW
Taiwan
Prior art keywords
signal
phase rotation
rotation difference
frequency domain
time offset
Prior art date
Application number
TW098109808A
Other languages
Chinese (zh)
Other versions
TW201036381A (en
Inventor
Yu Min Lin
Dar Zu Hsu
Hung Lin Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW098109808A priority Critical patent/TWI360984B/en
Priority to US12/464,608 priority patent/US8107817B2/en
Publication of TW201036381A publication Critical patent/TW201036381A/en
Application granted granted Critical
Publication of TWI360984B publication Critical patent/TWI360984B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques

Description

1360984 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種應用於光多工系統(Optical multiplex system)的接收方法與接收器,特別是一種採用光正交分頻多工 (Optica丨 Orthogonal Frequency-division Multiplexing)技術的系統 中’藉由估測而得的時間偏移(丁iming Offset)與色散(Chromatic Dispersion)來補償所接收到訊號的接收方法與接收器。 【先前技術】 正父分頻多工(Orthogonal Frequency-division Multiplexing, OFDM)不統為一種採用了數位多載波調變(£^如丨爪他卜 modulation)方法的分頻多工(Frequency-division Multiplexing, FDM) 系統。複數個具有正交性的次載波(〇rth〇g〇nal sub_carrier,亦可稱 為子頻帶)被用來傳送資料。該些資料被切割成對應各個次載波的 多個平行的資料流(data stream)或稱通道(Channel)。每個次載波均 被以一種具較低符元速率(丨symbol rate)的調變技術(如正交振 幅調變(QAM , Quadmti丨re Amplitude Modulation)或相位偏移調 文又稱相位移鍵(PSK ’ Phase Shift Keying))進行資料傳輸。 如此一來,即可在相同的頻寬(bandwidth)内得到相較於傳統單一 載波(sing|e-carrier)更多的總資料傳輸率(_丨加⑻。 清荟考「第1A圖」與「第1B圖」係各別為習知直接傳輸與 正交分頻多工傳輸的頻譜分佈比較示意圖。直接傳輸與㈣从傳 輸的最大不同_於頻寬的分佈,「第1A圖」顯示直接傳輪所占 ^60984 .'將此頻l f〇以正交分頻多的方式將該段頻寬細分 ‘.成等寬的五等分。每個子頻帶fl(即前述的子載波)互相正交,則 •新的頻譜分佈將如「第1B圖」所示。在_Μ傳輪I只要子 4|夠7基本上對母個子頻帶而言,該段頻帶的頻率響應可以 約略視為平坦。也就是說騎每個子鮮僅需要—個單—係數的 等化器,用以克服每個子通道之衰減及相位失真。此外,由於每 +頻τ所傳輔的資料率都遠低於原本直接傳輸的資料率,該等 化器的操作時脈自然也以等比例下降。 正父分頻多工技術應用於無線通訊領域上,常遇到的問題有 夕重路控效應(multi_patheffect)。多重路徑效應會衍生時間延遲擴 展(time-spreading)與符間干擾⑽er_symb〇1丨他命隨,别 此P所明頻率選擇性(freqUency_selective)通道。此頻率選擇性問題 通常是以在每個0FDM的符元(或稱符瑪,SymM)加入防護區間 (GUard interval)來解決。此舉將加大符元週期、佔用用以傳輸數據 胃的頻寬。 把正交分頻多工技術應用於光通訊系統時,由於光線在同一 光纖中傳輪,因此’光正交分頻多n的多重路徑效應並不顯 著’但會因光纖色散(Chromatic Dispersion)現象使得在接收端接收 到汛嘁時,會有通道間同步的問題以及類似多重路徑的符間干擾 的問題。針對光〇FDM系統中同步的估測方式將會和以往在銅線 或無線OFDM傳輸上的估測方式有所差異。因此,必須針對光纖 通道特性開發新的同步估測方法,以避免估測錯誤。 5 1360984 關於OFDM系統中,接收端所進行的同步估測(也就是Timing Offset的估測)相關技術可見於2007年12月18曰於美國核准公告 之第7310302號專利「在正交分頻多工系統用以估測時間偏移與 頻率偏移的方法(Method for estimation time and frequency offset in an OFDM system)」、以及2007年7月3]日在美國棲准公告之第 7251283號專利「在正交分頻多工系統中的時間偏移補償(Timing offset compensation in orthogonal frequency division multiplexing systems)」〇 此外,相關的論文有 Minjian Zhao, Aiping Huang, Zhaoyang1360984 VI. Description of the Invention: [Technical Field] The present invention relates to a receiving method and receiver for an optical multiplex system, and more particularly to an optical orthogonal frequency division multiplexing (Optica) In the 丨Orthogonal Frequency-division Multiplexing system, the receiving method and receiver of the received signal are compensated by the estimated time offset and Chromatic Dispersion. [Prior Art] Orthogonal Frequency-division Multiplexing (OFDM) is not a frequency division multiplexing (Frequency-division) using digital multi-carrier modulation (£^丨丨爪卜modulation) method. Multiplexing, FDM) system. A plurality of orthogonal subcarriers (〇rth〇g〇nal sub_carrier, also referred to as subbands) are used to transmit data. The data is cut into a plurality of parallel data streams or channels corresponding to respective subcarriers. Each subcarrier is modulated by a modulation technique with a lower symbol rate (such as quadrature amplitude modulation (QAM) or phase offset telemetry). (PSK 'Phase Shift Keying)) for data transmission. In this way, the total data transmission rate can be obtained in the same bandwidth compared to the traditional single carrier (sing|e-carrier) (_丨加(8). Qing Hui test "1A picture" The comparison with the spectrum distribution of the conventional direct transmission and the orthogonal frequency division multiplexing transmission is separately shown in Fig. 1B. The direct transmission is different from (4) the maximum difference from the transmission _ the distribution of the bandwidth, "1A" is displayed. The direct transmission wheel occupies ^60984. The frequency 〇 is subdivided into four equal divisions of equal width in a manner of orthogonal frequency division. Each sub-band fl (ie, the aforementioned sub-carriers) is orthogonal to each other. Then, the new spectrum distribution will be as shown in Figure 1B. The frequency response of the band can be roughly considered flat as long as the sub-bands are substantially equal to the parent sub-bands. That is to say, riding each sub-fresh only needs a single-coefficient equalizer to overcome the attenuation and phase distortion of each sub-channel. In addition, since the data rate of each +-channel τ is much lower than the original direct The data rate of the transmission, the operating clock of the equalizer naturally also decreases in equal proportions. The technology used in the field of wireless communication, the problem often encountered is the multi-path effect. Multi-path effect will derive time-spreading and inter-symbol interference (10) er_symb〇1 vitamins, other The frequency selectivity (freqUency_selective) channel is defined by P. This frequency selectivity problem is usually solved by adding a guard interval (GUard interval) in each OFDM symbol (or Symma, SymM). The meta-cycle, occupying the bandwidth of the stomach for transmitting data. When the orthogonal frequency division multiplexing technique is applied to the optical communication system, since the light passes through the same optical fiber, the multipath effect of the optical orthogonal frequency division and multiple n Not significant 'but there will be problems with inter-channel synchronization and inter-symbol interference like multi-path when receiving 汛嘁 at the receiving end due to Chromatic Dispersion. For synchronization in optical FDM systems The estimation method will be different from the previous estimation methods on copper wire or wireless OFDM transmission. Therefore, it is necessary to develop a new synchronization estimation method for the fiber channel characteristics to avoid Estimate the error. 5 1360984 Regarding the OFDM system, the synchronization estimation performed by the receiving end (that is, the estimation of Timing Offset) can be seen in the patent No. 7310302 of the US Approved Announcement on December 18, 2007. Method for estimating time and frequency offset in an OFDM system, and July 7th, 2007, in the US The patent "Timing offset compensation in orthogonal frequency division multiplexing systems" 〇 In addition, related papers are Minjian Zhao, Aiping Huang, Zhaoyang

Zhang與Miang Qiu發表的論文(請參考μ邱制Traddng L〇叩 for OFDM Symbol Timing, IEEE VTC52003, pp.2435-2439, vol. 4,Zhang and Miang Qiu's paper (please refer to μ Qiu Tradng L〇叩 for OFDM Symbol Timing, IEEE VTC52003, pp.2435-2439, vol. 4,

Oct. 2003)、以及 Baoguo Yang, Khaled Ben Letaief, Roger S. Cheng 與 ZhiganS Cao 所發表的論文(請參考丁iming Recovery f0r OFDM transmissbMEEE I Select· Areas C⑽職n.,v〇i 】8, N〇 】】,N〇v 2003) 習知技術提出適於無線或銅線的〇FDM系統的時間偏移的 估測方法,但由於光纖通道特性與無線傳輪或銅線特性不完全相 同’所以針對光OFDM系統中同步的估測方式將會和以往的估測 方式有所差異。由於符元邊界估測的準確度會影響〇FDM頻域等 化器或通道估測的表現,進而影響解調傳送訊號的正確性,也就 是說,同步估測與通道估測技術的好壞將直接影響到整個〇fdm 系統的性能。因此,必須針對先纖通道的特性開發新的同步估測 1360984 方法’以避免估測錯誤。 【發明内容】 鑑於上述將正交分頻多工技術應用於光纖通訊時, σ 彳琴輪 唬的介質不同,需在接收端開發適用於光〇FDM系統的時門 估測方法,本發明提種光正交分解H中估 , 與色散的方法。 ’移 本發明提出-種光正交分頻多工訊號的接收方法,適用於一 光二交分頻乡讀光正交分頻多工 射為所發射之光峨’該接收方法包含:⑽:轉換觀訊號為— 數位訊號;S52 :估_触_之—符元邊界;物:_符元 邊界去除該數位訊號之—防護區間而成為一電訊號;挪:以= ^立葉方式轉換該電職為複數個頻域子載波Y(k),各該頻域子 ,對應同—頻域子載波的該些符元包含複數 门一L ;弓丨導載波信號,該些載波信號·係位於 1付間,其中k為大於或等於且小於叫i的整數, 載波戰同—該㈣嶋些引導 日™M i 她估測偏^以及以該 寸間偏私補^雜元邊界之估測。 刚述S57 :以董{虛 號x(k)與至少三個#+;^ —符元㈣的至少三個該些?丨導載波信 -色散常數的;'驟=的該頻域子載波叫估測-時間偏移4 X(k2)及對應的諸_=、S57〇 :以二個該些引導载波信號雖1), 機子载波Y(kl),Y(k2)估料—第一相旋 1360984 轉差;S572 :以另二個該些引導载波信號x(k3),x(k4)及對應的該 些頻域子載波Y(k3), Y(k4)估算出一第二相旋轉差;以及S574 :依 該第一相旋轉差與該第二相旋轉差估算該時間偏移;其中,kl,k2, k3及k4均大於或等κ_Ν/2且小於(N/2M的整數,N為該快速傅 立葉的點數(FFTsize),lc2>kl,k4>k3,且 k24d=k4七3。 . …口次木一彳日々疋得左1古鼻 一色散常數。 树明提出-種光正交分頻多工系統的接收端,適於接收一 先正交分頻多工系統的—發射端所發出的—光訊號,該接收端包 ^電元件、類比轉數位元件、符域界估測器、防護區間 立轉換元件、叹_轉估㈣。光電轉 今=接_換_號為―_號。_數位元件轉換 符元ir。4—触峨。符元估依触訊號而估測一 界。防護區間移除元件依該符元 丄 料區間而形成一電訊號。快速傳 錢之 方式轉換該電訊號為複數個頻由、以一快速傅立葉 含複數個符元吩,,_ ,該f域子载波包 個資料載波信號(Data)與引導載y ’’的5亥些符元包含複數 _係蝴一符元區間=說叫物丨導载波信號 的整數。時間偏移估測器將對應且小於(叫1 料载波信號雖)與至少 "’品曰的至少二個該些 間偏心。該符元邊界_==該賴子載波m话測-時 '、、。亥%間偏移而補償該符元邊 常〜3^接收方去與接收器,可有效地估測出時間偏移及色散 声〜、才間偏矛夕補仏符元邊界的估測,即可使訊號接收的準確 。域色散常數來設定防魅間(G— w—)之長度(時 即可縮短防護區間所佔的時間(即頻寬),並提高用以傳輸數 據的頻寬。 “有關本發明的特徵、實作與功交文,兹配合圖示作最佳實施例 詳細說明如下。 、上之關方、本赉明之内容說明及以下之實施方式之說明係用 =不fc與轉本發日把精神與顧,並且提縣㈣之專利申請 範圍更進一步之解釋。 , 【實施方式】 晴荼考「第2圖」’其為本發明之光正交分頻多工訊號系統的 接收端架構示意圖。圖中可以見悉本發明之訊·收方法係適用 於一光正交分頻多工接收器10。該接收器10係接收由一光正交分 頻夕工發射益90所發射出來的光訊號98。前述接收器包含一 光電轉換元件 11 (Optical-to-electrical converting element)、—類比 轉數位元件 12 (Analog to digitaj converting element)、一符元邊界 估測器13 (Symbol boundary estimator) ' —防護區間移除元件14 (Guard interval removal element)、一快速傅立葉轉換元件丨5 (卩⑽ Fom’ier Transferring element)、以及一時間偏移估測器16⑺如哗 offset estimator)。 1360984 前述發射器90之光訊號98的產生方式,請參閱「第3圖」。 其係為根據本發明之光正交分頻多工系統的發射端的架構示意 圖。圖中可以見悉發射端(即,前述發射器9〇)係包含一串轉並 元件91、一引導載波插入元件92、一逆快速傅立葉轉換元件93、 一防護區間加入元件94、一並轉串元件%、數位轉類比元件99、 以及一電光轉換元件 96 (Electrical-to-〇ptical converting element)。 串轉並元件91係將待傳送的序列數位讀匕π切割成複數個 並列之數位訊號。再將各個並列的數位訊號依「正交振幅調變」 (QA.M ’ Quadrature A—tudeM〇duiati〇n)或「相位偏移調變」 (PSK PhaseShiftKeying)方式轉換為並列的複數個已調變之數 位氣㈣並元件91祕此些並列的已調變之數位訊號傳送給 前述引導紐插人元件92。前述並_已_之數位訊號均屬於 待,輸之資料’亦可稱為「資料載波信號」。引導載波插入元件% 則疋將引導載波信號」依適當的配置方式插入/配置在「資料載 波L號」之間^結合「資料載波信號」與被適當配置的「引導載 波U虎」g卩成為亚躺複數個子紐雄)_加,或稱次載 波)^子载波X_(k)屬於頻域的子載波。也就是說,每個子載波 X(k)包3 了多個「資料載波信號」與多個「引導載波信號」。 關=、則述配置「引導载波信號」於「資料載波信號」之間的 一式、明參考「第4圖」閱覽之。「第4圖」係為子載波X(k)中的 資料载波錢與引導載波信號的配置示意圖。Oct. 2003), and papers by Baoguo Yang, Khaled Ben Letaief, Roger S. Cheng and ZhiganS Cao (please refer to Iing Recovery f0r OFDM transmissbMEEE I Select· Areas C(10)) n.,v〇i 】8, N〇 】], N〇v 2003) The conventional technique proposes a time offset estimation method for a 〇FDM system for wireless or copper wires, but because the characteristics of the fiber channel are not exactly the same as those of the wireless wheel or copper wire, The estimation method of synchronization in the optical OFDM system will be different from the previous estimation method. Since the accuracy of the symbol boundary estimation affects the performance of the DMFDM frequency domain equalizer or channel estimation, which affects the correctness of the demodulated transmission signal, that is, the synchronization estimation and channel estimation techniques are good or bad. Will directly affect the performance of the entire 〇fdm system. Therefore, a new synchronization estimation 1360984 method must be developed for the characteristics of the fiber channel to avoid estimation errors. SUMMARY OF THE INVENTION In view of the above-mentioned orthogonal frequency division multiplexing technology applied to optical fiber communication, the medium of the σ 彳 唬 不同 is different, and a time gate estimation method suitable for the optical 〇 FDM system needs to be developed at the receiving end, and the present invention provides A method of estimating the optical dispersion in H, and the method of dispersion. 'Shifting the present invention proposes a method for receiving an optical orthogonal frequency division multiplexing signal, which is suitable for a light two cross frequency rural read optical orthogonal frequency division multi-engine shot for the emitted light'. The receiving method includes: (10): The conversion signal is - digital signal; S52: estimate _ touch _ - symbol boundary; object: _ symbol boundary removes the digital signal - guard interval and becomes a signal; move: convert the power by = ^ 立叶The service is a plurality of frequency domain subcarriers Y(k), and each of the frequency domain sub-carriers corresponding to the same-frequency domain subcarrier includes a plurality of gates L; the carrier signals are located, and the carrier signals are located 1 pay, where k is greater than or equal to and less than the integer called i, the carrier battles the same - the (four) these guide days TMM i she estimates the bias ^ and the estimate of the boundary between the two sides of the gap. Just say S57: at least three of Dong {virtual number x (k) and at least three #+; ^ - symbol (four)?丨 载波 载波 载波 色 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ), machine carrier Y(kl), Y(k2) estimation—first phase rotation 1360984 slip; S572: two other guide carrier signals x(k3), x(k4) and corresponding ones a frequency domain subcarrier Y(k3), Y(k4) estimates a second phase rotation difference; and S574: estimating the time offset according to the first phase rotation difference and the second phase rotation difference; wherein kl, k2 , k3 and k4 are both greater than or equal to κ_Ν/2 and less than (N/2M integer, N is the number of points of the fast Fourier (FFTsize), lc2>kl, k4>k3, and k24d=k4 7.3. The second end of the second wood has a left-nose nose-one-color dispersion constant. Shuming proposed that the receiving end of the optical orthogonal frequency division multiplexing system is suitable for receiving a first orthogonal frequency division multiplexing system - the transmitting end - The optical signal, the receiving end package ^ electrical component, analog to digital component, the domain domain estimator, the guard interval vertical conversion component, the sigh _ reevaluation (four). Photoelectric conversion today = connection _ change _ number is _ _ _ digital component conversion symbol ir. 4 - touch符. The symbol estimates the distance according to the touch signal. The guard interval removes the component to form a signal according to the symbol interval. Fourier contains a plurality of symbol phenotypes, _, the f-domain subcarriers contain a data carrier signal (Data) and the guide y '' of the 5 hai symbol contains the plural _ 蝴 一 符 符 = = = = = = An integer that directs the carrier signal. The time offset estimator will correspond to and be less than (at least 1 of the carrier signal) and at least two of the "'s eccentricity. The symbol boundary _== the subcarrier m 测 测 测 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 By estimating the boundary of the symbol, the signal can be received accurately. The domain dispersion constant is used to set the length of the anti-sharp (G-w-) (when the guard interval is occupied (ie, the bandwidth), And improve the bandwidth used to transmit data. "About the features, implementations and work of the present invention, The detailed description of the preferred embodiment is as follows: The description of the contents of the above, the description of the above, and the description of the following implementations are based on the use of the non-fc and the transfer date, and further the scope of the patent application of Tixian (4). Interpretation. [Embodiment] Harmony test "2nd picture" is a schematic diagram of the receiving end architecture of the optical orthogonal frequency division multiplexing signal system of the present invention. The system of the present invention can be seen in the figure. It is suitable for an optical orthogonal frequency division multiplexing receiver 10. The receiver 10 receives the optical signal 98 transmitted by an optical orthogonal frequency division transmission benefit 90. The receiver includes an optical-to-electrical converting element (11), an analog to digitaj converting element, and a symbol boundary estimator (Symbol boundary estimator). A Guard interval removal element, a Fast Fourier Transform Element 丨5 (卩(10) Fom'ier Transferring element), and a time offset estimator 16(7) such as 哗offset estimator). 1360984 For the generation method of the optical signal 98 of the aforementioned transmitter 90, please refer to "3rd picture". It is a schematic diagram of the architecture of the transmitting end of the optical orthogonal frequency division multiplexing system according to the present invention. It can be seen that the transmitting end (i.e., the aforementioned transmitter 9A) includes a series of rotating and paralleling elements 91, a guiding carrier insertion component 92, an inverse fast Fourier transforming component 93, a guarding interval adding component 94, and turning together. The string element %, the digital to analog element 99, and an electro-optical conversion element 96 (Electrical-to-〇ptical converting element). The serial-to-parallel element 91 cuts the sequence digits to be transmitted by 匕π into a plurality of juxtaposed digital signals. Then convert each parallel digital signal into a parallel number of modulated by "Quadrature Amplitude Modulation" (QA.M 'Quarature A-tudeM〇duiati〇n) or "Phase Phase Shift Keying" (PSK PhaseShiftKeying). The digitized gas (four) and the component 91 are arranged in parallel with the modulated digital signal transmitted to the aforementioned button inserting element 92. The above-mentioned digital signals of ___ are all pending, and the data transmitted may also be referred to as "data carrier signal". The pilot carrier insertion component % then inserts/arranges the pilot carrier signal between the "data carrier L number" according to an appropriate arrangement, and combines the "data carrier signal" with the appropriately configured "guide carrier U tiger". The sub-carriers of the sub-carriers X_(k) belong to the sub-carriers in the frequency domain. That is to say, each subcarrier X(k) packet 3 has a plurality of "data carrier signals" and a plurality of "guide carrier signals". Off =, the configuration of "guide carrier signal" between the "data carrier signal" and the reference "4th picture" are read. Fig. 4 is a schematic diagram showing the configuration of the data carrier money and the pilot carrier signal in the subcarrier X(k).

Vm p 引導載波信號」與「資料載波信號」的基本時間長度 1360984 •單位定義為符元物mbo卜或稱符碼)。此符元即為前述序列 .轉換為類比訊號的最小單位時間長度。「第4圖」令的為時 .間軸,單位即為符元,Μ表示。而其垂錄為頻率。從 •圖」中可以見悉,在每個垂直鍵列(c〇lumn)上具# 16個圓伊占。對 應每個垂直銳列上的圓點的水平軸即稱為-個頻域子載波 χ(_中是以耶),x(k2),x(k3)及x(k4)表示)。每—子载波雖) 包含複數個符元(symbol)。對應同一子載波x(k)的該些符元包含 _複_資料載波信號40a, 40b、與複數個引導載波信號42a,42b。 圖中實心圓點即表示引導載波信號42a,42b。空心圓點則為資料載 波信號40a,40b。 對應同一符元區間(Symbol period,即同一符元時間長度)的 該些引導載波信號42a,42b係各別分佈在每一該些頻域子載波 X(k)。七述同一符元區間即表示在水平軸上每單位符元時間長 度。意即,圖上在同一緃列(co[umn)在此稱為同一符元區間。因此, 「對應同一符元區間該些引導載波信號42a, 42b係各別分佈在每 一該些子載波X(k)」即表示對應引導載波信號42a,42b的緃列 (Column)上的所有符元均為引導載波信號42a, 42b,並無任何資料 載波信號40a,40b。 此外’以「苐4圖」為例,在同一頻域子載波X(k)上(即_式 的同一水平軸)’每二個引導載波信號42a, 42b之間具有三個實料 載波信號40a,40b。本發明並不以此為限,每二個引導載波信5虎 42a,42b之間的資料載波信號40a,40b可以視系統而調整,可以為 1360984 但不限於1,4及8。 接著該些頻域子載波X(k)則被逆快速傅立葉轉換元件 inverse fast Fourier transform)轉換為複數個時域子载波 Μ»。削述複數個時域子載波<k)相互之間具有正交性。此處的逆 快速傅立葉轉換的大小(點數,㈣即等於前述頻域子载波數。以 第4圖」為例,此逆快速傅立葉轉換的大小即為16。 方蔓H間加入元件 94(Guard interval adding element)係於每— 符元月附加刚置德環碼(Cyclic prefix)或於每一符元後附加後置德 環碼(post-fix)。 並軺串元件 95(Parallel to Serial Converter,P/S)將附加 了防護 區間的喊子載波x(k)轉換成㈣訊號後傳送給數位轉類比元件 99。數位馳比(件"料列訊號轉細比峨後再傳給電光轉 換tl件96。此電光轉換元件90可以但不限於一雷射。電光轉換元 牛%則將㈣輯碰為前述光訊號98並從賴傳送出去。 响再參考「第2圖」。光電轉換元件丨】接收前述光訊號98後, 將糊奐_比_ 8G。此光電轉換元件】丨可以是但不限於光接 收克(〇Pt】Cal receiver)。前述類比訊號80為一電訊號。 骑]2接收前述類比訊號8G並將之轉換為射 訊號8】。接著符補界制器13即估測織位峨81的符以 "卫將估麟果傳送給賴區_除元件M。賴_多除元伯 ^依據該符元邊界估·果移除數魏號81中的保護區間而成 為一數位電訊號82。 ^60984 快速傅增㈣15馳_峨蝴速 號為複數個頻域子載波83。由於此處所接收到的頻 故χ已非傳輸續如光則統干賊雜訊等影響, 已翻侧_卩,發射_的頻域子載波X(k),故在此, 接收到的頻域子載波幻以vn _ 的制,雜料。 紐職域子載波83, 時間=測㈣係接收前述頻域子咖並估測時間偏 t 此處的時間偏移屬於剩餘時間偏雜esidua| =offset)。意即符元輪咖3 _刚邮誤差。在 :二間=後,將該時間偏移傳送至該符元邊界估測器13,以 對该付兀邊界估測器13進行補償。 月’J述接收到的頻域子载波Y(k)除了 域子載波夕卜,另包含了㈣鄉〇 〇所發射的頻 訊。在光通訊領域中,由於光1 Response)以及雜 “ 。於光纖巾傳輸時會有色散Μ。 色散在域通道切成她偏 、一 道ί璇俨』、工m 的色散常數,對每個通 所產生的相位偏移均不相同。因此, 到的頻域子載波·可表示為: 則域接收The basic time length of the Vm p pilot carrier signal and the data carrier signal is 1360984 • The unit is defined as the symbol mbo or the code). This symbol is the minimum unit time length of the aforementioned sequence converted to analog signal. The "4th figure" order is the time axis, the unit is the symbol, Μ indicates. And it is recorded as frequency. It can be seen from Fig. that there are #16 circles in each vertical key column (c〇lumn). The horizontal axis corresponding to the dot on each vertical sharp column is called - one frequency domain subcarrier χ (_ in yeah), x(k2), x(k3) and x(k4)). Each subcarrier contains a plurality of symbols. The symbols corresponding to the same subcarrier x(k) include _ complex_data carrier signals 40a, 40b, and a plurality of pilot carrier signals 42a, 42b. The solid dots in the figure represent the pilot carrier signals 42a, 42b. The hollow dots are data carrier signals 40a, 40b. The pilot carrier signals 42a, 42b corresponding to the same symbol period (that is, the same symbol time length) are respectively distributed in each of the frequency domain subcarriers X(k). Seven identical symbol intervals represent the length of time per unit symbol on the horizontal axis. That is, the same queue (co[umn) is referred to herein as the same symbol interval. Therefore, "the pilot carrier signals 42a, 42b are respectively distributed in each of the subcarriers X(k) corresponding to the same symbol interval, that is, all the columns on the corresponding guide carrier signals 42a, 42b. The symbols are all pilot carrier signals 42a, 42b without any data carrier signals 40a, 40b. In addition, taking "苐4 diagram" as an example, there are three physical carrier signals between every two pilot carrier signals 42a, 42b on the same frequency domain subcarrier X(k) (ie, the same horizontal axis of the _ type). 40a, 40b. The present invention is not limited thereto, and the data carrier signals 40a, 40b between each of the two pilot carrier signals 5a 42a, 42b may be adjusted according to the system, and may be 1360984 but not limited to 1, 4 and 8. Then, the frequency domain subcarriers X(k) are converted into a plurality of time domain subcarriers Μ» by inverse fast Fourier transform. The plurality of time domain subcarriers <k) are described as having orthogonality with each other. Here, the size of the inverse fast Fourier transform (the number of points, (4) is equal to the number of sub-carriers in the frequency domain. Taking Figure 4 as an example, the inverse fast Fourier transform is 16 in size. Guard interval adding element) is to add a Cyclic prefix to each symbol month or to add a post-fix after each symbol. Parallel to Serial Converter, P/S) converts the shunt subcarrier x(k) with the guard interval into a (four) signal and transmits it to the digital to analog component 99. The digital ratio (the piece " the signal is converted to a finer ratio and then transmitted to the power The light-converting element 96. The electro-optical conversion element 90 can be, but is not limited to, a laser. The electro-optical conversion element will (4) collide with the optical signal 98 and transmit it from the ray. Refer to "2nd picture". The conversion component 丨] after receiving the optical signal 98, the paste _ _ 8G. The photoelectric conversion element 丨 can be, but not limited to, a light receiving gram (〇Pt) Cal receiver. The analog signal 80 is an electrical signal. Ride] 2 receives the aforementioned analog signal 8G and converts it into a radio number 8] Then, the complement compensator 13 estimates the position of the weaving position 峨81 to be transmitted to the Lai area by the wei wei _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The guard interval in Wei number 81 becomes a digital signal number 82. ^60984 Fast Fu Zeng (4) 15 Chi _ 峨 速 速 is a plurality of frequency domain subcarriers 83. Since the frequency received here is not transmitted continuously If the light is affected by the thief noise, etc., the frequency domain subcarrier X(k) of the _ _, transmitted _ has been turned over, so here, the received frequency domain subcarrier illusion vn _ system, miscellaneous. The service area subcarrier 83, time = test (four) is to receive the aforementioned frequency domain sub-cafe and estimate the time offset t where the time offset belongs to the remaining time miscellaneous esidua| = offset). That is, the symbol round 3 _ just mail error After: two = after, the time offset is transmitted to the symbol boundary estimator 13 to compensate the 兀 boundary estimator 13. The frequency domain subcarrier Y received by the month k) In addition to the domain subcarriers, it also contains (4) the frequency information transmitted by the homesickness. In the field of optical communication, due to the light 1 Response) and the miscellaneous ". There will be dispersion Μ. Dispersion in the domain channel cut into her bias, a ί璇俨, the dispersion constant of the work m, the phase offset generated for each pass is different. Therefore, the frequency domain subcarriers can be Expressed as: then domain receiving

Yi(k) 一 j,2· -jin- •Xi00 + PF\k) .⑴ 其中,1為符元數(即第丨個符元)。N ^ 數。» 為决速傅立葉轉換的點 為子载波數(即弟k個子載波)。尺 丁戰及)κ為乾圍在以/2 1360984 的整數。W為在第丨個符元的第Μ奸輪麵完快速傅立擎 後的訊號。馳為在第!個符第k個子載波的多路徑通道響 應(Multipath Channel Response)。B 為色散常數(d 丨 θ constant due to chr〇matic dispersion) 〇 r 號Yi(k) a j,2· -jin- •Xi00 + PF\k) .(1) where 1 is the number of symbols (ie, the first symbol). N ^ number. » The point for the Fourier transform is the number of subcarriers (ie, k subcarriers).尺丁战和)κ is an integer of /2 1360984. W is the signal after the fast rifle in the first slap of the second squad. Chi is in the first! The multipath Channel Response of the kth subcarrier. B is the dispersion constant (d 丨 θ constant due to chr〇matic dispersion) 〇 r

"/(众).I 為 丁論g 0腕)。训為第!個符^的第⑽子載波的傳送訊號, 可能是資料載波信號’亦可能是引導載波信 第丨個符元'第k個子載波的綜合通道變庫 曰應思即包含了色散盘多 路徑所產生的通道響應,⑷為第i個符 訊。 仃兀弟k個子載波的雜 關於時間偏移估測器16的電路方塊示意圖,靖 圖」。圖中可以見悉,時間偏移估測器】6包含 件 30 (the first phase rotat_ est贿t〇r)、 左估取 第一相差估測元件32 (e second phase r〇,tlon o . :set extractor)、以及—色散常數擁算 ⑽細⑽論)。 —件38咖。丨論d啊sion 時間偏移估測器16在進行時間偏移估測時,係 的頻域子載波Y(k)來進行估算。對 —’、U到 均進行估測。由於被發射㈣祕山 母個通道(子载波) 被毛射㈣所發出_域子载 載波信號轉,纽是 勺弓1¥ 知各引導載波信號的内容。因此,接收器叫㈣ 載偏的付蝴的頻域子載波娜進行鱗若以「第 1360984 4圖」為例’位在引導載波信號42M2b _列㈣職)上的各個 發送的頻域子載波雄)為接收端(即,接收器】Q)已知的。以下 說明中’將以X㈣,哪),X㈣,Χ_各別代表位在第机设蚜 k4子載波(頻段)上的引導載波信號。 上述式⑴巾。⑷為在第Hg]符元的第k個子載波在解完供 速傅立葉後的峨。義於純硬體的應(Th_ai"/(众).I is Ding on g 0). Training is the first! The transmission signal of the (10)th subcarrier of the character ^ may be the data carrier signal 'may also be the first channel of the carrier carrier'. The k-th subcarrier of the integrated channel is included in the multi-path of the dispersion disk. The resulting channel response, (4) is the ith message. The circuit block diagram of the time offset estimator 16 is shown in Fig. As can be seen in the figure, the time offset estimator 6 includes the first phase rotat_ est bribe t〇r, and the left estimate first phase difference estimating component 32 (e second phase r〇, tlon o . : Set extractor), and - dispersion constants (10) fine (10) theory). - 38 coffee. The paradox d sion time offset estimator 16 estimates the frequency domain subcarrier Y(k) when performing the time offset estimation. Estimate both —’ and U to. Since the (4) Mishan mother channel (subcarrier) is transmitted by the _ domain subcarrier signal signal sent by the hair (4), the button is the content of each pilot carrier signal. Therefore, the receiver is called (4) the carrier frequency domain subcarrier of the carrier bias. If the "1360984 4 picture" is taken as an example, the frequency domain subcarriers transmitted on the pilot carrier signal 42M2b_column (four) are transmitted. Male) is known for the receiving end (ie, receiver) Q). In the following description, the pilot carrier signals on the k4 subcarriers (bands) of the K1 subcarriers will be represented by X(4), which), X(4), and __. The above formula (1) towel. (4) is the 后 after the supply of the Fourier subcarriers in the Hgth symbol. Righteous to pure hardware (Th_ai

Effect)或環境的雜訊。其較不會因不同符元以及不同子峨通道) 而變動且雜訊不大的情況下,在時間偏移估測時,為計算方便可 將之忽略不計。 刖逑弟-相奏估測兀件%係以二個該些引導載波信號观), X(k2)及對應的該二個頻域子載波·, γ(晴算出—第—相旋 轉差angle(E(k2,kl))。第—相差估測元㈣係將迴進行 ====而得該第-相旋轉差:,:))。其: 尤(七2)” z⑼刀別為kl,k2的通道響應。第一相旋 angle(E(k2,ld))之估算公式如下式(2): angle{E{k.2,k\)) = angie{c〇,JΙΰ^ί) Hk\), _ ^ U^2)J .....................(2) 前述第二相差估測元件32以另二個該些引導載波信號 X㈣及職的_域子紐Y(k3),取)_—第二相旋轉 差angle(E(lc4,k3))。第二相差估測元件3 迴^週^… 、于耶4广义⑻)進仃硬 數共輛域並取其肢而彳_二相旋锻_(_3))。其 15 中,^I與人口丨& J(/c4)、χα,3)刀别為k3, k4的通導響應。第二相旋轉差 angle(E(k4,k3))之估算公式如下式即 angle{E^M)) . angleicoJ2叫聊) {^(kA)j X(k3) ..................(3) 經過上述第—、笼_ “ ¥ —_卜 乐—相差估測元件30, 32之估測,即可得到 第-相㈣輯值。此二個相旋轉差與時間偏移、色散常 數之_關係可由上述式晴導而得,舰明如下: ' ^相知轉差之估算為例,套用式⑴,在第】個符元的第 _ μ載波在解几快迷傅立葉後的訊號(式⑷)、以及在第1個符 t第1、2個子載波在解完快速傅立葉後的訊號(式⑼各別表示 /iw · Ί· k ΙίλΊ-»- —)βEffect) or environmental noise. It is less likely to change due to different symbols and different sub-channels, and the noise is not large. In the time offset estimation, it can be neglected for calculation convenience. The younger brother-accord element % is based on two of these guided carrier signals, X(k2) and the corresponding two frequency domain subcarriers, γ (clear calculation - first phase rotation difference angle (E(k2, kl)). The first-phase difference estimated element (4) will be returned to ==== to obtain the first-phase rotation difference:, :)). It: 尤(七2)” z(9) knife is the channel response of kl, k2. The estimation formula of the first phase rotation angle(E(k2, ld)) is as follows (2): angle{E{k.2,k \)) = angie{c〇,JΙΰ^ί) Hk\), _ ^ U^2)J .....................(2) The two phase difference estimating component 32 takes the other two pilot carrier signals X (four) and the _ field sub-key Y (k3), and takes the second phase rotation difference angle (E(lc4, k3)). Estimate the component 3 back ^ week ^..., yeah 4 generalized (8)) enter the hard number of the total vehicle domain and take its limbs 彳 _ two-phase rotary forging _ (_3)). Among them, ^I and population 丨 & J(/c4), χα, 3) The knives are the k3, k4 directional response. The second phase rotation difference angle(E(k4, k3)) is estimated as follows: angle{E^M)). angleicoJ2 is called) {^(kA)j X(k3) ..................(3) After the above -, cage _ " ¥ - _ Bu Le - difference Estimating the components 30, 32 gives the first-phase (four) value. The relationship between the two phase rotation differences and the time offset and dispersion constant can be obtained by the above-mentioned formula, and the ship is as follows: ' ^ The estimation of the slip is taken as an example, and the formula (1) is applied in the first symbol. The signal of the _ μ carrier after solving the Fourier Fourier (Eq. (4)), and the signal after the Fast Fourier is solved for the first and second subcarriers of the first symbol t (Equation (9) indicates /iw · Ί·k ΙίλΊ-»- —)β

一 J,2.TT I:\-t ' e .(4) yM2) klik2+aui klr • e X ,(^2)+ w,{kl) 、中,-N/2Sld<(N/2)-l。_j\j/;2gk2<(N/2)-l。 如同如述’為簡化算式,故將雜訊先行忽略。將盥⑽ ί- ^ , 彻广尤⑷) 嗖數共軛相乘並取其角度之結杲如下式(6): .⑹ ^ngle{E{klyk\)) s angle{coniΙ^Λ (ΣΜ. U(々2)J U(H) 其中E(k2,ld)為在複數平面上的複數的乘積,其演算式如下: 16 1360984 E{k2,Jc\))二 conjJ, 2.TT I:\-t ' e .(4) yM2) klik2+aui klr • e X , (^2)+ w,{kl) , medium, -N/2Sld<(N/2) -l. _j\j/;2gk2<(N/2)-l. As described in the section 'To simplify the calculation, the noise is ignored first. Multiply the 共(10) ί- ^ , 彻广尤(4)) 嗖 conjugate and take the angle of the knot as follows (6): .(6) ^ngle{E{klyk\)) s angle{coniΙ^Λ (ΣΜ U(々2)JU(H) where E(k2,ld) is the product of the complex number on the complex plane, and its calculation formula is as follows: 16 1360984 E{k2, Jc\)) two conj

(Y{k2) ^ (Y(k\) \ U(U)J Uw J(Y{k2) ^ (Y(k\) \ U(U)J Uw J

k2(k2+^~)B conj k\-( ) fj N ΛΓ =conj^ilO))-H]{k\) ^ 接著將式⑺計算角度,得到下式(8)⑽㈣雄2,叫)三g {Μ. r +阳.⑽+令)_ /d侦+争]々矣中,Ak = k2-kl。 以類似於式(4>⑻的推導方式,即可得到第二相旋轉差與時 間偏移'色散常數間的關係式,如下式⑼:丁K2(k2+^~)B conj k\-( ) fj N ΛΓ =conj^ilO))-H]{k\) ^ Then calculate the angle of equation (7) to obtain the following equation (8)(10)(four) male 2, called) three g {Μ.r + 阳.(10)+令)_ /d Detect + contend] 々矣, Ak = k2-kl. In a similar manner to the derivation of equation (4), the relationship between the second phase rotation difference and the time offset 'dispersion constant can be obtained, as shown in the following equation (9):

N (7) ⑻ angle(E(k4,k3)) π n {A/c-r + [/f4-(/c4 + -)-/c3.(/c3 + ^)].jg} .(9) 其中’ M = ,肪_(即))與恥__3))為已 知。因此’藉由式(8>(9)之演算,即可得到時間偏移r為下式⑽: ㈣哪㈣2>尤麟㈣ {[Μ. (Η + 全)-«—[々2:2 + 令)—' [λ-4 · {kA + A) _ · (k3 + ^-)] · ~ angle{E{k2.. k\)) {[lc4-(k4 + ~)-k3.ik2 + ^)] - {k2 {k2 + y) - · (ΑΊ + y)]}^ [k2 (k2 + _) _ ^-] . + . . ailg[e^E(kA, lc3)) {[^4 · {kA + q2 + Z^.)] _ (lc.2 +—) - k] (k\ + —)]}. Ak 2 2 2 -—一~^ ___2. 2 · n .(10) 其中’ kl,k2, k3及k4均為大於或等於_^/2且小於(N/2)_i 17 ^〇U984 ™、且一 差估算秘36聽郎—_觀與辦二相旋轉 =為間偏移r。時偏擷算元件36即將已知的第—、二相= 轉_e(咏2,kl ))與吨峨㈣ ^ 偏移值。 ’人式(丨G)即可估算出時間 關衣卞偏掏算元件 帝 中可以見悉,時擎二 圖,請參考「第6圖」。圖 法器ι心第Γ°件36包含—第-乘法器、-第二乘 (_前半段數值崎前的式子)。第=〇所計算的即為式 為式(_後半段數值(即減號後的式子H法8 362所計算的即 第—乘法器360血第-τ" 弟—減法器364則是將 的結果。㈣,如均㈣丨卿丨^爛上式⑽ 知,故減如响啊崎騎=__))為已 之:=:!__餘的時:,因此,將 兀瓊界估測器]3 (如「第9同 估測器]3在對下一# _、_ 〜圖」所示)。使得符元邊界 且使得保魏間鑛元=了“邊界触啊,得以更為正確, 區間。 、更精準的移除數位訊號81中的保護 其传:第色散,B <估算’係由色散常_算元件3”進-、係依以―相旋轉差與 4件38來進盯。 樣以上式⑻_(9)進行演 《差而估算色散常數B。同 、-後,制色散常數Β為下式(u) 18 丄冲〇984N (7) (8) angle(E(k4,k3)) π n {A/cr + [/f4-(/c4 + -)-/c3.(/c3 + ^)].jg} .(9) where 'M = , fat _ (ie)) and shame __3)) are known. Therefore, 'by the calculus of equation (8), we can get the time offset r as the following formula (10): (4) which (four) 2 > Yu Lin (four) {[Μ. (Η + 全)-«—[々2:2 + order)—'[λ-4 · {kA + A) _ · (k3 + ^-)] · ~ angle{E{k2.. k\)) {[lc4-(k4 + ~)-k3.ik2 + ^)] - {k2 {k2 + y) - · (ΑΊ + y)]}^ [k2 (k2 + _) _ ^-] . + . . ailg[e^E(kA, lc3)) {[ ^4 · {kA + q2 + Z^.)] _ (lc.2 +-) - k] (k\ + —)]}. Ak 2 2 2 -—一~^ ___2. 2 · n .(10 Where 'kl,k2, k3 and k4 are both greater than or equal to _^/2 and less than (N/2)_i 17 ^〇U984 TM, and a difference is estimated to be 36 lang - _ and two phases of rotation = For the offset r. The time-deviation element 36 is about to be known as the first-, second-phase = turn _e (咏2, kl)) and the ton 四 (four) ^ offset value. ‘Human (丨G) can estimate the time of the closure of the 掏 掏 元件 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 帝 。 。 。 。 。 。 The graph device ι Γ Γ ° 36 includes - the - multiplier, - the second multiplication (_ first half of the value of the front of the formula). The first = 〇 is calculated as the formula (_ the second half of the value (that is, after the minus sign, the formula H method 8 362 is calculated - the multiplier 360 blood first - τ " brother - subtractor 364 is (4), such as the average (four) 丨 丨 丨 烂 上 上 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 啊 啊 啊 啊 啊 啊 啊 啊 啊 啊 啊 啊Detector]3 (such as "9th estimator" 3 in the next # _, _ ~ map"). This makes the boundary of the symbol and makes the Weiwei mining element = "Boundary touch, which is more correct, interval. More precise removal of the protection in the digital signal 81: the first dispersion, B < estimation" The dispersion constant _ calculation element 3" into -, according to the "phase rotation difference" and 4 pieces of 38 to enter the line. The above equation (8)_(9) is performed to estimate the dispersion constant B. After the same, -, the dispersion constant Β is the following formula (u) 18 丄 〇 984

NN

B 2· π [angle{E{kA, kVj) - angle(E(k2, /cl))] [^4-(H + ^-)-/c3.(^3 + ^)]_[/c2.(/c2 +y)-M(A:l + y)] N 2 π [angle(E(k4, /c3))] ^k4,(k4 + ~)-k3-(k3 + ~))-[k2-(k2 + ~)-k\(k]+^] __士[—導2,_ N-))-[k2-(k2 + ^)-k\.(k], (11) [“ · (“ + 令)-/:3 .(众3 + λ’ =掉式(11)中的angle(E(k4,吻。而第三乘法器搬則是將前述減B 2· π [angle{E{kA, kVj) - angle(E(k2, /cl))] [^4-(H + ^-)-/c3.(^3 + ^)]_[/c2 .(/c2 +y)-M(A:l + y)] N 2 π [angle(E(k4, /c3))] ^k4,(k4 + ~)-k3-(k3 + ~))- [k2-(k2 + ~)-k\(k]+^] __士[—导2,_ N-))-[k2-(k2 + ^)-k\.(k], (11) [" · (" +令)-/:3 . (3 + λ' = the angle in the equation (11) (E (k4, kiss.) The third multiplier is to reduce the aforementioned

[料.即可得到色散常數b 〇 關於色散常數擷算元件38之電路方塊示意圖,請參閱「第7 圖」。圖中可以見悉,色散常數擷算元件38包含一第二減法器38〇 及弗二乘法器382。減法器380係將式(η)中的angle(E(k2,⑽ 果乘上 此色散常數B係可用來做為__長度之決定依據。意 2 t於光通訊中的多通道效應殘著,反而是由色散所引起的 測屮^接^通^放應所產生的現象。因此藉由色散常數13被估 詈:後’對母—個付70所需附加的防護區間(前置循環碼或後 =她碼)的長度即可更為適當地被決定。如此—來,不致因益法 所引起的類似多通道效應問題,而增加了無謂的防護區 間的長度,謝了可__姻寬。繼說,藉由色散 19 1360984 確糊,即可更佳地應用頻寬來傳輪數據,減少超_ 雖然別物間偏移估測器】6包含該色散常數榻算元件%, 不過―亦可將該色散常數擷算元件%移除,使其僅包含第 估制兀件30、第二相差估測元件32、鱗簡算科36。亦可達 到本發明之目的。 i 、/剛述kl,k2,k3,k4雖然具有不同的命名,但並不表禾本發明 必廣以至少四個賴子紐Y(kl),),Y(k3),卿)及四個對應 讓1、3 k2 ’其餘條件不變。如此一來,即可使用三個頻域子载波 ⑻)’ Y(l、2),Y(l。),Y(k4)及三個對應的引導載波信號乂㈣,又㈣ 歸3),Χ(Η)即能估測出時間偏移與色散常數。此外,若採用更多’ 個頻域子載波與引導載波信號亦能達到本發明之目的。 針對上述本發明提出之光正交分頻多工系統的接收端之架 構,本發明另提出依據本發明之接收光正交分頻多工訊號之方 法。月麥閱「第8圖」。此捿收方法適用於一光正交分頻多工接收 。亥接收裔係接收由一光正交分頻多工發射器所發射之光訊 號。該接收方法包含: 步驟S50 :轉換該光訊號為一數位訊號; 步驟S52 :估測該數位訊號之—符元邊界; 步騍S54 :依該符元邊界去除該數位訊號之一防護區間而成 為—數位電訊號; 20 1360984 步驟S56 :以快速傅立榮士_l 茶万代轉換該電訊號為複數個頻域子 載波Y(k),各義域子錢包麵數崎元對朗—頻域子載 波的該些符元包含複數個資料紐錢與將載波信號,該些引 導載波信號X⑻係位於同-符元㈣,其t k為大域等於-n/2 且小於(N/2H的整數’N為快速傅立葉轉換__於_ Transferring size); 步驟S57 ·以對應同—該选一 、付兀區間的至少三個該些引導載波 信號X(k)與至少三個對應的該镅 豕頻域子載波Y(k)(以下以四個為 估測一時間偏移r ;以及 ; 步驟S58 :以該時間偏移補 — 乂 + 土 「 、丨处付兀迨界的估測,意即補 核於則述步驟S52「估測該數位訊號之—符元邊界」。 步驟S50係由「第2圖」中的朵*結 m 电轉換讀11與類比轉數位 兀件12所完成。也就是說步驟⑽另包含(請同步參考「第 步驟S500 :將該光訊號經—光電轉換而成為一類比訊 y驟S502 ·和5亥類比讯號轉換為—數位訊號。 則由類比 步驟S500係由光電轉換元件】J所進行。步驟_ 轉數位元件12所完成。 步驟S52之估測該數位訊號之—符元邊 器叫進行。步咖之綱蝴去_^=界估測 區間而成為”數位電訊號則由防護區間移除元件M ^防墁 S56之以快速耻葉方式轉_電輯為絲個 仃。步驟 、-夂卞戰波Y(k) ㈣快速傅立葉轉換元件15來完成。步驟初之「以對應同一該 付几區間的至少三個該些引導載波信號與至少 頻域子載波_測-時間偏移4時間偏移估咖6繪。 。在得到時間偏移的值之後,即以時間偏移的值補償步驟 如’―此即為前述步驟奴。也就是說,步驟S52之估測該數位訊 $元邊界仏為依據③時間偏移補償並估測該數位訊號之該 符元邊界。 。月參閱「第10圖」,關於步驟S57,其係包含: ^步驟⑸0 :以二健些引導載波信號X(kl),X(k2)及對應的 個頻域子載波Y(kl),丫㈣估算出—第—相旋轉差; y‘S:>72 .以另二個該些引導載波信號x(k3),χ(^)及對應 的該^頻域子載波Y(k3),Y㈣估算出—第二相旋轉差;以及 S574 ·依該第一相旋轉差與該第二相旋轉差估算該時間 偏移。 其中,kl,k2, k3及k4均為大於或等於小/2且小於(n/2)-1 ^ ’ 為哄速傅立葉轉換的點數(Fast Fourier Transferring size), k2>kl ’ k4>k3 ’ 且 Ic2-ld=k4-k3。 (叫 i Y(kl) \ U㈣J U⑽j 步驟S570之第一相旋轉差即為上述式⑹: angle(E(k2,k])) s angle(conj 步驟S572之第二相旋轉差則為:[Material. The dispersion constant b can be obtained. For the circuit block diagram of the dispersion constant calculation element 38, please refer to "Figure 7". As can be seen in the figure, the dispersion constant calculation component 38 includes a second subtractor 38 and a second multiplier 382. The subtractor 380 subtracts the angle (E(k2, (10) multiplied by the dispersion constant B in the equation (n) to determine the length of the __. The multi-channel effect residual in the optical communication Instead, it is caused by the dispersion of the 屮^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The length of the code or the post = her code can be more appropriately determined. So, instead of the multi-channel effect problem caused by the benefit method, the length of the unnecessary guard interval is increased, thank you __ Marriage width. It is said that by dispersing 19 1360984, it is better to apply the bandwidth to transmit the data, and reduce the super _ although the inter-object offset estimator 6 contains the dispersion constant reckoning component%, but The % dispersion constant calculation element % may also be removed to include only the first estimation component 30, the second phase difference estimation component 32, and the scale calculation section 36. The object of the present invention may also be achieved. Just as kl, k2, k3, k4 have different names, but it does not show that the invention must be widely used with at least four Lai New Y (kl),), Y(k3), Qing) and four correspondences leave the remaining conditions of 1, 3 k2 ' unchanged. In this way, three frequency domain subcarriers (8)) 'Y(l, 2), Y(l.), Y(k4) and three corresponding pilot carrier signals 四(4), and (4) to 3) can be used. Χ(Η) can estimate the time offset and dispersion constant. In addition, the object of the present invention can be achieved by using more 'frequency domain subcarriers and pilot carrier signals. In view of the architecture of the receiving end of the optical orthogonal frequency division multiplexing system proposed by the present invention, the present invention further provides a method for receiving an optical orthogonal frequency division multiplexing signal according to the present invention. Yue Mai read "Figure 8". This method of acquisition is applicable to an optical orthogonal frequency division multiplexing reception. The receiver receives the optical signal transmitted by an optical orthogonal frequency division multiplexing transmitter. The receiving method includes: Step S50: converting the optical signal into a digital signal; Step S52: estimating a symbol boundary of the digital signal; Step S54: removing a guard interval of the digital signal according to the symbol boundary - digital telecommunication number; 20 1360984 step S56: convert the telecommunication number into a plurality of frequency domain subcarriers Y(k) by fast Fuli Rongshi _l tea million generation, and the number of sub-wallets of each domain sub-wallet is on the lang-frequency domain subcarrier The symbols include a plurality of data and a carrier signal, and the pilot carrier signals X(8) are located in the same symbol (4), and the tk is a large domain equal to -n/2 and less than (the integer 'N of N/2H is fast Fourier transform____ringring size); Step S57: corresponding to at least three of the pilot carrier signals X(k) and at least three corresponding frequency domain subcarriers corresponding to the same one Y(k) (the following is an estimate of a time offset r; and; step S58: using the time offset to compensate - 乂 + soil ", the estimate of the payout boundary, meaning that the check Then, step S52 "estimates the symbol boundary of the digital signal". Step S50 is performed by In Fig. 2, the output of the electric junction 11 and the analog digital transposition element 12 are completed. That is to say, the step (10) is further included (please refer to the "step S500: the optical signal is converted by photoelectric conversion". A type of analog signal S502 and a 5 Hz analog signal are converted into a digital signal. The analog step S500 is performed by the photoelectric conversion element J. The step _ is performed by the digital component 12. The estimated value of the step S52 is performed. The signal---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The sequence is 丝 仃 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤 步骤_Measure-Time Offset 4 Time Offset Estimation After the value of the time offset is obtained, the value offset step of the time offset is as follows - this is the aforementioned step slave. That is, step S52 Estimating the digital signal by using the $0 boundary Compensating and estimating the symbol boundary of the digital signal. For the month, refer to "Figure 10". For step S57, the system includes: ^Step (5) 0: Guide the carrier signal X(kl) with two keys, X(k2) And corresponding frequency domain subcarriers Y(kl), 丫(4) estimate - first phase rotation difference; y'S: > 72. with the other two pilot carrier signals x(k3), χ(^) And corresponding to the frequency domain subcarriers Y(k3), Y(d) estimating - the second phase rotation difference; and S574 - estimating the time offset according to the first phase rotation difference and the second phase rotation difference. Where kl, k2, k3 and k4 are greater than or equal to small /2 and less than (n/2)-1 ^ ' is the Four Fourier Transferring size, k2>kl 'k4>k3 ' and Ic2-ld=k4-k3. (called i Y(kl) \ U(4)J U(10)j The first phase rotation difference of step S570 is the above equation (6): angle(E(k2, k))) s angle(conj The second phase rotation difference of step S572 is:

Γ Y(k2) (rm \ U(^2)J U㈣J an§ie(E(k2,kl)) ^ angle(conj 22 1360984 蚪間偏移依上述式(1)至式(U)之演算方式,即可估測為: ㈨ + 矽].令.—e(£ ㈨叫),2,$_k、.«,al1gHE(kU3y)Γ Y(k2) (rm \ U(^2)J U(四)J an§ie(E(k2,kl)) ^ angle(conj 22 1360984 Inter-turnover is calculated according to the above formula (1) to formula (U) , can be estimated as: (9) + 矽]. order. -e (£ (9) called), 2, $_k, .«, al1gHE (kU3y)

{[A4 · (Η + _ /:3 · m + ^)] - [A2 · (/c2 + ^) _ /:|. (k] + ^)]}. M 其中angle(E(k2,kl))為該第一相旋轉差,angk(E(k4,k3))為該 第相旋轉差’ conj為複數共輕相乘,n為該快速傅立葉轉換的 點數:m = /c2_h = h_/c3,Y(kl),Y㈣,γ_γ㈣各別為 對r:違付几區間在kl,k2, k3及k4的頻域子載波,x(ki),x(i(2), ()及X(k4)各別為對應該符元區間在ki,以Θ及Μ的引導載 波信號。 ,…丨心驟S57之「以對應同—該符元區間的至少三個該些引 導紐錢_至少三轉應___轉)估測一時間 為辛夕T」另包含.依該第一 ^:g ^ ^ ^ ㈣赵β 爾驗與W二相補差估算-色 政吊數Β。該色散常數為: 5 = (雄 2,叫)] 叫4 +争—Μ仙?)卜㈣2 + f卜㈣+警)] ^ 帛—崎$, 弟一相旋轉差,N為該 nkl.k3。[夬速傳立葉的點數, 2述接收歧交分頻多工訊號的方法另包含: 7 ’’聚S59 .以該時間偏移補償該 —估一載波·-:== 23 苓閱「第11圖」’此步驟S59包含·· 步驟S590 :轉換該時間偏移為—相位偏移;以及 步驟娜:_相雜漏償該錢域子載波。 在步驟SS92之後,被補償的頻域子栽波增已補償因時間 每移產生_位旋轉,即㈣送到―等化器進行後續作業。 依據上述本發明之絲交分鮮工^之接收器 10及接收 t進行測試。請參閱「第]2圖」,其為依據本發明之光正交 刀頻…'統的接收器進行測試的日_移估測結果示意圖。該 7是在接收端故意加上已知的時間偏移量。本測試例係加上一 ^^B,r.(one sampllng clock , ^ . 〇 個&撕(母㈣运1〇Χΐ0個樣本Sa_e)的傳輸速率而言,每 則母個符兀區間即為12.8 ns。在 在本測試例中,亦以具有不同的色 ^數的光通訊系統進行測試,其色散值,分別為G TS,_瓜, 沾 弟~ ®的水平軸編號0的B=0 Ts。 如的議⑼。編號麵T嘯丁s。 依此類推,編號]〇〇的B=0.2 。 π θΧ平錄社物設色散常數的試驗編號,依 員推。垂直軸為估測而得的時間偏移值。圖中可以明顯看出, 在不同=數下’日她移估測結果均是接收端 的 :個取細繼,咐—咖繼的影響,但是 屬成的誤錄小,碼估測結果。相當地準確。 24 丄3〇哪4 著叫^閱「第13圖」’其為依據本發明之光正交分頻多 工系統的接收i’進行測試的色散f數估·果讀圖。此測試之 條:與「第12圖」_。「第13圖」中的水平軸為預設色散常數 的4驗編#u ’與「第12圖」相同,垂直糊是色散常數依本發明 ^法所估測的結果。單位亦為取樣時間⑽。圖巾每個點表示色散 1 常數估測的結果與預定色散f數值的差膽兩者相減)。從「第 ° σ、看出,色散常數估測結果與試驗的預設值的差異在 Ts到8xl〇 ts之間,也就是說差異值非常的小,差異值原 因來自於柰隹訊和先纖通道響應的影響。 、從上述測試結果可以明確看出,依本發明之接收器1〇或接收 方法可以以局準確性地估測出時間偏移與色散常數。雖然估測 果仍有射#差。該些誤差之產生來源可能是其他通導效廣, 例如極化模色散(咖,PQlarizatiQn Μ—咖雜訊。但從 。式驗'.口果件知,祕微小誤差屬於可被接收的範圍,仍滿足前述 業界之而求。值侃意岐,當系,制雜訊增加造成估測品質降 低才、,貞^可以収?喊波資料運算制,將雜訊相素造成的 誤差平均消除’吨升蝴品質,也就是說可贿用超過三個載 波的資訊做估測。 —賴本發明以前述之較佳實施例揭露如上,然其並非用以限 疋本U任何扣柏像技藝者’在不脫離本發明之精神和範圍 内田可作些5午之更動與潤飾,因此本發明之專利保護範圍須視 本《兒明書所附之申請專利範騎界定者為準。 25 [圖式簡單說明】 第】A圖與第圖係為習知直接傳輸與正交分頻多工傳輸的 頻譜分佈比較示意圖。 —第2 ®係為根據本剌之光正交分頻多工纽的接收端架構 示意圖。 第3圖係為板據本發明之光正交分頻多工系統的發射端的架 構示意圖。 第4圖係為依據本發明發射器的頻率子载波邓种的資料載 ;h虎與?丨導載波信號的配置示意圖。 、 圖 第)圖係為依據本發明之時間偏移估測器的電路方塊示意 圖 “圖係為依據本發明之時偏擷算元件之電路方塊示意 第7圖係為依據本發明之色散常數擷算 [圖。 元件之電路方塊示意 第8圖係騎據本綱之接收歧絲頻多⑽號的方法的 流程示意圖 頻多工訊號的方法的 第9圖A為依據本發明之接收光正交分 步騍S50的流程示意圖。 第10_為_本㈣之魏紅交 的步驟S57的流程示意圖。 、夕為虎的方法 第】】圖係為依據本發明之接收光正 步驟⑽的流程示㈣。 ·^頻Μ訊號的方法的 26 1360984 第12圖係為依據本發明之光正交分頻多工系統的接收器進 行測試的時間偏移估測結果示意圖。 第13圖係為依據本發明之光正交分頻多工系統的接收器進 行測試的色散常數估測結果示意圖。 【主要元件符號說明】{[A4 · (Η + _ /:3 · m + ^)] - [A2 · (/c2 + ^) _ /:|. (k] + ^)]}. M where angle(E(k2,kl )) is the first phase rotation difference, angk(E(k4, k3)) is the phase rotation difference ' conj is a complex number and is lightly multiplied, and n is the number of points of the fast Fourier transform: m = /c2_h = h_ /c3, Y(kl), Y(4), γ_γ(4) are pairs r: the frequency domain subcarriers of kl, k2, k3 and k4 in the interval, x(ki), x(i(2), () and X(k4) is the corresponding carrier signal corresponding to the symbol interval in ki, Θ and Μ. , ... 丨心骤 S57 "to correspond to the same - at least three of the symbolic intervals of the guide money _ At least three turns should be ___ turn) Estimated time is Xin Xi T" Another included. According to the first ^: g ^ ^ ^ (four) Zhao beta test and W two-phase compensation estimate - color government hanging number Β. The dispersion constant is: 5 = (male 2, called)] 4 + contend - Μ ??) Bu (four) 2 + f 卜 (four) + police)] ^ 帛 崎 $ $, the brother one phase rotation difference, N is the nkl. K3. [The number of points for idling the leaf, the method for receiving the crossover multiplex signal is further included: 7 ''Poly S59. Compensation with this time offset - estimate a carrier ·-:== 23 苓Figure 11 "This step S59 includes · Step S590: Converting the time offset to - phase offset; and step Na: _ mismatching the money domain subcarrier. After step SS92, the compensated frequency domain subcarriers have been compensated for the time _ bit rotation caused by each shift, that is, (4) sent to the "equalizer" for subsequent operations. The test was carried out in accordance with the receiver 10 of the present invention and the receiving t. Please refer to "Fig. 2", which is a schematic diagram of the daily estimation results of the test performed by the receiver of the optical orthogonal cut-to-clock frequency system of the present invention. This 7 is deliberately adding a known time offset at the receiving end. In this test case, a transmission rate of ^^B,r.(one sampllng clock , ^ . 〇 & tear (mother (four) shipped 1 〇Χΐ 0 samples Sa_e) is used, and each parent symbol interval is It is 12.8 ns. In this test example, it is also tested with optical communication systems with different color numbers. The dispersion values are G TS, _ melon, and the horizontal axis number of the zi dynasty ® is 0 = B = 0 Ts. For the discussion (9). No. T Ting s. And so on, number = 〇〇 B = 0.2. π θ Χ 录 录 社 物 物 物 物 物 物 物 物 物 物 物 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The time offset value obtained can be clearly seen in the figure. Under different = number, the results of her estimation are all at the receiving end: the effect of taking the fine, the influence of the 咐-Cai, but the misrepresentation of the genus Small, code estimation result. It is quite accurate. 24 丄 3 〇 4 4 ^ 「 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第The number of estimates and fruit readings. This test article: and "12th picture" _. "13th picture" in the horizontal axis is the default dispersion constant of the 4th code #u ' and "12th picture", Paste is a constant linear dispersion method under this invention, the estimated result ^. ⑽ unit also sampling time. FIG towel bladder Each point represents the difference between both constant estimation result dispersion 1 with a predetermined dispersion value subtraction f). From the "° ° σ, it can be seen that the difference between the estimation result of the dispersion constant and the preset value of the test is between Ts and 8xl〇ts, that is, the difference value is very small, and the difference value comes from the news and the first The influence of the fiber channel response. It can be clearly seen from the above test results that the receiver 1〇 or the receiving method according to the present invention can estimate the time offset and the dispersion constant with a local accuracy. #差. The source of these errors may be other general effects, such as polarization mode dispersion (CQ, PQlarizatiQn Μ - coffee noise. But from the test.) The mouth is known, the secret small error belongs to The scope of the reception still meets the requirements of the aforementioned industry. The value is ambiguous. When the system increases the noise, the quality of the estimation is reduced, and the data can be collected and the data is caused by the noise. The error average eliminates the 'ton' quality, which means that the information of more than three carriers can be bribed. The invention is disclosed above in the preferred embodiment, but it is not limited to any buckle. The cypress artist is 'without departing from the invention The spirit and scope of the field can be used to make some 5 noon changes and retouching. Therefore, the scope of patent protection of the present invention shall be subject to the definition of the patent application parade attached to the Children's Book. 25 [Simple description of the drawing] The figure and the figure are a schematic diagram of the comparison of the spectrum distribution of the conventional direct transmission and the orthogonal frequency division multiplexing transmission. - The 2nd series is a schematic diagram of the receiving end architecture according to the optical orthogonal frequency division multiplexing. The figure is a schematic diagram of the architecture of the transmitting end of the optical orthogonal frequency division multiplexing system according to the present invention. Fig. 4 is a data carrier of the frequency subcarrier Deng of the transmitter according to the present invention; h tiger and ? FIG. 7 is a circuit block diagram of a time offset estimator according to the present invention. FIG. 7 is a block diagram of a circuit block according to the present invention. The dispersion constant is calculated [Figure. The circuit block diagram of the component is shown in Fig. 8. The schematic diagram of the method for receiving the multi-frequency (10) number of the multi-frequency (10) according to the present invention is shown in Fig. 9 is a schematic diagram of the received optical orthogonal step S50 according to the present invention. Schematic diagram of the process. The 10th is the flow chart of the step S57 of the Weihongjiao of the (4). The method of the tiger is the first embodiment of the process (4) of the receiving light positive step (10) according to the present invention. The method of the frequency signal is in accordance with the method of time offset estimation of the test performed by the receiver of the optical orthogonal frequency division multiplexing system according to the present invention. Fig. 13 is a view showing the estimation results of the dispersion constants tested by the receiver of the optical orthogonal frequency division multiplexing system according to the present invention. [Main component symbol description]

10 接收器 11 光電轉換元件 12 類比轉數位元件 13 符元邊界估測器 14 防護區間移除元件 15 快速傅立葉轉換元件 16 時間偏移估測益 30 第一相差估測元件 32 第二相差估測元件 36 時偏操算元件 360 第一乘法器 362 第二乘法器 364 第一減法器 38 色散常數擷算元件 380 第二減法器 382 第三乘法器 40a, 40b 資料載波信號 27 1360984 42a, 42b 引導載波信號 80 類比訊號 81 數位訊號 82 電訊號 83 頻域子載波 90 發射器 91 串轉並元件 92 引導載波插入元件 93 逆快速傅立葉轉換元件 94 防護區間加入元件 95 並轉串元件 96 電光轉換元件 97 序列數位訊號 98 光訊號 99 數位轉類比元件 f〇 頻寬 fi 子頻帶10 Receiver 11 Photoelectric conversion element 12 Analog-to-digital component 13 Symbol boundary estimator 14 Guard interval removal component 15 Fast Fourier transform component 16 Time offset estimation benefit 30 First phase difference estimation component 32 Second phase difference estimation Element 36 Time-shifting operation element 360 First multiplier 362 Second multiplier 364 First subtractor 38 Dispersion constant calculation element 380 Second subtractor 382 Third multiplier 40a, 40b Data carrier signal 27 1360984 42a, 42b Guide Carrier signal 80 analog signal 81 digital signal 82 electrical signal 83 frequency domain subcarrier 90 transmitter 91 serial and component 92 pilot carrier insertion component 93 inverse fast Fourier transform component 94 guard interval addition component 95 and repeat component 96 electro-optic conversion component 97 Serial digital signal 98 optical signal 99 digital to analog component f〇 bandwidth wide subband

2828

Claims (1)

七、申請專利範圍: L 一種紅交分财工減收絲,_於—光正交分頻 多工接《,該減器係接收由-光正交分頻多卫發射_ 發射之光訊號,該接收方法包含: 轉換該光訊號為一數位訊號; 估測該數位訊號之一符元邊界; 依射元邊界去除該數位訊號之—防護區間而成為— 數位電訊號; 以快速傅立葉方式轉換該數位電訊號為複數個頻域子 .載波·,各該頻域子載波包含複數個符元,對應同—頻域 子載波的該些符元包含複數個資料载波信號與引導載波信 號’該些引導载波信號卿系位於同—符元區間,其中^ 為大於或等於.且小於(N/2H的整數,n為快速傅立葉 轉換的點數(Fast Fourier Transferring size); 崎應同-該符㈣間的至少三個該些引導载波信號 雖)與至彡、三個對應的姉、解紐雄)侧—時間偏移 r ;以及 以該時間偏移補償該符元邊界之估測。 2.如請求項1所述之光正交分頻多工訊號的接收方法,其中該 轉換該光訊號為—數位訊號的步驟包含: 將δ|光讯號經—光電轉換而成為-類比訊號;以及 將該類比訊號轉換為—數位訊號。 29 二如請求項m述之光正交分頻多工訊號的接收方法,盆中該 姑測該數位訊號之-符元邊界步驟係為依據該時間偏_ 償並估測該數位訊號之該符元邊界。 4.如清求項】所述之光正交分頻多工訊號的接收方法,其中該 士頻域子載波係為在時間軸上並列的頻域子載波。 〕‘如請求項]所述之光正交分頻多工訊號的接收方法,其中該 以對應同-該符元區間的至少三個該些引導载波信號x(k) 與至少二個對應的遠頻域子載波Y(k)估測一時間偏移r的 步驟包含: 以二個該些引導載波信號x(kl),x(k2)及對應的該二個 頻域子載波Y(ld ),Y(lc2)估算出一第一相旋轉差; 以另二個該些引導載波信號Χ(】θ), X(k4)及對應的該些 頻域子載波Y(k3),Y(k4)估算出一第二相旋轉差;以及 依戎第一相旋轉差與該第二相旋轉差估算該時間偏移; 其中’ Icl,k2, k3及k4均為大於或等於-N/2且小於 的整數’ N為快速傅立葉轉換的點數(Fast F〇uder Transferring size) ’ k2>kl,k4>k3,且 k2-kl =k4-k3。 6.如請求項5所述之光正交分頻多工訊號的接收方法,其中該 第一相旋轉差為: ’ F(H)、 Jm), angle(E(k2,kl)) = angle(coni{ 其中該第二相旋轉差為: 30 1360984 Y(k3) Y(k3) igle(E(kA,k3)) Ξ,/♦ ·〔】’(’“) • U㈣ 其中該時間偏移r為: [A4-(A4- —)-A3(A3 + -)].. N N Λ7 -2-? 2jj^s^e(£(’c2,/c1)) - [/c2 (/c2 + —) - /d - (A1 + —)] —--ang!e(E(k4.1:3)) {[k4 ·(H + -)-^. (/;3 + ^}] _ μ2 . (/;2 + }2_ Λ). (/c, + ^)]}. ΔΑ - 2 2 ;以及 a: 其中该angle(E(k2,kl))為該第一相旋轉差,該 ngle(E(k4,k3))為該第二相旋轉差,該c〇nj為複數共輛相 乘’該N為該快速傅立葉轉換的點數,該 — /cl — L·^! 4 Wc3,該 Y(kl)、該 Y(k2)、該 Y(k3)及該 耶)各_對麟紅_在該Id、該k2 、該k3及該k4 的頻Μ子驗,該X(kl)、該X(k2)、該X(k3)紐X(k4)各 別為對應料兀區間在該kl、該k]、該k3及該U的引導 載波信號 步驟另包含: 、月求貝5所述之光正交分頻多王訊號的接收方法,其中該 以對C同。纟付—間的至少三憾些體紐信號雄) ’、至乂 C]對應的遠頻域子舰Y⑻估測一時間偏移r的 B 依該第-相旋轉差鱗第二滅㈣估算一色散常 數 8.=:之先正交分頻多工訊號的㈣法’其中該 31 1360984 ——· [angle(E(k4, /:3)) - angle(E(k2, ^1))] __λ ' 7t_____ [M · (k4 + —) ~ ^ · (^3 + γ)] - [^:2 · (k2 + -)- hi (^:1 + —)] - - 2 2 ^gle{E{k.2,k\)) = angle(conj ^ngle(E(kA,k3)) = angle(conj (Y(k2) ^ f m) \ 1^2) J {xmj f Y{kA) λ f m3)] U’(“)J U^3)/ 其中 angle(E(k2,丨d))為該第一相旋轉差,angle(E(k4,k3))Seven, the scope of application for patents: L A red cross-counter financial work minus wire, _--optical orthogonal frequency division multiplexing connection, the reducer is received by --optical cross-frequency multi-wei transmission _ emitted optical signal The receiving method includes: converting the optical signal into a digital signal; estimating a symbol boundary of the digital signal; removing the digital signal from the boundary of the digital signal to become a digital signal; converting in a fast Fourier manner The digital signal is a plurality of frequency domain subcarriers, each of the frequency domain subcarriers includes a plurality of symbols, and the symbols corresponding to the same-frequency domain subcarriers comprise a plurality of data carrier signals and a pilot carrier signal. The pilot carrier signals are located in the same-symbol interval, where ^ is greater than or equal to and less than (N/2H integer, n is the Fast Fourier Transferring size); (d) at least three of the pilot carrier signals, though, to the 彡, three corresponding 姊, 纽 雄 )) side-time offset r; and the time offset to compensate for the estimate of the symbol boundary. 2. The method for receiving an optical orthogonal frequency division multiplexing signal according to claim 1, wherein the step of converting the optical signal into a digital signal comprises: photoelectrically converting the delta signal into an analog signal. And converting the analog signal to a digital signal. 29 If the method for receiving the orthogonal frequency division multiplexing signal of the request item m is as described in the request item, the step of measuring the symbol boundary of the digital signal is based on the time offset and estimating the digital signal. Symbol boundary. 4. The method for receiving an optical orthogonal frequency division multiplexing signal according to the invention, wherein the frequency domain subcarrier is a frequency domain subcarrier juxtaposed on a time axis. a method for receiving an optical orthogonal frequency division multiplexing signal as described in the following claim, wherein the at least three pilot carrier signals x(k) corresponding to the same-the symbol interval correspond to at least two The step of estimating a time offset r in the far-frequency domain subcarrier Y(k) includes: using the two pilot carrier signals x(kl), x(k2) and the corresponding two frequency domain subcarriers Y(ld) ), Y(lc2) estimates a first phase rotation difference; and the other two of the pilot carrier signals Χ(] θ), X(k4) and the corresponding frequency domain subcarriers Y(k3), Y( K4) estimating a second phase rotation difference; and estimating the time offset according to the first phase rotation difference and the second phase rotation difference; wherein 'Icl, k2, k3 and k4 are greater than or equal to -N/2 And the smaller integer 'N is the Fast Fourier Transferring size' 'k2>kl,k4>k3, and k2-kl=k4-k3. 6. The method for receiving an optical orthogonal frequency division multiplexing signal according to claim 5, wherein the first phase rotation difference is: 'F(H), Jm), angle(E(k2, kl)) = angle (coni{ where the second phase rotation difference is: 30 1360984 Y(k3) Y(k3) igle(E(kA,k3)) Ξ, /♦ ·[]'('") • U(4) where the time offset r is: [A4-(A4- -)-A3(A3 + -)].. NN Λ7 -2-? 2jj^s^e(£('c2,/c1)) - [/c2 (/c2 + —) - /d - (A1 + —)] —--ang!e(E(k4.1:3)) {[k4 ·(H + -)-^. (/;3 + ^}] _ μ2 (/;2 + }2_ Λ). (/c, + ^)]}. ΔΑ - 2 2 ; and a: where the angle(E(k2, kl)) is the first phase rotation difference, the ngle (E(k4, k3)) is the second phase rotation difference, the c〇nj is a complex number of vehicles multiplied 'the N is the number of points of the fast Fourier transform, the - /cl - L · ^! 4 Wc3, The Y(kl), the Y(k2), the Y(k3), and the y) each _pair Linhong_ in the Id, the k2, the k3, and the k4 frequency, the X(kl) The X(k2) and the X(k3) New Zealand X(k4) are respectively corresponding to the reference carrier signal in the k1, the k], the k3, and the U, and further include: (5) The method for receiving the optical orthogonal frequency division multi-wang signal, wherein the far-frequency domain sub-ship corresponding to the same as the C is the same as the 纟 — 间 间 间 间 间 间 间 ' ' ' ' Y(8) estimates a time offset r of B according to the first phase rotation difference scale second extinction (four) estimates a dispersion constant 8. =: the first orthogonal frequency division multiplexing signal (four) method of which 31 1360984 —— [angle(E(k4, /:3)) - angle(E(k2, ^1))] __λ ' 7t_____ [M · (k4 + —) ~ ^ · (^3 + γ)] - [^:2 · (k2 + -)- hi (^:1 + —)] - - 2 2 ^gle{E{k.2,k\)) = angle(conj ^ngle(E(kA,k3)) = angle( Conj (Y(k2) ^ fm) \ 1^2) J {xmj f Y{kA) λ f m3)] U'(")JU^3)/ where angle(E(k2,丨d)) is the First phase rotation difference, angle(E(k4,k3)) 為忒第一相旋轉差,N為該快速傅立葉的點數, 缝=k.2 ~ k\ = k4 ~ k3。 9.如請求項1所述之光正交分頻多工訊號的接收方法,另包 含:以該時間偏移補償該些頻域子載波的步驟。 ]〇·如請求項9所述之光正交分頻多工訊號的接收方法,其中該 以邊時間偏移補償該些頻域子載波的步驟包含: 轉換s玄時間偏移為一相位偏移;以及 依該相位偏移補償該些頻域子載波。For the first phase rotation difference, N is the number of points of the fast Fourier, and the seam = k.2 ~ k\ = k4 ~ k3. 9. The method for receiving an optical orthogonal frequency division multiplexing signal according to claim 1, further comprising the step of compensating the frequency domain subcarriers with the time offset. The method for receiving an optical orthogonal frequency division multiplexing signal according to claim 9, wherein the step of compensating the frequency domain subcarriers by using an edge time offset comprises: converting a s-time time offset to a phase offset Shifting; and compensating the frequency domain subcarriers according to the phase offset. 11. 一種光正交分頻多工系統的接收器,適於接收一光正交分頻 多工糸統的一發射器所發出的一光訊號,該接收器包含: 一光電轉H係接收並轉換該光訊號為—類比訊 一類比轉數位元件’係轉換該耻訊號為—數位訊號; -符70邊界估測H,係依數位訊號而估測—符元邊界; 一防護區間猶元件,係依元邊界去除該數位訊號 32 1360984 之〜防護區間而形成一電訊號; :怏速傅立葉轉換元件,係以—快速傅轉技轉換該 W唬為減個_子舰Y(k)H 、 個符元(㈣。㈣應同一頻域子裁波的該二二 =位於同—符元區間,其tk為大於或等於=11. A receiver for an optical orthogonal frequency division multiplexing system, adapted to receive an optical signal from a transmitter of an optical orthogonal frequency division multiplexing system, the receiver comprising: a photoelectric to H system receiving And converting the optical signal to - analog signal type analogy to digital device 'to convert the shame signal to - digital signal; - character 70 boundary estimate H, estimated by digital signal - symbol boundary; , according to the boundary of the element, remove the guard band of the digital signal 32 1360984 to form a telecommunication signal; : the idle Fourier transform component is converted by the fast fast transfer technique to reduce the _ subship Y(k)H , (4) (4) should be the same frequency domain sub-cut wave of the second two = in the same - symbol interval, its tk is greater than or equal to = 、方綱·⑽數’ N為快速傳立葉轉換的點數·以及 一時間偏移估測器,係將對應同_該符元區間的該此引 ㈣波诚X___域子紐γ(ι_—時 符元邊界估靡係依_時_移而補償並估測料 兀遺界。 、 12.如請糊U所述之接收器,其中該時間偏移估測器包含: 一:―相差估測元件’以二個該些引導载波信號, Fang Gang · (10) number 'N is the number of points for fast pass-through transformation, and a time offset estimator, which will correspond to the same _ the symbol interval of the symbol (four) wave X___ domain neutron γ (ι_ - The time-element boundary estimate is compensated and estimated according to the _time_shift. 12. The receiver described in U.S., the time offset estimator comprises: Estimating the component 'with two of these pilot carrier signals ' (k2)及對應的該二個頻域子載波侧,卿估算 出一第一相旋轉差; -第二相差估測元件’以另二個該些引導載波信號 聊,綱及對應,的該些頻域子載波购,聊估算出一 第二相旋轉差;以及 夺偏料r 7G件’依该第_相旋轉差與該第二相旋轉差 -估算該時間偏移; 其中’呔砹匕及^均為大於或等於⑽且小於 _-1的整數,N為快速傅立#馳嫌,腕,圖, 33 】3•如請求項12所述之 豆 iia盥】加) 。。’、έχ〜相差估測元件係將 行複數共輊相乘並取其角度而得該第一相旋 轉差,二相差估測元件係將器與|§進行複數共軛 =/、角度而得該第二相旋轉差’該時偏擷算元件係以 下式叶鼻該時間偏移: μ-4·(Α-4+ -)-^3-^3'(k2) and the corresponding two frequency domain subcarrier sides, Qing estimates a first phase rotation difference; - the second phase difference estimation component 'talks to the other two of the pilot carrier signals, and the corresponding The frequency domain subcarriers are purchased, and a second phase rotation difference is estimated; and the biasing material r 7G piece is estimated to be offset according to the first phase rotation difference and the second phase rotation difference; wherein砹匕 and ^ are integers greater than or equal to (10) and less than _-1, N is fast Fu Li #驰嫌, wrist, figure, 33 】 3 • as described in claim 12, iia 盥] plus). . ', έχ 相 相 估 估 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相 相The second phase rotation difference is the time offset component of the following formula: μ-4·(Α-4+ -)-^3-^3 '〇ngle(E(k2,k\)) ~[k2-(k2 + - k] (Λ) + ^}] N angle{E{kA,k3))'〇ngle(E(k2,k\)) ~[k2-(k2 + - k] (Λ) + ^}] N angle{E{kA,k3)) 其中 angle(E(k2,kl))為該第一相旋轉差,angl<E(k4,k3)) 為遠第—相旋轉差,N為該快速傅立葉的點數, M = = ’ Y(kl),Y(k2),丫_及 γ_各別為 對應該符元區間在kl,k2,k3及k4·的頻域子載波,x(k]) X(k2)s X(k3)及X(k4)各別為對應該符元區間在kl,k2, k3及 k4的引導載波信號。Where angle(E(k2,kl)) is the first phase rotation difference, angl<E(k4,k3)) is the far-phase rotation difference, N is the number of the fast Fourier points, M == 'Y( Kl), Y(k2), 丫_ and γ_ are respectively frequency domain subcarriers corresponding to kl, k2, k3 and k4·, x(k]) X(k2)s X(k3) And X(k4) are the pilot carrier signals corresponding to kl, k2, k3 and k4. 14.如請求項13所述之接收器,其中該時間偏移估測器另包含 一色散常數擷算元件(Chromatic disPersi〇n constant extractor),依該第一相5疋轉差與該第二相旋轉差估算一色散 常數B。 3414. The receiver of claim 13, wherein the time offset estimator further comprises a Chromatic disPersi〇n constant extractor, according to the first phase 5 疋 slip and the second The phase rotation difference estimates a dispersion constant B. 34
TW098109808A 2009-03-25 2009-03-25 Method for receiving an optical ofdm signal and re TWI360984B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098109808A TWI360984B (en) 2009-03-25 2009-03-25 Method for receiving an optical ofdm signal and re
US12/464,608 US8107817B2 (en) 2009-03-25 2009-05-12 Method for receiving optical orthogonal frequency-division multiplexing signal and receiver thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098109808A TWI360984B (en) 2009-03-25 2009-03-25 Method for receiving an optical ofdm signal and re

Publications (2)

Publication Number Publication Date
TW201036381A TW201036381A (en) 2010-10-01
TWI360984B true TWI360984B (en) 2012-03-21

Family

ID=42784383

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098109808A TWI360984B (en) 2009-03-25 2009-03-25 Method for receiving an optical ofdm signal and re

Country Status (2)

Country Link
US (1) US8107817B2 (en)
TW (1) TWI360984B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265540B (en) * 2008-12-22 2015-01-14 株式会社日立制作所 Optical transmitter and optical OFDM communication system
JP2011159943A (en) * 2010-01-08 2011-08-18 Ricoh Co Ltd Surface emitting laser element, surface emitting laser array, optical scanner device, and image forming apparatus
US8401403B2 (en) * 2010-05-03 2013-03-19 Ciena Corporation Timing recovery in presence of optical impairments and optimization of equalization based on timing recovery moment strengths
US8831441B2 (en) * 2010-06-03 2014-09-09 Hitachi, Ltd. Optical communication system, optical receiver, optical transponder, wavelength multiplexing optical communication system, wavelength multiplexing receiving device, and wavelength multiplexing optical transponder
US8559828B2 (en) * 2011-01-22 2013-10-15 Viasat, Inc. Frame formatting for high rate optical communications
US20130315323A1 (en) 2011-04-24 2013-11-28 Broadcom Corporation Traveling pilots within single user, multiple user, multiple access, and/or MIMO wireless communications
US9001878B2 (en) 2013-02-19 2015-04-07 Qualcomm Incorporated Method and apparatus to determine time and distance between transceivers using phase measurements
US9590730B2 (en) * 2014-10-01 2017-03-07 Futurewei Technologies, Inc. Optical transmitter with optical receiver-specific dispersion pre-compensation
CN111262634B (en) * 2018-11-30 2020-11-17 深圳市中兴微电子技术有限公司 Dispersion estimation method, apparatus, receiver and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891792B1 (en) * 1999-05-14 2005-05-10 At&T Corp. Method for estimating time and frequency offset in an OFDM system
US7251283B2 (en) * 2003-10-20 2007-07-31 Mediatek, Inc. Timing offset compensation in orthogonal frequency division multiplexing systems
US8699882B2 (en) * 2009-01-08 2014-04-15 Ofidium Pty Ltd Signal method and apparatus

Also Published As

Publication number Publication date
US8107817B2 (en) 2012-01-31
US20100247100A1 (en) 2010-09-30
TW201036381A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
TWI360984B (en) Method for receiving an optical ofdm signal and re
CA2945858C (en) Preamble symbol receiving method and device
TWI324461B (en) Equzalizing circuit with improved channel estimation and compensated for remnant frequency offset in an ofdm baseband receiver
EP2506640B1 (en) Clock synchronization method, customer premises equipment and clock synchronization system
ITMI20001589A1 (en) METHOD AND DEVICE FOR THE RECOVERY OF CARRIER IN OFDM SYSTEMS
CN101277290B (en) Method and apparatus for synchronization of orthogonal frequency division multiplexing system frequency
EP0898381A2 (en) Equalizing method and equalizer for ofdm receiver
US9614635B2 (en) Preamble design and detection for ranging in an optical OFDMA communication network
CN101621491A (en) Receiver and method for receiving digital signal
EP2744162B1 (en) Estimation of the CFO based on channel impulse response for OFDM synchronization
CN109391403A (en) The method and apparatus sent and received for wireless signal
CN102263719A (en) Frequency offset compensating and balancing method and device for orthogonal frequency division multiplexing system
CN104253772B (en) The channel estimation methods of ofdm system
CN102724151B (en) Communication system, communication method, multichannel adaptive equalizer and OFDM (orthogonal frequency division multiplexing) signal demultiplexing method
CN101534287A (en) Method and device for correcting carrier frequency offset in mobile communication system
EP2704387A1 (en) Sfo estimation technique for MIMO-OFDM frequency synchronization
CN111884978B (en) OFDM (orthogonal frequency division multiplexing) anti-impulse noise symbol synchronization method
KR100873876B1 (en) Method of receiving orthogonal frequency division multiplexing signal and orthogonal frequency division multiplexing signal receiving device of enabling the method
CN107276940B (en) Timing synchronization method, device and system
CN114884788B (en) Frequency offset estimation method and frame synchronization method
El-Tokhy et al. Performance Improvement of OFDMA Systems Through Wireless Communication Channels
CN101860507B (en) Receiving method of optical orthogonal frequency-division multitask signal and receiver thereof
CN107294889B (en) Carrier synchronization method and device
CN107277913B (en) timing synchronization method, device and system
CN107276943B (en) Timing synchronization method, device and system