JP5030547B2 - 圧縮機の動力軽減方法及び動力軽減装置 - Google Patents

圧縮機の動力軽減方法及び動力軽減装置 Download PDF

Info

Publication number
JP5030547B2
JP5030547B2 JP2006312034A JP2006312034A JP5030547B2 JP 5030547 B2 JP5030547 B2 JP 5030547B2 JP 2006312034 A JP2006312034 A JP 2006312034A JP 2006312034 A JP2006312034 A JP 2006312034A JP 5030547 B2 JP5030547 B2 JP 5030547B2
Authority
JP
Japan
Prior art keywords
compressor
compressor body
pressure
compressed gas
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006312034A
Other languages
English (en)
Other versions
JP2008128052A (ja
Inventor
勇介 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUETSU INDUSTRIES CO., LTD.
Original Assignee
HOKUETSU INDUSTRIES CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUETSU INDUSTRIES CO., LTD. filed Critical HOKUETSU INDUSTRIES CO., LTD.
Priority to JP2006312034A priority Critical patent/JP5030547B2/ja
Publication of JP2008128052A publication Critical patent/JP2008128052A/ja
Application granted granted Critical
Publication of JP5030547B2 publication Critical patent/JP5030547B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は,圧縮機の動力軽減方法及び動力軽減装置に関し,より詳細には,圧縮機本体の吸気口を開閉して吸気制御を行う圧縮機において,該圧縮機本体の吸気口を閉じた無負荷運転時における動力を軽減する方法及び前記方法を実現する装置に関する。
空気,燃料ガス,その他の被圧縮気体を圧縮する圧縮機本体を備えた圧縮機では,前記圧縮機本体によって被圧縮気体を圧縮する際に圧縮熱が生じ,該圧縮機本体より吐出された流体の温度が上昇していることから,圧縮機本体が吐出した流体を冷却することが行われている。
一例として,油冷式スクリュ圧縮機1を例にとり説明すると,図4〜図6において,この油冷式スクリュ圧縮機1は,シリンダ内に2本のスクリュロータを噛み合い回転可能に配置すると共に,該シリンダ内に潤滑油を導入して圧縮作用空間の密封や冷却,潤滑を行う圧縮機本体10を備えたもので,この圧縮機本体10を駆動するエンジンやモータ等の駆動源60を備えると共に,前記圧縮機本体10より潤滑油と共に吐出された圧縮気体を導入してこの圧縮気体と潤滑油とに分離するレシーバタンク70を備えており,レシーバタンク70で潤滑油と分離された圧縮気体,例えば圧縮空気を空気作業機等が連通された消費側に供給すると共に,潤滑油を圧縮機本体10の給油口13を介してシリンダ内に供給して,再度圧縮作用空間の潤滑,密封,冷却等に使用するように構成されている。
そして,圧縮機本体10より吐出されてレシーバタンク70で分離された潤滑油を圧縮機本体10に供給する際に,圧縮熱によって温度が上昇している潤滑油を冷却するために,レシーバタンク70と圧縮機本体10の給油口13間を連通する給油回路82中にオイルクーラ21を設けると共に,このオイルクーラ21に対向して配置された冷却ファン30によってこのオイルクーラ21に冷却風を導入し,オイルクーラ21内を通過し,冷却した潤滑油を,圧縮機本体10に供給することができるように構成されている。
以上のように構成された油冷式圧縮機1において,圧縮機本体10より吐出された前述の潤滑油をオイルクーラ21によって過冷却すると,この冷却によって生じたドレンが潤滑油内に混入して圧縮機本体10に供給される。また,過冷却された潤滑油をシリンダ内に導入すると,圧縮作用空間内の圧縮気体が過冷却されて,該圧縮気体中の水分が凝縮して圧縮作用空間内でドレンが発生する。
そのため,このドレンの発生が圧縮機本体10のロータやシリンダ内に錆を生じさせる原因となり,また,ドレンの混入した潤滑油がロータによって攪拌されて混ざり合い,乳化して潤滑油の潤滑性を悪化させてしまう。
そこで,このような潤滑油の過冷却によるドレンの発生を防止するために,前述の給油回路82にオイルクーラ21をバイパスするバイパス回路82aを設け,このバイパス回路82aの分岐点に,潤滑油の温度に応じてオイルクーラ21に導入する潤滑油量と,バイパス回路82aに導入する潤滑油量を変更する温度調整弁86を設けて潤滑油の温度調整を可能としたものがある(図4参照)。
また,潤滑油の温度に応じてオイルクーラ21に導入する冷却風量を増減するように冷却ファンの回転数を可変とし,これにより潤滑油の過冷却を防止すると共にバイパス回路や温度調整弁を省略して回路構成を簡略化した油冷式圧縮機が提案されている(特許文献1:図5参照)。
さらに,急激な運転条件の変化が生じた場合であっても,ドレンが発生することを防止するためにレシーバタンク70内の温度を検出すると共に,検出温度がドレンの発生する温度に達すると,オイルクーラ21に冷却風を導入する冷却ファン30を停止するように構成した油冷式圧縮機も提案されている(特許文献2:図6参照)。
この発明の先行技術文献情報としては次のものがある。
特開平6−213186号公報 特開平6−213188号公報
前述の図4を参照して説明した圧縮機1のように,圧縮機本体10の駆動源60とは別にオイルクーラ21に対して冷却風を導入する冷却ファン用のモータ31を設けた場合には,通常,このモータ31を一定の回転数で運転しており,圧縮機本体10の負荷状態の変化に伴う潤滑油温度の変化には,バイパス回路82aに導入する潤滑油量を増減することによる対応が行われ,冷却ファン30の回転数の制御は行われない。
このような従来の圧縮機1の構成によれば,過冷却の防止という目的は,上記方法による潤滑油の温度調整によって達成することができる。
しかし,近年の圧縮機1における改善された負荷軽減方法にあっては,無負荷運転時における圧縮機本体10の負荷を,圧縮機本体10の吸気閉塞のみによって低減するのみならず,圧縮機本体10の吐出側,例えばレシーバタンク70内の圧力を放気(パージ)したり,吐出回路83に逆止弁を設けてレシーバタンク70から圧縮機本体側への圧縮気体の逆流を防止すると共に,逆止弁の一次側(圧縮機本体10側)吐出回路における潤滑油や圧縮気体を吸引して二次側(レシーバタンク70側)吐出回路に排出する回収ポンプを設ける等して,圧縮機本体の吐出側圧力を低下することによる負荷軽減も併せて行われている。
そのため,このような改良された負荷軽減方法が行われる圧縮機にあっては,無負荷運転時の動力を,全負荷運転時の動力の20%程度に迄軽減することに成功しており,これにより無負荷運転時に圧縮機本体で発生する圧縮熱も大幅に減らすことができている。
しかしながら,図4を参照して説明した圧縮機の構成は,無負荷運転へ移行して圧縮機本体で発生する圧縮熱が減っているにもかかわらず,全負荷運転時と同じ回転数で冷却ファンが運転されており,この冷却ファン30の駆動に消費される電力分,無駄な動力が消費されている。
一方,前述した特許文献1に記載の構成にあっては,潤滑油の温度に従ってオイルクーラ21に冷却風を導入する冷却ファン30の回転数を制御するようにしたことで,潤滑油の温度が低下する無負荷運転時には冷却ファン30の回転数も低下することとなり,その結果,消費電力の減少についても期待できる。
しかし,特許文献1に記載の発明にあっては,オイルクーラ21を通過した後の潤滑油の温度を検出して冷却ファン30の回転数を制御しているため,圧縮機本体10の無負荷運転移行後,冷却ファン30の回転数が低下する迄にはかなりの時間的な遅れが生じる。
また,冷却ファン30の速度制御を行うために,前掲の特許文献1に記載の発明にあっては,オイルクーラ21を通過した潤滑油の温度を温度センサ53によって検出し,検出された温度を電気信号として制御装置50’に出力すると共に,制御装置50’が予め設定された温度との偏差から冷却ファン30の回転数を決定し,それに応じて冷却ファン用インバータ35に指示するという複雑な制御を行っており(特許文献1の「0011」欄),このような制御を可能とするために温度センサ53や制御装置50’等の特別な機器が必要であり,また,制御装置には複雑なプログラムを組み込む必要がある等,装置構成全体が複雑,高価となる。
さらに,前掲の特許文献2に記載の油冷式圧縮機1にあっては,レシーバタンク70内の温度がドレンを発生させる温度迄低下すると,冷却ファン30を停止するように構成しているために,無負荷運転への移行により(レシーバタンク内の温度がドレンを生じる程に低下したとき)冷却ファン30が停止し,その結果消費動力が低減されることになる。
しかし,特許文献2の構成では,圧縮機本体10が単に無負荷運転に移行したのみでは冷却ファン30は停止せず,冷却ファン30が停止するには,レシーバタンク70内の温度がドレンの発生温度に低下する必要があり,冷却ファン30の停止は無負荷運転への移行から大幅に遅れることとなる。
また,前掲の特許文献2に記載の発明にあっては,冷却ファン30に対する制御として,これを『停止』する動作を行うものであるが,この冷却ファン30には,オイルクーラ21に対して冷却風を導入する機能のみならず,圧縮機の各構成機器を収容する防音箱内に冷却風を導入する機能も与えられており,冷却ファン30が停止すれば防音箱内に対する冷却風の導入も停止する。そのため,前記構成の圧縮機にあっては,防音箱内に冷却風を導入するための別途の構成を設けることが必要となる。
なお,圧縮機本体が,圧縮作用空間に対して潤滑油の供給を必要としない,所謂オイルフリー型の場合でも,圧縮機本体が吐出した流体の冷却が行われる。例えば,圧縮機本体10より吐出された流体である圧縮気体を消費側に供給する前に冷却するアフタクーラ23を設けるものである。
また,図7に示すように,圧縮機本体10が,低圧段の圧縮機本体10aで圧縮された圧縮気体をさらに高圧段の圧縮機本体10bに導入して圧縮する多段式の圧縮機本体である場合には,低圧段の圧縮機本体10aより吐出された圧縮気体を,高圧段の圧縮機本体10bに導入する前に冷却するインタークーラ22を設けると共に,高圧段の圧縮機本体10bが吐出した圧縮気体を,消費側に供給する前に導入して冷却するアフタクーラ23を備え,前記インタークーラ22及びアフタクーラ23に共通の冷却ファン30を対向配置して,1つの冷却ファン30で前記インタークーラ22及びアフタクーラ23に同時に冷却風を導入することができるように構成している。前記低圧段の圧縮機本体10aの吸気口11aには,これを開閉制御をする吸気制御弁40が設けられていると共に,高圧段の圧縮機本体10bの吐出口12bには,高圧段の圧縮機本体10bが吐出した圧縮気体が導入される吐出回路83を連通すると共に,この吐出回路83に逆止弁88’を介して消費側に圧縮気体を導入する,アフタクーラ23を備えた供給回路81を連通している。
なお,前述オイルフリー型の圧縮機においても,無負荷運転時には吸気閉塞が行われるため,圧縮作業は行われておらず,従ってインタークーラ22やアフタクーラ23に対する冷却風量を減少させることが望ましい。
そこで本発明は,上記従来技術における欠点ないし課題を解消するためになされたものであり,圧縮機本体の無負荷運転への移行に伴い,圧縮機本体の負荷軽減を図るだけでなく,オイルクーラやインタークーラ,アフタクーラ等の熱交換器に対して冷却風を導入する冷却ファンが消費する電力等を含めた,圧縮機全体で消費される動力を軽減する方法,及び前記方法を実現するための動力軽減装置を提供し,さらに,既知の圧縮機の構造を基礎として比較的簡単な構成の変更と,僅かな部品の追加等により容易に提供することを目的とする。
上記目的を達成するために,本発明の圧縮機の動力軽減方法及び動力軽減装置は,圧縮機本体10と,前記圧縮機本体10の吸気口11を開閉制御する吸気制御弁40と,前記圧縮機本体10より吐出された潤滑油や圧縮気体等の流体を冷却するオイルクーラ21,インタークーラ22,アフタクーラ23等の空冷式熱交換器,及び前記熱交換器に対して冷却風を導入する,前記圧縮機本体の駆動源とは別に設けたモータによって駆動される冷却ファン30を備えた圧縮機1において,
消費側に供給される圧縮気体の圧力を検知する圧力センサ等の圧力検知手段51と,
前記圧力検知手段51の検知信号に基づいて,前記消費側に供給される圧縮気体の圧力を所定の無負荷運転開始圧力,及び前記無負荷運転開始圧力に対して低く設定された所定の全負荷運転復帰圧力と比較し,前記消費側に供給される圧縮気体の圧力が前記無負荷運転開始圧力に上昇したとき,前記吸気制御弁40を閉じる制御信号を出力すると共に,前記全負荷運転復帰圧力に下降したとき,前記吸気制御弁40を開く制御信号を出力する制御装置50を設け,
前記制御装置50の前記吸気制御弁40を閉じる制御信号により,前記冷却ファン30を停止することなく所定の低回転数で運転すると共に,前記制御装置50の前記吸気制御弁40を開く制御信号により,前記冷却ファン30を,例えば,インバータ35等の前記冷却ファンの回転数変換手段を備え,所定の高回転数で運転し,冷却ファンの回転の変換を二段階で行うことを特徴とする(請求項1,請求項4)。
なお,前記制御装置50が出力する制御信号には,ゼロ電位の信号(信号の出力停止)を含む。
前述の負荷軽減方法及び負荷軽減装置において,前記制御装置50の前記吸気制御弁を閉じる制御信号により,前記圧縮機本体10の吐出側を大気開放する放気弁45を設けて動力の消費をさらに低減するように構成しても良い(請求項2,請求項5)。
さらに,前記圧縮機本体10が油冷式の圧縮機本体10である場合,該圧縮機本体10の圧縮作用空間に対して潤滑油を供給する給油回路82b(図2参照)と,前記圧縮機本体10から潤滑油と共に吐出された圧縮気体を導入して圧縮気体と潤滑油とに分離するレシーバタンク70と,前記圧縮機本体10の吐出口12とレシーバタンク70とを連通する吐出回路83とを備え,該吐出回路83中にレシーバタンク70内の圧縮気体が圧縮機本体10の吐出側に逆流することを防止する逆止弁88と,該逆止弁88の一次側吐出回路内の潤滑油や圧縮気体を吸引して逆止弁の二次側吐出回路内に排出する回収ポンプ89を設け,
前記制御装置50の前記吸気制御弁を閉じる制御信号により,前記給油回路82bを介して前記圧縮機本体10の圧縮作用空間に導入する潤滑油量を絞り,又は潤滑油の導入を停止する油量調整弁48を設け,さらなる動力の消費を低減するように構成することもできる(請求項3,請求項6)。
以上説明した本発明の構成により,圧縮機本体10の吸気口11を開閉制御する吸気制御弁40を制御する制御装置50が出力する前記吸気制御弁40の開閉制御信号によって,同時に前述の熱交換器21,22,23に冷却風を導入する冷却ファン30の回転数変換をも制御することとしたことから,冷却ファン30の回転制御を行うための制御装置やセンサ類を別途設ける必要がなく,比較的簡単な装置構成で,かつ,比較的低コストで,無負荷運転時における冷却ファン30の回転数制御による消費動力の低減を達成することができた。
また,吸気制御弁40の動作を制御する制御信号によって,冷却ファン30の回転数を変換することから,圧縮機本体10が吸気口11を閉じた無負荷運転に移行すると,これに遅れることなく同時に冷却ファン30の回転数を低減して,消費動力を減少させることができた。
しかも,冷却ファン30の回転数の変換を,所定の高回転数と,低回転数の二段階で行うものとしたことから,制御が容易であり,しかも冷却ファン30の停止を行わないことから,圧縮機の構成機器を収容する防音箱内の換気乃至は冷却が阻害されることもない。
また,前記制御装置50の前記吸気制御弁40を閉じる制御信号により放気弁45を制御して圧縮機本体10の吐出側を大気開放することにより,放気弁45を制御するための制御装置,センサ,プログラム等を別途設けることなく無負荷運転時における圧縮機本体10の吐出側圧力を低減することができ,これにより圧縮機本体10の運転負荷を軽減してさらなる動力の低減を図ることができた。
さらに,圧縮機本体10が油冷式圧縮機である場合,吐出回路83中にレシーバタンク70内の圧縮気体が圧縮機本体10の吐出側に逆流することを防止する逆止弁88と,該逆止弁88の一次側吐出回路内の潤滑油や圧縮気体を吸引して逆止弁の二次側吐出回路内に排出する回収ポンプ89を設けて圧縮機本体10の吐出側圧力を低減し,無負荷運転時における圧縮機本体10の運転負荷軽減を図り,圧縮機本体10の圧縮作用空間に潤滑油を供給する管路82bに油量調整弁48を設けると共に,前記制御装置50の前記吸気制御弁40を閉じる制御信号により前記油量調整弁48を制御して給油量を絞り,又は給油を停止することで,圧縮作用空間における潤滑油の攪拌に伴い生じる圧縮機本体の運転負荷を軽減して消費動力をさらに低減することができた。
しかも,前記油量調整弁48の制御信号を,吸気制御弁40に対する制御信号と共用としたことから,油量調整弁48を制御するために別途センサや他の制御装置,ないし制御プログラムの準備が不要である。
次に,本発明の実施例を添付図面を参照しながら以下説明する。
本発明の圧縮機の動力軽減方法は,圧縮機1に設けられた圧縮機本体10が,吸気口を閉じた無負荷運転にあるときに,圧縮機本体10が吐出する流体を冷却する空冷式の熱交換機21,22,23に冷却風を導入する冷却ファン30のモータ31を低回転数の運転に移行して,該モータ31の消費電力,従って圧縮機1全体の消費動力を低減することができるように構成すると共に,この冷却ファン30の回転数の変換を,圧縮機本体10の吸気口11を開閉制御する吸気制御弁40を制御する制御信号によって行うことで,吸気制御弁40の制御装置50に冷却ファン30の制御を兼ねさせ,冷却ファン用の制御装置や制御用のセンサ類を別途設けることなく,比較的簡単な構成の変更で,無負荷運転時における冷却ファン駆動用モータ31の消費電力を低減できるように構成したものである。
以下の説明では,圧縮作用空間内に潤滑油の導入を行う油冷式の圧縮機本体を備えた圧縮機を対象とし,圧縮機本体10が吐出した潤滑油を冷却するオイルクーラ21に冷却風を導入する冷却ファン30を制御対象とした例を,実施例1,2に,オイルフリー型の圧縮機本体を備えた圧縮機を対象とし,圧縮機本体が吐出した圧縮気体を冷却するインタークーラ22及びアフタクーラ23に冷却風を導入する冷却ファン30を制御対象とした例を,実施例3としてそれぞれ説明する。
〔実施例1〕
本発明の動力軽減装置を備えた油冷式スクリュ圧縮機1の一例を,図1を参照して説明すると,この油冷式スクリュ圧縮機1は,シリンダ内に潤滑油を導入して被圧縮気体を圧縮する油冷式のスクリュ圧縮機本体10と,この圧縮機本体10を駆動するモータ60,及び前記圧縮機本体10より潤滑油と共に吐出された圧縮気体を導入して,圧縮気体と潤滑油とに分離するレシーバタンク70を備えている。
そして,前記圧縮機本体10の吸気口11には,制御装置50からの制御信号により前記圧縮機本体10の吸気口11を開閉制御する吸気制御弁40が設けられていると共に,圧縮機本体10の吐出口12には,前記レシーバタンク70と連通し,圧縮機本体10より潤滑油と共に吐出された圧縮気体をレシーバタンク70内に導入する吐出回路83を連結している。
このレシーバタンク70内で潤滑油より分離された圧縮気体は,該レシーバタンク70に連通された供給回路81を介して図示せざる消費側に供給されていると共に,レシーバタンク70で回収された潤滑油は,給油回路82を介して圧縮機本体10の給油口13を介してシリンダ内に供給可能に構成されている。
この給油回路82には,潤滑油を冷却するオイルクーラ21が設けられていると共に,このオイルクーラ21の一次側と二次側間をバイパスするバイパス回路82aが設けられており,前記オイルクーラ21に対向して該オイルクーラ21に冷却風を導入する冷却ファン30を設けると共に,オイルクーラ21の一次側の分岐点に,該潤滑油の温度に従って,前記オイルクーラ21に導入する潤滑油量と,前記バイパス回路82aに導入する潤滑油量を調整して,潤滑油の過冷却を防止する潤滑油の温度調整弁86を設けている。
これらについては,図4を参照して説明した従来の油冷式圧縮機と同様である。
以上のように構成された油冷式圧縮機1において,消費側に供給される圧縮気体の圧力に応じて,圧縮機本体10の運転を,全負荷運転と無負荷運転とで切り換えることができるようにするために,消費側に圧縮気体を供給する供給回路81内の圧力を検出する圧力センサ等の圧力検知手段51を設ける。そして,前記圧力検知手段51の検知信号に基づいて,消費側に供給される圧縮気体の圧力を,所定の無負荷運転開始圧力及び前記無負荷運転開始圧力に対して低い圧力である所定の全負荷運転復帰圧力と比較して,前記圧力検知手段51が検知した圧力が,前記無負荷運転開始圧力に上昇したことを検知すると,吸気制御弁40を閉じて圧縮機本体10の吸気口11を閉じる制御信号を出力し,又,全負荷運転復帰圧力に下降したことを検知すると,吸気制御弁40を開いて圧縮機本体10の吸気口11を開く制御信号を出力する所定のプログラムを記憶した電子制御装置等からなる制御装置50が設けられている。
図1では前述の吸気制御弁40を,例えばレシーバタンク70内の圧力を作動圧力として動作するものとして構成し,この吸気制御弁40に対してレシーバタンク70内の圧縮気体を導入する回路中に例えば電磁弁41を設け,この電磁弁41を前記制御装置50の制御信号によって制御して,前記吸気制御弁40を開閉するように構成しても良い。
本発明の動力軽減装置は,前述の圧力検知手段51,制御装置50及び吸気制御弁40による容量制御によって無負荷運転時の消費動力の軽減を図るのみならず,前記オイルクーラ21に冷却風を導入する冷却ファン30を駆動するモータ31の回転数の減少による消費動力の低減と,圧縮機本体10の吐出側圧力を放気(パージ)により降下させることによる消費動力の低減を目的として,前記冷却ファン30のモータ31の回転数を変換する回転数変換手段と,圧縮機本体10の吐出側(図示の実施例ではレシーバタンク70)を大気開放する放気回路84を開閉する放気弁45を設け,前記制御装置50が出力する,前記吸気制御弁40を制御するための制御信号によって,前記冷却ファンの回転数変換手段35と,前記放気弁45とを共に制御することができるように構成している。
前述の冷却ファン30を駆動するモータ31の回転数の変更は,図1に示す実施形態にあっては冷却ファン30の駆動用モータ31を三相交流モータとし,前述の速度変換手段として前記三相交流モータ31に対して出力する電圧波形を変化させるインバータ35を設け,このインバータ35を前記制御装置50が出力する制御信号によって制御して,圧縮機本体10の吸気閉塞に伴って冷却ファン30を所定の低回転数の運転に変換すると共に,圧縮機本体10の吸気開放に伴って冷却ファン30を所定の高回転数での運転に変換するように構成している。
もっとも,前記制御装置50の制御信号に従って,圧縮機本体の作動状態の変化に対応して冷却ファンの回転数を変換し得る構成であれば,例えば冷却ファン用のモータとして極数変換モータを使用し,この極数変換モータが制御装置から受信した制御信号の変化に応じて極数を変換して回転数を変化するように構成しても良く,また,冷却ファン駆動用のモータとして直流モータを使用し,該冷却ファン駆動用モータと直流電源間に,前記制御装置からの制御信号が入力され抵抗値を変化する可変抵抗器を回転数変換手段として設ける等,図示の構成に限定されず各種の変更が可能である。
以上のように,本発明の動力軽減装置を備えた油冷式圧縮機1にあっては,消費側における圧縮気体の消費量が減少し,又は消費側における圧縮気体の消費が停止する等して,供給回路81内の圧縮気体の圧力が上昇し,制御装置50が圧力検知手段51の検知信号に基づいて前記圧力が所定の無負荷運転開始圧力に上昇したことを検知すると,吸気制御弁40を閉じる所定の制御信号を出力する。
この制御信号を受信した吸気制御弁40は,圧縮機本体10の吸気口11を閉じ,圧縮機本体10に対する被圧縮気体の導入を停止し,これにより圧縮機本体の運転負荷が軽減される。
また,前記制御装置50の制御信号は,放気弁45にも入力され,前記制御信号を受信した放気弁45は放気回路84を開き,レシーバタンク70内の圧縮気体を放気する。この圧縮気体の放気により,レシーバタンク70内の圧力,従って圧縮機本体10の吐出側圧力が低下して,圧縮機本体10の運転負荷が減少される。
さらに,前記制御装置50からの制御信号を受信した冷却ファン30用のインバータ35は,該制御信号の受信をトリガとして冷却ファン駆動用モータ31に対して出力する電圧波形を変更し,冷却ファン30を駆動するモータ31の運転を所定の低回転数による運転に切り換える。
これにより,冷却ファン30を駆動するモータ31の電力消費量が減少し,圧縮機本体10で費やされる動力が全体として減少すると共に,冷却ファン30の回転に伴って生じる風切り音等の騒音も低減される。
一方,冷却ファン30は,回転数が減少するものの停止することなく継続して運転されることから,防音箱内に対する冷却風の導入や排出を継続して行うことができる。
一方,圧力検知手段51からの検知信号に基づいて,制御装置50が,消費側に供給される圧縮気体の圧力が所定の全負荷運転復帰圧力に降下したことを検知すると,制御装置50は吸気制御弁40を開く制御信号を出力し,この制御信号を受信した吸気制御弁40が圧縮機本体10の吸気口11を開き,これにより圧縮機は全負荷運転に移行する。
また,前記制御信号を受信した放気弁45は,放気回路84を閉じて放気を停止すると共に,冷却ファン用インバータ35は,この制御信号の受信により冷却ファン30のモータ31に対して出力する電圧波形を変更し,冷却ファン30のモータ31を所定の高回転数で運転する。これにより,全負荷運転に伴い圧縮熱で加熱された潤滑油の冷却が好適に行われる。
〔実施例2〕
図1を参照して説明した実施例1の油冷式圧縮機にあっては,レシーバタンク70内の圧力を放気する放気回路84を設け,この放気回路84中に電磁弁である放気弁45を設けると共に,この放気弁45を前記制御装置50の制御信号で開閉制御して,圧縮機本体10の吸気閉塞時,レシーバタンク70内の圧縮気体を放気して,圧縮機本体10の吐出側圧力を低下させて圧縮機本体10の運転負荷を軽減していたが,図2に示す実施形態にあっては,圧縮機本体10の吐出口12とレシーバタンク70とを連通する吐出回路83内に,レシーバタンク70から圧縮機本体10側に圧縮気体が逆流することを防止する逆止弁88を設けると共に,この逆止弁88の一次側吐出回路内の潤滑油及び圧縮気体を吸引して前記逆止弁の二次側吐出回路内に排出する回収ポンプ89を設けて圧縮機本体10の吐出側圧力を低減し,無負荷運転時における圧縮機本体10の運転負荷の軽減が図られている。
また,レシーバタンク70で分離された潤滑油を圧縮機本体10に供給する給油回路82を,オイルクーラ21の二次側において二叉に分岐し,一方の管路82cを圧縮機本体10の軸受部や軸封部に連通すると共に,他方の管路82bを圧縮機本体10の圧縮作用空間内に連通し,この圧縮作用空間内に連通した管路82bに,前記制御装置によって制御され,圧縮機本体10の無負荷運転時,前記管路82b内を流れる潤滑油の流量を絞り,又は圧縮機本体10の圧縮作用空間に対する潤滑油の導入を停止する油量調整弁48を設け,圧縮機本体10の無負荷運転時,圧縮作用空間に対して導入する潤滑油量を減少し,又は圧縮作用空間に対する潤滑油の導入を停止して,圧縮機本体10のロータが潤滑油を攪拌することで消費される分の動力の軽減を図っている。その他の構成については,図1を参照して説明した実施例1の油冷式圧縮機と同様である。
〔実施例3〕
図1及び図2を参照して説明した構成にあっては,圧縮機本体10が冷却,潤滑及び密封のために潤滑油を圧縮作用空間内に導入する,油冷式の圧縮機本体であり,潤滑油を冷却するオイルクーラ21に対して冷却風を導入する冷却ファン30の動作を制御するものとして説明したが,図3に示す本実施例にあっては,圧縮作用空間内に潤滑油を導入しないオイルフリー型の圧縮機本体10を備えた多段型の圧縮機において,低圧段の圧縮機本体10aにより圧縮された圧縮気体を,高圧段の圧縮機本体10bに導入して圧縮する際に,前記低圧段の圧縮機本体10aが吐出した圧縮気体を冷却する熱交換機であるインタークーラ22と,前記高圧段の圧縮機本体10bが吐出した圧縮気体を消費側に導入する前に冷却する熱交換器であるアフタクーラ23を設け,このインタークーラ22及びアフタクーラ23に冷却風を導入する冷却ファン30の回転数を制御するように構成したものである。
このような多段式の圧縮機において,吸気閉塞時には被圧縮気体の圧縮が行われず,圧縮熱の発生が僅かであるためにインタークーラ22やアフタクーラ23に対する冷却風量を減少させることが望ましい。
そこで,低圧段の圧縮機本体10aの吸気口11aを開閉制御する吸気制御弁40を制御する制御装置50の制御信号で,併せて,前記冷却ファン30を駆動するモータ31の回転数を所定の低回転数に変更して,無負荷運転時における過冷却の防止と,冷却ファン30の回転数の低下に伴う消費動力の低減を図っている。
本発明の圧縮機1は,多段式の圧縮機本体10,本実施形態にあっては,低圧段の圧縮機本体10aの吐出口12aを,高圧段の圧縮機本体10bの吸気口11bに連通して二段とした圧縮機本体10を備え,前記低圧段の圧縮機本体10aが吐出した圧縮気体を導入して冷却するインタークーラ22を設けると共に,高圧段の圧縮機本体10bが吐出した圧縮気体を,消費側に供給する前に導入して冷却するアフタクーラ23を備え,前記インタークーラ22及びアフタクーラ23に共通の冷却ファン30を対向配置して,1つの冷却ファン30で前記インタークーラ22及びアフタクーラ23に同時に冷却風を導入することができるように構成している。
なお,この冷却ファン30のモータ31には,このモータ31を駆動する所定波形の電圧を出力する冷却ファン用のインバータ35が設けられていると共に,該インバータ35によってモータ31に入力する電圧波形を変更することで,前記モータ31の回転数を変化させることができるように構成されている。
前記低圧段の圧縮機本体10aの吸気口11aには,これを開閉制御をする吸気制御弁40が設けられていると共に,高圧段の圧縮機本体10bの吐出口12bには,高圧段の圧縮機本体10bが吐出した圧縮気体が導入される吐出回路83を連通すると共に,この吐出回路83に逆止弁88’を介して消費側に圧縮気体を導入する,アフタクーラ23を備えた供給回路81を連通している。
そして,前記吐出回路83より分岐して大気開放する放気回路84と,この放気回路84を開閉制御する放気弁45が設けられ,圧縮機本体10の無負荷運転時,前記供給回路81内の圧縮気体を放気して圧縮機本体の吐出側圧力を低減することができるように構成されている。
さらに,図3において,50は,制御装置であり,消費側に圧縮気体を供給する供給回路81に設けた圧力検知手段51からの検知信号が入力され,消費側に供給される圧縮気体の圧力が所定の無負荷運転開始圧力に上昇したことを検知すると,制御信号を出力して前記吸気制御弁40により圧縮機本体10(10a)の吸気口11aを閉じると共に,前記放気弁45を開放して圧縮機本体10の運転負荷を軽減すると共に,前記冷却ファン30用のインバータ35がこの制御装置50からの制御信号が入力され,冷却ファン30のモータ31に対して該冷却ファン30を駆動するモータ31を低回転数に移行する電圧波形を出力するように構成されている。そして,前記圧力検知手段51の検知信号に基づいて,消費側に供給される圧縮気体の圧力が所定の全負荷運転復帰圧力に下降したことが検知されると,前記吸気制御弁40を開くと共に,放気弁45を閉じて圧縮機本体10を全負荷運転に移行すると共に,該制御装置50からの制御信号を受信したインバータ35が,前記冷却ファン30用モータ31を所定の高い回転数で駆動する電圧波形を出力する。
なお,前記冷却ファン駆動用のモータ31として極数変換モータを使用し,前記制御装置50からの制御信号の受信により極数を変化させて回転数を変更可能としても良く,また,前記冷却ファン30を直流モータで駆動すると共に,直流電源と前記直流モータ間に,前記制御装置によって抵抗値を変化する可変抵抗器を設け,これらにより冷却ファンの回転数を変更可能としても良い点については,図1及び図2を参照して説明した前述の実施例1及び2の圧縮機と同様である。
また,図示の実施形態にあっては,圧縮機本体10の低圧段,高圧段の二段構成としたが,圧縮機本体は三段以上に構成されるものであっても良い。
以上のように構成された動力軽減装置を備えた圧縮機1にあっては,低圧段の圧縮機本体10aの吸気口11aを閉じて,無負荷運転に移行すると,放気弁45が開いて高圧段の圧縮機本体10bの吐出側圧力を降下させ,これにより圧縮機本体10の運転負荷が軽減されて動力の低減が図られると共に,冷却ファン30が低回転数の運転に切り替わり,消費電力が低減されて圧縮機1全体の消費動力が減少する。
本発明の動力軽減装置を備えた圧縮機の回路構成図。 本発明の別の動力軽減装置を備えた圧縮機の回路構成図。 本発明のさらに別の動力軽減装置を備えた圧縮機の回路構成図。 従来の油冷式圧縮機の回路構成図。 従来の油冷式圧縮機の回路構成図。 従来の油冷式圧縮機の回路構成図。 従来のオイルフリー圧縮機の回路構成図。
符号の説明
1 圧縮機
10 圧縮機本体
10a 低圧段の圧縮機本体
10b 高圧段の圧縮機本体
11,11a,11b 吸気口
12,12a,12b 吐出口
13(13a,13b) 給油口
21 オイルクーラ(熱交換機)
22 インタークーラ(熱交換機)
23 アフタクーラ(熱交換機)
30 冷却ファン
31 モータ(冷却ファン用)
35 インバータ(回転数変換手段)
40 吸気制御弁
41 電磁弁
45 放気弁
48 油量調整弁
50,50’ 制御装置
51 圧力検知手段(圧力センサ)
53 温度センサ
60 モータ(駆動源)
70 レシーバタンク
81 供給回路
82 給油回路
82a バイパス回路
82b,82c 給油回路の分岐路
83 吐出回路
84 放気回路
86 温度調整弁
88,88’ 逆止弁
89 回収ポンプ

Claims (6)

  1. 圧縮機本体と,前記圧縮機本体の吸気口を開閉制御する吸気制御弁と,前記圧縮機本体より吐出された流体を冷却する空冷式熱交換器,及び前記熱交換器に対して冷却風を導入する,前記圧縮機本体の駆動源とは別に設けたモータによって駆動される冷却ファンを備えた圧縮機において,
    消費側に供給される圧縮気体の圧力を検知する圧力検知手段と,
    前記圧力検知手段の検知信号に基づいて,前記消費側に供給される圧縮気体の圧力を所定の無負荷運転開始圧力,及び前記無負荷運転開始圧力に対して低く設定された所定の全負荷運転復帰圧力と比較し,前記消費側に供給される圧縮気体の圧力が前記無負荷運転開始圧力に上昇したとき,前記吸気制御弁を閉じる制御信号を出力すると共に,前記全負荷運転復帰圧力に下降したとき,前記吸気制御弁を開く制御信号を出力する制御装置を設け,
    前記制御装置の前記吸気制御弁を閉じる制御信号により,前記冷却ファンを停止することなく所定の低回転数で運転すると共に,前記制御装置の前記吸気制御弁を開く制御信号により,前記冷却ファンを所定の高回転数で運転し,冷却ファンの回転の変換を二段階で行うことを特徴とする圧縮機の動力軽減方法。
  2. 前記制御装置の前記吸気制御弁を閉じる制御信号により,前記圧縮機本体の吐出側を大気開放することを特徴とする請求項1記載の圧縮機の動力軽減方法。
  3. 前記圧縮機本体を油冷式の圧縮機本体とし,該圧縮機本体の圧縮作用空間に対して潤滑油を供給する給油回路と,前記圧縮機本体から潤滑油と共に吐出された圧縮気体を導入して圧縮気体と潤滑油とに分離するレシーバタンクと,前記圧縮機本体の吐出口とレシーバタンクとを連通する吐出回路とを備え,該吐出回路中にレシーバタンク内の圧縮気体が圧縮機本体の吐出側に逆流することを防止する逆止弁と,該逆止弁の一次側吐出回路内の潤滑油や圧縮気体を吸引して逆止弁の二次側吐出回路内に排出する回収ポンプを設け,
    前記制御装置の前記吸気制御弁を閉じる制御信号により,前記給油回路を介して前記圧縮機本体の圧縮作用空間に導入する潤滑油量を絞り,又は潤滑油の導入を停止することを特徴とする請求項1又は2記載の圧縮機の動力軽減方法。
  4. 圧縮機本体と,前記圧縮機本体の吸気口を開閉制御する吸気制御弁と,前記圧縮機本体より吐出された流体を冷却する空冷式熱交換器,及び前記熱交換器に対して冷却風を導入する,前記圧縮機本体の駆動源とは別に設けたモータによって駆動される冷却ファンを備えた圧縮機において,
    消費側に供給される圧縮気体の圧力を検知する圧力検知手段と,
    前記圧力検知手段の検知信号に基づいて,前記消費側に供給される圧縮気体の圧力を所定の無負荷運転開始圧力,及び前記無負荷運転開始圧力に対して低く設定された所定の全負荷運転復帰圧力と比較し,前記消費側に供給される圧縮気体の圧力が前記無負荷運転開始圧力に上昇したとき,前記吸気制御弁を閉じる制御信号を出力すると共に,前記全負荷運転復帰圧力に下降したとき,前記吸気制御弁を開く制御信号を出力する制御装置を設け,
    前記制御装置の前記吸気制御弁を閉じる制御信号により,前記冷却ファンを停止することなく所定の低回転数で運転すると共に,前記制御装置の前記吸気制御弁を開く制御信号により,前記冷却ファンを所定の高回転数で運転し,冷却ファンの回転の変換を二段階で行う,前記冷却ファンの回転数変換手段を備えることを特徴とする圧縮機の動力軽減装置。
  5. 前記制御装置の前記吸気制御弁を閉じる制御信号により,前記圧縮機本体の吐出側を大気開放する放気弁を設けたことを特徴とする請求項4記載の圧縮機の動力軽減装置。
  6. 前記圧縮機本体を油冷式の圧縮機本体とし,該圧縮機本体の圧縮作用空間に対して潤滑油を供給する給油回路と,前記圧縮機本体から潤滑油と共に吐出された圧縮気体を導入して圧縮気体と潤滑油とに分離するレシーバタンクと,前記圧縮機本体の吐出口とレシーバタンクとを連通する吐出回路とを備え,該吐出回路中にレシーバタンク内の圧縮気体が圧縮機本体の吐出側に逆流することを防止する逆止弁と,該逆止弁の一次側吐出回路内の潤滑油や圧縮気体を吸引して逆止弁の二次側吐出回路内に排出する回収ポンプを設け,
    前記制御装置の前記吸気制御弁を閉じる制御信号により,前記給油回路を介して前記圧縮機本体の圧縮作用空間に導入する潤滑油量を絞り,又は潤滑油の導入を停止する油量調整弁を備えることを特徴とする請求項4又は5記載の圧縮機の動力軽減装置。
JP2006312034A 2006-11-17 2006-11-17 圧縮機の動力軽減方法及び動力軽減装置 Active JP5030547B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006312034A JP5030547B2 (ja) 2006-11-17 2006-11-17 圧縮機の動力軽減方法及び動力軽減装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006312034A JP5030547B2 (ja) 2006-11-17 2006-11-17 圧縮機の動力軽減方法及び動力軽減装置

Publications (2)

Publication Number Publication Date
JP2008128052A JP2008128052A (ja) 2008-06-05
JP5030547B2 true JP5030547B2 (ja) 2012-09-19

Family

ID=39554168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006312034A Active JP5030547B2 (ja) 2006-11-17 2006-11-17 圧縮機の動力軽減方法及び動力軽減装置

Country Status (1)

Country Link
JP (1) JP5030547B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410123B2 (ja) 2009-03-13 2014-02-05 株式会社日立産機システム 空気圧縮機
JP5989072B2 (ja) * 2014-12-19 2016-09-07 株式会社日立産機システム 無給油式圧縮機及びその制御方法
JP6258422B2 (ja) * 2016-08-09 2018-01-10 株式会社日立産機システム 圧縮機及びその制御方法
JP6713439B2 (ja) * 2017-09-06 2020-06-24 株式会社日立製作所 給油式空気圧縮機
JP7461255B2 (ja) 2020-09-01 2024-04-03 北越工業株式会社 圧縮機における圧縮気体冷却方法及び圧縮気体冷却装置
CN116988983B (zh) * 2023-09-26 2024-03-19 德耐尔节能科技(上海)股份有限公司 一种移动式无油螺杆空压机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522227Y2 (ja) * 1975-02-07 1980-05-27
JPS5376412A (en) * 1976-12-20 1978-07-06 Tokico Ltd Oil cooler type compressor
JPH06213186A (ja) * 1993-01-14 1994-08-02 Hitachi Ltd 油冷式回転圧縮機の油温調整装置
JPH06213188A (ja) * 1993-01-18 1994-08-02 Kobe Steel Ltd 油冷式圧縮機
JPH08303881A (ja) * 1995-05-11 1996-11-22 Mitsubishi Heavy Ind Ltd 車両用空気調和装置
JPH08319976A (ja) * 1995-05-25 1996-12-03 Hitachi Ltd 油冷式空気圧縮機
JPH09203385A (ja) * 1996-01-24 1997-08-05 Hitachi Ltd 油冷式圧縮機
JP2000145636A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 空気圧縮機
JP3891844B2 (ja) * 2002-01-10 2007-03-14 株式会社神戸製鋼所 油冷式圧縮機

Also Published As

Publication number Publication date
JP2008128052A (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5030547B2 (ja) 圧縮機の動力軽減方法及び動力軽減装置
EP1953388B1 (en) Multistage compressor
US9897103B2 (en) Compressor
JP4627492B2 (ja) 油冷式スクリュー圧縮機
US10006681B2 (en) Pulse width modulation with discharge to suction bypass
CN101317045B (zh) 带有压力调节阀的脉宽调制系统
JP2006258397A (ja) 冷凍装置
US20090308086A1 (en) Refrigerant system with multi-speed pulse width modulated compressor
WO2015198647A1 (ja) 気体圧縮機
JP2007232230A (ja) 冷凍装置
CN113728163B (zh) 气体压缩机
JP2013164250A (ja) 冷凍装置
JP4745208B2 (ja) 無給油式スクリュー圧縮機
JP5141272B2 (ja) ターボ冷凍機
KR102018764B1 (ko) 히트 펌프 시스템 및 그 제어 방법
KR102032834B1 (ko) 고속 고효율 터보 공기압축기의 압축공기 냉각 제어방법
JP2014102008A (ja) 冷凍装置
JP6295121B2 (ja) ターボ冷凍機
JP2013164242A (ja) 冷凍装置
JP5464447B2 (ja) 液冷式圧縮機
WO2019186861A1 (ja) 気体圧縮機
KR101986805B1 (ko) 고속 고효율 터보 공기압축기의 동절기 운전제어방법
JP7461255B2 (ja) 圧縮機における圧縮気体冷却方法及び圧縮気体冷却装置
JP6271012B2 (ja) 液冷式圧縮機及びその運転方法
JPH09203385A (ja) 油冷式圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250