JP5032347B2 - 眼科撮影装置 - Google Patents

眼科撮影装置 Download PDF

Info

Publication number
JP5032347B2
JP5032347B2 JP2008006796A JP2008006796A JP5032347B2 JP 5032347 B2 JP5032347 B2 JP 5032347B2 JP 2008006796 A JP2008006796 A JP 2008006796A JP 2008006796 A JP2008006796 A JP 2008006796A JP 5032347 B2 JP5032347 B2 JP 5032347B2
Authority
JP
Japan
Prior art keywords
light
illumination
component
primary color
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008006796A
Other languages
English (en)
Other versions
JP2009165624A (ja
Inventor
芳郎 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2008006796A priority Critical patent/JP5032347B2/ja
Publication of JP2009165624A publication Critical patent/JP2009165624A/ja
Application granted granted Critical
Publication of JP5032347B2 publication Critical patent/JP5032347B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

この発明は、被検眼を撮影する眼科撮影装置に関し、特に、被検眼のカラー画像を取得可能な眼科撮影装置に関する。
眼科分野においては、被検眼を撮影するための各種の眼科撮影装置が従来から用いられている。たとえば、眼底の撮影には眼底カメラが用いられている(たとえば特許文献1〜4を参照)。また、角膜や眼底の撮影にはスリットランプ(細隙灯顕微鏡)が用いられている(たとえば特許文献5を参照)。また、手術を行う際には手術用顕微鏡が用いられている(たとえば特許文献6を参照)。このような眼科撮影装置は、特に被検眼のカラー画像を取得できるように構成されている。
特許文献1に開示された眼科撮影装置は、眼底の色を正確に表現するために、R(赤)成分、G(緑)成分、B(青)成分の各原色成分のバランスを調整する機能を備えている。また、特許文献2〜6に開示された眼科撮影装置は、医師等が視認しやすい画像を取得するために、被検眼を撮影するための照明光の光量(強度)を調整する機能を備えている。
また、近年では、眼科撮影装置により取得された画像を解析する技術が進展を見せている。たとえば、特許文献7には、カラー画像を構成する3つの原色画像(R画像、G画像、B画像)を個別に解析する技術が開示されている。
照明光のR成分、G成分及びB成分は、波長に応じて撮影部位への到達深度が異なる。たとえば眼底を撮影する場合、照明光のR成分は脈絡膜付近まで到達するので、R画像は網膜から脈絡膜付近に亘る領域を描写した画像となる。また、照明光のG成分は網膜の色素上皮層付近まで到達するので、G画像は網膜の色素上皮層付近までを描写した画像となる。また、照明光のB成分は網膜の表面付近で反射されるので、B画像は網膜表面付近を描写した画像となる。
このようにカラー画像の原色画像を解析することにより、撮影部位の所望の深度における状態を把握することが可能となる。また、このような画像解析技術は、診療の簡便化や迅速化を促進するものであり、今後の発展が期待されている。
特開平8−38430号公報 特開平7−16206号公報 特開平7−231876号公報 特開平8−52114号公報 特開2002−224036号公報 特開平7−5369号公報 特開2005−253796号公報
しかし、従来の眼科撮影装置は、肉眼による画像観察には適しているが、必ずしも画像解析に適している訳ではない。
たとえば従来の眼科撮影装置で眼底のカラー画像を取得すると、3つの原色画像は、R、G、Bの順に濃度(明るさ)が小さくなるのが一般的である。よって、R画像を好適に解析するためには、R画像の濃度が飽和(サチュレーション)しないように撮影光量を低めに設定する必要がある。そうすると、B画像の濃度が極めて小さくなり(つまり、B画像が全体的に暗くなり)、B画像を解析することが困難になってしまう。
逆に、B画像を好適に解析するためには、十分な濃度のB画像を得るために撮影光量を高めに設定する必要がある。そうするとR画像の濃度が飽和して解析を行うことが困難になってしまう。
このような事情を鑑みて、従来は、肉眼観察に適したカラー画像を取得し、このカラー画像の一の原色画像(たとえばG画像)のみを解析していた。この手法には、或る原色画像の解析が困難になるというデメリットがある。
また、従来には、各原色画像を解析するための画像を、撮影光量を変更しながら個別に取得することも行われていた。この手法によれば、好適な各原色画像を取得することは可能であるが、撮影を複数回行うための手間や時間が必要であり、更に被検者にも負担を強いることになる。
この発明は、以上のような問題を解決するためになされたものであり、各原色画像の解析を好適に行える単一のカラー画像を取得することが可能な眼科撮影装置を提供することを目的とする。
上記目的を達成するために、請求項1に記載の発明は、被検眼の所定の撮影部位に照明光を照射する照明手段と、前記所定の撮影部位による前記照明光の反射光を受光し、R成分、G成分及びB成分の各原色成分の画像データを生成する生成手段と、を有する眼科撮影装置であって、前記照明手段は、所定の撮影部位による前記各原色成分の反射率に対応する色バランスを有する照明光を照射し、前記生成手段は、当該被検眼の前記所定の撮影部位による該照明光の反射光を受光して前記各原色成分の画像データを生成する、ことを特徴とする。
また、請求項2に記載の発明は、請求項1に記載の眼科撮影装置であって、前記照明手段は、所定の撮影部位による前記3つの原色成分の反射光量が略等しくなるような前記色バランスを有する前記照明光を照射する、ことを特徴とする。
また、請求項3に記載の発明は、請求項1又は請求項2に記載の眼科撮影装置であって、前記照明手段は、光源と、前記光源から出力された光を前記色バランスを有する光に変換するフィルタとを含み、前記フィルタにより変換された光を前記照明光として照射する、ことを特徴とする。
また、請求項4に記載の発明は、請求項3に記載の眼科撮影装置であって、前記照明手段は、前記光源から出力された光の光路に対して前記フィルタを挿脱する駆動手段を含む、ことを特徴とする。
また、請求項5に記載の発明は、請求項3又は請求項4に記載の眼科撮影装置であって、前記所定の撮影部位は眼底であり、前記フィルタは、R成分の透過率がG成分の透過率以下であり、かつ、G成分の透過率がB成分の透過率以下である、ことを特徴とする。
また、請求項6に記載の発明は、請求項1〜請求項4のいずれか一項に記載の眼科撮影装置であって、所定の原色成分の画像データの濃度が所定範囲に含まれるような光量の前記照明光を前記照明手段に照射させる照明制御手段を更に備える、ことを特徴とする。
また、請求項7に記載の発明は、請求項6に記載の眼科撮影装置であって、前記所定の撮影部位は眼底であり、前記所定の原色成分はR成分を含み、前記照明制御手段は、前記所定の原色成分の画像データの最大濃度が所定閾値を超えないような光量の前記照明光を前記照明手段に照射させる、ことを特徴とする。
また、請求項8に記載の発明は、請求項6又は請求項7に記載の眼科撮影装置であって、前記照明制御手段は、所定光量の照明光を前記照明手段に照射させ、前記所定光量の照明光を受光した前記生成手段により生成された前記所定の原色成分の画像データの濃度分布を求め、前記所定光量と該濃度分布とに基づいて該濃度分布における最大濃度が前記所定閾値以下になるように前記照明光の光量を求め、該光量の照明光を前記照明手段に照射させ、前記生成手段は、該光量の照明光の前記所定の撮影部位による反射光を受光して前記各原色成分の画像データを生成する、ことを特徴とする。
また、請求項9に記載の発明は、請求項6に記載の眼科撮影装置であって、前記所定の撮影部位は眼底であり、前記所定の原色成分はB成分を含み、前記照明制御手段は、前記所定の原色成分の画像データの最小濃度が所定閾値以上になるような光量の前記照明光を前記照明手段に照射させる、ことを特徴とする。
また、請求項10に記載の発明は、請求項6又は請求項9に記載の眼科撮影装置であって、前記照明制御手段は、所定光量の照明光を前記照明手段に照射させ、前記所定光量の照明光を受光した前記生成手段により生成された前記所定の原色成分の画像データの濃度分布を求め、前記所定光量と該濃度分布とに基づいて該濃度分布における最小濃度が前記所定閾値以上になるように前記照明光の光量を求め、該光量の照明光を前記照明手段に照射させ、前記生成手段は、該光量の照明光の前記所定の撮影部位による反射光を受光して前記各原色成分の画像データを生成する、ことを特徴とする。
また、請求項11に記載の発明は、請求項6〜請求項10のいずれか一項に記載の眼科撮影装置であって、前記照明制御手段は、前記所定の撮影部位による前記各原色成分の画像データの濃度分布が所定値以上の幅を有するような前記照明光を前記照明手段に照射させる、ことを特徴とする。
また、請求項12に記載の発明は、請求項1〜請求項11のいずれか一項に記載の眼科撮影装置であって、表示手段と、前記生成手段により生成された前記各原色成分の画像データの濃度分布を求め、該濃度分布に基づく情報を前記表示手段に表示させる情報表示制御手段と、を更に備えることを特徴とする。
また、請求項13に記載の発明は、請求項1〜請求項11のいずれか一項に記載の眼科撮影装置であって、表示手段と、前記生成手段により生成された前記各原色成分の画像データに基づく画像を前記表示手段に表示させる画像表示制御手段と、を更に備えることを特徴とする。
また、請求項14に記載の発明は、請求項1〜請求項4のいずれか一項に記載の眼科撮影装置であって、前記照明手段は、互いに異なる複数の前記色バランスを有する照明光を選択的に照射可能である、ことを特徴とする。
また、請求項15に記載の発明は、請求項1に記載の眼科撮影装置であって、記憶手段と、前記3つの原色成分の画像データ、及び、前記3つの原色成分の画像データの合成画像データを選択的に前記記憶手段に記憶させる記憶制御手段と、を備えることを特徴とする。
この発明に係る眼科撮影装置によれば、所定の撮影部位によるR成分、G成分及びB成分の各原色成分の反射率に対応する色バランスを有する照明光を被検眼に照射し、被検眼の所定の撮影部位による照明光の反射光を受光して各原色成分の画像データを生成することができるので、取得される3つの原色成分の画像データの濃度がほぼ等しくなる。それにより、各原色画像の解析を好適に行える単一のカラー画像を取得することが可能である。
更に、この発明に係る眼科撮影装置は、所定の原色成分の画像データの濃度が所定範囲に含まれるような光量の撮影照明光を被検眼に照射することができるので、好適な濃度の原色画像の画像データを取得することが可能になる。それにより、各原色画像の解析をより好適に行える単一のカラー画像を取得することが可能である。
この発明に係る眼科撮影装置の実施形態の一例について、図面を参照しながら詳細に説明する。
以下の実施形態では、眼底カメラについて特に詳しく説明する(この場合、所定の撮影部位は眼底である)。スリットランプや手術用顕微鏡等の他の眼科撮影装置についても、以下の実施形態と同様の構成を適用することが可能である。なお、この発明をスリットランプに適用する場合、所定の撮影部位は角膜又は眼底であり、この発明を手術用顕微鏡に適用する場合、所定の撮影部位は術野が存在する部位である。
[構成]
この実施形態に係る眼科撮影装置の構成を説明する。図1〜図4は、この実施形態に係る眼科撮影装置の構成の一例を表している。この眼科撮影装置1は、図2に示すような外観を有する。なお、眼科撮影装置1は、図2に示す眼底カメラ本体のみを含んで構成されていてもよいし、眼底カメラ本体と通信可能に接続されたコンピュータを更に含んで構成されていてもよい。
眼科撮影装置1は、図2に示すように、ベース2上を3次元的に移動可能に構成された架台3を備えている。架台3には、検者が各種操作を行うためのコントロールパネル3aとジョイスティック4が設置されている。
コントロールパネル3aは、眼科撮影装置1の各種の操作を行う際にオペレータ(検者)によって操作される。また、オペレータは、ジョイスティック4を操作することによって、架台3をベース2上において3次元的に移動させることができる。ジョイスティック4の頂部には、眼底を撮影するときに押下される操作ボタン4aが配設されている。
ベース2上には支柱5が立設されている。支柱5には、被検者の顎部を載置するための顎受け6aと、被検者の額が当接される額当て6bと、被検眼Eを固視させるための光を発する外部固視灯7が設けられている。
架台3上には、眼科撮影装置1の各種の光学系や制御系を格納する本体部8が搭載されている。なお、制御系は、ベース2や架台3の内部等に設けられていてもよいし、眼科撮影装置1に接続されたコンピュータに設けられていてもよい。また、制御系は、眼科撮影装置1と当該コンピュータの双方に分散配置されていてもよい。
本体部8の被検眼E側(図2の紙面左方向)には、被検眼Eに対峙して配置される対物レンズ部8aが設けられている。また、本体部8の検者側(図2の紙面右方向)には、被検眼Eの眼底を肉眼観察するための接眼レンズ部8bが設けられている。
更に、本体部8には、被検眼Eの眼底画像を撮影するための二つの撮像装置9、10が設けられている。撮像装置9、10は、それぞれ本体部8に対して着脱可能に形成されている。
撮像装置9、10は、それぞれ撮像素子9a、10aを搭載したデジタルカメラである。各撮像素子9a、10aは、CCD(Charge Coupled Device)イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどを含んで構成される。
撮像素子9a、10aは、たとえば異なる波長領域の光を受光する。この実施形態では、撮像素子9aは可視領域の光を受光し、撮像素子10aは可視領域及び赤外領域の光を受光するものとする。
また、撮像素子9aはカラー撮影に用いられるものとし、撮像素子10aはモノクロ撮影に用いられるものとする。撮像装置9には、撮像素子9aの撮影感度(ISO感度)や撮影画素数などの撮影条件を変更する制御回路が設けられている。一方、撮像装置10には、撮像素子10aの撮影感度(ゲイン(Gain))や撮影画素数などの撮影条件を変更する制御回路が設けられている。
なお、この実施形態においては二台の撮像装置を設けた構成を採用しているが、この発明に係る眼科撮影装置は、カラー撮影が可能な撮像装置を少なくとも一台有するものであれば十分である。なお、この眼科撮影装置(眼底カメラ)は、散瞳タイプ又は無散瞳タイプのいずれであってもよい。
〔光学系の構成〕
次に、眼科撮影装置1の光学系の構成について図3を参照しながら説明する。眼科撮影装置1の光学系は、照明光学系100と撮影光学系120とを含んで構成される。照明光学系100は、被検眼Eの眼底Efに照明光を照射するための光学系である。照明光学系100は、この発明の「照明手段」の一例である。また、撮影光学系120は、照明光の眼底反射光を接眼レンズ部8bや撮像装置9、10に導く光学系である。撮影光学系120(特に撮像装置9)は、この発明の「生成手段」の一例である。
(照明光学系)
照明光学系100は、観察光源101、コンデンサレンズ102、撮影光源103、コンデンサレンズ104、フィルタ部105、色補正フィルタ106、リング透光板107、ミラー108、LCD109、照明絞り110、リレーレンズ111、孔開きミラー112、対物レンズ113を含んで構成されている。
観察光源101は、眼底Ef′を肉眼や撮影画像にて観察するための定常光(連続光)を出力する光源である。観察光源101は、たとえばハロゲンランプによって構成される。コンデンサレンズ102は、観察光源101から発せられた定常光(観察照明光)を集光して平行光束にする。それにより、観察照明光は眼底Efをほぼ均等に照明するようになる。
撮影光源103は、眼底Efの撮影を行うときにフラッシュ発光される光源である。撮影光源103は、たとえばキセノンランプによって構成される。コンデンサレンズ104は、撮影光源103から発せられたフラッシュ光(撮影照明光)を集光して平行光束にする。それにより、撮影照明光を眼底Efをほぼ均等に照射するようになる。撮影光源103は、この発明の「光源」の一例である。
フィルタ部105には、光学フィルタが設けられている。この光学フィルタとしては、FA(フルオレセイン蛍光造影撮影;可視蛍光撮影)用のエキサイタフィルタ、ICG(インドシアニングリーン蛍光造影撮影;赤外蛍光撮影)用のエキサイタフィルタ、自発蛍光撮影用のエキサイタフィルタ、レッドフリー撮影用のフィルタなどがある。
フィルタ部105は、複数の光学フィルタを備えていてもよい。この場合、たとえば図示しない駆動機構によってフィルタ部105を駆動して、これら光学フィルタを選択的に光路上に配置させる。
色補正フィルタ106は、R成分、G成分、B成分の各原色成分の眼底による反射率に対応する色バランスを有する撮影照明光を生成する。すなわち、撮影光源103から出力された撮影照明光は、色補正フィルタ106を透過することでスペクトル分布が変換されて、眼底による各原色成分の反射率に対応する色バランスを有する光になる。ここで、色バランスとは、R成分、G成分、B成分の強度の比率を表す。
色補正フィルタ106の具体例を説明する。一般に、R成分、G成分、B成分の各原色成分の眼底による反射率には個人差がある。たとえば、当該反射率は、人種によっても異なるし、メラニン色素の量によっても異なる。一般的なメラニン色素量の日本人においては、当該反射率の比は、大凡、R:G:B=3:2:1程度であることが経験的に知られている。たとえば、通常のキセノンランプから出力される照明光を用いて眼底のカラー画像を取得すると、3つの原色画像の濃度の比は、大凡、R:G:B=3:2:1程度になることが知られている。また、白人のようにメラニン色素量が少ない人については、一般的な日本人の場合よりも当該反射率の比が大きくなることが知られている(たとえば、R:G:B=5:3:1程度)。
色補正フィルタ106は、3つの原色成分の眼底による反射光量が略等しくなるような比率の色バランスの撮影照明光を生成するように形成される。たとえば、眼底による反射率の比をR:G:B=3:2:1と仮定した場合、光の透過特性が当該反射率の比の逆比(すなわちR:G:B=1/3:1/2:1=2:3:6)となるような色補正フィルタ106を採用することができる。
なお、上記「略等しく」の「略」は、完全に等しい場合に対する所定の偏差を許容することを意味する。たとえば、色補正フィルタ106の適用対象(たとえば日本人)に関する当該反射光量の母集団について、90%の信頼区間に含まれていれば「略等しい」ものとみなすことができる。
このように光の色バランスを変更する光学フィルタは、ライトバランスフィルタなどと呼ばれ、写真分野などにおいて従来から利用されている。図4は、色補正フィルタ106による光の透過特性の一例を表している。なお、図4に示す透過特性のグラフにおいて、横軸は波長(nm)を表し、縦軸は透過率を表している。また、図4のグラフは、400nm〜750nm付近の範囲における透過特性を表しているが、当該範囲以外の波長域についても特定の透過特性を有している。
また、図4に示す透過特性は、R成分の透過率がG成分の透過率以下となり、かつ、G成分の透過率がB成分の透過率以下となるように設定されている。これは、当該透過特性を有する色補正フィルタ106が眼底撮影に用いられるからである。すなわち、眼底については、一般に、(R成分の反射率)≧(G成分の反射率)≧(B成分の反射率)であるから、3つの原色成分の眼底による反射光量が略等しくなるような比率の色バランスの撮影照明光を生成するためには、3つの原色成分の透過率を次のように設定する必要がある:(R成分の透過率)≦(G成分の透過率)≦(B成分の透過率)。
色補正フィルタ106は、図1に示す駆動機構18により照明光学系100の光路(照明光路)に対して挿脱される。駆動機構18は、たとえばソレノイドやモータ等のアクチュエータを含んで構成される。駆動機構18は、この発明の「駆動手段」の一例として機能する。
なお、前述のように、3つの原色成分の眼底による反射率には個人差がある。よって、様々な反射率のタイプを考慮して複数の色補正フィルタ106を択一的に使用するように構成することが可能である。たとえば、一般的な日本人用の色補正フィルタ、色黒の人用の色補正フィルタ、色白の人用の色補正フィルタなどの複数の色補正フィルタをターレット板に設け、このターレット板をステッピングモータ(駆動手段)で回転させることにより所望の色補正フィルタを照明光路上に配置させて使用することが可能である。
リング透光板107は、円環形状の透光領域からなるリング透光部107aを有する板状の光学部材である。リング透光板107は、被検眼Eの瞳孔と共役な位置に配設されている。また、リング透光板107は、リング透光部107aの中心が照明光学系100の光軸に位置するように配設されている。ミラー108は、観察光源101や撮影光源103が発した照明光を撮影光学系120の光軸方向に反射させる。LCD109は、被検眼Eの固視を行うための固視標(内部固視標:図示せず)などを表示する。
照明絞り110は、照明光の一部を遮蔽する絞り部材である。照明絞り110は、照明光学系100の光軸方向に移動可能に構成され、眼底Efの照明領域を調整できるようになっている。照明絞り110により、撮影画像にフレアが発生することを防止するなどの効果が得られる。
孔開きミラー112は、照明光学系100の光軸と撮影光学系120の光軸とを合成する光学素子である。孔開きミラー112の中心領域には孔部112aが開口されている。照明光学系100の光軸と撮影光学系120の光軸は、孔部112aの略中心位置にて交差するようになっている。対物レンズ113は、本体部8の対物レンズ部8a内に設けられている。
(撮影光学系)
撮影光学系120について説明する。撮影光学系120は、対物レンズ113、孔開きミラー112(の孔部112a)、撮影絞り121、フィルタ部122、フォーカスレンズ124、変倍レンズ125、結像レンズ126、クイックリターンミラー127及び撮像装置9を含んで構成される。
照明光の眼底反射光は、前述のように、瞳孔上のリング状の像の中心暗部を通じて被検眼Eから出射する。被検眼Eから出射した眼底反射光は、孔開きミラー112の孔部112aを通じて撮影絞り121に入射する。孔開きミラー112は、照明光の角膜反射光を反射する。それにより、角膜反射光に起因するフレアの発生を防止するようになっている。
撮影絞り121は、大きさの異なる複数の円形の透光部が形成された板状の部材である。複数の透光部は、絞り値(F値)の異なる絞りを構成する。これら透光部は、図示しない駆動機構によって択一的に光路上に配置されるようになっている。
フィルタ部122には、光学フィルタが設けられている。この光学フィルタとしては、FA(フルオレセイン蛍光造影撮影;可視蛍光撮影)用のバリアフィルタ、ICG(インドシアニングリーン蛍光造影撮影;赤外蛍光撮影)用のバリアフィルタ、自発蛍光撮影用のバリアフィルタなどがある。
フィルタ部122は、複数の光学フィルタを備えていてもよい。この場合、たとえば図示しない駆動機構によってフィルタ部122を駆動して、これら光学フィルタを選択的に光路上に配置させる。なお、フィルタ部105、122は、対応するフィルタが光路上に配置されるように連係して駆動される。
フォーカスレンズ124は、図示しないフォーカスレンズ駆動部によって撮影光学系120の光軸方向に移動可能とされている。それにより、眼底観察時や眼底撮影時においてフォーカスを合わせることができる。また、変倍レンズ125は、図示しない駆動機構により光路上に挿脱されて画角(倍率)を変更するように作用する。また、結像レンズ126は、被検眼Eからの眼底反射光を撮像装置9の撮像素子9a上に結像させるように作用する。
撮像装置9は、前述のように眼底のカラー撮影時に動作する。撮像装置9は、撮影光学系120により案内された撮影照明光の眼底反射光を受光し、R成分、G成分及びB成分の各原色成分の画像データを生成する。撮像装置9は、たとえば、3CCDタイプのCCDイメージセンサを含んでいる。すなわち、3つのCCD素子は、それぞれ、撮影照明光の眼底反射光のR成分、G成分、B成分を受光し、R成分の画像データ、G成分の画像データ、B成分の画像データをそれぞれ生成する。
クイックリターンミラー127は、図示しない駆動機構によって回動軸127a周りに回動可能に設けられている。撮像装置9で眼底を撮影する場合、光路上に斜設されているクイックリターンミラー127を上方に跳ね上げて、眼底反射光を撮像装置9に導くようになっている。一方、撮像装置10による眼底撮影時や、検者の肉眼による眼底観察時には、クイックリターンミラー127を光路上に斜設配置させた状態で、眼底反射光を上方に向けて反射するようになっている。
クイックリターンミラー127により反射された眼底反射光の光路上には、フィールドレンズ(視野レンズ)128、切換ミラー129、接眼レンズ130、リレーレンズ131、反射ミラー132、撮影レンズ133及び撮像装置10が設けられている。
切換ミラー129は、クイックリターンミラー127と同様に、回動軸129a周りに回動可能とされている。切換ミラー129は、肉眼による眼底観察時には光路上に斜設された状態で眼底反射光を接眼レンズ130に向けて反射する。
また、撮像装置10を用いて眼底画像を撮影するときには、切換ミラー129を光路上から退避して、眼底反射光を撮像素子10aに向けて導く。この眼底反射光は、リレーレンズ131を経由して反射ミラー132により反射され、撮影レンズ133によって撮像素子10aに結像される。
〔制御系の構成〕
眼科撮影装置1の制御系の構成について、図1を参照しながら説明する。眼科撮影装置1の制御系には、制御部11、記憶部14、ユーザインターフェイス15、駆動機構18及びデータ処理部20などが設けられている。
(制御部)
制御部11は、眼科撮影装置1の各部を制御する。具体的には、制御部11は、観察光源101や撮影光源103の点灯/消灯の制御、駆動機構18や上記各種駆動機構の動作制御などを行う。また、制御部11は、各撮像装置9、10の露光時間(電荷蓄積時間)や撮影感度や撮影画素数の設定動作の制御を行う。また、制御部11は、ユーザインターフェイス15に関する制御、すなわち、表示部16の制御や、操作部17に対する操作に応じた眼科撮影装置1の動作制御を行う。また、制御部11は、情報を記憶部14に記憶させたり、記憶部14に記憶されている情報を読み出したりする。また、制御部11は、必要に応じて各種の演算処理を行う。
制御部11は、CPU(Central Processing Unit)等のマイクロプロセッサを含んで構成されている。更に制御部11には、このマイクロプロセッサに上述の動作を実行させるコンピュータプログラムを記憶したROM(Read Only Memory)やハードディスクドライブ等の記憶装置が設けられている。
制御部11には、フィルタ選択部12と記憶データ選択部13が設けられている。
(フィルタ選択部)
フィルタ選択部12は、複数の色補正フィルタ106を選択的に使用する場合に設けられる。なお、色補正フィルタ106が一つしか設けられていない場合にはフィルタ選択部12は不要である。
フィルタ選択部12は、たとえばユーザインターフェイス15を用いた指示に応じて色補正フィルタ106を選択し、駆動機構18を制御して当該色補正フィルタ106を照明光路上に配置させる。また、フィルタ選択部12は、事前に入力された患者情報(人種、色白、色黒等の被検者のタイプ)に応じて色補正フィルタ106を選択し、駆動機構18を制御して当該色補正フィルタ106を照明光路上に配置させる。
このような動作を行うために、フィルタ選択部12は、患者のタイプ(オペレータによる指示内容、又は患者情報の記録内容)と、色補正フィルタ106とを関連付ける情報(フィルタ関連情報)を予め記憶している。フィルタ選択部12は、当該患者のタイプを受け付けると、フィルタ関連情報を参照することにより、当該タイプに応じた色補正フィルタ106を特定する。更に、フィルタ選択部12は、駆動機構18を制御することにより、特定された色補正フィルタ106を照明光路上に配置させる。フィルタ選択部12は、この発明の「照明手段」に含まれる。
(記憶データ選択部)
記憶データ選択部13は、記憶部14に記憶させるデータを選択する。記憶データ選択部13は、この発明の「記憶制御手段」の一例である。
記憶データ選択部13の動作例を説明する。眼科撮影装置1は、前述のように、3つの原色成分の画像データを生成する。更に、眼科撮影装置1は、後述のように、これら原色成分の画像データの合成画像データ(カラー画像の画像データ)を生成する。また、眼科撮影装置1は、撮像装置10により生成されるモノクロ画像の画像データを生成する。
記憶データ選択部13は、これらの画像データのうちから保存対象となる画像データを選択して記憶部14に記憶させる。保存対象となる画像データは、オペレータがユーザインターフェイス15を用いて指定することができる。また、検査種別や傷病種別や患者種別に応じて保存対象となる画像データを自動的に決定するようにしてもよい。また、診断のための解析処理に供された画像データを自動的に保存対象としてもよい。
(記憶部)
記憶部14は、眼科撮影装置1による動作や処理に供される各種の情報を記憶する。たとえば記憶部14には、記憶データ選択部13により選択された画像データが記憶される。記憶部14は、たとえばハードディスクドライブ等の記憶装置を含んで構成される。
(ユーザインターフェイス)
ユーザインターフェイス15には、表示部16と操作部17が設けられている。表示部16は、制御部11による制御にしたがって、各種の画面や情報を表示する。表示部16は、たとえばLCD(Liquid Crystal Display)等の任意の表示デバイスによって構成される。表示部16は、本体部8の検者側の位置や、コントロールパネル3aなどに設けられる。また、表示部16は、眼底カメラ本体に接続されたコンピュータの表示デバイスを含んでいてもよい。表示部16は、この発明の「表示手段」の一例として機能する。
操作部17は、眼科撮影装置1を操作するためにオペレータにより使用される。操作部17は、各種のボタンやキー等の操作デバイスを含んで構成される。操作部17には、コントロールパネル3a上の操作デバイスや、ジョイスティック4や、操作ボタン4aなどが含まれる。また、操作部17は、フィルタ部105、122や、色補正フィルタ106を光路上に挿脱するための操作ノブ等を含んでいてもよい。
(データ処理部)
データ処理部20は、撮像装置9、10(特に撮像装置9)により生成された画像データに対して各種の処理を施す。データ処理部20は、たとえばCPU等のマイクロプロセッサを含んで構成される。データ処理部20には、濃度分布演算部21、光量設定部22、表示情報生成部23及び表示画像生成部24が設けられている。
(濃度分布演算部)
濃度分布演算部21は、R成分、G成分及びB成分の各原色成分の画像データについて、その濃度分布を求める。濃度分布は、たとえば次のようにして求めることができる。
原色成分の画像データは、各画素(ピクセル)毎に画素値が割り当てられたデータである。各画素値は、当該画素位置における濃度(輝度)の値を表している。各画素値は、所定範囲(たとえば0〜255までの256階調)に含まれている。濃度分布演算部21は、画像データの各画素の画素値を取得し、各値毎(たとえば0〜255の各値毎)の画素数をカウントする。それにより、当該画像データについての濃度分布が得られる。
(光量設定部)
光量設定部22には、濃度分布演算部21により求められた原色成分の画像データの濃度分布が入力される。光量設定部22は、まず、この濃度分布における最大濃度や最小濃度を求める。最大濃度は、上記階調の範囲において画素数が0でない最大の濃度(画素値)である。また、最小濃度は、上記階調の範囲において画素数が0でない最小の濃度(画素値)である。
最大濃度は、たとえば、画素値が大きい側から順次に画素数を確認していくことにより容易に求めることができる。一例として、256階調(8bit)の場合、まず、濃度「255」の画素数が0か否か判断する。この画素数が0でない場合には最大濃度は255となる。一方、この画素数が0である場合には、次の濃度「254」の画素数が0か否か判断する。この画素数が0である場合には、最大濃度は254となる。また、この画素数が0でない場合には、次の濃度「253」の画素数が0か否か判断する。このような処理を、画素数が0でない濃度が見つかるまで反復する。
次に、光量設定部22は、この最大濃度が所定閾値以下になるように撮影照明光の光量(撮影光量)を求める。所定閾値は、たとえば当該階調の範囲における最大値(たとえば256階調では最大値255)に設定することができる。なお、階調の最大値を所定閾値に設定する場合、「最大濃度が所定閾値以下」とは、最大値における画素数が所定個数(≧0)以下であること、換言すると、画像データの濃度が飽和していないことを意味するものとする。
撮影光量を求める処理は、たとえば次のようにして行う。光量設定部22は、当該画像データが得られたときの撮影光量(初期撮影光量)を取得する。この初期撮影光量のデータは、当該画像データが得られた撮影において撮影光源103を制御した制御部11から入力される。光量設定部22は、初期撮影光量と、当該画像データの濃度分布とに基づいて目的の撮影光量を求める。
この処理についてより具体的に説明する。最大濃度が初めから所定閾値以下である場合(たとえば濃度が飽和していない場合)、光量設定部22は、初期撮影光量が適正であったと判断する。
なお、最大濃度が所定閾値よりも十分に小さい場合(たとえばこれら値の差が所定値以上である場合)、光量設定部22は、初期撮影光量を増加させて目的の撮影光量を設定するようにしてもよい。この増加量は、たとえば、撮影光量の変化量と濃度の変化量との関係を表す情報を参照して決定することができる。この情報は事前に生成されて記憶される。また、照明光学系100や撮影光学系120の構成や設定状態などを鑑みて、濃度の変化量に対する撮影光量の変化量をシュミレーションすることにより、上記増加量を決定するようにしてもよい。
他方、最大濃度が所定閾値を超えている場合(たとえば濃度が飽和している場合)、光量設定部22は、たとえば上記増加量を決定する処理と同様にして、初期撮影光量に対する減少量を演算して目的の撮影光量を求める。
なお、撮影対象が眼底である場合には、前述のように、R成分の反射率が最も大きく、次いでG成分の反射率が大きく、B成分の反射率が最も小さくなるのが一般的である。この現象を鑑み、この実施形態では、R成分の画像データのみを考慮して、上記の目的の撮影光量を演算するようにしてもよい。
また、光量設定部22は、上記と同様にして、初期撮影光量と濃度分布とに基づいて、当該濃度分布における最小濃度が所定閾値以上になるように撮影光量を設定することができる。この所定閾値は、たとえば当該階調の範囲における最小値(たとえば256階調では最小値0)に設定することができる。なお、階調の最小値を所定閾値に設定する場合、「最小濃度が所定閾値以上」とは、最小値における画素数が所定個数(≧0)以下であることを意味するものとする。この実施形態では、B成分の画像データのみを考慮して、当該撮影光量を演算するようにしてもよい。
また、この実施形態では、最大濃度の所定閾値を「(階調範囲の最大値)−1」に設定することができる。同様に、最小濃度の所定閾値を「(階調範囲の最小値)+1」に設定することができる。たとえば、256階調(階調範囲0〜255)の場合において、最大濃度の所定閾値を254に設定し、最小濃度の所定閾値を1に設定することができる。
この場合、光量設定部22は、R成分の画像データの濃度分布の最大値が254を超えたときに飽和状態であると判断する。すなわち、光量設定部22は、R成分の画像データに画素値255の画素が含まれているか否か判断し、含まれていると判断された場合に飽和状態であると判断し、含まれていないと判断された場合に飽和状態でないと判断する。飽和状態と判断された場合、光量設定部22は、初期撮影光量に対する減少量を演算して目的の撮影光量を求める。
同様に、光量設定部22は、B成分の画像データの濃度分布の最小値が1未満であるときに各原色成分の明るさが不十分であると判断する。すなわち、光量設定部22は、B成分の画像データに画素値0の画素が含まれているか否か判断し、含まれていると判断された場合に明るさが不十分であると判断し、含まれていないと判断された場合に明るさが十分であると判断する。明るさが不十分と判断された場合、光量設定部22は、初期撮影光量に対する増加量を演算して目的の撮影光量を求める。
なお、最大濃度や最小濃度に関する所定閾値は、上記のものに限定されるものではなく、適地に設定することが可能である。
以上に説明したように、撮影光量の設定処理においては、二つの条件が考慮される:〈条件1〉濃度分布における最大濃度が所定閾値以下になる;〈条件2〉濃度分布における最小濃度が所定閾値以上になる。〈条件1〉は、撮影光量が大き過ぎて、画像がサチュレーションしてしまう事態を防止するための条件である。一方、〈条件2〉は、撮影光量が小さ過ぎて、画像が全体的に暗くなってしまう事態を防止するための条件である。光量設定部22は、これら2つの条件のうちのいずれか一方のみを考慮して撮影光量を設定してもよいし、双方の条件を考慮して撮影光量を設定してもよい。
撮影光量の設定処理において、撮像装置9の撮影感度(ISO感度)や露光時間などの条件を加味するようにしてもよい。
濃度分布演算部21と光量設定部22は、撮影光源103を制御する制御部11とともに、この発明の「照明制御手段」の一例として機能する。
(表示情報生成部)
表示情報生成部23は、表示部16に表示される情報(表示情報)を生成する。表示情報生成部23には、濃度分布演算部21により求められた原色成分の画像データの濃度分布が入力される。表示情報生成部23は、表示情報として、この濃度分布の最大濃度や最小濃度、更には濃度分布を表すグラフ情報などを生成する。
濃度分布の最大濃度は、光量設定部22と同様にして求めることができる。最小濃度についても同様である。また、濃度分布を表すグラフ情報は、濃度分布演算部21により得られた濃度分布をグラフ化することにより生成できる。たとえば、濃度(たとえば256階調の場合には0〜255)を横軸に設定し、画素数を縦軸に設定したフォーマットに、当該濃度分布をプロットしてグラフを描画することにより、目的のグラフ情報を生成することができる。
表示情報生成部23は、表示情報を表示部16に表示させる制御部11とともに、この発明の「表示情報制御手段」の一例として機能する。
(表示画像生成部)
表示画像生成部24は、表示部16に表示される画像(表示画像)の画像データを生成する。表示画像生成部24には、撮像装置9により生成された原色成分の画像データが入力される。表示画像生成部24は、一つ以上の原色成分の画像データに基づいて表示画像を生成する。
単一の原色成分の画像データに基づく画像(原色画像)が表示画像である場合、表示画像生成部24は特に処理を行う必要はない。また、二つ以上の原色画像を個別に表示させる場合にも、表示画像生成部24は特に処理を行う必要はない。
二つ以上の原色画像を重畳した画像(重畳画像)が表示画像に含まれる場合、表示画像生成部24は、これら原色画像の画像データを重ね合わせることにより、重畳画像の画像データを生成する。より具体的に説明すると、表示画像生成部24は、重畳される原色画像の数のレイヤ(layer)を準備し、各原色画像を異なるレイヤ上に設定する。更に、表示画像生成部24は、これらレイヤを重ね合わせる順序を設定する。この順序は、事前に設定されていてもよいし、オペレータにより指定されるようにしてもよい。この順序は、たとえば、眼底への到達深度に応じて設定することができる(つまり、R画像のレイヤ、G画像のレイヤ、B画像のレイヤの順に重ね合わせる)。
なお、各原色成分の画像データは一度の撮影において同時に取得されるので、画像の特徴点を用いた位置合わせ処理などを行う必要はなく、各画像データの画素の位置を合わせるだけでレイヤ同士の位置合わせを行うことができる。
カラー画像が表示画像に含まれる場合、表示画像生成部24は、R成分、G成分及びB成分の3つの原色成分の画像データに対して従来と同様のカラー画像生成処理を施すことにより、カラー画像の画像データを生成する。
表示画像生成部24は、表示画像を表示部16に表示させる制御部11とともに、この発明の「表示画像制御手段」の一例として機能する。
[動作]
眼科撮影装置1の動作について説明する。図5に示すフローチャートは、眼科撮影装置1の動作の一例を表している。
まず、被検者の顔を顎受け6aに載置させるとともに、額を額当て6bに当接させて、被検眼Eを検査位置に配置させる(S1)。更に、従来と同様のアライメントを行って、被検眼Eに対する光学系100、120の位置を調整する(S2)。このとき、色補正フィルタ106は照明光路から退避されている。
次に、オペレータは操作ボタン4aを押下する。これに対応し、制御部11は、撮影光源103を制御して撮影照明光を出力させる。撮像装置9は、この撮影照明光の眼底反射光を受光し、R成分、G成分及びB成分の各原色成分の画像データを生成する(S3)。撮像装置9は、これら原色成分の画像データを制御部11に送る。制御部11は、特にB成分の画像データをデータ処理部20に送る。
濃度分布演算部21は、B成分の画像データの濃度分布を求める(S4)。更に、光量設定部22は、この濃度分布と、ステップ3における撮影光量とに基づいて、この濃度分布における最小濃度が所定閾値以上になるような撮影光量を求める(S5)。なお、最小濃度が元々所定閾値以上である場合には、ステップ3での撮影光量をそのまま用いる。
制御部11は、駆動機構18を制御して、色補正フィルタ106を照明光路上に配置させる(S6)。
更に、制御部11は、撮影光源103を制御して、ステップ5で求められた撮影光量の撮影照明光を出力させる。撮像装置9は、この撮影照明光の眼底反射光を受光し、R成分、G成分及びB成分の各原色成分の画像データを生成する(S7)。撮像装置9は、これら原色成分の画像データを制御部11に送る。制御部11は、3つの原色成分(特にR成分)の画像データをデータ処理部20に送る。
濃度分布演算部21は、各原色成分(特にR成分)の画像データの濃度分布を求める(S8)。更に、光量設定部22は、この濃度分布の最大濃度が所定閾値以下であるか(たとえばR成分が飽和していないか)判断する(S9)。
最大濃度が所定閾値以下である場合(S9:Yes)、表示情報生成部23は、各原色成分の濃度分布に基づいて表示情報を生成する(S10)。また、表示画像生成部24は、原色成分の画像データに基づいて表示画像の画像データを生成する(S11)。制御部11は、表示情報や表示画像を表示部16に表示させる(S12)。更に、記憶データ選択部13は、記憶対象となるデータを選択して記憶部14に記憶させる(S13)。
一方、最大濃度が所定閾値を超える場合(S9:No)、光量設定部22は、当該濃度分布と、ステップ7における撮影光量とに基づいて、当該濃度分布における最大濃度が所定閾値以下になるような撮影光量を求める(S14)。このとき、R成分に関する当該条件を満足するとともに、B成分の濃度分布における最小濃度が所定閾値以上になるように撮影光量を設定することが望ましい。
制御部11は、撮影光源103を制御して、ステップ14で求められた撮影光量の撮影照明光を出力させる。撮像装置9は、この撮影照明光の眼底反射光を受光し、R成分、G成分及びB成分の各原色成分の画像データを生成する(S15)。ここで、再度濃度分布を解析して、上記条件が満たされているか確認するようにしてもよい。
表示情報生成部23は、これらの原色成分の濃度分布に基づいて表示情報を生成する(S10)。また、表示画像生成部24は、原色成分の画像データに基づいて表示画像の画像データを生成する(S11)。制御部11は、表示情報や表示画像を表示部16に表示させる(S12)。更に、記憶データ選択部13は、記憶対象となるデータを選択して記憶部14に記憶させる(S13)。
このようにして取得された画像データや情報は、眼底Efの解析処理に供される。眼底Efの解析の例については後述する。
[作用・効果]
以上のように動作する眼科撮影装置1によれば、所定の撮影部位(眼底)による各原色成分の反射率に対応する色バランスを有する撮影照明光を眼底Efに照射し、眼底Efによる撮影照明光の反射光を受光して各原色成分の画像データを生成するように作用するので、ほぼ等しい濃度を有するR成分、G成分及びB成分の画像データを取得することができる。それにより、各原色画像の解析を好適に行える単一のカラー画像を取得することが可能である。
更に、眼科撮影装置1は、所定の原色成分の画像データの濃度が所定範囲に含まれるような光量の撮影照明光を被検眼Eに照射するように作用する。たとえば、眼科撮影装置1は、R成分の画像データの最大濃度が所定閾値を超えないような光量の撮影照明光を眼底Efに照射することが可能である。また、眼科撮影装置1は、B成分の画像データの最小濃度が所定閾値以上になるような光量の撮影照明光を眼底Efに照射することが可能である。したがって、原色成分の画像データの濃度が高すぎたり低すぎたりするような事態を回避することができ、好適な濃度の原色画像の画像データを取得することが可能になる。それにより、各原色画像の解析をより好適に行える単一のカラー画像を取得することが可能である。
〔具体例〕
撮像装置9の撮影感度をISO400とし、撮影画角を30°とする。また、最初のカラー撮影(ステップ3)における撮影光量を38W・s(ワット秒)とする。
最初のカラー撮影は、色補正フィルタ106を使用しないで行うので、一般に、B成分の最小濃度は所定閾値に満たない。つまり、B成分の画像は全体に暗くなる。光量設定部22により初期撮影光量の2倍の撮影光量(76W・s)が設定されたとする(ステップ5)。
色補正フィルタ106を照明光路に挿入して新たな撮影光量でカラー撮影を行うと(ステップ6、7)、光量が大き過ぎてR成分の濃度が飽和することがある。ステップ9では、R成分が飽和しているか否かを判断している。
飽和していない場合(ステップ9:Yes)、ステップ7のカラー撮影が適正に実施されたとみなし、ステップ7で得られた画像データに基づいて表示情報や表示画像を生成して表示する(ステップ10〜12)。また、画像データや情報を選択的に記憶する(ステップ13)。
一方、飽和している場合(ステップ9:No)、ステップ7のカラー撮影の撮影光量を減少させて新たな撮影光量を設定する(ステップ14)。そして、この新たな撮影光量で再度カラー撮影を行う(ステップ15)。そして、このカラー撮影で得られた画像データに基づいて表示情報や表示画像を生成して表示し(ステップ10〜12)、画像データや情報を選択的に記憶する(ステップ13)。
なお、ステップ12で表示される表示情報や表示画像は、前述した各種情報や各種画像のうちの少なくとも1つを含んでいればよい。
以上のような処理による原色成分の画像データの濃度分布の変化について説明する。図6及び図7は、上記処理による濃度分布の変化の一例を表している。図6は、最初のカラー撮影(ステップ3)で得られるR成分の画像データの濃度分布R0、G成分の画像データの濃度分布G0、及びB成分の画像データの濃度分布B0を表している。濃度分布R0は、R成分の画像データの画素値が飽和していることを示している。また、濃度分布B0は、B成分の原色画像が全体的に暗いことを示している。図7は、撮影光量を変更後のカラー撮影(ステップ5、14)で得られるR成分の画像データの濃度分布R1、G成分の画像データの濃度分布G1、及びB成分の画像データの濃度分布B1を表している。
色補正フィルタ106を使用し、更に、ステップ5やステップ14で設定される撮影光量を適用してカラー撮影を行うことで、図7に示すように、R成分の画素値の飽和が解消されるとともに、B成分の原色画像の全体的な明るさを増加させることができる。
すなわち、上記の処理によれば、B成分の原色画像が十分な明るさになるように撮影光量を増加させ(ステップ5)、色補正フィルタ106を用いることによりR成分、G成分及びB成分の色バランスを補正する(ステップ6)。更に、R成分が飽和している場合には(ステップ9:No)、撮影光量を減少させてカラー撮影を行うようになっている(ステップ14、15)。
なお、G成分については、一般に、その濃度分布はR成分の濃度分布とB成分の濃度分布との間に位置するので、特に考慮する必要はない。
また、図8に示すような原色成分の濃度分布が得られる場合がある。図8は、最初のカラー撮影(ステップ3)で得られるR成分の画像データの濃度分布R2、G成分の画像データの濃度分布G2、及びB成分の画像データの濃度分布B2を表している。R成分の濃度分布R2やB成分の濃度分布B2は、濃度の幅(階調の幅)が狭くなっている。このような場合、原色画像のコントラストが低くなり、画像の観察や解析を行うのが困難になる。また、図9は、撮影光量を変更後のカラー撮影(ステップ5、14)で得られるR成分の画像データの濃度分布R3、G成分の画像データの濃度分布G3、及びB成分の画像データの濃度分布B3を表している。
図8のような濃度分布が得られた場合であっても、色補正フィルタ106を使用し、更に、ステップ5やステップ14で設定される撮影光量を適用してカラー撮影を行うことで、図9に示すように、R成分やB成分の濃度の幅を拡大させて原色画像のコントラストを向上させることが可能である。なお、R成分やB成分の濃度の幅を拡大させることにより、G成分の濃度の幅も拡大することができる。
このように各原色成分の濃度の幅を拡大するために、たとえば次のような処理を行うことができる。まず、各原色成分の画像データの濃度分布を求める。次に、各濃度分布の幅を求める。この処理は、たとえば、濃度分布における最大濃度と最小濃度とを求め、これらの値に基づいて演算することができる(たとえば、幅=(最大濃度)−(最小濃度)+1を演算する)。
続いて、この濃度分布の幅と所定値とを比較する。この所定値は、予め設定されていてもよいし、患者のタイプに応じて設定されていてもよいし、各被検眼毎に設定するようにしてもよい。
濃度分布の幅が所定値以上である場合、つまり濃度分布の幅が十分である場合、撮影光量の変更処理を行う必要はない。
一方、濃度分布の幅が所定値よりも小さい場合、つまり濃度分布の幅が十分でない場合、光量設定部22は、濃度分布が所定値以上の幅を有するような撮影光量を求める。この新たな撮影光量は、たとえば、撮影光量の変化量と濃度の変化量との関係を表す情報(事前に作成された記憶される)を参照して決定することができる。また、照明光学系100や撮影光学系120の構成や設定状態などを鑑みて、濃度分布の幅の変化量に対する撮影光量の変化量をシュミレーションすることにより撮影光量を求めるようにしてもよい。制御部11は、この新たな撮影光量を有する撮影照明光を撮影光源103に照射させる。
このような処理を行うことにより、各原色成分の濃度の幅が所定値以上であるような撮影光量の撮影照明光を用いて眼底Efを撮影することができ、画像の観察や解析を好適に行うことが可能となる。
眼底Efの画像の解析処理について説明する。前述のように、R画像は網膜から脈絡膜に亘る領域を描写した画像であり、G画像は網膜の浅い領域を描写した画像であり、B画像は網膜表面を描写した画像である。
よって、R画像を表示することにより、オペレータは、眼底Efにおける網膜から脈絡膜に亘る領域を観察することができ、この領域に現れる病変、たとえばドルーゼンの有無や状態を把握することが可能である。それにより、早期のドルーゼンのスクリーニングなどを行うことが可能となる。また、R成分の画像データに対して各種画像処理(画像抽出処理や二値化処理など)を施すことにより、病変に相当する画像領域を自動的に抽出することが可能である。制御部11は、抽出された画像領域をR画像中に明示するなどして、当該画像領域をオペレータに呈示することが可能である。
また、G画像を表示することにより、オペレータは、眼底Efにおける網膜の浅い領域を観察することができ、この領域に現れる病変、たとえば糖尿病網膜症に起因する病変の有無や状態を把握することが可能である。それにより、早期の糖尿病網膜症のスクリーニングなどを行うことが可能となる。また、G成分の画像データに対して各種画像処理を施すことにより、病変に相当する画像領域を自動的に抽出してオペレータに呈示することが可能である。
また、B画像を表示することにより、オペレータは、眼底Efにおける網膜の表面領域を観察することができ、この領域に現れる病変、たとえば緑内障に起因する病変の有無や状態を把握することが可能である。それにより、早期の糖尿病のスクリーニングなどを行うことが可能となる。また、B成分の画像データに対して各種画像処理を施すことにより、病変に相当する画像領域を自動的に抽出してオペレータに呈示することが可能である。
また、前述のように、R画像、G画像及びB画像のうちの少なくとも2つの原色画像の重畳画像を表示することが可能である。このような重畳画像を観察することにより、オペレータは、眼底Efの様々な深度における病変の有無や状態を統合的に把握することが可能となる。
また、従来の眼底カメラと同様に眼底Efのカラー画像を表示することにより、従来と同様の眼底Efの所見を得ることが可能である。
また、眼科撮影装置1は、原色成分の濃度分布における最大濃度や最小濃度、更には当該濃度分布を表すグラフ情報などを表示することができる。なお、これらのうちの少なくとも1つを表示させれば十分である。
原色成分の濃度分布の最大濃度や最小濃度を表示させることにより、オペレータは、撮影光量が大き過ぎないか或いは小さ過ぎないか確認することができる。また、グラフ情報を表示させることにより、現在の撮影光量に基づく濃度の分布を確認することができる。これらの表示情報は、撮影光量が適正であるかの判断材料として用いられるとともに、次の撮影における撮影光量を設定するための目安としても用いることができる。
[変形例]
以上に詳述した構成は、この発明に係る眼科撮影装置を好適に実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。以下、このような変形例について説明する。
前述のように、複数の色補正フィルタ106が設けられている場合、図5のステップ6において、フィルタ選択部12は、使用する色補正フィルタ106を選択し、更に、駆動機構18を制御し、当該選択された色補正フィルタ106を照明光路上に配置させる。なお、フィルタ選択部12は、オペレータによる指示内容や患者情報の記録内容に基づく患者のタイプを受け付け、前述のフィルタ関連情報を参照することにより、当該タイプに応じた色補正フィルタ106を特定して照明光路上に配置させる。
このように、患者のタイプに応じた色補正フィルタ106を選択的に使用することにより、被検眼のタイプに拘わらず、各原色画像の解析を好適に行える単一のカラー画像を取得することができる。
上記の実施形態では、所定の撮影部位による各原色成分の反射率に対応する色バランスを有する照明光を照射するために、撮影光源103と色補正フィルタ106とを用いているが、この発明においては他の構成を適用して同様の照明光を照射することも可能である。たとえば、同様の色バランスを有する光を出力する光源を用いることにより、色補正フィルタ106が不要な構成を採用することができる。
R成分、G成分及びB成分の3つの原色成分の濃度のバランスを調整する補正処理、すなわちガンマ補正を用いることにより、3つの原色画像の濃度のバランスを調整するようにしてもよい。それにより、原色画像や重畳画像やカラー画像をより忠実に表示することが可能になる。
この発明に係る眼科撮影装置の実施の形態の構成の一例を表す概略ブロック図である。 この発明に係る眼科撮影装置の実施の形態の外観構成の一例を表す概略側面図である。 この発明に係る眼科撮影装置の実施の形態の光学系の構成の一例を表す概略側面図である。 この発明に係る眼科撮影装置の実施の形態の色補正フィルタの特性の一例を表すグラフである。 この発明に係る眼科撮影装置の実施の形態の動作の一例を表すフローチャートである。 この発明に係る眼科撮影装置の実施の形態の動作の一例を説明するための概略説明図である。 この発明に係る眼科撮影装置の実施の形態の動作の一例を説明するための概略説明図である。 この発明に係る眼科撮影装置の実施の形態の動作の一例を説明するための概略説明図である。 この発明に係る眼科撮影装置の実施の形態の動作の一例を説明するための概略説明図である。
符号の説明
1 眼科撮影装置
9、10 撮像装置
11 制御部
12 フィルタ選択部
13 記憶データ選択部
14 記憶部
15 ユーザインターフェイス
16 表示部
17 操作部
18 駆動機構
20 データ処理部
21 濃度分布演算部
22 光量設定部
23 表示情報生成部
24 表示画像生成部
100 照明光学系
103 撮影光源
106 色補正フィルタ
120 撮影光学系

Claims (15)

  1. 被検眼の所定の撮影部位に照明光を照射する照明手段と、
    前記所定の撮影部位による前記照明光の反射光を受光し、R成分、G成分及びB成分の各原色成分の画像データを生成する生成手段と、
    を有する眼科撮影装置であって、
    前記照明手段は、所定の撮影部位による前記各原色成分の反射率に対応する色バランスを有する照明光を照射し、
    前記生成手段は、当該被検眼の前記所定の撮影部位による該照明光の反射光を受光して前記各原色成分の画像データを生成する、
    ことを特徴とする眼科撮影装置。
  2. 前記照明手段は、所定の撮影部位による前記3つの原色成分の反射光量が略等しくなるような前記色バランスを有する前記照明光を照射する、
    ことを特徴とする請求項1に記載の眼科撮影装置。
  3. 前記照明手段は、光源と、前記光源から出力された光を前記色バランスを有する光に変換するフィルタとを含み、前記フィルタにより変換された光を前記照明光として照射する、
    ことを特徴とする請求項1又は請求項2に記載の眼科撮影装置。
  4. 前記照明手段は、前記光源から出力された光の光路に対して前記フィルタを挿脱する駆動手段を含む、
    ことを特徴とする請求項3に記載の眼科撮影装置。
  5. 前記所定の撮影部位は眼底であり、
    前記フィルタは、R成分の透過率がG成分の透過率以下であり、かつ、G成分の透過率がB成分の透過率以下である、
    ことを特徴とする請求項3又は請求項4に記載の眼科撮影装置。
  6. 所定の原色成分の画像データの濃度が所定範囲に含まれるような光量の前記照明光を前記照明手段に照射させる照明制御手段を更に備える、
    ことを特徴とする請求項1〜請求項4のいずれか一項に記載の眼科撮影装置。
  7. 前記所定の撮影部位は眼底であり、
    前記所定の原色成分はR成分を含み、
    前記照明制御手段は、前記所定の原色成分の画像データの最大濃度が所定閾値を超えないような光量の前記照明光を前記照明手段に照射させる、
    ことを特徴とする請求項6に記載の眼科撮影装置。
  8. 前記照明制御手段は、所定光量の照明光を前記照明手段に照射させ、前記所定光量の照明光を受光した前記生成手段により生成された前記所定の原色成分の画像データの濃度分布を求め、前記所定光量と該濃度分布とに基づいて該濃度分布における最大濃度が前記所定閾値以下になるように前記照明光の光量を求め、該光量の照明光を前記照明手段に照射させ、
    前記生成手段は、該光量の照明光の前記所定の撮影部位による反射光を受光して前記各原色成分の画像データを生成する、
    ことを特徴とする請求項6又は請求項7に記載の眼科撮影装置。
  9. 前記所定の撮影部位は眼底であり、
    前記所定の原色成分はB成分を含み、
    前記照明制御手段は、前記所定の原色成分の画像データの最小濃度が所定閾値以上になるような光量の前記照明光を前記照明手段に照射させる、
    ことを特徴とする請求項6に記載の眼科撮影装置。
  10. 前記照明制御手段は、所定光量の照明光を前記照明手段に照射させ、前記所定光量の照明光を受光した前記生成手段により生成された前記所定の原色成分の画像データの濃度分布を求め、前記所定光量と該濃度分布とに基づいて該濃度分布における最小濃度が前記所定閾値以上になるように前記照明光の光量を求め、該光量の照明光を前記照明手段に照射させ、
    前記生成手段は、該光量の照明光の前記所定の撮影部位による反射光を受光して前記各原色成分の画像データを生成する、
    ことを特徴とする請求項6又は請求項9に記載の眼科撮影装置。
  11. 前記照明制御手段は、前記所定の撮影部位による前記各原色成分の画像データの濃度分布が所定値以上の幅を有するような前記照明光を前記照明手段に照射させる、
    ことを特徴とする請求項6〜請求項10のいずれか一項に記載の眼科撮影装置。
  12. 表示手段と、
    前記生成手段により生成された前記各原色成分の画像データの濃度分布を求め、該濃度分布に基づく情報を前記表示手段に表示させる情報表示制御手段と、
    を更に備えることを特徴とする請求項1〜請求項11のいずれか一項に記載の眼科撮影装置。
  13. 表示手段と、
    前記生成手段により生成された前記各原色成分の画像データに基づく画像を前記表示手段に表示させる画像表示制御手段と、
    を更に備えることを特徴とする請求項1〜請求項11のいずれか一項に記載の眼科撮影装置。
  14. 前記照明手段は、互いに異なる複数の前記色バランスを有する照明光を選択的に照射可能である、
    ことを特徴とする請求項1〜請求項4のいずれか一項に記載の眼科撮影装置。
  15. 記憶手段と、
    前記3つの原色成分の画像データ、及び、前記3つの原色成分の画像データの合成画像データを選択的に前記記憶手段に記憶させる記憶制御手段と、
    を備えることを特徴とする請求項1に記載の眼科撮影装置。
JP2008006796A 2008-01-16 2008-01-16 眼科撮影装置 Active JP5032347B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008006796A JP5032347B2 (ja) 2008-01-16 2008-01-16 眼科撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006796A JP5032347B2 (ja) 2008-01-16 2008-01-16 眼科撮影装置

Publications (2)

Publication Number Publication Date
JP2009165624A JP2009165624A (ja) 2009-07-30
JP5032347B2 true JP5032347B2 (ja) 2012-09-26

Family

ID=40967511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006796A Active JP5032347B2 (ja) 2008-01-16 2008-01-16 眼科撮影装置

Country Status (1)

Country Link
JP (1) JP5032347B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813089B2 (ja) * 2009-08-28 2015-11-17 キヤノン株式会社 制御装置及び制御方法
JP6066595B2 (ja) 2011-07-29 2017-01-25 キヤノン株式会社 眼底画像の画像処理装置、眼底画像の画像処理方法、及びプログラム
JP6049945B2 (ja) * 2014-09-09 2016-12-21 オリンパス株式会社 撮像装置および処理装置
JP6553395B2 (ja) * 2015-04-30 2019-07-31 株式会社トプコン 眼科装置およびその制御方法

Also Published As

Publication number Publication date
JP2009165624A (ja) 2009-07-30

Similar Documents

Publication Publication Date Title
JP6098061B2 (ja) 眼底撮影装置
JP5607640B2 (ja) 眼の特徴の画像を得る方法と装置
JP4244160B2 (ja) 眼底カメラ
JP6518054B2 (ja) 眼科装置
JP5773598B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP5170625B2 (ja) 赤外光眼底撮影方法および装置
JP6656063B2 (ja) 画像処理装置及び画像処理方法、プログラム
WO2014207901A9 (ja) 画像処理装置及び画像処理方法
JP6289462B2 (ja) 画像処理装置及び画像処理方法
JP5271157B2 (ja) 眼底画像解析装置、眼底撮影装置及びプログラム
JP5032347B2 (ja) 眼科撮影装置
JP2012213555A (ja) 眼底撮影装置
JP2016140428A (ja) 眼科装置、画像処理方法およびプログラム
JP2014188254A (ja) 視野検査装置
JP5048103B2 (ja) 眼科撮影装置
JP5808576B2 (ja) 眼科撮影装置
JP2018201835A (ja) 視機能検査装置
JP5522841B2 (ja) 眼底撮影装置
JP6254724B2 (ja) 眼底観察装置
JP5160958B2 (ja) 眼底撮影装置及び眼底画像処理装置
JP7430082B2 (ja) 眼科装置及びその作動方法
WO2017090549A1 (ja) 眼科撮影装置及び眼科画像表示装置
JP5508140B2 (ja) 眼底撮像装置及びその処理方法
JP2014161500A (ja) 画像処理装置、眼科撮影装置及び方法、並びにプログラム
JP4566654B2 (ja) 眼科撮影装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250