JP5029393B2 - Floor structure - Google Patents

Floor structure Download PDF

Info

Publication number
JP5029393B2
JP5029393B2 JP2008019101A JP2008019101A JP5029393B2 JP 5029393 B2 JP5029393 B2 JP 5029393B2 JP 2008019101 A JP2008019101 A JP 2008019101A JP 2008019101 A JP2008019101 A JP 2008019101A JP 5029393 B2 JP5029393 B2 JP 5029393B2
Authority
JP
Japan
Prior art keywords
resin
parts
layer
mass
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008019101A
Other languages
Japanese (ja)
Other versions
JP2009179989A (en
Inventor
功 河合
眞一 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2008019101A priority Critical patent/JP5029393B2/en
Publication of JP2009179989A publication Critical patent/JP2009179989A/en
Application granted granted Critical
Publication of JP5029393B2 publication Critical patent/JP5029393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Floor Finish (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、床構造体に関する。さらに詳細には、本発明は、耐据え切り性、耐加重変形性に優れた、倉庫、駐車場等の床構造体に関する。   The present invention relates to a floor structure. More specifically, the present invention relates to a floor structure such as a warehouse or a parking lot that has excellent resistance to stationary and load-resistant deformation.

土木建築物、駐車場等の床構造は、上から表面舗装層(A)、繊維強化熱硬化性樹脂層(B)、繊維強化熱硬化性樹脂層用接着剤層(C)、JISK6301での引張り伸び率が30%以上の高分子組成物層(D)(具体的には、JISA6021の屋根用防水用塗膜材であるウレタンゴム系1類及び2類、アクリルゴム系、クロロプレンゴム系、アクリル樹脂系、ゴムアスファルト系塗膜材)、基体(E)から構成するものが知られている。(特許文献1)   The floor structure of civil engineering buildings, parking lots, etc. is the surface pavement layer (A), fiber reinforced thermosetting resin layer (B), adhesive layer for fiber reinforced thermosetting resin layer (C), JISK6301 Polymer composition layer (D) having a tensile elongation of 30% or more (specifically, urethane rubber types 1 and 2 which are waterproof coating materials for roofs according to JIS A6021, acrylic rubber type, chloroprene rubber type, An acrylic resin-based or rubber asphalt-based coating material) and a substrate (E) are known. (Patent Document 1)

しかしながら、こうした床構造は、フォークリフト、大型自動車が動く前にハンドルを切るとその車加重により床面が変形、或いは、床面に亀裂が入るといった問題が生じていた。   However, such a floor structure has a problem that if the steering wheel is turned before the forklift or the large automobile moves, the floor surface is deformed due to the load of the vehicle or the floor surface is cracked.

特開05−33309号公報JP 05-33309 A

本発明の目的は、フォークリフト、大型自動車が動く前にハンドルを切っても、その車加重により床面が変形、或いは、床面に亀裂が入るといったことのない床構造体にあり、耐据え切り性、耐加重変形性に優れた、土木建築物、駐車場等の床構造体にある。   An object of the present invention is a floor structure that does not cause deformation of the floor surface or cracking of the floor surface even if the handle is cut before the forklift or large vehicle moves, It is in a floor structure such as a civil engineering building and a parking lot that is excellent in stability and load-resistant deformation.

本発明者らは、床構成をどのようにすれば本願の目的が達成される床構造体となるかについて、鋭意研究の結果、本発明を完成するに至った。
即ち、本発明は、上から
(A)表面層、
(B)繊維強化熱硬化性樹脂硬化物層、
(C)ビニルエステル樹脂(C-1)、空乾性ビニルエステル樹脂(C-2)及び重合性不飽和単量体(C-3)を含む不飽和樹脂組成物(c1)であって、前記組成物を硬化物とした際のJISK6301での引張り伸び率が30%以上である不飽和樹脂組成物(c1)と珪砂(c2)とを含む硬化物層、
(D)基体からなる床構造体であって、
硬化物層(C)の体積のうち、珪砂(c2)が25〜80体積%で、前記硬化物層(C)が荷重時変形量0.3mm以下であることを特徴とする床構造体を提供するものである。
As a result of earnest research, the inventors of the present invention have completed the present invention as to how the floor structure can be achieved by achieving the floor structure.
That is, the present invention comprises (A) a surface layer from above,
(B) a fiber reinforced thermosetting resin cured product layer,
(C) an unsaturated resin composition (c1) comprising a vinyl ester resin (C-1), an air-drying vinyl ester resin (C-2) and a polymerizable unsaturated monomer (C-3), A cured product layer comprising an unsaturated resin composition (c1) having a tensile elongation of 30% or more in JISK6301 and a silica sand (c2) when the composition is a cured product,
(D) a floor structure comprising a substrate,
A floor structure characterized in that, of the volume of the cured product layer (C), silica sand (c2) is 25 to 80% by volume, and the cured product layer (C) has a deformation amount under load of 0.3 mm or less. It is to provide.

本発明は、特定の硬化物層(C)を基体(D)と硬化物層(B)との間に設けることにより、フォークリフト、大型自動車が動く前にハンドルを切ったり、コーナー部を走行しても、その加重により床面が変形、或いは、床面に亀裂が入るといったことのない床構造体、即ち、耐据え切り性、耐加重変形性に優れた、土木建築物及び駐車場等の床構造体を得ることができる。また、硬化物層(C)が不飽和樹脂であるので、繊維強化熱硬化性樹脂硬化物層(B)を接着剤層を介することなく設けることができる。   In the present invention, a specific hardened material layer (C) is provided between the substrate (D) and the hardened material layer (B), so that a forklift or a large vehicle is turned before the handle is turned or a corner portion is run. However, the floor structure is not deformed by the load, or the floor surface is not cracked, that is, civil engineering buildings and parking lots, etc., which are excellent in upholstery resistance and load-resistant deformation resistance. A floor structure can be obtained. Moreover, since hardened | cured material layer (C) is unsaturated resin, a fiber reinforced thermosetting resin hardened | cured material layer (B) can be provided without interposing an adhesive bond layer.

本発明に用いる基本(D)とは、例えば、セメントコンクリート、アスファルトコンクリート、JIS5403(石綿スレート)、ALC板、PC板、FRP、プラスチック、木質物、金属などの単独あるいは組み合わせで構成されたもので、その形状はいずれのものでもよく、構造物の表面であれば球面、曲面、延長面、平面、斜面等いずれでも良い。通常、セメントコンクリート、アスファルトコンクリートの平面、斜面である。コンクリート、金属等の堅固な基体には、公知の下地処理、プライマー剤の塗布処理を行うのが好ましい。   The basic (D) used in the present invention is composed of, for example, cement concrete, asphalt concrete, JIS5403 (asbestos slate), ALC board, PC board, FRP, plastic, wood, metal or the like alone or in combination. The shape may be any shape, and may be a spherical surface, a curved surface, an extended surface, a flat surface, a slope, or the like as long as the surface of the structure. Usually, it is a plane or a slope of cement concrete or asphalt concrete. A solid substrate such as concrete or metal is preferably subjected to a known base treatment and primer treatment.

本発明に用いる硬化物層(C)とは、ビニルエステル樹脂(C-1)、空乾性ビニルエステル樹脂(C-2)及び重合性不飽和単量体(C-3)を含む不飽和樹脂組成物を硬化剤で硬化したものであって、前記組成物を硬化物とした際のJISK6301での引張り伸び率が30%以上である不飽和樹脂組成物(c1)と珪砂(c2)とを含むもので、硬化物層(C)の体積のうち、珪砂(c2)が25〜80体積%で、前記硬化物層(C)が荷重時変形量0.3mm以下のものである。硬化物層(C)の体積のうち珪砂(c2)占める体積%は、25〜80体積%であるが、この範囲から外れると、荷重変形量が増えて耐据え切り性が悪くなる。好ましくは35〜70体積%である。硬化物層(C)の厚みは、1〜10mmが好ましい。本発明では前記不飽和樹脂組成物(c1)を硬化物とした際のJISK6301での引張り伸び率が30%以上であるが、好ましくは100〜260%である。   The cured product layer (C) used in the present invention is an unsaturated resin containing a vinyl ester resin (C-1), an air-drying vinyl ester resin (C-2), and a polymerizable unsaturated monomer (C-3). An unsaturated resin composition (c1) and silica sand (c2) having a tensile elongation of 30% or more according to JISK6301 when the composition is cured with a curing agent. In the volume of the cured product layer (C), the silica sand (c2) is 25 to 80% by volume, and the cured product layer (C) has a deformation amount of 0.3 mm or less under load. The volume% occupied by the silica sand (c2) in the volume of the cured product layer (C2) is 25 to 80% by volume. However, if it is out of this range, the amount of load deformation increases and the stationary resistance deteriorates. Preferably it is 35-70 volume%. The thickness of the cured product layer (C) is preferably 1 to 10 mm. In the present invention, the tensile elongation rate according to JISK6301 when the unsaturated resin composition (c1) is a cured product is 30% or more, preferably 100 to 260%.

前記荷重変形量とは、基体(セメントコンクリート板、アスファルト板)に不飽和樹脂組成物を厚み1.7mm、3.4mmの二水準で塗布硬化(硬化方法記載)し、室温で1週間の養生を行った試験板を用いて、スプリング式によるプロクター貫入試験器(株式会社 丸東製作所製、JIS A 6204に規定されている試験方法で利用される。)を用い、直径4mmのニードルに荷重10kgf(自重含む)をかけることによって荷重80kgf/cm2を与え、沈み込んだニードルの深さを荷重変形量とした。 The amount of load deformation refers to applying and curing an unsaturated resin composition to a substrate (cement concrete board, asphalt board) at two levels of 1.7 mm and 3.4 mm in thickness (described in the curing method) and curing at room temperature for 1 week. A tester penetration tester using a spring type (manufactured by Maruto Seisakusho Co., Ltd., used in the test method specified in JIS A 6204) is used, and a load of 10 kgf (self-weight) is applied to a needle having a diameter of 4 mm. including) applying a load 80 kgf / cm 2 by applying a, the depth of the sunken needles and the load deformation amount.

前記ビニルエステル樹脂(C-1)とは、例えば、不飽和ポリエステル(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂およびこれらの混合物が挙げられる。   Examples of the vinyl ester resin (C-1) include unsaturated polyester (meth) acrylate resins, epoxy (meth) acrylate resins, urethane (meth) acrylate resins, and mixtures thereof.

不飽和ポリエステル(メタ)アクリレート樹脂とは、飽和二塩基酸と多価アルコールとの縮合反応で得られる飽和ポリエステルと(メタ)アクリレート化合物とから得られるものと、α、β−不飽和二塩基酸を含む二塩基酸と多価アルコールとの縮合で得られる不飽和ポリエステルと(メタ)アクリル化合物とから得られるものがある。   The unsaturated polyester (meth) acrylate resin is obtained from a saturated polyester obtained by a condensation reaction of a saturated dibasic acid and a polyhydric alcohol and a (meth) acrylate compound, and an α, β-unsaturated dibasic acid. There are those obtained from an unsaturated polyester obtained by condensation of a dibasic acid containing polyhydric alcohol and a (meth) acrylic compound.

前記飽和二塩基酸とは、例えば、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12−ドデカンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸無水物、4,4‘−ビフェニルジカルボン酸、またはこれらのジアルキルエステル等を挙げることができる。   Examples of the saturated dibasic acid include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydro Terephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3 -Naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4'-biphenyldicarboxylic acid, or dialkyl esters thereof.

前記多価アルコールとは、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、2−メチル−1,3−プロパンジオール、1,3−ブタンジオール、ネオペンチルグリコール、水素化ビスフェノールA、1,4−ブタンジオール、1,6−ヘキサンジオール等を挙げることができる。   Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3- Examples include butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, and the like.

前記不飽和二塩基酸としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を挙げることができる。   Examples of the unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like.

前記(メタ)アクリル化合物としては、不飽和グリシジル化合物、アクリル酸またはメタクリル酸の如き各種の不飽和一塩基酸、及びそのグリシジルエステル類等である。これらのうち、グリシジル(メタ)アクリレートが好ましい。   Examples of the (meth) acrylic compound include unsaturated glycidyl compounds, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof. Of these, glycidyl (meth) acrylate is preferred.

前記エポキシ(メタ)アクリレート樹脂とは、エポキシ樹脂と(メタ)アクリロリル基を有するカルボン酸とを反応させて得られるものであり、例えばビスフェノールタイプのエポキシ樹脂と(メタ)アクリロリル基を有するカルボン酸とを反応させたもの、ノボラックタイプのエポキシ樹脂と(メタ)アクリロリル基を有するカルボン酸とを反応させたものがある。   The epoxy (meth) acrylate resin is obtained by reacting an epoxy resin with a carboxylic acid having a (meth) acrylol group, for example, a bisphenol type epoxy resin and a carboxylic acid having a (meth) acrylol group; And a reaction of a novolac type epoxy resin with a carboxylic acid having a (meth) acrylolyl group.

前記ビスフェノールタイプのエポキシ樹脂としては、例えばエピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られる実質的に1分子中に2個以上のエポキシ基を有するグリシジルエーテル型のエポキシ樹脂、メチルエピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られるジメチルグリシジルエーテル型のエポキシ樹脂、あるいはビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリン若しくはメチルエピクロルヒドリンとから得られるエポキシ樹脂などが挙げられる。   Examples of the bisphenol type epoxy resin include a glycidyl ether type epoxy resin having substantially two or more epoxy groups in one molecule obtained by reaction of epichlorohydrin and bisphenol A or bisphenol F, methyl epichlorohydrin and bisphenol A, for example. Or the dimethyl glycidyl ether type epoxy resin obtained by reaction with bisphenol F, the epoxy resin obtained from the alkylene oxide adduct of bisphenol A, and epichlorohydrin or methyl epichlorohydrin, etc. are mentioned.

また、前記ノボラックタイプのエポキシ樹脂としては、例えばノボラック型フェノール樹脂又はノボラック型クレゾール樹脂とエピクロルヒドリン又はメチルエピクロルヒドリンとの反応により得られるエポキシ樹脂などが挙げられる。   Examples of the novolac type epoxy resin include an epoxy resin obtained by a reaction of a novolac type phenol resin or a novolac type cresol resin with epichlorohydrin or methyl epichlorohydrin.

前記の不飽和一塩基酸としては、例えばアクリル酸、メタクリル酸、桂皮酸、クロトン酸、モノメチルマレート、モノブテンマレート、ソルビン酸またはモノ(2−エチルヘキシル)マレート等が挙げられ、これらを単独又は2種以上を併用して用いられる。   Examples of the unsaturated monobasic acid include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl malate, monobutene malate, sorbic acid, mono (2-ethylhexyl) malate, and the like. Alternatively, two or more kinds are used in combination.

本発明のウレタン(メタ)アクリレート樹脂とは、ビニルウレタン樹脂とも呼ばれ、ポリオール、イソシアネート、および水酸基含有(メタ)アクリレートとを原料とするウレタン(メタ)アクリレートのオリゴマーである。   The urethane (meth) acrylate resin of the present invention is also called a vinyl urethane resin and is an oligomer of urethane (meth) acrylate using a polyol, an isocyanate, and a hydroxyl group-containing (meth) acrylate as raw materials.

かかるウレタン(メタ)アクリレート樹脂は、ポリオールとイソシアネートとを反応させて、末端イソシアネート基含有プレポリマーを得、次いでこれに水酸基含有(メタ)アクリレートを反応させて得ることができる。   Such a urethane (meth) acrylate resin can be obtained by reacting a polyol and an isocyanate to obtain a terminal isocyanate group-containing prepolymer, and then reacting this with a hydroxyl group-containing (meth) acrylate.

前記ポリオールとしては、ポリエーテルポリオールおよびポリエステルポリオール等が挙げられる。かかるポリエーテルポリオールとしては、例えばポリオキシプロピレンジオール、ポリテトラメチレングリコールエーテル、ポリオキシエチレンジオール等が挙げられ、またポリエステルポリオールとしては、二塩基酸又はその酸無水物と多価アルコール類との重縮合物が挙げられる。   Examples of the polyol include polyether polyol and polyester polyol. Examples of such polyether polyols include polyoxypropylene diol, polytetramethylene glycol ether, and polyoxyethylene diol. Polyester polyols include dibasic acids or their anhydrides and polyhydric alcohols. A condensate is mentioned.

かかる二塩基酸又はその酸無水物としては、例えばフタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロ無水フタル酸等が挙げられ、これらを単独または2種以上を併用して用いられる。   Examples of such dibasic acids or acid anhydrides thereof include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, nitrophthalic acid, tetrahydrophthalic anhydride, etc., and these may be used alone or in combination of two or more. It is done.

前記多価アルコールとしては、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2−メチルプロパンー1,3−ジオール、ネオペンチルグリコール、トリエチレングリコール、テトラエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール等が挙げられ、これらを単独または2種以上を併用して用いられる。   Examples of the polyhydric alcohol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 2-methylpropane-1,3-diol, neopentyl glycol, Examples include ethylene glycol, tetraethylene glycol, 1,5-pentanediol, 1,6-hexanediol, and the like. These may be used alone or in combination of two or more.

次に前記イソシアネートとしては、例えば2,4−トリレンジイソシアネートおよびその異性体又は異性体の混合物、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、水添キシレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリジンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート等のポリイソシアネートが挙げられる。これらのポリイソシアネートのうち、ジイソシアネートが好ましい。これらを単独又は2種以上併用して用いることができる。   Next, examples of the isocyanate include 2,4-tolylene diisocyanate and its isomer or a mixture of isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylene diisocyanate, dicyclohexylmethane diisocyanate, and tolidine diisocyanate. And polyisocyanates such as naphthalene diisocyanate and triphenylmethane triisocyanate. Of these polyisocyanates, diisocyanates are preferred. These can be used alone or in combination of two or more.

また前記した水酸基含有(メタ)アクリレート類としては、例えばヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等が挙げられ、これらを単独または2種以上を併用して用いられる。   Examples of the hydroxyl group-containing (meth) acrylates described above include hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate, and these are used alone or in combination of two or more.

前記不飽和樹脂組成物(c1)には、樹脂成分として空乾性ビニルエステル樹脂(C-2)を併用する。その際、併用する量は、好ましくは50重量%以下である。不揮発分(樹脂固形分)は、好ましくは50〜80重量%である。これを外れると効果が十分ではない。   An air-drying vinyl ester resin (C-2) is used in combination with the unsaturated resin composition (c1) as a resin component. In this case, the amount used in combination is preferably 50% by weight or less. The non-volatile content (resin solid content) is preferably 50 to 80% by weight. If it deviates from this, the effect is not sufficient.

前記空乾性ビニルエステル樹脂(C-2)とは、前記のビニルエステル樹脂(C-1)に空乾性成分を導入した重合体である。空乾性成分は、次の公知のものが挙げられる。
(1)グリコール成分に、-0-CH2-CH=CH2 で示されるアリルエーテル基を含有する化合物を併用する。
(2)酸成分に環状脂肪族不飽和多塩基酸及びその誘導体を含有する化合物を併用する。
(3)ジシクロペンタジエンを含有する化合物を併用する。
(4)乾性油、エポキシ反応性希釈剤を併用する。
The air-drying vinyl ester resin (C-2) is a polymer obtained by introducing an air-drying component into the vinyl ester resin (C-1). Examples of the air-drying component include the following known components.
(1) A compound containing an allyl ether group represented by -0-CH 2 -CH = CH 2 is used in combination with the glycol component.
(2) A compound containing a cycloaliphatic unsaturated polybasic acid and a derivative thereof is used in combination with the acid component.
(3) A compound containing dicyclopentadiene is used in combination.
(4) A drying oil and an epoxy reactive diluent are used in combination.

ビニルエステル樹脂(C-1)と空乾性ビニルエステル樹脂(C-2)の混合比率は、(C-1)/(C-2)の重量比率が、(C-1):(C-2)=99:1〜50:50(重量部)であることが好ましい。(C-2)成分が50より多い場合、樹脂硬化物の引っ張り強度、引き裂き強度、耐水性、耐湿熱性等の特性が悪くなる。   The mixing ratio of vinyl ester resin (C-1) and air-drying vinyl ester resin (C-2) is (C-1) :( C-2) ) = 99: 1 to 50:50 (parts by weight) is preferable. When the component (C-2) is more than 50, the cured resin has poor properties such as tensile strength, tear strength, water resistance, and moist heat resistance.

前記重合性不飽和単量体(C-3)とは、主成分としてアクリル酸エステル、メタクリル酸エステル等のアクリル系不飽和単量体であり、樹脂と架橋可能なアクリル系不飽和単量体或いはアクリル系不飽和オリゴマー等が挙げられる。不飽和ポリエステル樹脂で用いられるスチレンモノマーは、臭気のため使用しないほうが良い。しかし、本発明の効果を損なわない程度併用することは可能である。スチレンモノマーの使用量は、樹脂(c1)固形分100重量部に対して好ましくは30重量部以下用いることができる。   The polymerizable unsaturated monomer (C-3) is an acrylic unsaturated monomer such as an acrylic ester or a methacrylic ester as a main component, and an acrylic unsaturated monomer that can be cross-linked with a resin. Or an acrylic unsaturated oligomer etc. are mentioned. The styrene monomer used in the unsaturated polyester resin should not be used because of odor. However, it can be used in combination so long as the effects of the present invention are not impaired. The amount of the styrene monomer used is preferably 30 parts by weight or less with respect to 100 parts by weight of the solid content of the resin (c1).

前記珪砂(c2)とは、主に石英粒からなる砂で、花崗岩(かこうがん)などの風化で生じるもので、珪石(ガラス・陶磁器・セメント・煉瓦(れんが)などの原料となる珪酸質の岩石の自然破砕物で、白珪石・軟珪石・炉材珪石などを粉砕した人工珪砂もある。本発明においても、天然、人工を問わない。粒径についても特に限定するものではないが、公知慣用の分級機、例えば株式会社マルイ製電磁式フルイ振とう機 [ハイシーブ]を用いて該珪砂200gを10分間にわたって連続で振動を与えて篩い分けた結果から得られる篩下の積算曲線において80%に該当する粒径が0.2〜2.0mmである珪砂が好ましい。
粒度範囲別に分けて流通している珪砂は、ある粒度範囲で規定されている珪砂単独での使用も、異なる粒径範囲を持つ複数珪砂での使用も可能である。珪砂の粒径が大きいと硬化物層(C)の配合から、塗装作業性が良くなる方向であり、骨材配合比率を増やすことが可能になるので変形量低減に有効だが材料の分離(骨材の沈降)が生じやすくなる。逆に粒径が小さいと材料の分離(骨材の沈降)は生じにくくなるが硬化物層(C)の配合の塗装作業性が低下する。これら相反する傾向を両立するには異なる粒径範囲を持つ複数珪砂の組み合わせがより好ましい。
Silica sand (c2) is mainly composed of quartz grains and is generated by weathering of granite, etc., and is a siliceous material that is used as a raw material for silica (glass, ceramics, cement, brick) There is also artificial quartz sand that is crushed white rock, soft silica, furnace quartz, etc., regardless of whether it is natural or artificial in the present invention. In an integrated curve under the sieve obtained from the result of sieving 200 g of the silica sand continuously by applying vibration for 10 minutes using a known classifier such as an electromagnetic sieve shaker manufactured by Marui Co., Ltd. [High Sieve]. Silica sand whose particle size corresponding to% is 0.2 to 2.0 mm is preferred.
Silica sand distributed according to particle size range can be used alone or in a plurality of silica sands having different particle size ranges. When the particle size of silica sand is large, the composition of the hardened material layer (C) tends to improve the paint workability, and the aggregate blending ratio can be increased. Sedimentation of the material is likely to occur. Conversely, if the particle size is small, material separation (aggregation of aggregates) is less likely to occur, but the coating workability of blending the cured product layer (C) decreases. A combination of a plurality of silica sands having different particle size ranges is more preferable in order to achieve both of these conflicting tendencies.

かかる珪砂は絶乾状態での使用が好ましい。含水率が高くなると不飽和樹脂組成物の硬化に阻害を与える傾向を示す。   Such silica sand is preferably used in an absolutely dry state. When the water content increases, the tendency of inhibiting the curing of the unsaturated resin composition is exhibited.

前記樹脂組成物は、硬化を速めるために硬化剤を含有することが好ましく、硬化剤としては有機過酸化物が挙げられる。有機過酸化物の具体例としては、ジアシルパーオキサイド系、パーオキシエステル系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等公知のものが挙げられる。さらに、光硬化剤、紫外線硬化剤、熱硬化剤等の公知の硬化剤が単独或いは併用して使用できる。   The resin composition preferably contains a curing agent in order to accelerate curing, and examples of the curing agent include organic peroxides. Specific examples of organic peroxides include diacyl peroxides, peroxyesters, hydroperoxides, dialkyl peroxides, ketone peroxides, peroxyketals, alkyl peresters, and carbonates. Can be mentioned. Furthermore, known curing agents such as a photocuring agent, an ultraviolet curing agent, and a thermosetting agent can be used alone or in combination.

硬化剤の添加量は、好ましくはビニルエステル樹脂(C-1)と空乾性ビニルエステル樹脂(C-2)と重合性不飽和単量体(C-3)との合計量100重量部に対して、0.1〜6重量部である。上記硬化剤は、2種以上組み合わせて使用しても良い。   The addition amount of the curing agent is preferably 100 parts by weight of the total amount of the vinyl ester resin (C-1), the air-drying vinyl ester resin (C-2) and the polymerizable unsaturated monomer (C-3). And 0.1 to 6 parts by weight. You may use the said hardening | curing agent in combination of 2 or more types.

前記不飽和樹脂組成物(c1)には、硬化促進剤を含有させることも好ましく、硬化促進剤としては、金属石鹸類、例えばナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛等が挙げられ、金属キレート化合物としては、バナジウムアセチルアセテート、コバルトアセチルアセテートがある。またアミン類にはアニリン、N,N−ジメチルアニリン等公知のものが挙げられる。   The unsaturated resin composition (c1) preferably contains a curing accelerator, and examples of the curing accelerator include metal soaps such as cobalt naphthenate, cobalt octylate, and zinc octylate. Examples of chelate compounds include vanadium acetyl acetate and cobalt acetyl acetate. Examples of amines include known ones such as aniline and N, N-dimethylaniline.

硬化促進剤の添加量は、樹脂固形分100重量部に対して好ましくは0.1〜5重量部使用する。本発明においては、アミン系促進剤が好ましい。なお、硬化促進剤は、予め樹脂組成物に添加しておいても良いし、使用時に添加しても良い。   The addition amount of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the resin solid content. In the present invention, an amine accelerator is preferred. The curing accelerator may be added to the resin composition in advance or may be added at the time of use.

前記不飽和樹脂組成物(c1)には、重合禁止剤を添加するのが好ましく、該重合禁止剤としては、トリハイドロベンゼン、ハイドロキノン、1,4−ナフトキノン、パラベンゾキノン、トルハイドロキノン、ハイドロキノンモノメチルエーテル、p−tert−ブチルカテコール、2,6−tert−ブチル−4−メチルフェノール等が挙げられる。その使用量は、組成物中10〜1000ppmが好ましい。   A polymerization inhibitor is preferably added to the unsaturated resin composition (c1). Examples of the polymerization inhibitor include trihydrobenzene, hydroquinone, 1,4-naphthoquinone, parabenzoquinone, toluhydroquinone, hydroquinone monomethyl ether. , P-tert-butylcatechol, 2,6-tert-butyl-4-methylphenol, and the like. The amount used is preferably 10 to 1000 ppm in the composition.

前記不飽和樹脂組成物(c1)には、樹脂表面の空気硬化性を向上させるため、ワックスを添加することが好ましい。該ワックスとしては、パラフィンワックスかつ/または、極性ワックスを単独、あるいは、併用する事ができ、この極性ワックスとしては、その構造中に極性基並びに非極性基を合わせ持つもので、具体的には、エマノーン3199、3299(花王(株)製)、リケマールS−71−D、S−200(理研ビタミン(株)製)、NPS−8070、NPS−9125、OX−WEISSEN−8(日本精蝋(株)製)、ダイヤカルナPA−30(三菱化学製)といった化合物等が挙げられる。   It is preferable to add a wax to the unsaturated resin composition (c1) in order to improve the air curability of the resin surface. As the wax, paraffin wax and / or polar wax can be used alone or in combination. This polar wax has both a polar group and a nonpolar group in its structure. Specifically, , Emanon 3199, 3299 (manufactured by Kao Corporation), Riquemar S-71-D, S-200 (manufactured by Riken Vitamin Co., Ltd.), NPS-8070, NPS-9125, OX-WEISSEN-8 (Nihon Seiwa ( Co., Ltd.) and Diacarna PA-30 (Mitsubishi Chemical).

このワックスの添加量としては、ビニルエステル樹脂(C-1)と空乾性ビニルエステル樹脂(C-2)と重合性不飽和単量体(C-3)との合計量100重量部に対して0.1〜5重量部、好ましくは0.2〜2.0重量部使用する。   The amount of the wax added is 100 parts by weight based on the total amount of the vinyl ester resin (C-1), the air-drying vinyl ester resin (C-2) and the polymerizable unsaturated monomer (C-3). 0.1 to 5 parts by weight, preferably 0.2 to 2.0 parts by weight are used.

前記の繊維強化熱硬化性樹脂硬化物層(B)は、前記のビニルエステル樹脂(C-1)と重合性不飽和単量体(C-3)とからなる不飽和樹脂組成物、或いは不飽和ポリエステルと重合性不飽和単量体とからなる不飽和樹脂組成物をマットあるいはシート状ガラス繊維強化材に含浸して硬化させて形成される。その厚みは好ましくは1〜3mmである。   The fiber reinforced thermosetting resin cured layer (B) is an unsaturated resin composition comprising the vinyl ester resin (C-1) and a polymerizable unsaturated monomer (C-3), or It is formed by impregnating a mat or sheet-like glass fiber reinforcing material with an unsaturated resin composition comprising a saturated polyester and a polymerizable unsaturated monomer and curing it. The thickness is preferably 1 to 3 mm.

前記表面層(A)とは、不飽和樹脂系の常温硬化塗料や、常温硬化性塗料、常温乾燥性塗料等のアクリルウレタン、アクリルシリコン系塗料を塗布することにより形成されるものである。その厚みは、好ましくは0.1〜0.5mmである。   The surface layer (A) is formed by applying an acrylic resin such as an unsaturated resin type room temperature curable paint, a room temperature curable paint, or a room temperature dry paint, or an acrylic silicon paint. The thickness is preferably 0.1 to 0.5 mm.

本発明の床構造体は、土木建築物の基体(D)へ施工することで得られ、その方法としては、基体にプライマー材を塗布量0.02〜0.5kg/m塗布することが好ましく、より好ましくは0.05〜0.25kg/mである。塗布方法としては、刷毛、ローラなどで土木建築物基体に均一に塗布することが好ましい。この基体とは、既存の樹脂塗布床、コンクリート等であり、好ましくはセメントコンクリートである。基体は、床以外の、壁、柱等の土木建築物を構成するものであってもよい。 The floor structure of the present invention can be obtained by applying to a base (D) of a civil engineering building. As the method, a primer material is applied to the base in an application amount of 0.02 to 0.5 kg / m 2. Preferably, it is 0.05 to 0.25 kg / m 2 . As a coating method, it is preferable that the coating is uniformly applied to the civil engineering building base with a brush, a roller, or the like. The base is an existing resin-coated floor, concrete, or the like, and preferably cement concrete. The base may constitute a civil engineering building such as a wall or a pillar other than the floor.

本発明の床構造体は、前記不飽和樹脂組成物(c1)と珪砂(c2)とを施工現場で混合物とし、好ましくはプライマー層を介して基体上に1〜15kg/mレーキ等で塗布して硬化物層(C)を設け、ついでその上に、ガラス繊維強化材を敷設して前記不飽和樹脂組成物を塗布含浸硬化して繊維強化熱硬化性樹脂硬化物層(B)を形成する。さらに、この上に表面層(A)を施工することで得られる。 In the floor structure of the present invention, the unsaturated resin composition (c1) and the silica sand (c2) are mixed at the construction site, and preferably applied to the substrate at 1 to 15 kg / m 2 rake or the like via a primer layer. Then, a cured product layer (C) is provided, and then a glass fiber reinforcing material is laid thereon, and the unsaturated resin composition is applied and impregnated and cured to form a fiber reinforced thermosetting resin cured product layer (B). To do. Furthermore, it is obtained by constructing the surface layer (A) thereon.

以下に実施例を示すが、文中「部」、「%」等は断りのない限り「質量部」、「質量%」を意味するものである。   Examples are shown below. In the text, “parts”, “%” and the like mean “parts by mass” and “% by mass” unless otherwise specified.

(荷重変形量)
荷重変形量の測定方法は、基体(D)(セメントコンクリート板、アスファルト板)に組成物(c1)と珪砂(c2)の混合物を厚み1.7mm、3.4mmの二水準で塗布硬化(実施例に硬化方法記載)し硬化物層(C)を形成し、室温で1週間の養生を行った試験板を用いて、スプリング式によるプロクター貫入試験器(株式会社 丸東製作所製、JIS A 6204に規定されている試験方法で利用される。)を用いて直径4mmのニードルを用いて荷重10kgf(自重含む)をかけることによって荷重80kgf/cm2を与え、沈み込んだニードルの深さを変形量として求めた。
(Load deformation)
The load deformation amount is measured by applying a mixture of the composition (c1) and silica sand (c2) to the substrate (D) (cement concrete board, asphalt board) at two levels of thickness 1.7 mm and 3.4 mm (in the examples) Using a test plate that has been cured for 1 week at room temperature, using a spring-type Procter penetration tester (manufactured by Maruto Manufacturing Co., Ltd., JIS A 6204) Is applied using a needle having a diameter of 4 mm and a load of 80 kgf / cm 2 is applied by applying a load of 10 kgf (including its own weight), and the depth of the submerged needle is taken as the amount of deformation. Asked.

(据え切り試験)
据切り試験は、基体(D)(セメントコンクリート板、アスファルト板)にプライマー、硬化物層(C)、繊維強化熱硬化性樹脂硬化物層(B)として不飽和ポリエステル樹脂/ガラスマット=72/28質量部を設けた構造体に、ウレタンゴムソリッドタイヤで荷重80kgf/cm2を構造体の上からかけながら、毎分50回転で据え切った結果を示した。
(Stationary test)
In the stationary test, the substrate (D) (cement concrete board, asphalt board) was coated with a primer, a cured product layer (C), and a fiber reinforced thermosetting resin cured product layer (B). The results are shown in which a structure having 28 parts by mass was mounted at 50 revolutions per minute while applying a load of 80 kgf / cm 2 from above the structure with a urethane rubber solid tire.

合成例1<プライマーの調製>
温度計、撹拌機、不活性ガス導入口、及び還流冷却器を備えた四つ口フラスコにミリオネートMR−200(日本ポリウレタン (株)製:クルードMDI)300質量部、ポリプロピレングリコール(分子量700、水酸基当量350)210質量部、乾燥したトルエン474質量部、乾燥した酢酸エチル474質量部を仕込み80℃で5時間反応を行い湿気硬化型ウレタン プライマー溶液(p−1)を得た。溶液の性状は、外観:褐色液体、遊離NCO%:5.2(固形分あたり:14.8)、固形分:35%であった。
Synthesis Example 1 <Preparation of Primer>
In a four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser, 300 parts by mass of Millionate MR-200 (manufactured by Nippon Polyurethane Co., Ltd .: Crude MDI), polypropylene glycol (molecular weight 700, hydroxyl group) Equivalent 350) 210 parts by mass, dried toluene 474 parts by mass, and dried ethyl acetate 474 parts by mass were reacted at 80 ° C. for 5 hours to obtain a moisture curable urethane primer solution (p-1). The properties of the solution were appearance: brown liquid, free NCO%: 5.2 (per solid content: 14.8), solid content: 35%.

合成例2<不飽和樹脂組成物(c1)>
温度計、撹拌機、不活性ガス導入口、及び還流冷却器を備えた四つ口フラスコに、三井ポリオールジオール700(三井化学(株)製)を283質量部、TDI(トリレンジイソシアネート)を144質量部仕込み、窒素雰囲気中80℃に保持し、5時間反応後理論NCO当量516を確認した。30℃まで冷却し、2−ヒドロキシエチルメタアクリレートを109質量部仕込み、80℃で4時間反応し、NCO%が0.1質量%以下になったところでメタクリル酸メチル358質量部、トルハイドロキノン0.08質量部、ターシャリブチルカテコール0.026質量部、ジメチルアニリン0.1質量部、6%ナフテン酸コバルトの0.4質量部を加え、不揮発分60.0%の樹脂組成物p−2を得た。
Synthesis Example 2 <Unsaturated Resin Composition (c1)>
In a four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser, 283 parts by mass of Mitsui Polyoldiol 700 (manufactured by Mitsui Chemicals) and 144 of TDI (tolylene diisocyanate) A mass part was charged and maintained at 80 ° C. in a nitrogen atmosphere, and a theoretical NCO equivalent 516 was confirmed after reaction for 5 hours. The mixture was cooled to 30 ° C., charged with 109 parts by mass of 2-hydroxyethyl methacrylate, reacted at 80 ° C. for 4 hours, and when NCO% became 0.1% by mass or less, 358 parts by mass of methyl methacrylate, 0. 08 parts by mass, 0.026 parts by mass of tertiary butylcatechol, 0.1 part by mass of dimethylaniline, 0.4 parts by mass of 6% cobalt naphthenate were added, and a resin composition p-2 having a nonvolatile content of 60.0% was added. Obtained.

合成例3<不飽和樹脂組成物(c1)>
温度計、撹拌機、不活性ガス導入口、及び還流冷却器を備えた2リットルの四つ口フラスコに、ネオペンチルグリコール208質量部、2−メチル−1,3−プロパンジオール270質量部、アジピン酸292質量部、ヘキサヒドロ無水フタル酸308質量部、無水マレイン酸196質量部、モノブチルチンオキサイド0.255質量部を仕込み、窒素雰囲気中205℃まで昇温し、4時間反応し、70%メタクリル酸メチル溶液が酸価60.8になったところで、110℃まで冷却した。これに、トルハイドロキノン0.178質量部、2−メチルイミダゾール0.295質量部、グリシジルメタアクリレート273質量部を加え、110℃で8時間反応後、メタクリル酸メチル871質量部、アクリル酸ブチル100質量部、トルハイドロキノン0.1質量部、ジメチルアニリン0.1質量部、6%ナフテン酸コバルトの0.4質量部を加え、不揮発分60.0%、酸価1.2の樹脂組成物p−3を得た。
Synthesis Example 3 <Unsaturated Resin Composition (c1)>
In a 2-liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser, 208 parts by mass of neopentyl glycol, 270 parts by mass of 2-methyl-1,3-propanediol, adipine 292 parts by weight of acid, 308 parts by weight of hexahydrophthalic anhydride, 196 parts by weight of maleic anhydride and 0.255 parts by weight of monobutyltin oxide were heated to 205 ° C. in a nitrogen atmosphere, reacted for 4 hours, and 70% methacrylic. When the acid methyl solution reached an acid value of 60.8, it was cooled to 110 ° C. To this, 0.178 parts by mass of tolhydroquinone, 0.295 parts by mass of 2-methylimidazole, and 273 parts by mass of glycidyl methacrylate were reacted at 110 ° C. for 8 hours, and then 871 parts by mass of methyl methacrylate and 100 parts by mass of butyl acrylate. Part, 0.1 part by weight of tolhydroquinone, 0.1 part by weight of dimethylaniline, 0.4 part by weight of 6% cobalt naphthenate, and a resin composition p- having a nonvolatile content of 60.0% and an acid value of 1.2. 3 was obtained.

合成例4<不飽和樹脂組成物(c1)>
グリセリン1.33モル、アマニ油0.67モルを180〜200℃で4時間反応させアルコリシスを得た。次にジエチレングリコール4モル、ジプロピレングリコール4モル、フマル酸5.0 モル、無水フタル酸5.0モル、トルハイドロキノン0.1質量部、ジメチルアニリン0.1質量部、6%ナフテン酸コバルトの0.4質量部を公知の条件で加熱脱水縮合させて酸価25の樹脂組成物p−4を得た。
Synthesis Example 4 <Unsaturated Resin Composition (c1)>
Alcolysis was obtained by reacting 1.33 mol of glycerin and 0.67 mol of linseed oil at 180 to 200 ° C. for 4 hours. Next, 4 mol of diethylene glycol, 4 mol of dipropylene glycol, 5.0 mol of fumaric acid, 5.0 mol of phthalic anhydride, 0.1 part by mass of toluhydroquinone, 0.1 part by mass of dimethylaniline, 0% of 6% cobalt naphthenate The resin composition p-4 having an acid value of 25 was obtained by subjecting 4 parts by mass to heat dehydration condensation under known conditions.

合成例5<不飽和樹脂組成物(c1)>
温度計、攪拌機、不活性ガス導入口、及び還流冷却器を備えた四つ口フラスコにメチルテトラヒドロ無水フタル酸を332部仕込み、ネオアリルP−30(ペンタエリスリトールトリアリルエーテル、ダイソー社製)を512質量部加え発熱を抑制しながら150℃で3時間反応した。酸価が理論値とほぼ同じ67となった段階で120℃迄冷却し、メタクリル酸グリシジルを143質量部加え、空気/窒素=1/1吹き込み雰囲気下で5時間反応した。酸価が3以下となった時点で、ハイドロキノン0.067質量部、ターシャルブチルカテコール0.033質量部、メタクリル酸メチル658質量部、ジメチルアニリン0.1質量部、6%ナフテン酸コバルトの0.5質量部を加え、樹脂組成物p−5を得た。
Synthesis Example 5 <Unsaturated resin composition (c1)>
A four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 332 parts of methyltetrahydrophthalic anhydride, and Neoallyl P-30 (pentaerythritol triallyl ether, manufactured by Daiso Corporation) 512 The reaction was carried out at 150 ° C. for 3 hours while adding part by mass and suppressing heat generation. When the acid value reached 67, which was almost the same as the theoretical value, the mixture was cooled to 120 ° C., 143 parts by mass of glycidyl methacrylate was added, and the reaction was carried out for 5 hours in an atmosphere of air / nitrogen = 1/1. When the acid value became 3 or less, 0.067 parts by mass of hydroquinone, 0.033 parts by mass of tertiary butylcatechol, 658 parts by mass of methyl methacrylate, 0.1 parts by mass of dimethylaniline, 0% of 6% cobalt naphthenate .5 parts by mass was added to obtain a resin composition p-5.

合成例6<比較用ウレタン樹脂>
ポリオキシプロピレントリオール(平均分子量;3000)の8.9質量部と、ポリオキシプロピレンジオール(平均分子量;3000)の80.0質量部と、トリレンジイソシアネート(2,4−異性体80質量%)の11.1質量部とを反応させ(NCO/OHモル比=2.05)、NCO基含有率2.7質量%のイソシアネート基末端ポリウレタンプレポリマーであるp−6−1を得た。
また、粗MBOCA(メチレンビスオルソアニリン2核体含有量60.13質量%)の8.2質量部に、フタル酸ジオクチルの28.5質量部と、炭酸カルシウムの60質量部と、顔料ペーストの3質量部と、オクチル酸(鉛含有量24質量%)の0.3質量部とを加えて混合し硬化剤組成物p−6−2を得た。
Synthesis Example 6 <Urethane resin for comparison>
8.9 parts by mass of polyoxypropylene triol (average molecular weight; 3000), 80.0 parts by mass of polyoxypropylene diol (average molecular weight; 3000), and tolylene diisocyanate (2,4-isomer 80% by mass) Of p-6-1, which is an isocyanate group-terminated polyurethane prepolymer having an NCO group content of 2.7% by mass, was reacted with 11.1 parts by mass of (NCO / OH molar ratio = 2.05).
In addition, 8.2 parts by mass of crude MBOCA (methylenebisorthoaniline dinuclear content 60.13% by mass), 28.5 parts by mass of dioctyl phthalate, 60 parts by mass of calcium carbonate, and pigment paste 3 parts by mass and 0.3 part by mass of octylic acid (lead content: 24% by mass) were added and mixed to obtain a curing agent composition p-6-2.

合成例7<繊維強化熱硬化性樹脂(B)>
オルソフタル酸の1037部、無水マレイン酸の294質量部、ジエチレングリコールの318質量部およびトリエチレングリコールの1050質量部と、トルハイドロキノン0.135質量部とを、200〜220℃で加熱縮合せしめて、二重結合力価が838なる、不飽和ポリエステルを調製した。得られた樹脂の67質量部に対し、スチレン33質量部、6%ナフテン酸コバルトの0.4質量部と、DMA(ジメチルアニリン)の0.1質量部を加え、積層用樹脂p−7を得た。
Synthesis Example 7 <Fiber reinforced thermosetting resin (B)>
1037 parts of orthophthalic acid, 294 parts by weight of maleic anhydride, 318 parts by weight of diethylene glycol and 1050 parts by weight of triethylene glycol and 0.135 parts by weight of toluhydroquinone were heated and condensed at 200 to 220 ° C. An unsaturated polyester having a heavy bond titer of 838 was prepared. With respect to 67 parts by mass of the obtained resin, 33 parts by mass of styrene, 0.4 parts by mass of 6% cobalt naphthenate and 0.1 parts by mass of DMA (dimethylaniline) were added, and the resin p-7 for lamination was added. Obtained.

(配合例)
合成例2〜5で得られた樹脂組成物p−2〜5を次表に記す比率で混合し、c1−1〜c1−4を得た。
そして、主剤/硬化剤の割合を、質量比で1/1(NCO/NH2モル比=1.05)として混合して組成物p−6を得た。
(Formulation example)
Resin compositions p-2 to 5 obtained in Synthesis Examples 2 to 5 were mixed at a ratio shown in the following table to obtain c1-1 to c1-4.
And the ratio of the main ingredient / hardening agent was mixed as 1/1 (NCO / NH2 molar ratio = 1.05) by mass ratio, and composition p-6 was obtained.

Figure 0005029393
Figure 0005029393

[実施例1]
コンクリート上にプライマーP−1を150g/m2で塗布・乾燥し、(C)層としてc1−1/瀬戸珪砂5号/ナイパーNS(過酸化ベンゾイル40%懸濁液;日本油脂株式会社製)=100/150/3を3mmの厚さで塗布、硬化させた。
その硬化塗膜の変形量は80kgf/cm2時に0.25mmだった。
その上に(B)層として、p−7/パーメックN(55%メチルエチルケトンパーオキシド溶液;日本油脂株式会社製)=100/1とガラスマット#450でGC(ガラス含有率)=28%となるように積層・硬化した。
さらに(A)表面層として「ディオバーHTP−550(ビニルエステル樹脂;大日本インキ化学工業株式会社製)/ナイパーNS=100/3」(a−1)を300g/m2塗布した。
7日間の養生を行った後、フォークリフトを想定した荷重80kgf/cm2でウレタンゴムソリッドタイヤを用いて据え切り試験を実施、100回転時点でも異常は確認できなかった。
[Example 1]
Primer P-1 is applied onto concrete at 150 g / m 2 and dried, and (C) layer is c1-1 / Seto quartz sand No. 5 / Niper NS (benzoyl peroxide 40% suspension; manufactured by NOF Corporation) = 100/150/3 was applied and cured at a thickness of 3 mm.
The amount of deformation of the cured coating film was 0.25 mm at 80 kgf / cm 2 .
On top of that, as a layer (B), p-7 / Permec N (55% methyl ethyl ketone peroxide solution; manufactured by Nippon Oil & Fats Co., Ltd.) = 100/1 and glass mat # 450, GC (glass content) = 28%. Was laminated and cured.
Further, (A) 300 g / m 2 of “Diobar HTP-550 (vinyl ester resin; manufactured by Dainippon Ink & Chemicals, Inc.) / Niper NS = 100/3” (a-1) was applied as a surface layer.
After curing for 7 days, a stationary test was conducted using a urethane rubber solid tire with a load of 80 kgf / cm 2 assuming a forklift, and no abnormality was confirmed even at 100 revolutions.

[実施例2]
アスファルトコンクリート上に(C)層としてc1−2/東北珪砂3号/東北珪砂5号/東北珪砂7号/カドックスCH−50L(過酸化ベンゾイル50%粉末;化薬アクゾ株式会社製)=100/100/100/100/2を5mmの厚さで塗布、硬化させた。
その硬化塗膜の変形量は80kgf/cm2時に0.01mmだった。
その上にp−7/パーメックN=100/1とガラスマット#450でGC(ガラス含有率)=28%となるように積層・硬化した。
さらに(A)表面層として「ディオバーHTP−550/ナイパーNS=100/3」(a−1)を300g/m2で塗布した。
7日間の養生を行った後、フォークリフトを想定した荷重80kgf/cm2でウレタンゴムソリッドタイヤを用いて据え切り試験を実施、100回転時点でも異常は確認できなかった。
[Example 2]
(C) layer on asphalt concrete c1-2 / Tohoku quartz sand No.3 / Tohoku quartz sand No.5 / Tohoku quartz sand No.7 / Cadox CH-50L (benzoyl peroxide 50% powder; manufactured by Kayaku Akzo Corporation) = 100 / 100/100/100/2 was applied and cured at a thickness of 5 mm.
The deformation of the cured coating film was 0.01 mm at 80 kgf / cm 2 .
On top of that, it was laminated and cured with p-7 / Permec N = 100/1 and glass mat # 450 so that GC (glass content) = 28%.
Further, (A) “Diobar HTP-550 / Nyper NS = 100/3” (a-1) (a-1) was applied at 300 g / m 2 as a surface layer.
After curing for 7 days, a stationary test was conducted using a urethane rubber solid tire with a load of 80 kgf / cm 2 assuming a forklift, and no abnormality was confirmed even at 100 revolutions.

[実施例3]
セメントコンクリート上にプライマーP−1を150g/m2で塗布・乾燥し、(C)層としてc1−3/東北珪砂6号/カドックスCH−50L=100/200/2を3mmの厚さで塗布、硬化させた。
その硬化塗膜の変形量は80kgf/cm2時に0.02mmだった。
その上に(B)層として、p−7/パーメックN=100/1とガラスマット#450でGC(ガラス含有率)=28%となるように積層・硬化した。
さらに(A)表面層として「ディオバーHTP−550/ナイパーNS=100/3」(a−1)を300g/m2で塗布した。
7日間の養生を行った後、フォークリフトを想定した荷重80kgf/cm2でウレタンゴムソリッドタイヤを用いて据え切り試験を実施、100回転時点でも異常は確認できなかった。
[Example 3]
Apply and dry primer P-1 at 150 g / m 2 on cement concrete, and apply c1-3 / Tohoku quartz sand No. 6 / Kadox CH-50L = 100/200/2 as a layer (C) with a thickness of 3 mm. And cured.
The deformation of the cured coating film was 0.02 mm at 80 kgf / cm 2 .
On top of that, the layer (B) was laminated and cured with p-7 / Permec N = 100/1 and glass mat # 450 so that GC (glass content) = 28%.
Further, (A) “Diobar HTP-550 / Nyper NS = 100/3” (a-1) (a-1) was applied at 300 g / m 2 as a surface layer.
After curing for 7 days, a stationary test was conducted using a urethane rubber solid tire with a load of 80 kgf / cm 2 assuming a forklift, and no abnormality was confirmed even at 100 revolutions.

[実施例4]
セメントコンクリート上にプライマーP−1を150g/m2で塗布・乾燥し、(C)層としてc1−4/鹿島2号/東北珪砂7号/カドックスCH−50L=100/700/100/2を10mmの厚さで塗布、硬化させた。
その硬化塗膜の変形量は80kgf/cm2時に0.01mmだった。
その上に(B)層としてp−7/パーメックN=100/1とガラスマット#450でGC(ガラス含有率)=28%となるように積層・硬化した。
さらに(A)表面層として溶剤型アクリルウレタン系塗料を300g/m2で塗布した。
[Example 4]
Primer P-1 is applied and dried on cement concrete at 150 g / m 2 , and as layer (C), c1-4 / Kashima-2 / Tohoku quartz sand-7 / Kadox CH-50L = 100/700/100/2 It was applied and cured with a thickness of 10 mm.
The deformation of the cured coating film was 0.01 mm at 80 kgf / cm 2 .
On top of that, layer (B) was laminated and cured with p-7 / Permec N = 100/1 and glass mat # 450 so that GC (glass content) = 28%.
Further, (A) a solvent-type acrylic urethane coating was applied as a surface layer at 300 g / m 2 .

7日間の養生を行った後、フォークリフトを想定した荷重80kgf/cm2でウレタンゴムソリッドタイヤを用いて据え切り試験を実施、表面層の剥離は認められるが100回転時点でも繊維強化熱硬化性樹脂硬化物層(B)から下の層では異常は確認できなかった。 After curing for 7 days, a stationary test was conducted using a urethane rubber solid tire with a load of 80 kgf / cm 2 assuming a forklift, and peeling of the surface layer was observed, but fiber reinforced thermosetting resin was observed even at 100 revolutions. No abnormality was confirmed in the layer below the cured product layer (B).

Figure 0005029393
Figure 0005029393

[比較例1]
コンクリート上にプライマーp1を150g/m2で塗布・乾燥し、(C)層としてc1−1/東北珪砂5号/カドックスCH−50L=100/50/2を下層に3mmの厚さで塗布、硬化させた。
その硬化塗膜の変形量は80kgf/cm2時に0.41mmだった。
その上に(B)層としてp−7/パーメックN=100/1とガラスマット#450でGC(ガラス含有率)=28%となるように積層・硬化した。
さらに(A)表面層として「ディオバーHTP−550/ナイパーNS=100/3」(a−1)を300g/m2で塗布した。
7日間の養生を行った後、フォークリフトを想定した荷重80kgf/cm2でウレタンゴムソリッドタイヤを用いて据え切り試験を実施、50回転時点でFRP層が剥離していた。
[Comparative Example 1]
Apply and dry primer p1 at 150 g / m 2 on concrete, and apply c1-1 / Tohoku silica sand No. 5 / Cadox CH-50L = 100/50/2 as a layer (C) to a thickness of 3 mm, Cured.
The deformation of the cured coating film was 0.41 mm at 80 kgf / cm 2 .
On top of that, layer (B) was laminated and cured with p-7 / Permec N = 100/1 and glass mat # 450 so that GC (glass content) = 28%.
Further, (A) “Diobar HTP-550 / Nyper NS = 100/3” (a-1) (a-1) was applied at 300 g / m 2 as a surface layer.
After curing for 7 days, a stationary test was conducted using a urethane rubber solid tire with a load of 80 kgf / cm 2 assuming a forklift, and the FRP layer was peeled off at 50 revolutions.

[比較例2]
コンクリート上にプライマーp−1を150g/m2で塗布・乾燥し、(C)層としてウレタン樹脂であるc1−5を3mmの厚さで塗布、硬化させた。その硬化塗膜の変形量は80kgf/cm2時に1.35mmだった。
その上に(B)層としてp−7/パーメックN=100/1とガラスマット#450でGC(ガラス含有率)=28%となるように積層・硬化した。
さらに(A)表面層として「ディオバーHTP−550/ナイパーNS=100/3」(a−1)を300g/m2で塗布した。
7日間の養生を行った後、フォークリフトを想定した荷重80kgf/cm2でウレタンゴムソリッドタイヤを用いて据え切り試験を実施、50回転時点でFRP層及び防水材層が剥離、下地コンクリートが露出していた。
[Comparative Example 2]
Primer p-1 was applied on concrete at 150 g / m 2 and dried, and (1) urethane resin c1-5 was applied and cured to a thickness of 3 mm. The amount of deformation of the cured coating film was 1.35 mm at 80 kgf / cm 2 .
On top of that, layer (B) was laminated and cured with p-7 / Permec N = 100/1 and glass mat # 450 so that GC (glass content) = 28%.
Further, (A) “Diobar HTP-550 / Nyper NS = 100/3” (a-1) (a-1) was applied at 300 g / m 2 as a surface layer.
After curing for 7 days, a stationary test was conducted using urethane rubber solid tires with a load of 80kgf / cm 2 assuming a forklift. At 50 revolutions, the FRP layer and waterproof material layer were peeled off, and the underlying concrete was exposed. It was.

[比較例3]
アスファルトコンクリート上に(B)層としてp−7/パーメックN=100/1とガラスマット#450でGC(ガラス含有率)=28%となるように積層・硬化した。
7日間の養生を行った後、フォークリフトを想定した荷重80kgf/cm2でウレタンゴムソリッドタイヤを用いて据え切り試験を実施、10回転時点で異常が生じた。界面のアスファルトがカットバックし、ペースト状態であった。
[Comparative Example 3]
On the asphalt concrete, the layer (B) was laminated and cured with p-7 / Permec N = 100/1 and glass mat # 450 so that GC (glass content) = 28%.
After curing for 7 days, a stationary test was conducted using a urethane rubber solid tire with a load of 80 kgf / cm 2 assuming a forklift, and an abnormality occurred at the time of 10 rotations. The asphalt at the interface was cut back and was in a paste state.

Figure 0005029393
Figure 0005029393

比較例1は珪砂の体積分率が外れ、荷重変形量も外れるために、耐据え切り性に劣るものであり、比較例2はウレタン樹脂の引張り伸び率が大きすぎ、荷重変形量が大きいために、耐据え切り性に劣るものであり、比較例3は、硬化物層(C)が存在しないために耐据え切り性に劣るものであった。   In Comparative Example 1, the volume fraction of silica sand is off and the load deformation amount is also off, so that it is inferior in anti-stabilization property. In Comparative Example 2, the tensile elongation rate of urethane resin is too large and the load deformation amount is large. In addition, it was inferior in the upright resistance, and Comparative Example 3 was inferior in the upright resistance because the cured product layer (C) was not present.

Claims (4)

上から(A)表面層、
(B)繊維強化熱硬化性樹脂硬化物層、
(C)ビニルエステル樹脂(C-1)、空乾性ビニルエステル樹脂(C-2)及び重合性不飽和単量体(C-3)を含む不飽和樹脂組成物(c1)であって、前記組成物(c1)を硬化物とした際のJISK6301での引張り伸び率が30%以上である不飽和樹脂組成物(c1)と珪砂(c2)とを含む硬化物層、
(D)基体からなる床構造体であって、
硬化物層(C)の体積のうち、珪砂(c2)が25〜80体積%で、前記硬化物層(C)が荷重時変形量0.3mm以下であることを特徴とする床構造体。
(A) surface layer from above,
(B) a fiber reinforced thermosetting resin cured product layer,
(C) an unsaturated resin composition (c1) comprising a vinyl ester resin (C-1), an air-drying vinyl ester resin (C-2) and a polymerizable unsaturated monomer (C-3), A cured product layer comprising an unsaturated resin composition (c1) having a tensile elongation of 30% or more in JISK6301 and a silica sand (c2) when the composition (c1) is a cured product,
(D) a floor structure comprising a substrate,
Silica sand (c2) is 25 to 80% by volume of the volume of the cured product layer (C), and the cured product layer (C) has a deformation amount under load of 0.3 mm or less.
前記繊維強化熱硬化性樹脂硬化物層(B)が、不飽和ポリエステル、重合性不飽和単量体からなる樹脂組成物をガラス繊維強化材に含浸、硬化したものである請求項1記載の床構造体。 The floor according to claim 1, wherein the fiber reinforced thermosetting resin cured layer (B) is obtained by impregnating and curing a glass fiber reinforcing material with a resin composition comprising an unsaturated polyester and a polymerizable unsaturated monomer. Structure. 前記珪砂(c2)が、篩い振とう機での篩下の積算曲線において80%に該当するものが粒径0.2〜2mmのものである請求項1又は2記載の床構造体。 The floor structure according to claim 1 or 2, wherein the silica sand (c2) has a particle diameter of 0.2 to 2 mm corresponding to 80% in a cumulative curve under a sieve shaker. 前記不飽和樹脂組成物(c1)の硬化物のJISK6301の引張伸び率が、100〜260%である請求項1〜3のいずれか1項に記載の床構造体。 The floor structure according to any one of claims 1 to 3, wherein a tensile elongation percentage of JISK6301 of the cured product of the unsaturated resin composition (c1) is 100 to 260%.
JP2008019101A 2008-01-30 2008-01-30 Floor structure Active JP5029393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008019101A JP5029393B2 (en) 2008-01-30 2008-01-30 Floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019101A JP5029393B2 (en) 2008-01-30 2008-01-30 Floor structure

Publications (2)

Publication Number Publication Date
JP2009179989A JP2009179989A (en) 2009-08-13
JP5029393B2 true JP5029393B2 (en) 2012-09-19

Family

ID=41034174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019101A Active JP5029393B2 (en) 2008-01-30 2008-01-30 Floor structure

Country Status (1)

Country Link
JP (1) JP5029393B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927892B2 (en) * 2011-12-15 2016-06-01 Dic株式会社 Composite covering structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3163447B2 (en) * 1991-07-25 2001-05-08 大日本インキ化学工業株式会社 Parking structure and its construction method
JP2001315245A (en) * 2000-05-09 2001-11-13 Nippon Shokubai Co Ltd Method for manufacturing double-layered material
JP2004169361A (en) * 2002-11-19 2004-06-17 Aica Kogyo Co Ltd Floor structure and construction method thereof

Also Published As

Publication number Publication date
JP2009179989A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP3994297B2 (en) Resin composition and civil engineering building material
JP2008106169A (en) Curable resin composition
JP2016029125A (en) Two-pack curable resin composition, covering material, covering method and covering structure
JP6372922B2 (en) Resin composition, coating method using the same, and coating structure coated by the method
JP2011231231A (en) Radically curable unsaturated resin composition and coating material
JP5298615B2 (en) Preservation method of air drying unsaturated resin composition, civil engineering structure using the same, and construction method of civil engineering building
KR102081645B1 (en) Radical-polymerizable resin composition, primer and waterproof floor slab structure
JP4147468B2 (en) Resin composition
JP4621189B2 (en) Radical polymerizable thermal barrier coating for FRP waterproof layer, method for forming thermal barrier layer using the same, and FRP waterproof / thermal barrier structure
JP4150960B2 (en) Resin-coated structure
EP3858805A1 (en) Structure repairing method
JP5029393B2 (en) Floor structure
JP3862677B2 (en) Construction method of waterproof composite covering
JP5131156B2 (en) Radical polymerizable resin composition
JP5179696B2 (en) Low odor resin composition, coating material containing the same, and coating method using the same
JP4982987B2 (en) Resin composition for coating
JP2003268054A (en) Free radical curing resin composition and civil engineering building material using the same
JP4378608B2 (en) Covering composition for civil engineering and building materials, paving material and paving body using the same
JP4100120B2 (en) Covering structure
JP2008156839A (en) Resin-based anti-slipping pavement material
JP5953732B2 (en) Composite covering structure
JP2005015642A (en) Radically polymerizable resin composition
JP4895471B2 (en) Resin composition for adhesive, adhesive and application thereof
JP5927892B2 (en) Composite covering structure
JP2013141764A (en) Composite coating structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250