JP5055656B2 - 電界放出型冷陰極及びその製造方法並びに平面画像表示装置 - Google Patents
電界放出型冷陰極及びその製造方法並びに平面画像表示装置 Download PDFInfo
- Publication number
- JP5055656B2 JP5055656B2 JP2000362396A JP2000362396A JP5055656B2 JP 5055656 B2 JP5055656 B2 JP 5055656B2 JP 2000362396 A JP2000362396 A JP 2000362396A JP 2000362396 A JP2000362396 A JP 2000362396A JP 5055656 B2 JP5055656 B2 JP 5055656B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- insulating layer
- cnt
- cold cathode
- field emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cold Cathode And The Manufacture (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
Description
【発明の属する技術分野】
本発明は、フィールド・エミッション・ディスプレイ(以下、FEDとも呼ぶ)、CRT、電子顕微鏡、電子ビーム露光装置、及び各種電子ビーム装置等の電子ビーム源として使用される電界放出型冷陰極及びその製造方法並びに平面画像表示装置に関し、特に、カーボンナノチューブ(以下、CNTとも呼ぶ)を用いた電界放出型冷陰極、及び該電界放出型冷陰極を簡便に製造する製造方法、並びにこのような電界放出型冷陰極を用いた平面画像表示装置に関する。
【0002】
【従来の技術】
近年、新しい炭素材料であるカーボンナノチューブが、特に電界放出型冷陰極等のエミッタ材料としての応用において期待されている。CNTは、炭素原子が規則的に配列されたグランフェンシートをチューブ状に丸めた中空の円筒形状を有し、外径がナノメートル(nm)オーダーで、長さが0.5〜数10μmという極めてアスペクト比が高い微小な物質である。このような形状のCNTでは、先端部分に電界集中が起こり易く、高い放出電流密度が期待できる。また、CNTは、化学的、物理的安定性が高い特性を有するので、動作真空中の残留ガスの吸着やイオン衝撃等に対して安定であることが予想される。
【0003】
CNTには、単層ナノチューブ及び多層ナノチューブの2種類が存在する。単層ナノチューブは、1枚のグラフェン(単原子層の炭素六角網面)が円筒状に閉じた単原子層厚さのチューブであり、その直径はおよそ2nmである。多層ナノチューブは、円筒状グラフェンが多層に積み重なったもので、その外径が5〜50nm、中心空洞の直径が3〜10nmである。エミッタとしての使用頻度が高い単層ナノチューブは、炭素棒を電極とするアーク放電によって生成できる。この生成法は、Nature Vol.354(1991)p.56-58等の文献に記載されており、その中に、66500Pa(500Torr)のヘリウム又はアルゴンガスの雰囲気中で触媒金属として鉄、コバルトやニッケルを添加した炭素棒電極を用いてアーク放電を行う旨の記述がある。
【0004】
また、CNTをフィルム状に成膜するための転写法が、例えばScience Vol.268(1995)の845頁及びScience Vol.270(1995)の1179頁に記載されている。この転写法では、溶液中にCNTを分散させたCNT懸濁液を、0.2μmのポアサイズを有するセラミックフィルタでろ過し、フィルタ上に残留したCNTによる膜の裏面を基板上にプレスした後に、フィルタのみを引き剥がす。これにより、CNTを含む薄膜が基板上に形成される。
【0005】
上述のように形成されるCNT層をディスプレイに適用する場合には、電子源としてのカソード(エミッタ)にCNT層が用いられる。アノード電極及びその近傍に蛍光体が配設された2極管構造では、Appl.Phys.Letters、Volume72、p.2912、1998に記載されるように、相互に対向するアノード電極とエミッタとの間に例えば300Vの電圧を印加し、アノード電極側の蛍光体にエミッタからの放出電子を当てて励起させ光を放出させることにより、ディスプレイに文字等を表示する。
【0006】
また、3極管構造の一例を図7に示す。3極管構造では、電界放出型冷陰極に、CNTを用いたエミッタ3bを使用しており、エミッタ3bとアノード電極12との間にゲート電極層6(グリッド電極)が配設されている。ガラス基板1上には、導電性基板又は導電層2が形成され、導電層2上にCNT層3が堆積され、CNT層3上にゲート絶縁層13を介してゲート電極層6が形成されている。ゲート電極層6及びゲート絶縁層13を貫通するゲート開口7によりCNT層3の一部が露出して、エミッタ3bをなしている。CNT層3及びゲート電極層6等を含むガラス基板1の上方には所定の距離をあけてアノード電極12が配置され、双方の間の空間は真空に保持される。この3極管構造では、CNT層3に負電位を、アノード電極12及びゲート電極層6に正電位を夫々印加することにより、ゲート開口7内に露出したエミッタ3bからアノード電極12に向けて電子を放出させることができる。
【0007】
上記3極管構造では、エミッタ3bからの放出電子量をゲート電極層6とエミッタ3bとの間の電界によって制御することができる。ゲート電極層6とエミッタ3bとの間の電界は、ゲート電極層6に印加する電圧をゲート絶縁層13の膜厚で割ったものにほぼ等しい。すなわち、ゲート絶縁層13が厚ければ大きなゲート電圧の印加が必要になるが、絶縁層が薄ければ小さなゲート電圧の印加で同じエミッション電流を得ることができる。
【0008】
また、エミッタ3bから放出した電子は、ゲート電位によって放出方向に対する垂直方向での運動エネルギーを持つため、放出電子の軌道は広がることになる。つまり、ゲート電圧が低い場合には、比較的収束性の良い電子ビームを得ることが可能であるが、ゲート電圧が高くなると電子の広がりが増大するため、収束性の良い電子ビームを得ることが困難になる。従って、複数の画素を独立に制御する平面ディスプレイ(平面画像表示装置)では、放出電子の広がりは隣接する画素に電子が射突することを意味し、その結果、画像がぼけ、或いは、コントラストが低下する等の不具合を招くことになる。このように、ゲート絶縁層13の薄膜化は、低電圧駆動化、ドライブ回路の小型化及び低コスト化、或いは、ビーム広がりの抑制等を実現するために必須である。
【0009】
【発明が解決しようとする課題】
しかし、CNTをエミッタに用いた電界放出型冷陰極では、絶縁層を薄膜化して良好な電子放出特性を実現しようとする際に、以下のような問題が生じる。第1の問題は、絶縁層及びゲート電極層表面の平坦化が困難であるという点である。絶縁層の形成法は、電子ビーム蒸着、スパッタリング、及びCVD(Chemical Vapor Deposition)法等のような気相での堆積法と、液状の絶縁材料を塗布して焼成するような液相での堆積法とに大別される。
【0010】
図8は、気相での堆積法によって絶縁層を形成した電界放出型冷陰極の断面図である。この断面構造では、ガラス基板1上に、導電層2、CNT層3、ゲート絶縁層13、及びゲート電極層6がこの順に形成されている。CNT層3の表面上に見られる多くの凹凸は、CNTが互いに絡み合って塊を形成することで生じる巨視的な凹凸と、個々のCNTが表面近傍で突出することで生じる微視的な凹凸からなる。巨視的な凹凸は、CNTの長さが数10μmであることに加え、柔軟性に富んでいるという性質から互いに絡み易いことによって生じる。この凹凸は大きいもので3μmに及ぶ。
【0011】
気相中での堆積法は一般的に被覆特性に優れているので、CNT層表面の凹凸は、その上に堆積するゲート絶縁層13の表面形状にそのまま影響を与える。つまり、ゲート絶縁層13におけるCNT層3の突出部上の部分は突出形状に、ゲート絶縁層13におけるCNT層3の窪み部上の部分は窪み形状になり易い。堆積膜厚が大きくなると凹凸形状は僅かに緩和する傾向を示すが、それでも平坦化は充分ではない。このように凹凸を有する形状に成膜されたゲート絶縁層13上にゲート電極層6を形成すると、ゲート電極層6の表面にも凹凸が形成されることになる。特に、ゲート電極層6上に存在する微視的な凹凸が新たなエミッションサイトになる等の不具合が生じることもある。
【0012】
上記のような場合、図7を参照すると、アノード電極12に高電圧を印加し、ゲート電極層6から放出する電子が広がらないようなビーム整形を行わなければならない。特に、平面画像表示装置では、各画素(エミッタ)から放出した電子が隣接する画素に飛び込みこれを発光させないように、通常数kVの電圧を印加し、ビームの指向性を確保しなければならない。ゲート電極層6上に現れた突起にアノード電界が集中すると、そこからエミッションが発生し、ゲート電極層6で制御不能な電子が発生し、特性及び画像が劣化する要因となる。また、気相での堆積法は高価な装置を必要とするが、これに加えて堆積速度が遅いため、高コスト化と低スループット等の要因にもなる。
【0013】
また、第2の問題点としては、絶縁不良による素子破壊が挙げられる。つまり、気相での堆積法は被覆特性に優れるため、堆積後のゲート絶縁層13及びゲート電極層6が凹凸を有するが、ゲート絶縁層13の膜厚はほぼ一定である。これに対し、塗布等の液相での堆積法では、気相での堆積法とは逆に表面の凹凸を打ち消すように堆積が進行するため、突出した領域での堆積が少なく、窪んだ領域での堆積が多くなり、その結果、平坦化が得られ易い。しかし、液相での堆積法を用いて3μmに及ぶ凹凸を有するCNT層表面に、充分な絶縁耐性を有するゲート絶縁層13を形成しようとすると、少なくとも3μm以上の膜厚が必要となる。
【0014】
例えば、特願平11-145900号には、1〜3μmの膜厚を有する絶縁層を形成する例が記載されている。このように形成されたゲート絶縁層を有する電界放出型冷陰極は、初期特性においては良好な特性を示すが、長時間駆動した場合に局所的な絶縁不良を生じることがある。これは、突出したCNT上の絶縁層の膜厚が小さいために、ゲート電極層とCNT層との間の絶縁特性が経時劣化したためである。
【0015】
液相での堆積法を用いて充分な膜厚を持つゲート絶縁層13を形成したとしても、その場合は、図9に示すようにゲート絶縁層13内に気泡15やクラック14が発生し易い。クラック部14が発生すると、ゲート絶縁層13上にゲート電極層6を成膜する際にゲート電極材料がクラック部14に浸入するため、その場合は絶縁不良の原因となる。また、電界放出型冷陰極は真空中で使用されるので、素子温度の上昇時には、大気を含む気泡15が膨張し、素子を破壊する要因となる場合がある。
【0016】
更に、エミッタ3bを取り囲むゲート絶縁層13の開口縁部付近にCNT層表面の突起3cがある場合には、ゲート電極層6の縁部下面とエミッタ3bの表面との間の距離17が、突起が無い部分の距離16よりも短くなるので、ゲート開口7内周面での絶縁不良を招く場合がある。絶縁破壊は通常、ゲート絶縁層13内部よりもゲート開口7内周面側での方が生じ易い。このような開口内周面では、バルク中とは異なり、吸着物が付着し易く、また未結合手の発生や表面原子の再構成が生じることになる。これらによる新たな表面準位が、高電界中での電子のリークパスとなり、絶縁不良及び絶縁破壊の要因になる。従来の堆積法によると、絶縁層の不完全性による膜中の絶縁不良に加え、ゲート開口内周面における絶縁不良が生じる。
【0017】
このように、従来の気相或いは液相での堆積法では、夫々に欠点を有するので、絶縁層及びゲート電極層を充分に平坦化させると共に、長時間に亘って素子破壊が生じない安定な電子放出特性を持った電界放出型冷陰極を得ることは困難であった。
【0018】
本発明は、上記に鑑み、ゲート絶縁層及びゲート電極層を充分に平坦化させ、長時間に亘って素子破壊が生じない安定な電子放出特性を有する電界放出型冷陰極を提供すること、及び、このような電界放出型冷陰極を製造する製造方法を提供することを目的とする。本発明は更に、このように製造された電界放出型冷陰極を用いた平面画像表示装置を提供することを目的とする。
【0019】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1の観点に係る電界放出型冷陰極は、基板上に形成され複数のカーボンナノチューブ(CNT)を含みエミッタを構成するCNT層と、夫々が該CNT層上に順次に形成され双方を貫通する開口から前記CNT層の表面を露出させるゲート絶縁層及びゲート電極層とを備え、前記エミッタ及びゲート電極層の夫々に電圧を印加して前記エミッタ表面から電子を放出させる電界放出型冷陰極において、前記ゲート絶縁層が、順次に積層された2層以上の多層絶縁層によって構成されており、前記CNT層と前記ゲート絶縁層との間にAl、Ti金属単体又はTiN化合物を含む中間層を備える、ことを特徴とする。
【0020】
本発明の電界放出型冷陰極では、ゲート絶縁層が組成の異なる2層以上の多層絶縁層から成るので、絶縁層及びゲート電極層が充分に平坦化され、ゲート電極層とCNT層との間の良好な絶縁性が確保でき、これにより、長時間に亘って素子破壊が生じない安定な電子放出特性を得ることができる。
【0021】
ここで、前記CNT層とゲート絶縁層との間に更に中間層が形成されていることが好ましい。この場合、中間層は絶縁層とのぬれ性を高めるとともに、付着力を向上させることができる。
【0023】
好ましくは、前記多層絶縁層中の少なくとも1層の開口の径が、前記ゲート電極層における前記開口の径よりも大きい。この場合、CNT層とゲート電極との絶縁特性を向上させ、絶縁破壊を抑制することができる。
【0024】
本発明の平面画像表示装置は、前記電界放出型冷陰極を用いたことを特徴とする。この場合、エミッション特性が良好な平面画像表示装置を得ることができる。
【0025】
本発明の第2の観点に係る電界放出型冷陰極の製造方法は、基板上に、導電層と、複数のカーボンナノチューブ(CNT)を含むCNT層と、Al、Ti金属単体又はTiN化合物を含む中間層と、順次に積層された2層以上の多層絶縁層から成るゲート絶縁層と、ゲート電極層とをこの順に形成し、前記ゲート電極層、前記ゲート絶縁層及び前記中間層をエッチング除去して開口を形成し、該開口から前記CNT層の表面を露出させてエミッタに形成することを特徴とする。
【0026】
本発明の電界放出型冷陰極の製造方法では、ゲート絶縁層が2層以上の積層絶縁層から成るので、絶縁層及びゲート電極層を充分に平坦化させ、これにより、長時間に亘って素子破壊が生じない安定な電子放出特性を有する電界放出型冷陰極を得ることができる。
【0027】
また、前記CNT層とゲート絶縁層との間に中間層を形成する工程を更に含むことが好ましい。この場合、中間層は絶縁層とのぬれ性を高めるとともに、付着力を向上させることができる。
【0029】
また、前記塗布膜がSOG(Spin on Glass )から成ることが好ましい。この場合、低粘性でしかもCNTとの濡れ性が良好な、CNT層直上の絶縁層を形成することができる。
【0030】
更に、前記ゲート絶縁層における少なくとも1層の絶縁層の開口径を前記ゲート電極層の開口径よりも大きく形成することが好ましい。この場合、CNT層とゲート電極との絶縁特性を向上させ、絶縁破壊を抑制することができる。
【0031】
本発明の平面画像表示装置は、前記電界放出型冷陰極の製造方法によって形成された電界放出型冷陰極を備えることを特徴とする。
【0032】
本発明の平面画像表示装置では、上述のように形成した電界放出型冷陰極が適用されたので、良好なエミッション特性を得ることができる。
【0033】
【発明の実施の形態】
以下、図面を参照し、本発明の一実施形態例に基づいて本発明を更に詳細に説明する。図1は、本発明の第1実施形態例に係る電界放出型冷陰極の要部を示す斜視図である。エミッタを成すCNTは、アーク放電法やレーザーアブレーション法等で作製可能であるが、本実施形態例に係るCNTは、アーク放電を用いて作製している。
【0034】
電界放出型冷陰極は、ガラス基板1上に、図1の左右方向に相互に平行に延在する複数の帯状で且つ膜厚が0.5μmの導電層2を有している。各導電層2上には夫々、同じ幅のCNT層3が堆積されてカソード(エミッタ)ライン10が形成されている。また、CNT層3を含むガラス基板1の全面を覆うように、SOG(Spin On Glass)、若しくは、ポリイミド、アクリル樹脂等が1.5μm及び5μmの厚みに夫々滴下・塗布(スピンコート)されて、第1絶縁層4及び第2絶縁層5に形成されている。これら順次に積層された組成が異なる第1絶縁層4及び第2絶縁層5によってゲート絶縁層(積層(多層)絶縁層9)が構成される。
【0035】
第2絶縁層5上には、0.5μmの厚みを有する帯状のゲート電極層6が、カソードライン10と直交する方向に且つ相互に平行に延在してゲートライン11をなしている。カソードライン10とゲートライン11との交差部分には、電子放出部を構成する所定径(例えば50μm)のゲート開口7が形成されており、このゲート開口7に露出するCNT層3がエミッタを構成する。
【0036】
電子放出部が形成された上記ガラス基板1の上方には、RGB(赤、緑、青)の蛍光体が塗布されたアノードパネル(図7参照)が、ガラス基板1と所定の間隔をあけて対向して配置されている。これにより、カソードライン10及びゲートライン11に選択的に電圧を印加することによって表示動作を行う平面画像表示装置が構成される。また、ガラス基板1とアノードパネルとの間の空間は、真空に保持される。
【0037】
上記構成の電界放出型冷陰極を有する平面画像表示装置では、積層構造の第1絶縁層4及び第2絶縁層5の存在によってゲート電極層6が平坦化されるので、任意の画素以外からの電子放出やゲート電極層6で制御不能な電子放出が生じることなく、長時間に亘って安定な電子放出を維持することができる。
【0038】
ここで、CNT層3に含まれるCNTをアーク放電法で製造する処理について説明する。まず、図示しない反応容器内に66500Pa(500Torr)のヘリウム(He)ガスを満たし、触媒金属を含む2本の炭素棒(図示せず)の各先端を相互に対向させ、双方の炭素棒の間でアーク放電を発生させる。これにより、陰極側の炭素棒表面と反応容器の内壁とに夫々、CNTを含んだ固体を堆積する。アーク放電は、例えば18Vの電圧を双方の炭素棒の間に印加し、100Aの電流を流して行う。
【0039】
堆積した上記固体中には、CNT以外に、直径10〜100nm程度の粒径のグラファイト、アモルファスカーボン、或いは触媒金属等が含まれる。ここで得られるCNTは単層ナノチューブであり、その直径が1〜5nm、長さが0.5〜100μm、平均長さが2μm程度とされる。アーク放電以外にレーザアブレーション法を用いて作製したCNTも、基本的に上記アーク放電法で作製したCNTと同等のサイズを有する。
【0040】
図2は、本実施形態例に係る電界放出型冷陰極を、CNT層を用いて製造する工程を示し、(a)〜(f)は各工程を段階的に示す断面図である。まず、図2(a)に示すように、ガラス基板1上に、化学的気相成長(CVD)法等で導電層2を形成し、図2(b)に示すように、導電層2上にCNT層3を形成する。この場合、前述のように生成したCNTを、エタノール、又は下地との密着性を高めるためのバインダ中に分散し、スクリーン印刷や、噴霧等の手法によって導電層2上に堆積する。
【0041】
次いで、図2(c)に示すように、CNT層3上に第1絶縁層4を形成する。この際、CNT層3上に第1絶縁層4として、SOG(Spin on Glass)をスピンコーターによって1.5μmの厚みに塗布した後、窒素雰囲気中にて400℃でSOGを焼成する。更に、図2(d)に示すように、第1絶縁層4上に、再びSOGをスピンコーターで2μmの厚みに塗布した後、焼成を行って第2絶縁層5を形成する。引き続き、図2(e)に示すように、第2絶縁層5上に、アルミニウム等の金属膜をスパッタリングによって0.5μmの厚みに堆積して、ゲート電極層6を形成する。
【0042】
更に、図2(f)に示すように、フォトリソグラフィ技術を用いて、ゲート電極層6、第2絶縁層5及び第1絶縁層4を貫通してCNT層3の一部を露出させるゲート開口7を形成する。このゲート開口7から露出したCNT層3がエミッタ3bを構成する。なお、ガラス基板1に代えて導電性基板を用いることができる。この場合、導電層2は不要となる。
【0043】
図3に、本実施形態例に係る電界放出型冷陰極の断面構造をCNT層3の凹凸も含めて示す。上記手法によって堆積したCNT層3は、平均的に2μm程度の凹凸を持つCNTの塊(巨視的な凹凸)と、ランダムに突出したCNTからなる凹凸(微視的な凹凸)が観察される。微視的な凹凸は、大きいときでは3μmにも及ぶ。巨視的な凹凸は、生成後のCNTを精製し、或いは、CNTを機械的に又は化学的に分断することで、CNTとそれ以外の不純物相互の凝集力や、CNT相互の凝集力を低下させるために2μm以下に低減することが可能である。
【0044】
しかし、微視的な凹凸は殆ど変化することなく、最大で2μm程度である。CNT層3の直上の第1絶縁層4は、膜厚が1.5μmの塗布膜であるので、平坦性が良好である。但し、第1絶縁層4のみでは完全にCNT層3を被覆することはできない。
【0045】
引き続き、第1絶縁層4の上層に第2絶縁層5を2μmの厚みに塗布することにより、導電層2とゲート電極層6との間の絶縁性を高めることができ、更に、第2絶縁層5及びゲート電極層6の平坦化が実現できる。第1絶縁層4の膜厚は、ここでは1.5μmに設定したが、0.2μm以上で且つ2μm以下であれば、欠陥の少ない良好な絶縁層が形成できる。
【0046】
これに対し、2μm以上の絶縁層を一度に塗布した場合には、図9に示したように、クラック部14や気泡15が入り易いことになる。これは、絶縁材料を塗布し焼成する過程で、CNT層3の微細な凹凸間に取り残された気泡がそのまま残留し、或いは、気泡が相互に凝集して亀裂を形成するためである。また、0.2μm以下の絶縁層を形成した場合には第1の絶縁層での平坦化が不充分になり、第2の絶縁層形成時に欠陥が導入される。したがって、第1の絶縁層が0.2μm以下の場合には本発明の効果が得られにくかった。
【0047】
このような欠陥は、通常の半導体プロセスでは殆ど見られない現象であるため、ナノ(n)若しくはミクロン(μ)スケールの凹凸を持つCNT層における特異な現象であるといえる。2μm以上の絶縁層を形成する際に導入された欠陥は、ゲート電極層6の形成過程で、電極材料がクラック部14(図9)に入り込み、絶縁性を低下させる要因になる。更に、大気中の空気が閉じ込められた気泡15(図9)は、電界放出型冷陰極の真空中での動作時に膨張して素子を破壊する場合がある。
【0048】
これに対して、2μm以下の絶縁層を塗布した場合には、気泡が発生する箇所と表面との距離が短くなり、焼成の過程で気泡が表面に達し易く、閉じ込められることが少なくなるので、欠陥の少ない絶縁層の形成が可能となる。
【0049】
従って、第1絶縁層4を0.2μm以上且つ2μm以下の膜厚に塗布することにより、その後の絶縁層形成過程で絶縁層中に欠陥を発生させることなく、絶縁性を確保することができる。更に、ゲート電極層6も平坦化することができるので、アノード電界によるゲート電極表面からのエミッションを抑制することができる。
【0050】
なお、第1絶縁層4は、アクリル樹脂、エポキシ樹脂、ポリイミド等を塗布することによっても本発明の効果を得ることができる。但し、SOGは低粘性でしかもCNTとの濡れ性が良好であるため、ここではSOGを用いた。また、第2絶縁層5には塗布膜を用いたが、スパッタやCVD等の気相での堆積法を用いても、図8に示すような鋭利な突起が形成されないため、これらの手法を用いることもできる。
【0051】
図4は、本発明の第2実施形態例に係る電界放出型冷陰極の製造方法を示し、(a)〜(g)は各工程を段階的に示す断面図である。まず、図2(a)、(b)に示すように、第1実施形態例と同様にして、ガラス基板1上に導電層2及びCNT層3を順次に形成する。
【0052】
次いで、図4(c)に示すように、CNT層3上に、200〜600nmの厚みの中間層8をスパッタリングによって形成する。その後、第1実施形態例と同様にして、図4(d)に示すように、中間層8上に、0.2μm以上且つ2μm以下の第1絶縁層4を塗布によって堆積する。
【0053】
引き続き、図4(e)、(f)に示すように、第1絶縁層4上に第2絶縁層5及びゲート電極層6を順次に形成し、更に、図4(g)に示すように、ゲート電極層6、第2絶縁層5、第1絶縁層4及び中間層8をエッチング除去することによってゲート開口7を形成する。中間層8は、その上に絶縁材料を塗布する際に、CNT層3と第1絶縁層4との濡れ性をより高めると共に、CNT層3と第1絶縁層4との付着力を向上させる効果を奏する。中間層8には、第1絶縁層4との濡れ性に優れ、ガラス基板1の耐熱温度以下で成膜可能な材料が適している。例えば、アルミニウムやチタン等の単体金属、若しくは窒化チタン等の金属化合物が挙げられる。
【0054】
図5は、本発明の第3実施形態例に係る電界放出型冷陰極の断面構造図である。本実施形態例の電界放出型冷陰極は、第1実施形態例に係る電界放出型冷陰極とほぼ同様であるが、第1絶縁層4の開口径がゲート電極層6及び第2絶縁層5の開口径よりも大きい構造を有する。
【0055】
本実施形態例では、上記のように第1絶縁層4の開口径を大きく形成し、第1絶縁層4及び第2絶縁層5で構成される絶縁層に段差部18を設けることにより、ゲート開口7の内周縁部付近にCNTの突起3cがある場合でも、第1絶縁層4の開口内面がゲート開口7の内周面から後退することで、ゲート電極層6の縁部下面とエミッタ3bの表面との間の距離17が、図9に示した場合よりも延びる。このため、ゲート開口7内周面での実質的な電界強度が低下し、絶縁不良が大幅に低減するので、絶縁破壊が防止できる。
【0056】
更に、CNTを用いたエミッタの場合、駆動中の局所的な放電によってエミッタ表面のCNTが、第1絶縁層4及び第2絶縁層5のゲート開口7内での露出面に飛散し、そこで吸着ガスや絶縁材料を真空中に再放出させ、素子破壊を生じることがある。しかし、本実施形態例に係る電界放出型冷陰極は、絶縁層4及び第2絶縁層5で構成される絶縁層の内周面に段差部18を有するので、飛散したCNTを段差部18に捕獲すると共に放電を抑制できるので、素子破壊が防止できる。
【0057】
図6は、本発明の第4実施形態例に係る電界放出型冷陰極の断面構造図である。第1及び第2実施形態例では、絶縁層を2層構造にした例を挙げたが、本実施形態例では、2層を超える多層絶縁層に形成することによって、更に絶縁特性を向上させている。
【0058】
つまり、本実施形態例の電界放出型冷陰極では、CNT層3上に、第1絶縁層4、第2絶縁層5及び第3絶縁層19から成る積層絶縁層9を備えるので、例えば、中間に位置する第2絶縁層5の開口径を、ゲート電極層6のゲート開口径よりも大きくして段差部18を形成することにより、図4と同様の効果が得られる。
【0059】
以上のように、絶縁層を多層化し、少なくとも1層以上の開口径をゲート電極層6のゲート開口径よりも大きくして段差部18を設けることにより、ゲート電極層6の縁部下面とエミッタ3bの表面との間の距離17を著しく増加させ、絶縁破壊を抑制することができる。これらの段差部18を有する構成は、中間層8を有する第2実施形態例に適用することもできる。その場合は、中間層8又は第1絶縁層4における開口径をゲート電極層6の開口径よりも大きくする。
【0060】
また、段差部18は、エッチングレート若しくは耐薬品性の異なる絶縁材料を積層することによって、容易に形成することができる。例えば、図6に示した3層構造では、導電層2上にSOGを1.5μmの厚みに塗布した後、SOGの上層にポリイミドを1μmの厚みに形成する。更に、ポリイミドの上層にSOGを再度1μmの厚みに塗布する。次いで、フォトリソグラフィ技術を用いて、ゲート電極層6を開口させた後に、積層絶縁層9の内で、最上層のSOG(19)に対して、異方性ドライエッチング若しくはフッ酸によるウエットエッチングを施す。
【0061】
引き続き、ポリイミド(5)に、酸素プラズマによる等方エッチングを施し、その開口径をゲート電極層6の開口径よりも大きくする。CNTは、酸素プラズマに対してガス化しエッチングされるが、この場合には、まだ開口されていない最下層のSOG(4)がマスクの役割を果たすため、CNTに対する影響は無い。この後、最下層のSOG(4)に、最上層のSOG(19)と同様のエッチングを施すことにより、ゲート開口7の内面に段差部18を有する積層構造が得られる。
【0062】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の電界放出型冷陰極及びその製造方法並びに平面画像表示装置は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施した電界放出型冷陰極及びその製造方法並びに平面画像表示装置も、本発明の範囲に含まれる。
【0063】
【発明の効果】
以上説明したように、本発明によると、絶縁層及びゲート電極層を充分に平坦化させ、長時間に亘って素子破壊が生じない安定な電子放出特性を有する電界放出型冷陰極、及びこのような電界放出型冷陰極を製造する製造方法を得ることができ、更に、このような電界放出型冷陰極を用いた平面画像表示装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態例に係る電界放出型冷陰極の要部を示す斜視図である。
【図2】本実施形態例に係る電界放出型冷陰極を製造する工程を示し、(a)〜(f)は各工程を段階的に示す断面図である。
【図3】本実施形態例に係る電界放出型冷陰極をCNT層の凹凸も含めて示す断面図である。
【図4】本発明の第2実施形態例に係る電界放出型冷陰極の製造方法を示し、(a)〜(g)は各工程を段階的に示す断面図である。
【図5】本発明の第3実施形態例に係る電界放出型冷陰極の断面構造図である。
【図6】本発明の第4実施形態例に係る電界放出型冷陰極の断面構造図である。
【図7】従来の電界放出型冷陰極の一例を示す断面図である。
【図8】従来の電界放出型冷陰極の断面図である。
【図9】従来の電界放出型冷陰極における問題点を示す断面図である。
【符号の説明】
1:ガラス基板
2:導電層
3:CNT層
3b:エミッタ
3c:突起
4:第1絶縁層
5:第2絶縁層
6:ゲート電極
7:ゲート開口
8:中間層
9:積層(多層)絶縁層
10:カソード(エミッタ)ライン
12:アノード電極
16、17:ゲート電極の縁部下面とエミッタ表面との距離
18:段差部
19:絶縁層
Claims (7)
- 基板上に形成され複数のカーボンナノチューブ(CNT)を含みエミッタを構成するCNT層と、夫々が該CNT層上に順次に形成され双方を貫通する開口から前記CNT層の表面を露出させるゲート絶縁層及びゲート電極層とを備え、前記エミッタ及びゲート電極層の夫々に電圧を印加して前記エミッタ表面から電子を放出させる電界放出型冷陰極において、
前記ゲート絶縁層が、順次に積層された2層以上の多層絶縁層によって構成されており、前記CNT層と前記ゲート絶縁層との間にAl、Ti金属単体又はTiN化合物を含む中間層を備える、ことを特徴とする電界放出型冷陰極。 - 前記多層絶縁層において少なくとも1層の絶縁層における前記開口の径が、前記ゲート電極層における前記開口の径よりも大きいことを特徴とする、請求項1に記載の電界放出型冷陰極。
- 請求項1又は2に記載の電界放出型冷陰極を備えることを特徴とする平面画像表示装置。
- 基板上に、導電層と、複数のカーボンナノチューブ(CNT)を含むCNT層と、Al、Ti金属単体又はTiN化合物を含む中間層と、順次に積層された2層以上の多層絶縁層から成るゲート絶縁層と、ゲート電極層とをこの順に形成し、前記ゲート電極層、前記ゲート絶縁層及び前記中間層をエッチング除去して開口を形成し、該開口から前記CNT層の表面を露出させてエミッタに形成することを特徴とする電界放出型冷陰極の製造方法。
- 前記中間層直上の前記ゲート絶縁層がSOG(Spin on Glass )から成ることを特徴とする請求項4に記載の電界放出型冷陰極の製造方法。
- 前記ゲート絶縁層における少なくとも1層の絶縁層の開口径を前記ゲート電極層の開口径よりも大きく形成することを特徴とする、請求項4又は5に記載の電界放出型冷陰極の製造方法。
- 請求項4乃至6のいずれか1項に記載の電界放出型冷陰極の製造方法によって形成された電界放出型冷陰極を備えることを特徴とする平面画像表示装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000362396A JP5055656B2 (ja) | 2000-11-29 | 2000-11-29 | 電界放出型冷陰極及びその製造方法並びに平面画像表示装置 |
PCT/JP2001/010094 WO2002041348A1 (fr) | 2000-11-20 | 2001-11-19 | Film cnt et cathode froide a emission de champ comportant ce film |
US10/432,126 US7161285B2 (en) | 2000-11-20 | 2001-11-19 | CNT film and field-emission cold cathode comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000362396A JP5055656B2 (ja) | 2000-11-29 | 2000-11-29 | 電界放出型冷陰極及びその製造方法並びに平面画像表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002170481A JP2002170481A (ja) | 2002-06-14 |
JP5055656B2 true JP5055656B2 (ja) | 2012-10-24 |
Family
ID=18833681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000362396A Expired - Fee Related JP5055656B2 (ja) | 2000-11-20 | 2000-11-29 | 電界放出型冷陰極及びその製造方法並びに平面画像表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5055656B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006253032A (ja) * | 2005-03-11 | 2006-09-21 | Hitachi Ltd | 画像表示装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3553414B2 (ja) * | 1999-04-28 | 2004-08-11 | シャープ株式会社 | 電子源アレイと、その製造方法、及び前記電子源アレイまたはその製造方法を用いて形成される画像形成装置 |
-
2000
- 2000-11-29 JP JP2000362396A patent/JP5055656B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002170481A (ja) | 2002-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4802363B2 (ja) | 電界放出型冷陰極及び平面画像表示装置 | |
US7161285B2 (en) | CNT film and field-emission cold cathode comprising the same | |
KR20030059291A (ko) | 카본 나노튜브의 패턴 형성 방법 및 전계 방출형 냉음극과그 제조 방법 | |
US6975288B2 (en) | Method of driving image-forming apparatus and apparatus thereof | |
US6853126B2 (en) | Electron-emitting device, electron source, image forming apparatus, and electron-emitting apparatus | |
JP4648807B2 (ja) | カーボンナノチューブエミッタ及びその製造方法とそれを応用した電界放出素子及びその製造方法 | |
JP3611503B2 (ja) | 電子源及びその製造方法 | |
US20060226763A1 (en) | Display device with electron emitters and method for making the same | |
JP2000340098A (ja) | 電界放出型冷陰極とその製造方法および平面ディスプレイの製造方法 | |
JP2004307324A (ja) | カーボンファイバー、電子放出素子、電子源、画像形成装置、ライトバルブ、二次電池の製造方法 | |
JP5055655B2 (ja) | エミッタの製造方法及び該エミッタを用いた電界放出型冷陰極並びに平面画像表示装置 | |
JP3581296B2 (ja) | 冷陰極及びその製造方法 | |
JP2006114265A (ja) | 微小電子源装置の製造方法 | |
JP2004241161A (ja) | 電子放出源およびその製造方法並びに表示装置 | |
JP5055656B2 (ja) | 電界放出型冷陰極及びその製造方法並びに平面画像表示装置 | |
JP3633598B2 (ja) | 電子放出素子の製造方法及び表示装置の製造方法 | |
JP2000215786A (ja) | 電子放出素子及びその製造方法 | |
JP4770017B2 (ja) | Cnt膜及びその製造方法並びにcnt膜を用いた電界放出型冷陰極及び画像表示装置 | |
JP3597740B2 (ja) | 冷陰極及びその製造方法 | |
JP3474142B2 (ja) | 電界放出型電子源アレイの製造方法、電界放出型電子源アレイ、及びその製造装置 | |
JP2007026711A (ja) | 微小電子源装置及びその製造方法、平面型発光装置並びに平面型表示装置 | |
JP5158224B2 (ja) | エミッタの製造方法及び該エミッタを用いた電界放出型冷陰極並びに平面画像表示装置 | |
JP2003031116A (ja) | 電界放出型冷陰極及びその製造方法並びに電解放出型冷陰極を備えた平面画像装置 | |
JP2006066169A (ja) | 表示装置の製造方法 | |
JP3661683B2 (ja) | 電子放出素子の製造方法及び表示装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071010 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120703 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120716 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |