JP5927892B2 - Composite covering structure - Google Patents

Composite covering structure Download PDF

Info

Publication number
JP5927892B2
JP5927892B2 JP2011274549A JP2011274549A JP5927892B2 JP 5927892 B2 JP5927892 B2 JP 5927892B2 JP 2011274549 A JP2011274549 A JP 2011274549A JP 2011274549 A JP2011274549 A JP 2011274549A JP 5927892 B2 JP5927892 B2 JP 5927892B2
Authority
JP
Japan
Prior art keywords
meth
acid
resin
acrylate
covering structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011274549A
Other languages
Japanese (ja)
Other versions
JP2013124507A (en
Inventor
満幸 神崎
満幸 神崎
西村 紀夫
紀夫 西村
理恵 山崎
理恵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2011274549A priority Critical patent/JP5927892B2/en
Publication of JP2013124507A publication Critical patent/JP2013124507A/en
Application granted granted Critical
Publication of JP5927892B2 publication Critical patent/JP5927892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Floor Finish (AREA)

Description

本発明は、下地ひび割れ追従性、及び防水性に優れる複合被覆構造体に関するものである。   The present invention relates to a composite covering structure that is excellent in follow-up crack followability and waterproofness.

駐車場床材や、フォークリフト等の通行する工場床材としては、ウレタン系樹脂を用いた下層と繊維強化樹脂(FRP)を用いた上層とを組み合わせた複合被覆構造体が実施工されている(例えば、特許文献1及び2を参照。)。前記複合被覆構造体によれば、実用上使用可能レベルの下地ひび割れ追従性及び防水性を有している。しかしながら、前記複合被覆構造体に用いられるウレタン系樹脂は、いずれも二液混合系であるため、材料の計量や混合が必要である。従って、実施工時における盆雑さを有しており、また、下地ひび割れ追従性や防水性も更なる改善が求められている。   As a parking floor material and a factory floor material through which a forklift or the like passes, a composite covering structure in which a lower layer using a urethane resin and an upper layer using a fiber reinforced resin (FRP) are combined is implemented ( For example, see Patent Documents 1 and 2.) According to the composite covering structure, it has a ground crack followability and waterproofness at a practically usable level. However, since the urethane-based resin used for the composite covering structure is a two-component mixed system, it is necessary to measure and mix the materials. Therefore, it has the roughness at the time of construction work, and further improvement is required for the ground crack followability and waterproofness.

また、複合被覆構造体の下層に一液湿気硬化型ウレタン樹脂を用いることが提案されている(例えば、特許文献3を参照。)が、FRPを用いた上層との間にプライマー層を設けていないため、経年で下層と上層との間で剥離が生じ、結果防水性や下地ひび割れ追従性が満足いくものではなかった。   In addition, it has been proposed to use a one-component moisture-curable urethane resin for the lower layer of the composite covering structure (see, for example, Patent Document 3), but a primer layer is provided between the upper layer using FRP. For this reason, peeling occurred between the lower layer and the upper layer over time, and as a result, the waterproof property and the ground crack followability were not satisfactory.

また、一液湿気硬化型ウレタン樹脂組成物としては、エチレンオキサイド単位を1〜6質量%含有する混合アルキレンオキサイド付加ポリエーテルポリオールと有機ジイソシアネート類とをNCO/OHの当量比1.5〜2.0の範囲で反応させて得られ、末端NCO基含有率が1〜3.5質量%である一液湿気硬化型ウレタン樹脂組成物が知られている(例えば、特許文献4を参照。)。しかしながら、前記一液湿気硬化型ウレタン樹脂組成物を複合被覆構造体の下層に用いた場合、硬化の際に水分とイソシアネート基とが反応して炭酸ガスが発生するため、塗膜に膨れが発生する等の問題があった。従って、膨れ部分から水が浸み込み易くなるため耐水性が十分でない問題や、下地ひび割れ追従性も十分でない等の問題があった。   Moreover, as a one-component moisture-curing urethane resin composition, a mixed alkylene oxide-added polyether polyol containing 1 to 6% by mass of an ethylene oxide unit and an organic diisocyanate have an NCO / OH equivalent ratio of 1.5 to 2. A one-component moisture-curable urethane resin composition having a terminal NCO group content of 1 to 3.5% by mass obtained by reacting in the range of 0 is known (see, for example, Patent Document 4). However, when the one-component moisture-curing urethane resin composition is used in the lower layer of the composite coating structure, water and isocyanate groups react to generate carbon dioxide during curing, resulting in swelling of the coating film. There was a problem such as. Accordingly, there is a problem that water is likely to permeate from the swollen portion, so that the water resistance is not sufficient, and the base crack is not sufficient.

そこで、下層に用いる材料として、不飽和ポリエステル樹脂を用いる試みがなされている(例えば、特許文献5ないし7参照。)。しかしながら、下地ひび割れ追従性や防水性は十分とは言えず、更なる改善が求められている。   Therefore, attempts have been made to use unsaturated polyester resins as materials used for the lower layer (see, for example, Patent Documents 5 to 7). However, it cannot be said that the ground crack followability and waterproofness are sufficient, and further improvement is required.

特開平3−261547号公報Japanese Patent Laid-Open No. 3-261547 特開平5−33309号公報JP-A-5-33309 特開平3−261547号公報Japanese Patent Laid-Open No. 3-261547 特開昭57−94056号公報JP-A-57-94056 特開2004−169361号公報JP 2004-169361 A 特開2004−176448号公報JP 2004-176448 A 特開2004−183388号公報JP 2004-183388 A

本発明が解決しようとする課題は、下地ひび割れ追従性、及び防水性に優れる複合被覆構造体を提供することである。なお、下地ひび割れ追従性とは、下地であるプライマー処理した基体がひび割れを起こした場合でも、後述する複合被覆構造体の下層及び上層とがそのひび割れに追従することを示す。   The problem to be solved by the present invention is to provide a composite covering structure that is excellent in follow-up crack followability and waterproofness. The base crack followability indicates that a lower layer and an upper layer of a composite covering structure described later follow the crack even when the primer-treated substrate which is the base causes a crack.

本発明者等は、前記課題を解決すべく研究を進める中で、FRP層と組み合わせ使用する下層に用いる樹脂に着目し、鋭意研究を進めた。
その結果、特定の数平均分子量のポリエステルポリオールを用いて得られたウレタン(メタ)アクリレート樹脂と、特定の分子量を有するラジカル重合性不飽和単量体とを含有するラジカル重合性樹脂組成物を用いて得られる下層を使用した場合に、下層の引張り伸び率が非常に良好であり、これに起因して優れた下地ひび割れ追従性を発揮することが分かった。また、下地であるプライマー処理した基材がひび割れを起こしても下層に破断面が発生しにくいため、防水性にも優れる複合被覆構造体が得られることを見出し、本発明を完成するに至った。
The inventors of the present invention, while pursuing research to solve the above-mentioned problems, paid attention to the resin used for the lower layer used in combination with the FRP layer, and conducted earnest research.
As a result, a radical polymerizable resin composition containing a urethane (meth) acrylate resin obtained using a polyester polyol having a specific number average molecular weight and a radical polymerizable unsaturated monomer having a specific molecular weight was used. It was found that when the lower layer obtained in this way was used, the tensile elongation rate of the lower layer was very good, and due to this, excellent base crack followability was exhibited. In addition, even if the primer-treated base material as a base is cracked, it is difficult to generate a fracture surface in the lower layer, so that it was found that a composite covering structure excellent in waterproofness was obtained, and the present invention was completed. .

即ち、本発明は、プライマー処理した基体上に、ラジカル重合性樹脂組成物を塗布、硬化した下層(i)を設け、前記下層(i)上に繊維強化樹脂を塗布、硬化した上層(ii)を設けた複合被覆構造体であって、前記ラジカル重合性樹脂組成物が、数平均分子量が2,500〜7,000であるポリエステルポリオール(A)と、ポリイソシアネート(B)とを反応させてイソシアネート基末端ウレタンプレポリマー(C)を得、次いで水酸基を有する(メタ)アクリル化合物(D)を反応させて得られるウレタン(メタ)アクリレート樹脂、及び分子量が200〜500であるラジカル重合性不飽和単量体を含有するものであることを特徴とする複合被覆構造体を提供するものである。   That is, the present invention provides a lower layer (i) coated and cured with a radical polymerizable resin composition on a primer-treated substrate, and an upper layer (ii) coated and cured with a fiber reinforced resin on the lower layer (i). The radical-polymerizable resin composition comprises a polyester polyol (A) having a number average molecular weight of 2,500 to 7,000 and a polyisocyanate (B). An isocyanate group-terminated urethane prepolymer (C) and then a urethane (meth) acrylate resin obtained by reacting a (meth) acrylic compound (D) having a hydroxyl group, and a radical polymerizable unsaturated having a molecular weight of 200 to 500 The present invention provides a composite covering structure characterized by containing a monomer.

本発明の複合被覆構造体は、下層の優れた引張り伸び率に起因して優れた下地ひび割れ追従性及び防水性を有するものである。また、本発明の複合被覆構造体は、特定の下層を用いることで低臭性や常温での硬化性にも優れるものである。
従って、本発明の複合被覆構造体は、土木、建築、鉄道、道路等の分野において好適に使用することができる。なかでも、道路用舗装材や道路用防水材、床材等に特に好適に使用することができる。
The composite covering structure of the present invention has excellent base crack followability and water resistance due to excellent tensile elongation of the lower layer. Moreover, the composite covering structure of this invention is excellent also in low odor property and sclerosis | hardenability at normal temperature by using a specific lower layer.
Therefore, the composite covering structure of the present invention can be suitably used in the fields of civil engineering, architecture, railways, roads and the like. Among these, it can be particularly suitably used for road pavement materials, road waterproofing materials, flooring materials, and the like.

まず、本発明で用いる基体について説明する。   First, the substrate used in the present invention will be described.

前記基体は、例えば、セメントコンクリート、アスファルトコンクリート、石綿スレート、ALC板、ポリカーボネート板、プラスチック、木質物、金属等が挙げられる。これらの基体は、単独で用いても2種以上を併用して構成されたものを用いてもよい。また、前記基体の表面の形状は球面、曲面、延長面、平面、斜面等いずれでもよい。なかでも、本発明の複合被覆構造体は道路用舗装材や道路用防水材、床材等に特に好適に使用することができるため、前記基体としては、セメントコンクリート、アスファルトコンクリートが好ましい。   Examples of the substrate include cement concrete, asphalt concrete, asbestos slate, ALC plate, polycarbonate plate, plastic, woody material, and metal. These substrates may be used alone or in combination of two or more. Further, the shape of the surface of the substrate may be any of a spherical surface, a curved surface, an extended surface, a flat surface, a slope, and the like. Especially, since the composite covering structure of the present invention can be particularly suitably used for road pavement materials, road waterproofing materials, flooring materials and the like, cement concrete and asphalt concrete are preferable as the base.

また、前記基体はプライマー処理することが必要である。前記プライマー処理を施さない場合には、後述する下層(i)と基体との間の層間接着性が不良となり、下地ひび割れ追従性や防水性が不良となる。   The substrate needs to be treated with a primer. When the primer treatment is not performed, interlayer adhesion between a lower layer (i) described later and the substrate becomes poor, and the base crack followability and waterproofness become poor.

前記プライマーは、ウレタン系、エポキシ系、ビニルエステル系、不飽和ポリエステル系、アクリル系等のいずれも公知のプライマーが挙げられる。   Examples of the primer include known primers such as urethane, epoxy, vinyl ester, unsaturated polyester, and acrylic.

次に、下層(i)に用いられるラジカル重合性樹脂組成物について説明する。   Next, the radical polymerizable resin composition used for the lower layer (i) will be described.

前記ポリエステルポリオール(A)は、多塩基酸と多価アルコールとを反応させて得られるものである。   The polyester polyol (A) is obtained by reacting a polybasic acid and a polyhydric alcohol.

前記多塩基酸は、例えば、シトラコン酸、フマル酸、イタコン酸、マレイン酸、無水マレイン酸、アコニット酸、テトラヒドロフタル酸、ノルボルネンジカルボン酸、1,4−シクロヘキサンジカルボン酸、グルタル酸、3−メチル−2−ペンテン・二酸、2−メチル−2−ペンテン・二酸、コハク酸、セバシン酸、ドデカン二酸、アジピン酸、アゼライン酸、2−エチルヘキサン酸、シス−3−メチル−4−シクロへキセン−シス−1,2−ジカルボン酸、シス−3−メチル−4−シクロへキセン−シス−1,2−ジカルボン酸の無水物等の脂肪族ポリカルボン酸、フタル酸、イソフタル酸、テレフタル酸、メチルテトラヒドロフタル酸、メチルヘキサヒドロフタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ピロメリット酸、トリメリット酸等の芳香族ポリカルボン酸等が挙げられる。これらの多塩基酸は、単独で用いても2種以上を併用してもよい。これらの中でも、下層の引張り伸び率を向上できる観点から、ジカルボン酸を用いることが好ましく、脂肪族ジカルボン酸がより好ましく、アジピン酸、コハク酸、セバシン酸が特に好ましい。   Examples of the polybasic acid include citraconic acid, fumaric acid, itaconic acid, maleic acid, maleic anhydride, aconitic acid, tetrahydrophthalic acid, norbornene dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, glutaric acid, 3-methyl- 2-pentene diacid, 2-methyl-2-pentene diacid, succinic acid, sebacic acid, dodecanedioic acid, adipic acid, azelaic acid, 2-ethylhexanoic acid, cis-3-methyl-4-cyclohe Aliphatic polycarboxylic acids such as xene-cis-1,2-dicarboxylic acid, cis-3-methyl-4-cyclohexene-cis-1,2-dicarboxylic acid anhydride, phthalic acid, isophthalic acid, terephthalic acid , Methyltetrahydrophthalic acid, methylhexahydrophthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, pyromellitic acid, And aromatic polycarboxylic acids such as mellitic acid and the like. These polybasic acids may be used alone or in combination of two or more. Among these, from the viewpoint of improving the tensile elongation of the lower layer, it is preferable to use a dicarboxylic acid, more preferably an aliphatic dicarboxylic acid, and particularly preferably adipic acid, succinic acid, and sebacic acid.

前記多塩基酸成分中における脂肪族ジカルボン酸の使用割合としては、下層の引張り伸び率を向上できる観点から、好ましくは20〜100モル%、さらに好ましくは50〜100モル%、特に好ましくは90〜100モル%である。   The proportion of the aliphatic dicarboxylic acid used in the polybasic acid component is preferably 20 to 100 mol%, more preferably 50 to 100 mol%, particularly preferably 90 to 90% from the viewpoint of improving the tensile elongation of the lower layer. 100 mol%.

前記多価アルコールは、2個以上の水酸基を有するものであり、例えば、エチレングリコール、1,2−プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,2−ジメチル−1,3−プロパンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、1,8−オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等の脂肪族ジオール、シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,3−ジオール、シクロヘキサン−1,4−ジオール、シクロオクタン−1,4−ジオール、2,5−ノルボルナンジオール等の脂環式ジオール、p−キシレンジオール、4,4’−メチレンジフェノール、4,4’−ジヒドロキシビフェニル、2,5−ナフタレンジオール等の芳香族ジオール、グリセリン、トリメチロ−ルプロパン、1,2,6−ヘキサントリオ−ル等のトリオール等が挙げられる。これらの多価アルコールは、単独で用いても2種以上を併用してもよい。これらの中でも、下層に柔軟性を付与できる観点から、脂肪族ジオールを用いることが好ましい。   The polyhydric alcohol has two or more hydroxyl groups, such as ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene Aliphatic diols such as glycol, cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, cyclohexane-1,4-diol, cyclooctane-1,4-diol, 2 Cycloaliphatic diols such as 1,5-norbornanediol, p-xyles Diols, aromatic diols such as 4,4'-methylenediphenol, 4,4'-dihydroxybiphenyl, 2,5-naphthalenediol, triols such as glycerin, trimethylolpropane, 1,2,6-hexanetriol Etc. These polyhydric alcohols may be used alone or in combination of two or more. Among these, it is preferable to use an aliphatic diol from the viewpoint of imparting flexibility to the lower layer.

前記ポリエステルポリオール(A)は、前記多塩基酸と前記多価アルコールとを従来公知の方法で重縮合反応させて得られる。前記重縮合反応は、例えば、前記多塩基酸と前記多価アルコールとを反応容器に仕込み、必要に応じてキシレン等の高沸点溶剤、エステル化触媒を添加し、脱水縮合させることにより、エステル化反応を進行させる方法が挙げられる。前記重縮合反応の反応温度は反応性制御の観点から、140〜240℃、好ましくは170〜230℃であり、反応時間は10〜25時間、好ましくは15〜23時間である。   The polyester polyol (A) is obtained by subjecting the polybasic acid and the polyhydric alcohol to a polycondensation reaction by a conventionally known method. In the polycondensation reaction, for example, the polybasic acid and the polyhydric alcohol are charged into a reaction vessel, and if necessary, a high boiling point solvent such as xylene, an esterification catalyst is added, and dehydration condensation is performed. The method of advancing reaction is mentioned. The reaction temperature of the polycondensation reaction is 140 to 240 ° C., preferably 170 to 230 ° C. from the viewpoint of reactivity control, and the reaction time is 10 to 25 hours, preferably 15 to 23 hours.

前記エステル化触媒は、例えば、硫酸、塩酸、リン酸等の鉱酸、ベンゼンスルホン酸、p−トルエンスルホン酸等のアレーンスルホン酸、メタンスルホン酸、エタンスルホン酸等のアルカンスルホン酸、スズテトラエチレート、ブチルスズマレート、ジメチルスズオキサイド、ジブチルスズオキサイド、ジオクチルスズオキサイド等のスズ化合物、テトライソプロピルチタネート、テトラ−n−ブチルチタネート、テトラ−2−エチルヘキシルチタネート、四塩化チタン等のチタン化合物、酢酸亜鉛等の亜鉛化合物等が挙げられる。   Examples of the esterification catalyst include mineral acids such as sulfuric acid, hydrochloric acid and phosphoric acid, arene sulfonic acids such as benzene sulfonic acid and p-toluene sulfonic acid, alkane sulfonic acids such as methane sulfonic acid and ethane sulfonic acid, and tin tetraethyl. Rate, butyltin malate, dimethyltin oxide, dibutyltin oxide, dioctyltin oxide and other tin compounds, tetraisopropyl titanate, tetra-n-butyl titanate, tetra-2-ethylhexyl titanate, titanium tetrachloride and other titanium compounds, zinc acetate, etc. Zinc compounds and the like.

前記エステル化触媒の使用量は、反応性制御で前記多塩基酸と前記多価アルコールとの合計質量に対して、0.001〜0.1質量%であることが好ましく、0.001〜0.05質量%であることがより好ましい。   The amount of the esterification catalyst used is preferably 0.001 to 0.1% by mass, 0.001 to 0% based on the total mass of the polybasic acid and the polyhydric alcohol in reactivity control. More preferably, it is 0.05 mass%.

前記ポリエステルポリオール(A)は、数平均分子量が2,500〜7,000であることが必須である。前記ポリエステルポリオールの数平均分子量が2,500を下回る場合は、下層の引張り伸び率が十分でないため複合被覆構造体の下地ひび割れ追従性及び防水性が不良となり、また、7,000を超える場合は、粘度上昇によりゲル化が起こりやすくなり、製造安定性が著しく悪化する等の問題点がある。なお、前記ポリエステルポリオール(A)の数平均分子量は、ポリスチレンを分子量標準とするゲルパーミエーションクロマトグラフィー法(GPC法)により求めた値を示す。また、前記ポリエステルポリオール(A)の数平均分子量としては、特に被覆構造体の下地ひび割れ追従性をより向上できる観点から、3,500〜7,000がより好ましく、更に好ましくは4,000〜7,000、特に好ましくは4,500〜6,500である。   The polyester polyol (A) must have a number average molecular weight of 2,500 to 7,000. When the number average molecular weight of the polyester polyol is less than 2,500, the tensile elongation rate of the lower layer is not sufficient, so that the base coating crack followability and waterproofness of the composite coating structure are poor, and when it exceeds 7,000 However, there is a problem that gelation is likely to occur due to an increase in viscosity and production stability is significantly deteriorated. In addition, the number average molecular weight of the said polyester polyol (A) shows the value calculated | required by the gel permeation chromatography method (GPC method) which uses polystyrene as a molecular weight standard. In addition, the number average molecular weight of the polyester polyol (A) is more preferably 3,500 to 7,000, and even more preferably 4,000 to 7, particularly from the viewpoint of further improving the base crack followability of the coating structure. , 000, particularly preferably from 4,500 to 6,500.

また、前記ポリエステルポリオール(A)としては、下層の引張り物性をより向上できる観点から、酸価が0.0〜1.0mgKOH/gであることがより好ましく、0.20〜0.80mgKOH/gであることが特に好ましい。なお、前記ポリエステルポリオール(A)の酸価は、JIS K1557−5の電位差滴定法に準拠して測定を行った値である。   Moreover, as said polyester polyol (A), it is more preferable that an acid value is 0.0-1.0 mgKOH / g from a viewpoint which can improve the tensile physical property of a lower layer more, 0.20-0.80 mgKOH / g. It is particularly preferred that In addition, the acid value of the said polyester polyol (A) is the value which measured based on the potentiometric titration method of JISK1557-5.

また、前記ポリエステルポリオール(A)としては、下層の引張り物性をより向上できる観点から、水酸基価が10〜200mgKOH/gであることが好ましく、10〜50mgKOH/gであることがさらに好ましく、10〜40mgKOH/gであることが特に好ましい。なお、前記ポリエステルポリオール(A)の水酸基価は、JIS K0070の中和滴定法に準拠して測定を行った値である。   The polyester polyol (A) preferably has a hydroxyl value of 10 to 200 mgKOH / g, more preferably 10 to 50 mgKOH / g, from the viewpoint of further improving the tensile properties of the lower layer. Particularly preferred is 40 mg KOH / g. The hydroxyl value of the polyester polyol (A) is a value measured according to the neutralization titration method of JIS K0070.

また、本発明においては、本発明の効果を損なわない範囲であれば、前記ポリエステルポリオール(A)に他のポリオールを併用しても良い。   Moreover, in this invention, as long as the effect of this invention is not impaired, you may use another polyol together with the said polyester polyol (A).

前記他のポリオールは、例えば、ポリカーボネートポリオール、ポリブタジエンポリオール、ポリラクトンポリオール、ポリエーテルポリオール等のポリオールが挙げられる。   Examples of the other polyol include polyols such as polycarbonate polyol, polybutadiene polyol, polylactone polyol, and polyether polyol.

前記ポリイソシアネート(B)は、分子中にイソシアネート基を2個以上有するものであり、例えば、フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネートや、ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族または脂肪族環式構造含有ジイソシアネート、キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、メチレンジフェニルジシソシアネートのホルマリン縮合体、4,4’−ジフェニルメタンジイソシアネートのカルボジイミド変性体等の芳香族系ポリイソシアネート等が挙げられる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。これらの中でも、引張り物性や反応性の観点からジイソシアネートが好ましい。   The polyisocyanate (B) has two or more isocyanate groups in the molecule. For example, aromatic diisocyanates such as phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, Aliphatic or aliphatic cyclic structure-containing diisocyanates such as cyclohexane diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, xylylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate , Polyphenylene polymethylene poly Isocyanate, formalin condensate of methylene diphenyl dicyanamide Socia sulfonates, aromatic polyisocyanates such as carbodiimide modified products, etc. 4,4'-diphenylmethane diisocyanate. These polyisocyanates may be used alone or in combination of two or more. Among these, diisocyanate is preferable from the viewpoint of tensile properties and reactivity.

前記水酸基を有する(メタ)アクリル化合物(D)は、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸アルキルエステル、ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート等が挙げられる。これらの(メタ)アクリル化合物は、単独で用いても2種以上を併用してもよい。これらのなかでも、下層の常温での硬化性及び皮膚刺激性をより向上できる観点から、水酸基を有するメタクリル酸アルキルエステルが好ましく、2−ヒドロキシエチルメタクリレートが特に好ましい。   Examples of the (meth) acrylic compound (D) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth). Examples include (meth) acrylic acid alkyl esters having a hydroxyl group such as acrylate, polyethylene glycol monoacrylate, polypropylene glycol monoacrylate and the like. These (meth) acrylic compounds may be used alone or in combination of two or more. Among these, a methacrylic acid alkyl ester having a hydroxyl group is preferable, and 2-hydroxyethyl methacrylate is particularly preferable, from the viewpoint of further improving the curability at room temperature of the lower layer and the skin irritation.

なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいい、「(メタ)アクリル化合物」とは、アクリル化合物とメタクリル化合物の一方又は両方をいう。   In the present invention, “(meth) acrylate” refers to one or both of methacrylate and acrylate, and “(meth) acryloyl group” refers to one or both of methacryloyl group and acryloyl group. “Acrylic acid” refers to one or both of methacrylic acid and acrylic acid, and “(meth) acrylic compound” refers to one or both of an acrylic compound and a methacrylic compound.

次に、前記ウレタン(メタ)アクリレート樹脂(1)の製造方法について説明する。   Next, the manufacturing method of the said urethane (meth) acrylate resin (1) is demonstrated.

前記ポリエステルポリオール(A)と前記ポリイソシアネート(B)との反応は、前記ポリエステルポリオール(A)の有する水酸基と前記ポリイソシアネート(B)の有するイソシアネート基との当量割合[イソシアネート基/水酸基]が2.2/1.0〜1.8/1.0の範囲で行うことが好ましく、2.1/1.0〜1.9/1.0の範囲がより好ましい。また、前記ポリエステルポリオール(A)と前記ポリイソシアネート(B)との反応は、50〜100℃の条件下で概ね30分〜8時間程度行うことが好ましい。   In the reaction between the polyester polyol (A) and the polyisocyanate (B), the equivalent ratio [isocyanate group / hydroxyl group] of the hydroxyl group of the polyester polyol (A) and the isocyanate group of the polyisocyanate (B) is 2. It is preferable to carry out in the range of 2 / 1.0 to 1.8 / 1.0, and more preferably in the range of 2.1 / 1.0 to 1.9 / 1.0. The reaction between the polyester polyol (A) and the polyisocyanate (B) is preferably carried out under a condition of 50 to 100 ° C. for about 30 minutes to 8 hours.

前記ポリエステルポリオール(A)と前記ポリイソシアネート(B)との反応で得られるイソシアネート基末端ウレタンプレポリマー(C)と、前記水酸基を有する(メタ)アクリル化合物(D)との反応は、前記イソシアネート基末端ウレタンプレポリマーの残存イソシアネート基と前記水酸基を有する(メタ)アクリル化合物の有する水酸基との当量割合[残存イソシアネート基/水酸基]が0.8/1.0〜1.2/1.0の範囲であることが好ましい。   The reaction between the isocyanate group-terminated urethane prepolymer (C) obtained by the reaction of the polyester polyol (A) and the polyisocyanate (B) and the (meth) acrylic compound (D) having the hydroxyl group is carried out by the isocyanate group. Equivalent ratio [residual isocyanate group / hydroxyl group] of the residual isocyanate group of the terminal urethane prepolymer and the hydroxyl group of the (meth) acrylic compound having a hydroxyl group is in the range of 0.8 / 1.0 to 1.2 / 1.0. It is preferable that

また、前記ウレタン(メタ)アクリレート樹脂(1)としては、その末端部の全てが、前記水酸基を有する(メタ)アクリル化合物由来の(メタ)アクリロイル基であることが好ましく、実質的にイソシアネート基が残存していないことが好ましい。
また、前記イソシアネート基末端ウレタンプレポリマー(C)と前記水酸基を有する(メタ)アクリロイル化合物(D)との反応は、50〜120℃の条件下で概ね30分〜5時間程度行うことが好ましい。
Moreover, as said urethane (meth) acrylate resin (1), it is preferable that all the terminal parts are (meth) acryloyl groups derived from the (meth) acrylic compound which has the said hydroxyl group, and an isocyanate group substantially has. It is preferable that it does not remain.
The reaction between the isocyanate group-terminated urethane prepolymer (C) and the (meth) acryloyl compound (D) having a hydroxyl group is preferably carried out under a condition of 50 to 120 ° C. for about 30 minutes to 5 hours.

また、前記ウレタン(メタ)アクリレート樹脂(1)を製造する際には、必要に応じて三級アミン触媒や有機金属系触媒を用いてもよい。   Moreover, when manufacturing the said urethane (meth) acrylate resin (1), you may use a tertiary amine catalyst and an organometallic catalyst as needed.

前記ウレタン(メタ)アクリレート樹脂(1)は、必要に応じて重合禁止剤等のその他の添加剤を含有してもよい。   The urethane (meth) acrylate resin (1) may contain other additives such as a polymerization inhibitor, if necessary.

前記重合禁止剤は、例えば、トリハイドロキノン、トルハイドロキノン、14−ナフトキノン、パラベンゾキノン、ハイドロキノン、ベンゾキノン、ハイドロキノンモノメチルエーテル、p−tert−ブチルカテコール、2,6−ジ−tert−ブチル−4−メチルフェノール等が挙げられる。これらの重合禁止剤は単独で用いても2種以上を併用してもよい。前記重合禁止剤の使用量は、前記ポリエステルポリオール(A)と前記ポリイソシアネート(B)と前記水酸基を有する(メタ)アクリロイル化合物(D)との合計質量に対して、0.005〜0.1質量%であることが好ましく、0.01〜0.1質量%であることがより好ましい。   Examples of the polymerization inhibitor include trihydroquinone, toluhydroquinone, 14-naphthoquinone, parabenzoquinone, hydroquinone, benzoquinone, hydroquinone monomethyl ether, p-tert-butylcatechol, 2,6-di-tert-butyl-4-methylphenol. Etc. These polymerization inhibitors may be used alone or in combination of two or more. The amount of the polymerization inhibitor used is 0.005 to 0.1 with respect to the total mass of the polyester polyol (A), the polyisocyanate (B), and the (meth) acryloyl compound (D) having a hydroxyl group. It is preferable that it is mass%, and it is more preferable that it is 0.01-0.1 mass%.

以上のようにして得られるウレタン(メタ)アクリレート樹脂(1)の数平均分子量とは、引張り物性等の観点から、2,000〜8,000が好ましく、3,000〜7,000がより好ましい。なお、前記ウレタン(メタ)アクリレート樹脂(1)の数平均分子量は、前記ポリエステルポリオール(A)の数平均分子量と同様の測定条件により得られた数平均分子量を示す。   The number average molecular weight of the urethane (meth) acrylate resin (1) obtained as described above is preferably from 2,000 to 8,000, more preferably from 3,000 to 7,000, from the viewpoint of tensile properties and the like. . In addition, the number average molecular weight of the said urethane (meth) acrylate resin (1) shows the number average molecular weight obtained on the measurement conditions similar to the number average molecular weight of the said polyester polyol (A).

次に、本発明で用いる分子量が200〜500であるラジカル重合性不飽和単量体(2)について説明する。   Next, the radically polymerizable unsaturated monomer (2) having a molecular weight of 200 to 500 used in the present invention will be described.

前記ラジカル重合性不飽和単量体(2)は、(メタ)アクリル基を1個有する単量体を用いることが好ましく、例えば、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、トリス(2−ヒドロキシエチル)イソシアヌル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が挙げられる。
これらのラジカル重合性不飽和単量体は単独で用いても2種以上を併用してもよい。これらのなかでも、分子量が200〜400であるものがより好ましく、引張り物性や臭気、安全性の観点からジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートがより好ましく、更に下層の常温での硬化性及び皮膚刺激性をより向上できる観点から、ジシクロペンテニルオキシエチルメタクリレート、ジシクロペンテニルメタクリレート、フェノキシエチルメタクリレートが特に好ましい。
The radical polymerizable unsaturated monomer (2) is preferably a monomer having one (meth) acryl group, such as dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth). Examples include acrylate, tris (2-hydroxyethyl) isocyanur (meth) acrylate, phenoxyethyl (meth) acrylate, and the like.
These radically polymerizable unsaturated monomers may be used alone or in combination of two or more. Among these, those having a molecular weight of 200 to 400 are more preferable. From the viewpoint of tensile properties, odor, and safety, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and phenoxyethyl (meth). Acrylates are more preferable, and dicyclopentenyloxyethyl methacrylate, dicyclopentenyl methacrylate, and phenoxyethyl methacrylate are particularly preferable from the viewpoint that the curability at room temperature of the lower layer and skin irritation can be further improved.

また、前記ラジカル重合性不飽和単量体(2)として、上記の分子量を外れるものを使用した場合には、低臭性や下地ひび割れ追従性が十分とはならない。
なお、前記ラジカル重合性不飽和単量体(2)の分子量は、構造式から計算される値を示す。なお、構造式から分子量が計算できない場合には、前記ポリエステルポリオール(A)の数平均分子量と同様の測定条件により得られた数平均分子量を示す。
In addition, when a radical polymerizable unsaturated monomer (2) having a molecular weight deviating from the above is used, the low odor property and the ground crack followability are not sufficient.
In addition, the molecular weight of the said radically polymerizable unsaturated monomer (2) shows the value calculated from structural formula. In addition, when molecular weight cannot be calculated from structural formula, the number average molecular weight obtained on the measurement conditions similar to the number average molecular weight of the said polyester polyol (A) is shown.

また、前記ラジカル重合性樹脂組成物における前記ウレタン(メタ)アクリレート樹脂(1)と前記ラジカル重合性不飽和単量体(2)との質量割合は、下層の引張り伸び率、下地ひび割れ追従性を更に向上できる観点から、(1)/(2)=20/80〜70/30であることが好ましく、20/80〜50/50がより好ましく、20/80〜40/60が特に好ましい。   Moreover, the mass ratio of the urethane (meth) acrylate resin (1) and the radical polymerizable unsaturated monomer (2) in the radical polymerizable resin composition is such that the tensile elongation rate of the lower layer and the underlying crack followability are as follows. From the viewpoint of further improvement, (1) / (2) = 20/80 to 70/30 is preferable, 20/80 to 50/50 is more preferable, and 20/80 to 40/60 is particularly preferable.

また、前記ラジカル重合性樹脂組成物としては、下層の常温での硬化性をより向上できる観点から、硬化剤(4)及び硬化促進剤(5)を更に含有していることが好ましい。   In addition, the radical polymerizable resin composition preferably further contains a curing agent (4) and a curing accelerator (5) from the viewpoint of further improving the curability at room temperature of the lower layer.

前記硬化剤(4)は、有機過酸化物であり、例えば、ジアシルパーオキサイド系、パーオキシエステル系、ハイドロパーオキサイド系、ジアルクルパーオキサイド系、ケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等の公知慣用のものが挙げられる。これらの有機過酸化物は、養生条件等により適宜選択される。   The curing agent (4) is an organic peroxide, for example, diacyl peroxide type, peroxy ester type, hydroperoxide type, dialkyl peroxide type, ketone peroxide type, peroxy ketal type, alkyl per ester. Examples thereof include known ones such as a system and a percarbonate system. These organic peroxides are appropriately selected depending on curing conditions and the like.

前記硬化剤(4)の使用量としては、前記ウレタン(メタ)アクリレート樹脂(1)と前記ラジカル重合性不飽和単量体(2)との合計質量に対し、下層の常温での硬化特性の観点から0.5〜10質量%が好ましく、1〜5質量%がより好ましい。   As the usage-amount of the said hardening | curing agent (4), with respect to the total mass of the said urethane (meth) acrylate resin (1) and the said radically polymerizable unsaturated monomer (2), it is a hardening characteristic in the lower layer normal temperature. From a viewpoint, 0.5-10 mass% is preferable, and 1-5 mass% is more preferable.

前記硬化促進剤(5)は、前記硬化剤(4)の有機過酸化物をレドックス反応によって分解し、活性ラジカルの発生を容易にする作用のある物質であり、例えば、ナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等の金属石鹸類、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート類、アニリン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、p−トルイジン、N,N−ジメチル−p−トルイジン、N,N−ジメチル−p−トルイジンのエチレンオキサイド付加物、N,N−ビス(2-ヒドロキシエチル)−p−トルイジン、4−(N,N−ジメチルアミノ)ベンズアルデヒド、4−[N,N−ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4−(N−メチル−N−ヒドロキシエチルアミノ)ベンズアルデヒド、N,N−ビス(2−ヒドロキシプロピル)−p−トルイジン、N−エチル−m−トルイジン、トリエタノールアミン、m−トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N−ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N−置換アニリン、N,N−置換−p−トルイジン、4−(N,N−置換アミノ)ベンズアルデヒド等のアミン類が挙げられる。これらの硬化促進剤は、単独で用いても2種以上を併用してもよい。   The curing accelerator (5) is a substance having an action of decomposing the organic peroxide of the curing agent (4) by a redox reaction and facilitating generation of active radicals. For example, cobalt naphthenate, octylic acid Metal soaps such as cobalt, zinc octylate, vanadium octylate, copper naphthenate, barium naphthenate, metal chelates such as vanadium acetyl acetate, cobalt acetyl acetate, iron acetylacetonate, aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-dimethyl-p-toluidine ethylene oxide adduct, N, N-bis (2-hydroxyethyl) -p- Toluidine, 4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2 -Hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis (2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluidine, triethanolamine , M-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline, N, N-substituted anilines, N, N-substituted-p-toluidine, 4- ( And amines such as N, N-substituted amino) benzaldehyde. These curing accelerators may be used alone or in combination of two or more.

前記硬化促進剤(5)の使用量としては、前記ウレタン(メタ)アクリレート樹脂(1)と前記ラジカル重合性不飽和単量体(2)との合計質量に対し、0.05〜5質量%、好ましくは、0.5〜3質量%であることが好ましい。   As the usage-amount of the said hardening accelerator (5), it is 0.05-5 mass% with respect to the total mass of the said urethane (meth) acrylate resin (1) and the said radically polymerizable unsaturated monomer (2). Preferably, it is 0.5 to 3% by mass.

また、前記ラジカル重合性樹脂組成物には、上記したもの以外に、各種の添加剤、例えば、充填材、紫外線吸収剤、顔料、増粘剤、低収縮剤、老化防止剤、可塑剤、骨材、難燃剤、安定剤、補強材等を含有してもよい。   In addition to the above, the radical polymerizable resin composition includes various additives such as fillers, ultraviolet absorbers, pigments, thickeners, low shrinkage agents, anti-aging agents, plasticizers, bones You may contain a material, a flame retardant, a stabilizer, a reinforcing material, etc.

次に、上層(ii)に用いられる繊維強化樹脂(3)について説明する。   Next, the fiber reinforced resin (3) used for the upper layer (ii) will be described.

前記繊維強化樹脂(3)は、不飽和ポリエステル樹脂やビニルエステル樹脂等の公知慣用の樹脂と強化材とを用いて得られたものを用いることができる。なかでも、前記下層(i)との層間接着性や防水性が向上する観点から、不飽和ポリエステル樹脂を用いることが好ましい。   As the fiber reinforced resin (3), one obtained by using a known and commonly used resin such as an unsaturated polyester resin or vinyl ester resin and a reinforcing material can be used. Especially, it is preferable to use unsaturated polyester resin from a viewpoint which the interlayer adhesiveness with the said lower layer (i) and waterproofing improve.

前記不飽和ポリエステル樹脂は、α、β−不飽和カルボン酸及び必要に応じて飽和カルボン酸と、多価アルコールとから得られる不飽和ポリエステルと後述する重合性単量体の溶液をいう。その混合質量割合は、好ましくは不飽和ポリエステル:重合性単量体=40〜80:60〜20である。   The unsaturated polyester resin refers to a solution of an unsaturated polyester obtained from an α, β-unsaturated carboxylic acid and, if necessary, a saturated carboxylic acid and a polyhydric alcohol and a polymerizable monomer described later. The mixing mass ratio is preferably unsaturated polyester: polymerizable monomer = 40-80: 60-20.

前記α、β−不飽和カルボン酸は、例えば、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、シトラコン酸、メサコン酸、クロロマレイン酸、及びこれらのジメチルエステル類等が挙げられる。   Examples of the α, β-unsaturated carboxylic acid include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, chloromaleic acid, and dimethyl esters thereof.

前記飽和カルボン酸は、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ヘット酸、ヘキサヒドロ無水フタル酸、アジピン酸、セバチン酸、アゼライン酸等が挙げられる。   Examples of the saturated carboxylic acid include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, het acid, hexahydrophthalic anhydride, adipic acid, sebacic acid, and azelaic acid.

前記多価アルコールは、前記ポリエステルポリオール(A)の原料である多価アルコールと同様のものを用いることができる。   The said polyhydric alcohol can use the thing similar to the polyhydric alcohol which is a raw material of the said polyester polyol (A).

前記ビニルエステル樹脂は、エポキシ樹脂と(メタ)アクリル酸との反応によって製造されるビニルエステルや、カルボキシル基末端ポリブタジエンとグリシジルメタクリレートとの反応によって製造されるビニルエステルと、後述する重合性単量体の溶液をいう。   The vinyl ester resin includes a vinyl ester produced by a reaction between an epoxy resin and (meth) acrylic acid, a vinyl ester produced by a reaction between a carboxyl group-terminated polybutadiene and glycidyl methacrylate, and a polymerizable monomer described later. The solution of

前記重合性単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸エステル類やスチレン、α−メチルスチレン、(メタ)アクリル酸アクリルアミド、炭素数1〜4のアルキル基を有するマレイン酸エステル等が挙げられる。   Examples of the polymerizable monomer include methyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and (meth) acrylic. Examples include (meth) acrylic acid esters such as cyclohexyl acid, styrene, α-methylstyrene, (meth) acrylic acid acrylamide, and maleic acid esters having an alkyl group having 1 to 4 carbon atoms.

前記強化材は、例えば、ガラス繊維、アミド、アラミド、ビニロン、ポリエステル、フェノール等の有機繊維、カーボン繊維、金属繊維、セラミック繊維等が挙げられる。これらの繊維の形態は、平織り、朱子織り、マット状等があるがいずれでもよい。また、ガラスロービングを20〜100mmにカットしてチョップドストランドにして用いることもできる。これら強化材の中でも、汎用性等の観点からガラス繊維を用いることが好ましい。   Examples of the reinforcing material include glass fibers, amides, aramids, vinylons, polyesters, phenols and other organic fibers, carbon fibers, metal fibers, ceramic fibers, and the like. The form of these fibers includes a plain weave, a satin weave, a mat shape and the like, and any of them may be used. Moreover, a glass roving can be cut into 20-100 mm and used as a chopped strand. Among these reinforcing materials, it is preferable to use glass fibers from the viewpoint of versatility.

次に、本発明の複合被覆構造体について説明する。   Next, the composite covering structure of the present invention will be described.

本発明の複合被覆構造体の各層の好ましい厚みは、下地ひび割れ追従性等の観点から、前記下層(i)が0.05〜3.0mm/mであり、前記上層(ii)が0.05〜5.0mm/mである。また、プライマー層の好ましい厚みは0.005〜3.0mm/mである。各層に用いる樹脂の塗布量はこれらの厚みとなるように塗布することが好ましい。 The preferable thickness of each layer of the composite covering structure of the present invention is such that the lower layer (i) is 0.05 to 3.0 mm / m 2 and the upper layer (ii) is 0.00 from the viewpoint of followability of the base crack. it is a 05~5.0mm / m 2. Moreover, the preferable thickness of a primer layer is 0.005-3.0 mm / m < 2 >. It is preferable that the coating amount of the resin used for each layer is applied so as to have these thicknesses.

なお、各層に用いる樹脂を塗布する方法は、例えば、刷毛、金鏝、レーキ等を用いて塗布する方法が挙げられる。   In addition, the method of apply | coating resin used for each layer includes the method of apply | coating using a brush, a hammer, a lake, etc., for example.

前記下層(i)及び上層(ii)の硬化は常温で行われる。前記下層(i)の硬化時間は約30分〜1時間であり、前記上層(ii)の硬化時間は、約30分〜1時間である。   The lower layer (i) and the upper layer (ii) are cured at room temperature. The curing time of the lower layer (i) is about 30 minutes to 1 hour, and the curing time of the upper layer (ii) is about 30 minutes to 1 hour.

また、本発明の複合被覆構造体は、少なくとも基体/プライマー層/下層(i)/上層(ii)を順次有しているが、使用目的によっては、前記上層(ii)の上に仕上げ層やトップコート層が積層されていてもよい。   The composite covering structure of the present invention has at least a substrate / primer layer / lower layer (i) / upper layer (ii) in order, but depending on the purpose of use, a finish layer or A topcoat layer may be laminated.

以下、本発明を実施例により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

[合成例1]
<ポリエステルポリオール(A−1)の合成>
温度計、攪拌機、不活性ガス導入口及び還流冷却器を備えた四つ口フラスコに、アジピン酸531質量部、3−メチルペンタンジオール469質量部を仕込み、その全仕込み量に対して、エステル化触媒としてテトライソプロピルチタネートを0.003質量%添加し、220℃で20時間反応させ、ポリエステルポリオール(A−1)を得た。得られたポリエステルポリオール(A−1)の酸価は0.5mgKOH/g、水酸基価は37mgKOH/g、数平均分子量は3,000であった。
[Synthesis Example 1]
<Synthesis of polyester polyol (A-1)>
A four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser is charged with 531 parts by weight of adipic acid and 469 parts by weight of 3-methylpentanediol. As a catalyst, 0.003% by mass of tetraisopropyl titanate was added and reacted at 220 ° C. for 20 hours to obtain a polyester polyol (A-1). The polyester polyol (A-1) obtained had an acid value of 0.5 mgKOH / g, a hydroxyl value of 37 mgKOH / g, and a number average molecular weight of 3,000.

[合成例2]
<ポリエステルポリオール(A−2)の合成>
温度計、攪拌機、不活性ガス導入口及び還流冷却器を備えた四つ口フラスコに、アジピン酸539質量部、3−メチルペンタンジオール461質量部を仕込み、その全仕込み量に対して、エステル化触媒としてテトライソプロピルチタネートを0.003質量%添加し、220℃で20時間反応させ、ポリエステルポリオール(A−2)を得た。得られたポリエステルポリオール(A−2)の酸価は0.5mgKOH/g、水酸基価は22.6mgKOH/g、数平均分子量は5,000であった。
[Synthesis Example 2]
<Synthesis of polyester polyol (A-2)>
A four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser is charged with 539 parts by weight of adipic acid and 461 parts by weight of 3-methylpentanediol. As a catalyst, 0.003% by mass of tetraisopropyl titanate was added and reacted at 220 ° C. for 20 hours to obtain a polyester polyol (A-2). The polyester polyol (A-2) obtained had an acid value of 0.5 mgKOH / g, a hydroxyl value of 22.6 mgKOH / g, and a number average molecular weight of 5,000.

[合成例3]
<ポリエステルポリオール(A−3)の合成>
温度計、攪拌機、不活性ガス導入口及び還流冷却器を備えた四つ口フラスコに、アジピン酸541質量部、3−メチルペンタンジオール459質量部を仕込み、その全仕込み量に対して、エステル化触媒としてテトライソプロピルチタネートを0.003質量%添加し、220℃で20時間反応させ、ポリエステルポリオール(A−3)を得た。得られたポリエステルポリオール(A−3)の酸価は0.5mgKOH/g、水酸基価は19mgKOH/g、数平均分子量は6,000であった。
[Synthesis Example 3]
<Synthesis of polyester polyol (A-3)>
A four-necked flask equipped with a thermometer, stirrer, inert gas inlet and reflux condenser was charged with 541 parts by mass of adipic acid and 459 parts by mass of 3-methylpentanediol, and the esterification was performed with respect to the total charged amount. As a catalyst, 0.003% by mass of tetraisopropyl titanate was added and reacted at 220 ° C. for 20 hours to obtain a polyester polyol (A-3). The polyester polyol (A-3) obtained had an acid value of 0.5 mgKOH / g, a hydroxyl value of 19 mgKOH / g, and a number average molecular weight of 6,000.

[合成例4]
<ウレタンメタクリレート樹脂(1−1)の合成>
温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた1リットルの四つ口フラスコにトリレンジイソシアネート122質量部とイソホロンジイソシアネート28質量部と合成例1で得られたポリエステルポリオール(A−1)2000質量部を仕込み、窒素雰囲気下80℃で3時間反応させた。NCO%が1.60となり60℃まで冷却し、次いで2−ヒドロキシエチルメタクリレートを130質量部加え、更に90℃にて3時間反応させた。NCO%が0.1%以下になったことを確認した後、全仕込み量に対して、トルハイドロキノン0.05質量%、ターシャリーブチルカテコール0.025質量%添加し、ウレタンメタクリレート樹脂(1−1)を得た。
[Synthesis Example 4]
<Synthesis of urethane methacrylate resin (1-1)>
Polyester obtained in Synthesis Example 1 in a 1 liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, air inlet and reflux condenser, 122 parts by weight of tolylene diisocyanate and 28 parts by weight of isophorone diisocyanate 2000 parts by mass of polyol (A-1) was charged and reacted at 80 ° C. for 3 hours in a nitrogen atmosphere. The NCO% was 1.60, and the mixture was cooled to 60 ° C. Then, 130 parts by mass of 2-hydroxyethyl methacrylate was added, and the mixture was further reacted at 90 ° C for 3 hours. After confirming that NCO% was 0.1% or less, 0.05% by mass of toluhydroquinone and 0.025% by mass of tertiary butylcatechol were added to the total charge, and urethane methacrylate resin (1- 1) was obtained.

[合成例5]
<ウレタンメタクリレート樹脂(1−2)の合成>
温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた1リットルの四つ口フラスコにトリレンジイソシアネート120質量部とイソホロンジイソシアネート27質量部と合成例2で得られたポリエステルポリオール(A−2)2000質量部を仕込み、窒素雰囲気下80℃で3時間反応させた。NCO%が1.59となり60℃まで冷却し、次いで2−ヒドロキシエチルメタクリレートを129質量部加え、更に90℃にて3時間反応させた。NCO%が0.1%以下になったことを確認した後、全仕込み量に対して、トルハイドロキノン0.05質量%、ターシャリーブチルカテコール0.025質量%添加し、ウレタンメタクリレート樹脂(1−2)を得た。
[Synthesis Example 5]
<Synthesis of urethane methacrylate resin (1-2)>
Polyester obtained in Synthesis Example 2 with 120 parts by mass of tolylene diisocyanate and 27 parts by mass of isophorone diisocyanate in a 1 liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, air inlet and reflux condenser 2000 parts by mass of polyol (A-2) was charged and reacted at 80 ° C. for 3 hours in a nitrogen atmosphere. NCO% became 1.59, it cooled to 60 degreeC, 129 mass parts of 2-hydroxyethyl methacrylate was then added, and also it was made to react at 90 degreeC for 3 hours. After confirming that NCO% was 0.1% or less, 0.05% by mass of toluhydroquinone and 0.025% by mass of tertiary butylcatechol were added to the total charge, and urethane methacrylate resin (1- 2) was obtained.

[合成例6]
<ウレタンメタクリレート樹脂(1−3)の合成>
温度計、攪拌機、不活性ガス導入口、空気導入口及び還流冷却器を備えた1リットルの四つ口フラスコにトリレンジイソシアネート118質量部とイソホロンジイソシアネート26質量部と合成例3で得られたポリエステルポリオール(A−3)2000質量部を仕込み、窒素雰囲気下80℃で3時間反応させた。NCO%が1.64となり60℃まで冷却し、次いで2−ヒドロキシエチルメタクリレートを129質量部加え、更に90℃にて3時間反応させた。NCO%が0.1%以下になったことを確認した後、全仕込み量に対して、トルハイドロキノン0.05質量%、ターシャリーブチルカテコール0.025質量%添加し、ウレタンメタクリレート樹脂(1−3)を得た。
[Synthesis Example 6]
<Synthesis of urethane methacrylate resin (1-3)>
Polyester obtained in Synthesis Example 3 in a 1 liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, air inlet and reflux condenser, 118 parts by weight of tolylene diisocyanate, 26 parts by weight of isophorone diisocyanate 2000 parts by mass of polyol (A-3) was charged and reacted at 80 ° C. for 3 hours in a nitrogen atmosphere. NCO% became 1.64, it cooled to 60 degreeC, then, 129 mass parts of 2-hydroxyethyl methacrylate was added, and also it was made to react at 90 degreeC for 3 hours. After confirming that NCO% was 0.1% or less, 0.05% by mass of toluhydroquinone and 0.025% by mass of tertiary butylcatechol were added to the total charge, and urethane methacrylate resin (1- 3) was obtained.

参考例1]
スレート板にウレタン樹脂プライマー(「プライアディックT−120−35」、DIC社製)0.15kg/mを塗布し、乾燥させた。次いで、合成例4で得られたウレタンメタクリレート樹脂(1−1)50質量部をフェノキシエチルメタクリレート50質量部に溶解し、6%ナフテン酸コバルト0.4質量部、N,N−ジメチルパラトルイジン−2−エチレンオキサイド付加物0.4質量部、過酸化ベンゾイル40%懸濁液(「ナイパーNS」、日油社製)2質量部を添加し、混合したものを1.2kg/mの塗布厚みで塗布し、硬化させることで下層を形成した。次いで、該下層上に420g/mのガラス繊維マットを置き、該ガラス繊維マットの上から不飽和ポリエステル樹脂(「ポリライトFR−250」、DIC社製)を1.5kg/m塗布して、該ガラスマットに含浸させ、硬化することで上層を形成し、複合被覆構造体を得た。
[ Reference Example 1]
A slate plate was coated with 0.15 kg / m 2 of urethane resin primer ("Priadic T-120-35", manufactured by DIC) and dried. Next, 50 parts by mass of the urethane methacrylate resin (1-1) obtained in Synthesis Example 4 was dissolved in 50 parts by mass of phenoxyethyl methacrylate, 0.4 parts by mass of 6% cobalt naphthenate, N, N-dimethylparatoluidine- 0.4 parts by mass of 2-ethylene oxide adduct and 2 parts by mass of 40% suspension of benzoyl peroxide (“Nyper NS”, manufactured by NOF Corporation) were added and the resulting mixture was applied to 1.2 kg / m 2 . The lower layer was formed by applying and curing in thickness. Next, a glass fiber mat of 420 g / m 2 is placed on the lower layer, and 1.5 kg / m 2 of an unsaturated polyester resin (“Polylite FR-250”, manufactured by DIC Corporation) is applied on the glass fiber mat. The glass mat was impregnated and cured to form an upper layer to obtain a composite coated structure.

[実施例
用いるウレタンメタクリレートの種類を表1に示すように変更した以外は、実施例1と同様にして複合被覆構造体を得た。
[Examples 1 and 2 ]
A composite coated structure was obtained in the same manner as in Example 1 except that the type of urethane methacrylate used was changed as shown in Table 1.

[比較合成例1]
温度計、攪拌機及び冷却器を具備した5L三口フラスコに、ジエチレングリコール(DEG)5.0モル、イソフタル酸2.2モル、アジピン酸2.2モル、ジブチル錫オキサイド1000ppmを仕込んで窒素気流下215℃で12時間反応を続け、ソリッド酸価が8以下になったところで、150℃まで冷却し、フマル酸0.6モルを仕込み、205℃まで昇温し、16時間反応を続けた。66.6%スチレン溶液でサンプリングを行い、酸価10〜20、ガ−ドナ−粘度がM−Oになったところで冷却した。その後、トルハイドロキノン30ppm、ナフテン酸銅10ppmを添加し、スチレンで希釈し不揮発分60%の不飽和ポリエステル樹脂を得た。
[Comparative Synthesis Example 1]
A 5 L three-necked flask equipped with a thermometer, a stirrer, and a condenser was charged with 5.0 mol of diethylene glycol (DEG), 2.2 mol of isophthalic acid, 2.2 mol of adipic acid, and 1000 ppm of dibutyltin oxide at 215 ° C. under a nitrogen stream. The reaction was continued for 12 hours, and when the solid acid value became 8 or less, it was cooled to 150 ° C., 0.6 mol of fumaric acid was added, the temperature was raised to 205 ° C., and the reaction was continued for 16 hours. Sampling was performed with a 66.6% styrene solution, and the mixture was cooled when the acid value was 10 to 20 and the gadner viscosity was MO. Thereafter, 30 ppm of toluhydroquinone and 10 ppm of copper naphthenate were added and diluted with styrene to obtain an unsaturated polyester resin having a nonvolatile content of 60%.

[比較例1]
スレート板上にウレタン樹脂系プライマー(「プライアディックT−120−35」、DIC社製)を0.15kg/m塗布し、乾燥させた。次いで、比較合成例1で得られた不飽和ポリエステル樹脂100質量部に、硬化促進剤(6%ナフテン酸コバルト)0.5%と硬化剤(55%メチルエチルケトンパーオキサイド)を配合したものを鏝で1.2kg/m塗布し、硬化させ下層を形成した。次いで、420g/mのガラス繊維マットの上から不飽和ポリエステル樹脂(「ポリライトFR−250」、DIC社製)を1.5kg/m塗布して、該ガラス繊維マット上に含浸させ、硬化することで上層を形成し、複合被覆構造体を得た。
[Comparative Example 1]
0.15 kg / m 2 of urethane resin primer (“Pliadic T-120-35”, manufactured by DIC) was applied on the slate plate and dried. Next, 100 parts by mass of the unsaturated polyester resin obtained in Comparative Synthesis Example 1 was blended with 0.5% of a curing accelerator (6% cobalt naphthenate) and a curing agent (55% methyl ethyl ketone peroxide). 1.2 kg / m 2 was applied and cured to form a lower layer. Next, 1.5 kg / m 2 of an unsaturated polyester resin (“Polylite FR-250”, manufactured by DIC Corporation) is applied onto a glass fiber mat of 420 g / m 2 , impregnated on the glass fiber mat, and cured. Thus, an upper layer was formed, and a composite covering structure was obtained.

[数平均分子量の測定方法]
合成例で用いたポリエステルポリオールの数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記の条件で測定した。
[Measurement method of number average molecular weight]
The number average molecular weight of the polyester polyol used in the synthesis example was measured by gel permeation chromatography (GPC) method under the following conditions.

測定装置:高速GPC装置(東ソー株式会社製「HLC−8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.

(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A−500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A−2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A−5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F−1」
東ソー株式会社製「TSKgel 標準ポリスチレン F−2」
東ソー株式会社製「TSKgel 標準ポリスチレン F−4」
東ソー株式会社製「TSKgel 標準ポリスチレン F−10」
東ソー株式会社製「TSKgel 標準ポリスチレン F−20」
東ソー株式会社製「TSKgel 標準ポリスチレン F−40」
東ソー株式会社製「TSKgel 標準ポリスチレン F−80」
東ソー株式会社製「TSKgel 標準ポリスチレン F−128」
東ソー株式会社製「TSKgel 標準ポリスチレン F−288」
東ソー株式会社製「TSKgel 標準ポリスチレン F−550」
(Monodispersed polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation

[下地ひび割れ追従性の評価方法]
長さ(300mm)方向の中間位置の幅方向に深さ5mmのノッチを入れた厚み8mm、幅100mm、長さ300のスレート板の中心位置に、幅50mm、長さ200mmのサイズに実施例及び比較例と同様に、プライマー層、下層、上層を形成し、その後20℃で7日間養生したものを試験体として、引張り試験(試験温度20℃、引張り速度2mm/分)を行い、破断時の伸び(mm)を測定し、以下のように評価した。
「◎」:破断時の伸びが、6.0mm以上
「○」:破断時の伸びが、4.0mm以上6.0mm未満
「×」:破断時の伸びが、4.0mm未満
[Evaluation method for base crack followability]
Example of a size of 50 mm in width and 200 mm in length at the center position of a slate plate having a thickness of 8 mm, a width of 100 mm and a length of 300 with a notch having a depth of 5 mm in the width direction of the intermediate position in the length (300 mm) direction and In the same manner as in the comparative example, a primer layer, a lower layer, and an upper layer were formed, and then subjected to a tensile test (test temperature: 20 ° C., tensile speed: 2 mm / min) using a sample that was cured at 20 ° C. for 7 days. The elongation (mm) was measured and evaluated as follows.
“◎”: Elongation at break is 6.0 mm or more “◯”: Elongation at break is 4.0 mm or more and less than 6.0 mm “X”: Elongation at break is less than 4.0 mm

[防水性の評価方法]
上記の下地ひび割れ追従性試験と同様な方法で、伸び幅が3.5mmまで引張試験を
実施した試験体の上層(ii)の割れ、はがれ等を目視観察し、割れ、剥がれ部位がある
場合には水を滴下し、下地スレート層まで漏水するかを目視で確認し、以下のように評価した。
「◎」:割れ、剥がれ無し。
「○」:割れ、剥がれはあるが、漏水無し。
「×」:割れ、剥がれがあり、漏水有り。
[Waterproof evaluation method]
When the crack or peeling of the upper layer (ii) of the specimen subjected to the tensile test up to an extension width of 3.5 mm is visually observed by the same method as the above-described cracking followability test, there are cracks and peeling parts. Was visually checked whether water was dropped to the ground slate layer and evaluated as follows.
“◎”: No cracking or peeling.
“O”: There is cracking and peeling, but no leakage.
"X": There is a crack and peeling, and there is water leakage.

Figure 0005927892
Figure 0005927892

本発明の複合被覆構造体である実施例1〜のものは、下地ひび割れ追従性及び防水性に優れていることが分かった。
一方、比較例1は、下層に不飽和ポリエステル樹脂を用いたものであるが、下地ひび割れ追従性及び防水性が十分でないことが分かった。
It turned out that the thing of Examples 1-2 which is a composite covering structure of this invention is excellent in base crack crack followability and waterproofness.
On the other hand, although the comparative example 1 uses unsaturated polyester resin for a lower layer, it turned out that base crack crack followability and waterproofness are not enough.

Claims (5)

プライマー処理した基体上に、ラジカル重合性樹脂組成物を塗布、硬化した下層(i)を設け、前記下層(i)上に繊維強化樹脂を塗布、硬化した上層(ii)を設けた複合被覆構造体であって、
前記ラジカル重合性樹脂組成物が、数平均分子量が,500〜7,000であるポリエステルポリオール(A)と、ポリイソシアネート(B)とを反応させてイソシアネート基末端ウレタンプレポリマー(C)を得、次いで水酸基を有する(メタ)アクリル化合物(D)を反応させて得られるウレタン(メタ)アクリレート樹脂(1)、及び分子量が200〜500であるラジカル重合性不飽和単量体(2)を含有するものであることを特徴とする複合被覆構造体。
A composite coating structure in which a lower layer (i) obtained by applying and curing a radical polymerizable resin composition is provided on a primer-treated substrate, and an upper layer (ii) obtained by applying and hardening a fiber reinforced resin on the lower layer (i). Body,
Obtained the radical polymerizable resin composition, the number average molecular weight of 3, and the polyester polyol (A) is a 500~7,000, polyisocyanate (B) is reacted with with an isocyanate group-terminated urethane prepolymer (C) Then, a urethane (meth) acrylate resin (1) obtained by reacting a (meth) acrylic compound (D) having a hydroxyl group, and a radically polymerizable unsaturated monomer (2) having a molecular weight of 200 to 500 are contained. A composite covering structure characterized by comprising:
前記ラジカル重合性樹脂組成物における、前記ウレタン(メタ)アクリレート樹脂(1)と前記ラジカル重合性不飽和単量体(2)との質量割合が、(1)/(2)=20/80〜70/30である請求項1に記載の複合被覆構造体。 In the radical polymerizable resin composition, a mass ratio of the urethane (meth) acrylate resin (1) and the radical polymerizable unsaturated monomer (2) is (1) / (2) = 20/80 to The composite covering structure according to claim 1, which is 70/30. 前記ラジカル重合性不飽和単量体(2)が、(メタ)アクリロイル基を1個有する(メタ)アクリル化合物である請求項1に記載の複合被覆構造体。 The composite covering structure according to claim 1, wherein the radical polymerizable unsaturated monomer (2) is a (meth) acrylic compound having one (meth) acryloyl group. 前記ラジカル重合性不飽和単量体(2)が、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート及びジシクロペンテニル(メタ)アクリレートからなる群より選ばれる1種以上である請求項に記載の複合被覆構造体。 The radical polymerizable unsaturated monomer (2) is at least one selected from the group consisting of phenoxyethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and dicyclopentenyl (meth) acrylate. Item 4. The composite covering structure according to Item 3 . 前記繊維強化樹脂が、不飽和ポリエステル樹脂及びガラス繊維を含有するものである請求項1記載の複合被覆構造体。 The composite covering structure according to claim 1, wherein the fiber reinforced resin contains an unsaturated polyester resin and glass fibers.
JP2011274549A 2011-12-15 2011-12-15 Composite covering structure Active JP5927892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011274549A JP5927892B2 (en) 2011-12-15 2011-12-15 Composite covering structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274549A JP5927892B2 (en) 2011-12-15 2011-12-15 Composite covering structure

Publications (2)

Publication Number Publication Date
JP2013124507A JP2013124507A (en) 2013-06-24
JP5927892B2 true JP5927892B2 (en) 2016-06-01

Family

ID=48775947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274549A Active JP5927892B2 (en) 2011-12-15 2011-12-15 Composite covering structure

Country Status (1)

Country Link
JP (1) JP5927892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573826B2 (en) * 2014-12-16 2019-09-11 オート化学工業株式会社 One-component coating flooring

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219712A (en) * 1999-01-29 2000-08-08 Daicel Ucb Kk Acrylate composition, cured article thereof, and composition for floor coating
JP2003268054A (en) * 2002-03-15 2003-09-25 Dainippon Ink & Chem Inc Free radical curing resin composition and civil engineering building material using the same
JP4100120B2 (en) * 2002-10-04 2008-06-11 大日本インキ化学工業株式会社 Covering structure
JP5029393B2 (en) * 2008-01-30 2012-09-19 Dic株式会社 Floor structure
JP5003853B2 (en) * 2010-11-01 2012-08-15 Dic株式会社 Radical curable resin composition

Also Published As

Publication number Publication date
JP2013124507A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
JP5003853B2 (en) Radical curable resin composition
JPS6133864B2 (en)
JP5003854B2 (en) Radical curable resin composition, coating material using the same, civil engineering building structure, and construction method thereof
JP2016029125A (en) Two-pack curable resin composition, covering material, covering method and covering structure
JP2011231231A (en) Radically curable unsaturated resin composition and coating material
JP6394077B2 (en) Radical polymerizable composition, concrete repair material and road primer
JP6057123B2 (en) Radical polymerizable resin composition, primer, and floor slab waterproof structure
JP5298615B2 (en) Preservation method of air drying unsaturated resin composition, civil engineering structure using the same, and construction method of civil engineering building
JP4147468B2 (en) Resin composition
JP3674076B2 (en) Resin composition, civil engineering and building materials and covering materials
JP5953732B2 (en) Composite covering structure
TW201512287A (en) Free radical polymerizable resin composition and civil construction material
JP5927892B2 (en) Composite covering structure
JP4150960B2 (en) Resin-coated structure
JP2013141764A (en) Composite coating structure
JP4982987B2 (en) Resin composition for coating
CN107531856B (en) Radical polymerizable resin composition and primer for civil engineering and construction
JP5845935B2 (en) Radical polymerizable resin composition
JP6725875B2 (en) Floor slab waterproof structure
JP4100120B2 (en) Covering structure
JP5029393B2 (en) Floor structure
WO2024135270A1 (en) Radical-polymerizable composition
JP2017206596A (en) Primer for concrete
JP5585843B2 (en) Radical curable resin composition and method for curing the same
JP2024005579A (en) Radical polymerizable composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5927892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250