WO2024135270A1 - Radical-polymerizable composition - Google Patents

Radical-polymerizable composition Download PDF

Info

Publication number
WO2024135270A1
WO2024135270A1 PCT/JP2023/042850 JP2023042850W WO2024135270A1 WO 2024135270 A1 WO2024135270 A1 WO 2024135270A1 JP 2023042850 W JP2023042850 W JP 2023042850W WO 2024135270 A1 WO2024135270 A1 WO 2024135270A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
parts
acrylate
mass
radical
Prior art date
Application number
PCT/JP2023/042850
Other languages
French (fr)
Japanese (ja)
Inventor
博美 入江
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2024135270A1 publication Critical patent/WO2024135270A1/en

Links

Definitions

  • the present invention relates to a radically polymerizable composition.
  • a radically polymerizable resin composition that contains an air-drying unsaturated resin, a radically polymerizable monomer, and a cyclodextrin derivative (see, for example, Patent Document 1).
  • this radically polymerizable resin composition has the problem of insufficient curing in thin films.
  • the problem that the present invention aims to solve is to provide a radically polymerizable composition that has low viscosity, excellent thin film curing properties, and can produce a coating film that has excellent wet surface adhesive strength.
  • a radically polymerizable composition containing a specific radically polymerizable resin, a (meth)acrylic monomer, a cyclodextrin derivative, and a wax can produce a coating film that has low viscosity, excellent thin film curing properties, and excellent wet surface adhesive strength, thus completing the present invention.
  • the present invention provides a radical polymerizable composition containing a radical polymerizable resin (A) containing a polyester (meth)acrylate (A1), a (meth)acrylic monomer (B), a cyclodextrin derivative (C), and a wax (D), wherein the polyester (meth)acrylate (A1) has a cyclic unsaturated aliphatic polybasic acid as an essential raw material, and the amount of the (meth)acrylic monomer (B) is 120 to 1,000 parts by mass per 100 parts by mass of the radical polymerizable resin (A).
  • the radically polymerizable composition of the present invention has low viscosity, excellent thin film curing properties, and produces a coating film with excellent wet surface adhesive strength, making it suitable for use as a primer for concrete and other civil engineering and construction applications.
  • the radical polymerizable composition of the present invention is a radical polymerizable composition containing a radical polymerizable resin (A) containing a polyester (meth)acrylate (A1), a (meth)acrylic monomer (B), a cyclodextrin derivative (C), and a wax (D), in which the polyester (meth)acrylate (A1) has a cyclic unsaturated aliphatic polybasic acid as an essential raw material, and the (meth)acrylic monomer (B) is 120 to 1,000 parts by mass per 100 parts by mass of the radical polymerizable resin (A).
  • (meth)acrylate refers to either or both of methacrylate and acrylate
  • (meth)acrylic monomer refers to either or both of acrylic monomer and methacrylic monomer
  • the polyester (meth)acrylate (A1) can be obtained, for example, by reacting an unsaturated polyester (a1) having carboxyl groups at both ends with glycidyl (meth)acrylate.
  • the unsaturated polyester (a1) is obtained by an esterification reaction between a polybasic acid raw material containing a cyclic unsaturated aliphatic polybasic acid and a polyhydric alcohol, but other polybasic acids such as aromatic dibasic acids and saturated dibasic acids can also be used as the polybasic acid raw material.
  • Examples of the cyclic unsaturated aliphatic polybasic acid that can be used include tetrahydrophthalic acid, tetrahydrophthalic anhydride, tetrahydromethylphthalic acid, tetrahydromethylphthalic anhydride, endomethylenetetrahydrophthalic acid, endomethylenetetrahydrophthalic anhydride, ⁇ -terpinene-maleic anhydride adduct, trans-piperylene-maleic anhydride adduct, etc.
  • polybasic acids examples include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, furandicarboxylic acid, 1,12-dodecane diacid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4'-biphenyldicarboxylic acid, and dialkyl esters thereof.
  • the amount of cyclic unsaturated aliphatic polybasic acid in the polybasic acid raw material is preferably 30 to 80 mass%, more preferably 40 to 70 mass%, since this further improves thin film curing properties.
  • the polyhydric alcohols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3-butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, and alkylene oxide adducts of bisphenol A.
  • 1,2,3,4-tetrahydroxybutane glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, 1,4-cyclohexanedimethanol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin glycol, 2,7-decalin glycol, etc. can be used.
  • These polyhydric alcohols may be used alone or in combination of two or more.
  • the radical polymerizable resin (A) contains polyester (meth)acrylate (A1) as an essential component, but other resins such as epoxy (meth)acrylate (A2), urethane (meth)acrylate (A3), and unsaturated polyester (A4) can also be used. These radical polymerizable resins can be used alone or in combination of two or more kinds.
  • the epoxy (meth)acrylate (A1) may be, for example, one obtained by reacting a bisphenol-type epoxy compound or a mixture of a bisphenol-type epoxy compound and a novolac-type epoxy compound with an unsaturated monobasic acid by a conventionally known method.
  • the bisphenol type epoxy compound may be, for example, a glycidyl ether type epoxy compound having two or more epoxy groups in one molecule obtained by reacting epichlorohydrin with bisphenol A or bisphenol F, a dimethylglycidyl ether type epoxy compound obtained by reacting methylepichlorohydrin with bisphenol A or bisphenol F, or an epoxy compound obtained by reacting an alkylene oxide adduct of bisphenol A with epichlorohydrin or methylepichlorohydrin.
  • These epoxy compounds may be used alone or in combination of two or more.
  • novolac type epoxy compound for example, an epoxy compound obtained by reacting phenol novolac or cresol novolac with epichlorohydrin or methyl epichlorohydrin can be used. These epoxy compounds may be used alone or in combination of two or more kinds.
  • unsaturated monobasic acid for example, (meth)acrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, monopropyl maleate, monobutene maleate, sorbic acid, mono(2-ethylhexyl) maleate, etc. can be used. These unsaturated monobasic acids can be used alone or in combination of two or more kinds.
  • the urethane (meth)acrylate (A2) may be, for example, one obtained by reacting a polyol, a polyisocyanate, and a (meth)acrylic compound having a hydroxyl group or an isocyanate group by a conventionally known method.
  • polyester polyol for example, polyester polyol, polycarbonate polyol, polyether polyol, acrylic polyol, caprolactone polyol, butadiene polyol, etc. can be used. These polyols can be used alone or in combination of two or more kinds.
  • polyisocyanate examples include aromatic diisocyanates such as phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate; and aromatic polyisocyanates such as xylylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, polyphenylene polymethylene polyisocyanate, formalin condensates of methylene diphenyl diiso
  • Examples of the (meth)acrylic compound having a hydroxyl group include (meth)acrylic acid alkyl esters having a hydroxyl group, such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; polyethylene glycol monoacrylate, and polypropylene glycol monoacrylate. These compounds may be used alone or in combination of two or more.
  • Examples of the (meth)acrylic compound having an isocyanate group include 2-(meth)acryloyloxyethyl isocyanate, 2-(2-(meth)acryloyloxyethyloxy)ethyl isocyanate, and 1,1-bis((meth)acryloyloxymethyl)ethyl isocyanate. These compounds may be used alone or in combination of two or more.
  • the unsaturated polyester resin (A3) is a product of reacting a polybasic acid, including an ⁇ , ⁇ -unsaturated dibasic acid, with a polyhydric alcohol, but it is preferable to use a dicyclopentadiene compound, as this improves curing properties.
  • the polybasic acid and the polyhydric alcohol can be, for example, those mentioned above as raw materials for the unsaturated polyester (a1).
  • dicyclopentadiene compounds examples include dicyclopentadiene, hydroxydicyclopentadiene, and dicyclopentadiene maleate (monoester of dicyclopentadiene and maleic acid).
  • the number average molecular weight of the radical polymerizable resin (A) is preferably 500 to 10,000, more preferably 500 to 8,000, and even more preferably 500 to 6,000, because this provides a better balance between low viscosity, thin film curing properties, and wet surface adhesive strength.
  • the average molecular weight in this invention is a value measured by gel permeation chromatography (GPC).
  • the (meth)acrylic monomer (B) is not particularly limited as long as it can dilute the resin viscosity, but examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, sec-butyl (meth)acrylate, isobutyl (meth)acrylate, 2-ethylbutyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, n-octyl (meth)acrylate, nonyl (meth)acrylate, dodecyl (meth)acrylate, and the like.
  • aliphatic (meth)acrylic monomers such as acrylate, 3-methylbutyl (meth)acrylate, isooctyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, neopentyl (meth)acrylate, hexadecyl (meth)acrylate, and isoamyl (meth)acrylate;
  • (meth)acrylic monomers having an alicyclic structure such as isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, and dicyclopentenyloxyethyl (meth)acrylate; acrylic monomers; (meth)acrylic monomers having an ether group such as 3-methoxybutyl (me
  • the amount of the (meth)acrylic monomer (B) used is 120 to 1,000 parts by mass per 100 parts by mass of the radical polymerizable resin (A), but 150 to 800 parts by mass is more preferable, and 200 to 600 parts by mass is even more preferable, as this provides a better balance between low viscosity, thin film curing properties, and wet surface adhesive strength.
  • cyclodextrin derivative (C) for example, cyclodextrin; alkylated cyclodextrin, acetylated cyclodextrin, hydroxyalkylated cyclodextrin, and other cyclodextrins in which the hydrogen atoms of the hydroxyl groups of the glucose units of the cyclodextrin are replaced with other functional groups can be used.
  • any of ⁇ -cyclodextrin consisting of six glucose units, ⁇ -cyclodextrin consisting of seven glucose units, and ⁇ -cyclodextrin consisting of eight glucose units can be used.
  • These cyclodextrin derivatives (C) may be used alone or in combination of two or more kinds. Among these, hydroxypropylated ⁇ -cyclodextrin and methylated ⁇ -cyclodextrin are preferred because of their excellent solubility in resins.
  • the content of the cyclodextrin derivative (C) is preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass, per 100 parts by mass of the radical polymerizable resin (A) because this further improves the wet surface adhesive strength.
  • the wax (D) prevents inhibition of curing by oxygen, and examples thereof include paraffin wax, microcrystalline wax, and petrolactam. From the viewpoint of compatibility with the radical polymerizable resin (A) and the (meth)acrylic monomer (B) and thin film curing properties, it is preferable to use paraffin wax.
  • the melting point of the wax (D) is preferably 40 to 75°C, more preferably 45 to 60°C, from the viewpoint of compatibility with the radical polymerizable resin (A) and the (meth)acrylic monomer (B) and thin film curing properties.
  • the melting point of the wax (D) is the melting point measured based on JIS K2235.
  • the content of the wax (D) is preferably 0.01 to 3 parts by mass, and more preferably 0.02 to 0.5 parts by mass, per 100 parts by mass of the total of the radical polymerizable resin (A) and the (meth)acrylic monomer (B), from the viewpoint of thin film thermosetting property and recoatability.
  • the radically polymerizable composition of the present invention contains polyester (A), (meth)acrylic monomer (B), polymerization inhibitor (C), and wax (D), and may contain other additives, etc., as necessary.
  • the other additives that can be used include, for example, organic peroxides, curing accelerators, polymerization inhibitors, pigments, thixotropic agents, antioxidants, solvents, fillers, reinforcing materials, aggregates, and flame retardants.
  • organic peroxides and curing accelerators because they have better curing properties.
  • These additives may be used alone or in combination of two or more kinds.
  • organic peroxide for example, diacyl peroxide compounds, peroxyester compounds, hydroperoxide compounds, dialkyl peroxide compounds, ketone peroxide compounds, peroxyketal compounds, alkyl perester compounds, percarbonate compounds, etc. can be used, but among these, from the viewpoint of superiority in coating film curing properties, it is preferable to use diacyl peroxide compounds, hydroperoxide compounds, and ketone peroxide compounds, and it is more preferable to use diacyl peroxide compounds and hydroperoxide compounds. These compounds may be used alone or in combination of two or more kinds.
  • diacyl peroxide compound for example, benzoyl peroxide, toluyl peroxide, acetyl peroxide, lauroyl peroxide, etc. can be used, and among these, it is preferable to use benzoyl peroxide. These compounds may be used alone or in combination of two or more kinds.
  • hydroperoxide compound for example, cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, tetramethylbutyl hydroperoxide, t-hexyl hydroperoxide, t-butyl hydroperoxide, etc. can be used, but among these, cumene hydroperoxide and diisopropylbenzene hydroperoxide are preferably used, and cumene hydroperoxide is more preferably used, in view of the superiority of the coating film curing properties. These compounds may be used alone or in combination of two or more kinds.
  • the amount of the organic peroxide used is preferably 0.5 to 10 parts by mass, and more preferably 1 to 6 parts by mass, per 100 parts by mass of the polyester (A) and the (meth)acrylic monomer (B) in total, from the viewpoint of low-temperature curing properties.
  • the curing accelerator is preferably a substance that decomposes the organic peroxide through a redox reaction and facilitates the generation of active radicals
  • examples of such substances include cobalt salts of organic acids such as cobalt naphthenate and cobalt octoate; organic acid salts such as zinc octoate, vanadium octoate, copper naphthenate, and barium naphthenate; metal chelate compounds such as vanadium acetylacetate, cobalt acetylacetate, and iron acetylacetonate; aniline, N,N-dimethylaniline, N,N-diethylaniline, 4-(N,N-dimethylamino)benzaldehyde, 4-[N,N-bis(2-hydroxyethyl)amino]benzaldehyde, 4-(N-methyl-N-hydroxyethyl)benzaldehyde, and the like.
  • N,N-substituted anilines such as N,N-substituted p-toluidine, 4-(N,N-substituted amino)benzaldehyde, N-ethyl-m-toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylimorpholine, piperidine, N,N-bis(hydroxyethyl)aniline, and diethanolaniline, amine compounds such as N,N-substituted p-toluidine, 4-(N,N-substituted amino)benzaldehyde, p-toluidine, N,N-dimethyl-p-toluidine, ethylene oxide adduct of N,N-dimethyl-p-toluidine, N,N-bis(2-hydroxyethyl)-p-toluidine, N,N-bis(2-hydroxypropyl)-p-toluidine, and N-ethy
  • cobalt salts of an organic acid or an amine compound may be used alone or in combination of two or more.
  • cobalt salt of an organic acid cobalt naphthenate and cobalt octylate are preferred, and as the amine compound, a toluidine compound is preferred.
  • the amount of the curing accelerator used is preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 2 parts by mass, per 100 parts by mass of the polyester (A) and the (meth)acrylic monomer (B) in total, from the viewpoint of low-temperature curing properties.
  • polymerization inhibitor examples include dibutylhydroxytoluene, hydroquinone, trimethylhydroquinone, 4-t-butylcatechol, t-butylhydroquinone, toluhydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, copper naphthenate, and copper chloride, with dibutylhydroxytoluene being preferred as it provides a better balance between pot life and curability.
  • These polymerization inhibitors can be used alone or in combination of two or more.
  • the radically polymerizable composition of the present invention has low viscosity, excellent thin film curing properties, and produces a coating film with excellent wet surface adhesive strength, making it suitable for use as a primer for concrete and other civil engineering and construction applications.
  • the concrete primer of the present invention can be used as a primer for concrete such as cement concrete, asphalt concrete, mortar concrete, resin concrete, water-permeable concrete, and ALC (Autoclaved Lightweight Aerated Concrete) boards.
  • concrete such as cement concrete, asphalt concrete, mortar concrete, resin concrete, water-permeable concrete, and ALC (Autoclaved Lightweight Aerated Concrete) boards.
  • the concrete primer of the present invention has low viscosity, excellent thin-film curing properties, and produces a coating film with excellent wet surface adhesive strength, making it suitable for use as a primer for various types of concrete.
  • Measurement device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were used, connected in series. "TSKgel G5000” (7.8mm I.D. x 30cm) x 1 "TSKgel G4000” (7.8mm I.D. x 30cm) x 1 "TSKgel G3000” (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D.
  • polyester (meth)acrylate (A1-1) having a number average molecular weight of 5,400.
  • HEMA 2-hydroxyethyl methacrylate
  • Example 1 Preparation and evaluation of radically polymerizable composition (1)
  • a light-shielding container equipped with a stirrer, a reflux condenser, and a thermometer was charged with 5 parts by mass of polyester (meth)acrylate (A1-1), 5 parts by mass of epoxy methacrylate (A2-1), 10 parts by mass of unsaturated polyester resin (A4-1), 25 parts by mass of methyl methacrylate, 5 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of 2-hydroxyethyl methacrylate, 25 parts by mass of dicyclopentenyloxyethyl methacrylate, 5 parts by mass of phenoxyethyl methacrylate, 5 parts by mass of diethylene glycol dimethacrylate, 5 parts by mass of EO-modified bisphenol A dimethacrylate, 0.5 parts by mass of methylated ⁇ -cyclodextrin, and 0.1 parts by mass of 130° F.
  • this radical polymerizable composition (1) 0.5 parts by mass of 6% cobalt octylate, 0.2 parts by mass of N,N-bis(2-hydroxyethyl)-p-toluidine, and 0.2 parts by mass of N,N-dimethyl-p-toluidine were added as a curing accelerator and mixed to obtain a composition for evaluation (1).
  • Examples 2 to 4 Preparation and evaluation of radically polymerizable compositions (2) to (4)
  • Radical polymerizable compositions (2) to (4) were prepared in the same manner as in Example 1, except that the formulation in Example 1 was changed as shown in Table 1, and the physical properties were evaluated.
  • Radical polymerizable compositions (R1) to (R3) were prepared in the same manner as in Example 1, except that the formulation in Example 1 was changed as shown in Table 1, and the physical properties were evaluated.
  • compositions of the radically polymerizable compositions (1) to (4) obtained above are shown in Table 1.
  • compositions of the radically polymerizable compositions (R1) to (R3) obtained above are shown in Table 2.
  • MMA methyl methacrylate
  • 2-EHA 2-ethylhexyl acrylate
  • HEMA 2-hydroxyethyl methacrylate
  • ACMO acryloylmorpholine
  • DCPDOEMA dicyclopentenyloxyethyl methacrylate
  • PheOEMA phenoxyethyl methacrylate
  • DEGDMA diethylene glycol dimethacrylate
  • NPGDMA neopentyl glycol dimethacrylate
  • Comparative Example 1 is an example in which a cyclic unsaturated aliphatic polybasic acid is not used as a raw material for polyester (meth)acrylate (A1), and it was confirmed that the thin film curing property was insufficient.
  • Comparative Example 2 is an example in which the amount of (meth)acrylic monomer (B) used relative to the radical polymerizable resin (A) is below the lower limit of the present invention, but it was confirmed that the viscosity was too high.
  • Comparative Example 3 is an example in which the cyclodextrin derivative (C) and wax (D) are not used, and it was confirmed that the wet surface adhesion and thin film curing properties were insufficient.

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided is a radical-polymerizable composition including a radical-polymerizable resin (A) containing polyester (meth)acrylate (A1), a (meth)acrylic monomer (B), a cyclodextrin derivative (C), and wax (D), the radical-polymerizable composition being characterized in that the polyester (meth)acrylate (A1) contains a cyclic unsaturated aliphatic polybasic acid as an essential starting material, and the (meth)acrylic monomer (B) is 120-1,000 parts by mass per 100 parts by mass of the radical-polymerizable resin (A). The radical-polymerizable composition has low viscosity and excellent thin-film curability, and a coating film having excellent wet-surface adhesive strength can be obtained therefrom. Thus, the radical-polymerizable composition can be suitably used as a primer for various types of civil engineering work and construction such as a primer for concrete.

Description

ラジカル重合性組成物Radical polymerizable composition
 本発明は、ラジカル重合性組成物に関する。 The present invention relates to a radically polymerizable composition.
 交通量の増加に伴い、高速道路では道路橋床版の劣化が進行している。劣化の補修の際は、床版の脆弱層を除去して補修するため補修の度に床版厚は減少し、耐荷性を維持するために必要な床版厚が確保できなくなっている。そのように薄化した床版が増加していることから床版増厚工法の採用が増加している。本工法では、床版の厚みを回復するだけでなく、ひび割れ劣化した床版の補強が求められている。 As traffic volume increases, road bridge decks on expressways are deteriorating. When repairing deteriorated bridges, weak layers of the deck are removed, but the deck thickness decreases with each repair, making it impossible to ensure the deck thickness necessary to maintain load resistance. As the number of such thin decks increases, the use of deck thickening methods is on the rise. This method not only restores the thickness of the deck, but also reinforces decks that have deteriorated due to cracks.
 このような床版補強に利用される材料には、ひび割れへ浸透する必要があるため、低粘度であることや、湿潤面への接着性が要求される。このような材料としては、空気乾燥性不飽和樹脂、ラジカル重合性単量体、並びに、シクロデキストリン誘導体を含有するラジカル重合性樹脂組成物が提案されている(例えば、特許文献1参照)。しかしながら、このラジカル重合性樹脂組成物は、薄膜での硬化性が不十分であるという問題があった。 Materials used for such deck reinforcement must have low viscosity and be able to adhere to wet surfaces, as they need to penetrate into cracks. One such material that has been proposed is a radically polymerizable resin composition that contains an air-drying unsaturated resin, a radically polymerizable monomer, and a cyclodextrin derivative (see, for example, Patent Document 1). However, this radically polymerizable resin composition has the problem of insufficient curing in thin films.
特許第6066027号Patent No. 6066027
 本発明が解決しようとする課題は、低粘度であり、薄膜硬化性に優れ、湿潤面接着強度に優れる塗膜が得られるラジカル重合性組成物を提供することである。 The problem that the present invention aims to solve is to provide a radically polymerizable composition that has low viscosity, excellent thin film curing properties, and can produce a coating film that has excellent wet surface adhesive strength.
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、特定のラジカル重合性樹脂と、(メタ)アクリル単量体と、シクロデキストリン誘導体と、ワックスとを含有するラジカル重合性組成物が、低粘度であり、薄膜硬化性に優れ、湿潤面接着強度に優れる塗膜が得られることを見出し、本発明を完成した。 The inventors conducted extensive research to solve the above problems and discovered that a radically polymerizable composition containing a specific radically polymerizable resin, a (meth)acrylic monomer, a cyclodextrin derivative, and a wax can produce a coating film that has low viscosity, excellent thin film curing properties, and excellent wet surface adhesive strength, thus completing the present invention.
 すなわち、本発明は、ポリエステル(メタ)アクリレート(A1)を含むラジカル重合性樹脂(A)と、(メタ)アクリル単量体(B)と、シクロデキストリン誘導体(C)と、ワックス(D)とを含有するラジカル重合性組成物であって、前記ポリエステル(メタ)アクリレート(A1)が環状不飽和脂肪族多塩基酸を必須原料とするものであり、前記ラジカル重合性樹脂(A)100質量部に対し、前記(メタ)アクリル単量体(B)が120~1,000質量部であることを特徴とするラジカル重合性組成物を提供するものである。 In other words, the present invention provides a radical polymerizable composition containing a radical polymerizable resin (A) containing a polyester (meth)acrylate (A1), a (meth)acrylic monomer (B), a cyclodextrin derivative (C), and a wax (D), wherein the polyester (meth)acrylate (A1) has a cyclic unsaturated aliphatic polybasic acid as an essential raw material, and the amount of the (meth)acrylic monomer (B) is 120 to 1,000 parts by mass per 100 parts by mass of the radical polymerizable resin (A).
 本発明のラジカル重合性組成物は、低粘度であり、薄膜硬化性に優れ、湿潤面接着強度に優れる塗膜が得られることから、コンクリート用プライマー等、各種土木建築用プライマーに好適に用いることができる。 The radically polymerizable composition of the present invention has low viscosity, excellent thin film curing properties, and produces a coating film with excellent wet surface adhesive strength, making it suitable for use as a primer for concrete and other civil engineering and construction applications.
 本発明のラジカル重合性組成物は、ポリエステル(メタ)アクリレート(A1)を含むラジカル重合性樹脂(A)と、(メタ)アクリル単量体(B)と、シクロデキストリン誘導体(C)と、ワックス(D)とを含有するラジカル重合性組成物であって、前記ポリエステル(メタ)アクリレート(A1)が環状不飽和脂肪族多塩基酸を必須原料とするものであり、前記ラジカル重合性樹脂(A)100質量部に対し、前記(メタ)アクリル単量体(B)が120~1,000質量部であるものである。 The radical polymerizable composition of the present invention is a radical polymerizable composition containing a radical polymerizable resin (A) containing a polyester (meth)acrylate (A1), a (meth)acrylic monomer (B), a cyclodextrin derivative (C), and a wax (D), in which the polyester (meth)acrylate (A1) has a cyclic unsaturated aliphatic polybasic acid as an essential raw material, and the (meth)acrylic monomer (B) is 120 to 1,000 parts by mass per 100 parts by mass of the radical polymerizable resin (A).
 なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリル単量体」とは、アクリル単量体とメタクリル単量体の一方又は両方をいう。 In the present invention, "(meth)acrylate" refers to either or both of methacrylate and acrylate, and "(meth)acrylic monomer" refers to either or both of acrylic monomer and methacrylic monomer.
 前記ポリエステル(メタ)アクリレート(A1)は、例えば、両末端にカルボキシル基を有する不飽和ポリエステル(a1)と、グリシジル(メタ)アクリレートとの反応により得られる。 The polyester (meth)acrylate (A1) can be obtained, for example, by reacting an unsaturated polyester (a1) having carboxyl groups at both ends with glycidyl (meth)acrylate.
 前記不飽和ポリエステル(a1)は、環状不飽和脂肪族多塩基酸を含む多塩基酸原料と多価アルコールとのエステル化反応により得られるが、多塩基酸原料として、芳香族系二塩基酸、飽和二塩基酸等のその他の多塩基酸を用いることもできる。 The unsaturated polyester (a1) is obtained by an esterification reaction between a polybasic acid raw material containing a cyclic unsaturated aliphatic polybasic acid and a polyhydric alcohol, but other polybasic acids such as aromatic dibasic acids and saturated dibasic acids can also be used as the polybasic acid raw material.
 前記環状不飽和脂肪族多塩基酸としては、例えば、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、テトラヒドロメチルフタル酸、テトラヒドロメチル無水フタル酸、エンドメチレンテトラヒドロフタル酸、エンドメチレンテトラヒドロ無水フタル酸、α-テルピネン・無水マレイン酸付加物、トランス-ピペリレン・無水マレイン酸付加物等を用いることができる。 Examples of the cyclic unsaturated aliphatic polybasic acid that can be used include tetrahydrophthalic acid, tetrahydrophthalic anhydride, tetrahydromethylphthalic acid, tetrahydromethylphthalic anhydride, endomethylenetetrahydrophthalic acid, endomethylenetetrahydrophthalic anhydride, α-terpinene-maleic anhydride adduct, trans-piperylene-maleic anhydride adduct, etc.
 前記その他の多塩基酸としては、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、フランジカルボン酸、1,12-ドデカン2酸,2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸無水物、4,4’-ビフェニルジカルボン酸、またこれらのジアルキルエステル等を用いることができる。これらのその他の二塩基酸は単独で用いても2種以上を併用してもよい。 Examples of the other polybasic acids that can be used include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, furandicarboxylic acid, 1,12-dodecane diacid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4'-biphenyldicarboxylic acid, and dialkyl esters thereof. These other dibasic acids may be used alone or in combination of two or more.
 前記多塩基酸原料中の環状不飽和脂肪族多塩基酸は、薄膜硬化性がより向上することから、30~80質量%が好ましく、40~70質量%がより好ましい。 The amount of cyclic unsaturated aliphatic polybasic acid in the polybasic acid raw material is preferably 30 to 80 mass%, more preferably 40 to 70 mass%, since this further improves thin film curing properties.
 前記多価アルコールとしては、例えば、エチレングリコ-ル、ジエチレングリコ-ル、トリエチレングリコ-ル、ポリエチレングリコ-ル、プロピレングリコ-ル、ジプロピレングリコ-ル、ポリプロピレングリコ-ル、2-メチル-1,3-プロパンジオ-ル、1,3-ブタンジオ-ル、ネオペンチルグリコ-ル、水素化ビスフェノ-ルA、1,4-ブタンジオ-ル、ビスフェノ-ルAのアルキレンオキサイド付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロ-ルプロパン、1,3-プロパンジオ-ル、1,2-シクロヘキサングリコ-ル、1,3-シクロヘキサングリコ-ル、1,4-シクロヘキサングリコ-ル、1,4-シクロヘキサンジメタノ-ル、パラキシレングリコ-ル、ビシクロヘキシル-4,4’-ジオ-ル、2,6-デカリングリコ-ル、2,7-デカリングリコ-ル等を用いることができる。これらの多価アルコールは単独で用いても2種以上を併用してもよい。 The polyhydric alcohols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3-butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, and alkylene oxide adducts of bisphenol A. , 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, 1,4-cyclohexanedimethanol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin glycol, 2,7-decalin glycol, etc. can be used. These polyhydric alcohols may be used alone or in combination of two or more.
 前記ラジカル重合性樹脂(A)は、ポリエステル(メタ)アクリレート(A1)を必須成分とするものであるが、その他の樹脂として、エポキシ(メタ)アクリレート(A2)、ウレタン(メタ)アクリレート(A3)、不飽和ポリエステル(A4)等を使用することができる。なお、これらのラジカル重合性樹脂は単独で用いても2種以上を併用してもよい。 The radical polymerizable resin (A) contains polyester (meth)acrylate (A1) as an essential component, but other resins such as epoxy (meth)acrylate (A2), urethane (meth)acrylate (A3), and unsaturated polyester (A4) can also be used. These radical polymerizable resins can be used alone or in combination of two or more kinds.
 前記エポキシ(メタ)アクリレート(A1)としては、例えば、ビスフェノール型エポキシ化合物又はビスフェノール型エポキシ化合物とノボラック型エポキシ化合物とを混合したエポキシ化合物と、不飽和一塩基酸とを従来公知の方法で反応して得られるものを用いることができる。 The epoxy (meth)acrylate (A1) may be, for example, one obtained by reacting a bisphenol-type epoxy compound or a mixture of a bisphenol-type epoxy compound and a novolac-type epoxy compound with an unsaturated monobasic acid by a conventionally known method.
 前記ビスフェノール型エポキシ化合物としては、例えば、エピクロルヒドリンとビスフェノールA又はビスフェノールFとの反応により得られる1分子中に2個以上のエポキシ基を有するグリシジルエーテル型エポキシ化合物、メチルエピクロルヒドリンとビスフェノールA又はビスフェノールFとを反応させて得られるジメチルグリシジルエーテル型エポキシ化合物、ビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリン又はメチルエピクロルヒドリンとを反応させて得られるエポキシ化合物等を用いることができる。これらのエポキシ化合物は単独で用いても2種以上を併用してもよい。 The bisphenol type epoxy compound may be, for example, a glycidyl ether type epoxy compound having two or more epoxy groups in one molecule obtained by reacting epichlorohydrin with bisphenol A or bisphenol F, a dimethylglycidyl ether type epoxy compound obtained by reacting methylepichlorohydrin with bisphenol A or bisphenol F, or an epoxy compound obtained by reacting an alkylene oxide adduct of bisphenol A with epichlorohydrin or methylepichlorohydrin. These epoxy compounds may be used alone or in combination of two or more.
 前記ノボラックタイプ型エポキシ化合物としては、例えば、フェノールノボラック又はクレゾールノボラックと、エピクロルヒドリン又はメチルエピクロルヒドリンとを反応させて得られるエポキシ化合物等を用いることができる。これらのエポキシ化合物は単独で用いても2種以上を併用してもよい。 As the novolac type epoxy compound, for example, an epoxy compound obtained by reacting phenol novolac or cresol novolac with epichlorohydrin or methyl epichlorohydrin can be used. These epoxy compounds may be used alone or in combination of two or more kinds.
 前記不飽和一塩基酸としては、例えば、(メタ)アクリル酸、桂皮酸、クロトン酸、モノメチルマレート、モノプロピルマレート、モノブテンマレート、ソルビン酸、モノ(2-エチルヘキシル)マレート等を用いることができる。これらの不飽和一塩基酸は単独で用いても2種以上を併用してもよい。 As the unsaturated monobasic acid, for example, (meth)acrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, monopropyl maleate, monobutene maleate, sorbic acid, mono(2-ethylhexyl) maleate, etc. can be used. These unsaturated monobasic acids can be used alone or in combination of two or more kinds.
 前記ウレタン(メタ)アクリレート(A2)としては、例えば、ポリオール、ポリイソシアネート、及び、水酸基又はイソシアネート基を有する(メタ)アクリル化合物を従来公知の方法で反応させて得られるものを用いることができる。 The urethane (meth)acrylate (A2) may be, for example, one obtained by reacting a polyol, a polyisocyanate, and a (meth)acrylic compound having a hydroxyl group or an isocyanate group by a conventionally known method.
 前記ポリオールとしては、例えば、ポリエステルポリオール、ポリカーボネートポリオール、ポリエーテルポリオール、アクリルポリオール、カプロラクトンポリオール、ブタジエンポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。 As the polyol, for example, polyester polyol, polycarbonate polyol, polyether polyol, acrylic polyol, caprolactone polyol, butadiene polyol, etc. can be used. These polyols can be used alone or in combination of two or more kinds.
 前記ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族又は脂環式ジイソシアネート;キシリレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、メチレンジフェニルジシソシアネートのホルマリン縮合体、4,4’-ジフェニルメタンジイソシアネートのカルボジイミド変性体等の芳香族系ポリイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。 Examples of the polyisocyanate that can be used include aromatic diisocyanates such as phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; aliphatic or alicyclic diisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexane diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate; and aromatic polyisocyanates such as xylylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, phenylene diisocyanate, polyphenylene polymethylene polyisocyanate, formalin condensates of methylene diphenyl diisocyanate, and carbodiimide modified products of 4,4'-diphenylmethane diisocyanate. These polyisocyanates may be used alone or in combination of two or more.
 前記水酸基を有する(メタ)アクリル化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸アルキルエステル;ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレートなどを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the (meth)acrylic compound having a hydroxyl group include (meth)acrylic acid alkyl esters having a hydroxyl group, such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; polyethylene glycol monoacrylate, and polypropylene glycol monoacrylate. These compounds may be used alone or in combination of two or more.
 前記イソシアネート基を有する(メタ)アクリル化合物としては、例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等を用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。 Examples of the (meth)acrylic compound having an isocyanate group include 2-(meth)acryloyloxyethyl isocyanate, 2-(2-(meth)acryloyloxyethyloxy)ethyl isocyanate, and 1,1-bis((meth)acryloyloxymethyl)ethyl isocyanate. These compounds may be used alone or in combination of two or more.
 前記不飽和ポリエステル樹脂(A3)は、α,β-不飽和二塩基酸を含む多塩基酸と多価アルコールとを反応させたものであるが、硬化性がより向上することから、ジシクロペンタジエン系化合物を使用することが好ましい。 The unsaturated polyester resin (A3) is a product of reacting a polybasic acid, including an α,β-unsaturated dibasic acid, with a polyhydric alcohol, but it is preferable to use a dicyclopentadiene compound, as this improves curing properties.
 前記多塩基酸及び前記多価アルコールは、例えば、前記不飽和ポリエステル(a1)の原料として上記したものが挙げられる。 The polybasic acid and the polyhydric alcohol can be, for example, those mentioned above as raw materials for the unsaturated polyester (a1).
 前記ジシクロペンタジエン系化合物としては、例えば、ジシクロペンタジエン、ヒドロキシジシクロペンタジエン、ジシクロペンタジエンマレート(ジシクロペンタジエンとマレイン酸とのモノエステル)等が挙げられる。 Examples of the dicyclopentadiene compounds include dicyclopentadiene, hydroxydicyclopentadiene, and dicyclopentadiene maleate (monoester of dicyclopentadiene and maleic acid).
 なお、前記ラジカル重合性樹脂(A)の原料として、バイオマス由来の多塩基酸や多価アルコールを使用することにより、環境負荷の低減を図ることができる。 In addition, by using polybasic acids and polyhydric alcohols derived from biomass as raw materials for the radical polymerizable resin (A), it is possible to reduce the environmental burden.
 前記ラジカル重合性樹脂(A)の数平均分子量は、低粘度、薄膜硬化性、及び湿潤面接着強度のバランスがより向上することから、500~10,000が好ましく、500~8,000が好ましく、500~6,000がより好ましい。 The number average molecular weight of the radical polymerizable resin (A) is preferably 500 to 10,000, more preferably 500 to 8,000, and even more preferably 500 to 6,000, because this provides a better balance between low viscosity, thin film curing properties, and wet surface adhesive strength.
 本発明における平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。 The average molecular weight in this invention is a value measured by gel permeation chromatography (GPC).
 前記(メタ)アクリル単量体(B)としては、樹脂粘度を希釈し得るものであれば特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、イソアミル(メタ)アクリレート等の脂肪族(メタ)アクリル単量体;イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の脂環構造を有する(メタ)アクリル単量体;3-メトキシブチル(メタ)アクリレート)、2-メトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、2-メトキシブチル(メタ)アクリレート、オキシエチレンの付加モル数が1~15の範囲のメトキシポリエチレングリコールアクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート等のエーテル基を有する(メタ)アクリル単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル単量体;ベンジル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコールアクリレート、フェニル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の芳香族(メタ)アクリル単量体;(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、アクリロイルモルホリン、ジメチルアミノプロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、ヒドロキシエチルアクリルアミド等の窒素原子を有する(メタ)アクリル単量体などを用いることができる。これらの中でも、硬化性に優れることから、分子量300以下の(メタ)アクリレート化合物が好ましい。また、これらの(メタ)アクリル単量体は単独で用いても2種以上を併用してもよい。 The (meth)acrylic monomer (B) is not particularly limited as long as it can dilute the resin viscosity, but examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, sec-butyl (meth)acrylate, isobutyl (meth)acrylate, 2-ethylbutyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, n-octyl (meth)acrylate, nonyl (meth)acrylate, dodecyl (meth)acrylate, and the like. aliphatic (meth)acrylic monomers such as acrylate, 3-methylbutyl (meth)acrylate, isooctyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, neopentyl (meth)acrylate, hexadecyl (meth)acrylate, and isoamyl (meth)acrylate; (meth)acrylic monomers having an alicyclic structure such as isobornyl (meth)acrylate, cyclohexyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, and dicyclopentenyloxyethyl (meth)acrylate; acrylic monomers; (meth)acrylic monomers having an ether group such as 3-methoxybutyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxypropyl (meth)acrylate, 2-methoxybutyl (meth)acrylate, methoxypolyethylene glycol acrylates having an added mole number of oxyethylene in the range of 1 to 15, ethoxy-diethylene glycol (meth)acrylate, and ethyl carbitol (meth)acrylate; (meth)acrylic monomers having a hydroxyl group such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate; benzyl (meth)acrylate, Aromatic (meth)acrylic monomers such as tert-butyl acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, phenoxy polyethylene glycol acrylate, phenyl (meth)acrylate, and 2-hydroxy-3-phenoxypropyl (meth)acrylate; and (meth)acrylic monomers having nitrogen atoms such as (meth)acrylamide, dimethyl (meth)acrylamide, acryloylmorpholine, dimethylaminopropyl (meth)acrylamide, isopropyl (meth)acrylamide, diethyl (meth)acrylamide, diacetone (meth)acrylamide, and hydroxyethyl acrylamide can be used. Among these, (meth)acrylate compounds having a molecular weight of 300 or less are preferred because of their excellent curing properties. These (meth)acrylic monomers may be used alone or in combination of two or more.
 なお、前記(メタ)アクリル単量体(B)として、バイオマス由来の単量体を使用することにより、環境負荷の低減を図ることができる。 In addition, by using a monomer derived from biomass as the (meth)acrylic monomer (B), it is possible to reduce the environmental impact.
 前記(メタ)アクリル単量体(B)の使用量は、前記ラジカル重合性樹脂(A)100質量部に対して、120~1,000質量部であるが、低粘度、薄膜硬化性、及び湿潤面接着強度のバランスがより向上することから、150~800質量部がより好ましく、200~600質量部がさらに好ましい。 The amount of the (meth)acrylic monomer (B) used is 120 to 1,000 parts by mass per 100 parts by mass of the radical polymerizable resin (A), but 150 to 800 parts by mass is more preferable, and 200 to 600 parts by mass is even more preferable, as this provides a better balance between low viscosity, thin film curing properties, and wet surface adhesive strength.
 前記シクロデキストリン誘導体(C)としては、例えば、シクロデキストリン;アルキル化シクロデキストリン、アセチル化シクロデキストリン、ヒドロキシアルキル化シクロデキストリン等のシクロデキストリンのグルコース単位の水酸基の水素原子を他の官能基で置換したものなどを用いることができる。また、シクロデキストリン及びシクロデキストリン誘導体におけるシクロデキストリン骨格としては、6個のグルコース単位からなるα-シクロデキストリン、7個のグルコース単位からなるβ-シクロデキストリン、8個のグルコース単位からなるγ-シクロデキストリンのいずれも用いることができる。これらのシクロデキストリン誘導体(C)は、単独で用いても2種以上を併用してもよい。これらの中でも、樹脂への溶解性に優れることから、ヒドロキシプロピル化β-シクロデキストリン、メチル化β-シクロデキストリンが好ましい。 As the cyclodextrin derivative (C), for example, cyclodextrin; alkylated cyclodextrin, acetylated cyclodextrin, hydroxyalkylated cyclodextrin, and other cyclodextrins in which the hydrogen atoms of the hydroxyl groups of the glucose units of the cyclodextrin are replaced with other functional groups can be used. In addition, as the cyclodextrin skeleton in the cyclodextrin and cyclodextrin derivatives, any of α-cyclodextrin consisting of six glucose units, β-cyclodextrin consisting of seven glucose units, and γ-cyclodextrin consisting of eight glucose units can be used. These cyclodextrin derivatives (C) may be used alone or in combination of two or more kinds. Among these, hydroxypropylated β-cyclodextrin and methylated β-cyclodextrin are preferred because of their excellent solubility in resins.
 前記シクロデキストリン誘導体(C)の含有量は、湿潤面接着強度がより向上することから、前記ラジカル重合性樹脂(A)100質量部に対し、0.05~5質量部が好ましく、0.1~3質量部がより好ましい。なお、前記シクロデキストリン誘導体(C)の含有率を高くすることで、ラジカル重合性組成物のバイオマス度が上がり、環境負荷の低減を図ることができる。 The content of the cyclodextrin derivative (C) is preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass, per 100 parts by mass of the radical polymerizable resin (A) because this further improves the wet surface adhesive strength. By increasing the content of the cyclodextrin derivative (C), the biomass degree of the radical polymerizable composition increases, and the environmental load can be reduced.
 前記ワックス(D)は、酸素による硬化阻害を防止するものであり、例えば、パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等が挙げられ、前記ラジカル重合性樹脂(A)や前記(メタ)アクリル単量体(B)との相溶性や薄膜硬化性の観点からパラフィンワックスを用いることが好ましい。 The wax (D) prevents inhibition of curing by oxygen, and examples thereof include paraffin wax, microcrystalline wax, and petrolactam. From the viewpoint of compatibility with the radical polymerizable resin (A) and the (meth)acrylic monomer (B) and thin film curing properties, it is preferable to use paraffin wax.
 前記ワックス(D)の融点としては、前記ラジカル重合性樹脂(A)や前記(メタ)アクリル単量体(B)との相溶性や薄膜硬化性の観点から、40~75℃が好ましく、45~60℃がより好ましい。なお、前記ワックス(D)の融点は、JIS K2235に基づいて測定される融点を示す。 The melting point of the wax (D) is preferably 40 to 75°C, more preferably 45 to 60°C, from the viewpoint of compatibility with the radical polymerizable resin (A) and the (meth)acrylic monomer (B) and thin film curing properties. The melting point of the wax (D) is the melting point measured based on JIS K2235.
 前記ワックス(D)の含有量は、薄膜温硬化性やリコート性の観点から、前記ラジカル重合性樹脂(A)と前記(メタ)アクリル単量体(B)との合計100質量部に対して、0.01~3質量部が好ましく、0.02~0.5質量部がより好ましい。 The content of the wax (D) is preferably 0.01 to 3 parts by mass, and more preferably 0.02 to 0.5 parts by mass, per 100 parts by mass of the total of the radical polymerizable resin (A) and the (meth)acrylic monomer (B), from the viewpoint of thin film thermosetting property and recoatability.
 本発明のラジカル重合性組成物は、ポリエステル(A)、(メタ)アクリル単量体(B)、重合禁止剤(C)、及びワックス(D)を含有するものであるが、必要に応じてその他の添加剤等を含有していてもよい。 The radically polymerizable composition of the present invention contains polyester (A), (meth)acrylic monomer (B), polymerization inhibitor (C), and wax (D), and may contain other additives, etc., as necessary.
 前記その他の添加剤としては、例えば、有機過酸化物、硬化促進剤、重合禁止剤、顔料、チキソ性付与剤、酸化防止剤、溶剤、充填剤、補強材、骨材、難燃剤等を用いることができるが、硬化性がより優れることから、有機過酸化物及び硬化促進剤を用いることが好ましい。これらの添加剤は単独で用いても2種以上を併用してもよい。 The other additives that can be used include, for example, organic peroxides, curing accelerators, polymerization inhibitors, pigments, thixotropic agents, antioxidants, solvents, fillers, reinforcing materials, aggregates, and flame retardants. However, it is preferable to use organic peroxides and curing accelerators because they have better curing properties. These additives may be used alone or in combination of two or more kinds.
 前記有機過酸化物としては、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ジアルキルパーオキサイド化合物、ケトンパーオキサイド化合物、パーオキシケタール化合物、アルキルパーエステル化合物、パーカーボネート化合物等を用いることができるが、これらの中でも、塗膜硬化性の優位性から、ジアシルパーオキサイド化合物、ハイドロパーオキサイド化合物、ケトンパーオキサイド化合物を用いることが好ましく、ジアシルパーオキサイド化合物、ハイドロパーオキサイド化合物を用いることがより好ましい。これらの化合物は単独で用いても2種以上を併用してもよい。 As the organic peroxide, for example, diacyl peroxide compounds, peroxyester compounds, hydroperoxide compounds, dialkyl peroxide compounds, ketone peroxide compounds, peroxyketal compounds, alkyl perester compounds, percarbonate compounds, etc. can be used, but among these, from the viewpoint of superiority in coating film curing properties, it is preferable to use diacyl peroxide compounds, hydroperoxide compounds, and ketone peroxide compounds, and it is more preferable to use diacyl peroxide compounds and hydroperoxide compounds. These compounds may be used alone or in combination of two or more kinds.
 前記ジアシルパーオキサイド化合物としては、例えば、過酸化ベンゾイル、過酸化トルイル、過酸化アセチル、過酸化ラウロイル等を用いることができるが、これらの中でも、過酸化ベンゾイルを用いることが好ましい。これらの化合物は単独で用いても2種以上を併用してもよい。 As the diacyl peroxide compound, for example, benzoyl peroxide, toluyl peroxide, acetyl peroxide, lauroyl peroxide, etc. can be used, and among these, it is preferable to use benzoyl peroxide. These compounds may be used alone or in combination of two or more kinds.
 前記ハイドロパーオキサイド化合物としては、例えば、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、テトラメチルブチルハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等を用いることができるが、これらの中でも、塗膜硬化性の優位性から、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドを用いることが好ましく、クメンハイドロパーオキサイドを用いることがより好ましい。これらの化合物は単独で用いても2種以上を併用してもよい。 As the hydroperoxide compound, for example, cumene hydroperoxide, p-menthane hydroperoxide, diisopropylbenzene hydroperoxide, tetramethylbutyl hydroperoxide, t-hexyl hydroperoxide, t-butyl hydroperoxide, etc. can be used, but among these, cumene hydroperoxide and diisopropylbenzene hydroperoxide are preferably used, and cumene hydroperoxide is more preferably used, in view of the superiority of the coating film curing properties. These compounds may be used alone or in combination of two or more kinds.
 前記有機過酸化物の使用量としては、低温硬化性の点から、前記ポリエステル(A)及び前記(メタ)アクリル単量体(B)の合計100質量部に対して、0.5~10質量部が好ましく、1~6質量部がより好ましい。 The amount of the organic peroxide used is preferably 0.5 to 10 parts by mass, and more preferably 1 to 6 parts by mass, per 100 parts by mass of the polyester (A) and the (meth)acrylic monomer (B) in total, from the viewpoint of low-temperature curing properties.
 前記硬化促進剤は、前記有機過酸化物をレドックス反応によって分解し、活性ラジカルの発生を容易にする作用のある物質であることが好ましく、例えば、ナフテン酸コバルト、オクチル酸コバルト等の有機酸のコバルト塩;オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等の有機酸塩;バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート化合物;アニリン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド、N-エチル-m-トルイジン、トリエタノールアミン、m-トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N-ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N-置換アニリン、N,N-置換-p-トルイジン、4-(N,N-置換アミノ)ベンズアルデヒド、p-トルイジン、N,N-ジメチル-p-トルイジン、N,N-ジメチル-p-トルイジンのエチレンオキサイド付加物、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン、N-エチル-m-トルイジン等のアミン化合物などを用いることができる。これらの化合物は単独で用いても2種以上を併用してもよい。塗膜硬化性に優位なことから、有機酸のコバルト塩、アミン化合物を用いることが好ましく、これらを併用することがより好ましい。有機酸のコバルト塩としては、ナフテン酸コバルト、オクチル酸コバルトが好ましく、アミン化合物としては、トルイジン化合物が好ましい。 The curing accelerator is preferably a substance that decomposes the organic peroxide through a redox reaction and facilitates the generation of active radicals, and examples of such substances include cobalt salts of organic acids such as cobalt naphthenate and cobalt octoate; organic acid salts such as zinc octoate, vanadium octoate, copper naphthenate, and barium naphthenate; metal chelate compounds such as vanadium acetylacetate, cobalt acetylacetate, and iron acetylacetonate; aniline, N,N-dimethylaniline, N,N-diethylaniline, 4-(N,N-dimethylamino)benzaldehyde, 4-[N,N-bis(2-hydroxyethyl)amino]benzaldehyde, 4-(N-methyl-N-hydroxyethyl)benzaldehyde, and the like. N,N-substituted anilines such as N,N-substituted p-toluidine, 4-(N,N-substituted amino)benzaldehyde, N-ethyl-m-toluidine, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylimorpholine, piperidine, N,N-bis(hydroxyethyl)aniline, and diethanolaniline, amine compounds such as N,N-substituted p-toluidine, 4-(N,N-substituted amino)benzaldehyde, p-toluidine, N,N-dimethyl-p-toluidine, ethylene oxide adduct of N,N-dimethyl-p-toluidine, N,N-bis(2-hydroxyethyl)-p-toluidine, N,N-bis(2-hydroxypropyl)-p-toluidine, and N-ethyl-m-toluidine can be used. These compounds may be used alone or in combination of two or more. In view of their superiority in coating film curing properties, it is preferable to use a cobalt salt of an organic acid or an amine compound, and it is more preferable to use them in combination. As the cobalt salt of an organic acid, cobalt naphthenate and cobalt octylate are preferred, and as the amine compound, a toluidine compound is preferred.
 前記硬化促進剤の使用量としては、低温硬化性の点から、前記ポリエステル(A)及び前記(メタ)アクリル単量体(B)の合計100質量部に対して、0.1~5質量部が好ましく、0.2~2質量部がより好ましい。 The amount of the curing accelerator used is preferably 0.1 to 5 parts by mass, and more preferably 0.2 to 2 parts by mass, per 100 parts by mass of the polyester (A) and the (meth)acrylic monomer (B) in total, from the viewpoint of low-temperature curing properties.
 前記重合禁止剤としては、例えば、ジブチルヒドロキシトルエン、ハイドロキノン、トリメチルハイドロキノン、4-t-ブチルカテコール、t-ブチルハイドロキノン、トルハイドロキノン、p-ベンゾキノン、ナフトキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、ナフテン酸銅、塩化銅等が挙げられるが、可使時間及び硬化性のバランスがより向上することから、ジブチルヒドロキシトルエンが好ましい。なお、これらの重合禁止剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the polymerization inhibitor include dibutylhydroxytoluene, hydroquinone, trimethylhydroquinone, 4-t-butylcatechol, t-butylhydroquinone, toluhydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, copper naphthenate, and copper chloride, with dibutylhydroxytoluene being preferred as it provides a better balance between pot life and curability. These polymerization inhibitors can be used alone or in combination of two or more.
 本発明のラジカル重合性組成物は、低粘度であり、薄膜硬化性に優れ、湿潤面接着強度に優れる塗膜が得られることから、コンクリート用プライマー等、各種土木建築用プライマーに好適に用いることができる。 The radically polymerizable composition of the present invention has low viscosity, excellent thin film curing properties, and produces a coating film with excellent wet surface adhesive strength, making it suitable for use as a primer for concrete and other civil engineering and construction applications.
 本発明のコンクリート用プライマーは、例えば、セメントコンクリート、アスファルトコンクリート、モルタルコンクリート、レジンコンクリート、透水コンクリート、ALC(Autoclaved Lightweight Aerated Concrete)板等のコンクリートのプライマーとして用いることができる。 The concrete primer of the present invention can be used as a primer for concrete such as cement concrete, asphalt concrete, mortar concrete, resin concrete, water-permeable concrete, and ALC (Autoclaved Lightweight Aerated Concrete) boards.
 本発明のコンクリート用プライマーは、低粘度であり、薄膜硬化性に優れ、湿潤面接着強度に優れる塗膜が得られることから、各種コンクリート用のプライマーとして、好適に用いることができる。 The concrete primer of the present invention has low viscosity, excellent thin-film curing properties, and produces a coating film with excellent wet surface adhesive strength, making it suitable for use as a primer for various types of concrete.
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、酸価はJIS-K-6901に準拠して測定したものであり、平均分子量は、下記のGPC測定条件で測定したものである。 The present invention will be described in more detail below with reference to specific examples. Note that the acid value was measured in accordance with JIS-K-6901, and the average molecular weight was measured under the following GPC measurement conditions.
[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
[GPC measurement conditions]
Measurement device: High-speed GPC device ("HLC-8220GPC" manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were used, connected in series.
"TSKgel G5000" (7.8mm I.D. x 30cm) x 1 "TSKgel G4000" (7.8mm I.D. x 30cm) x 1 "TSKgel G3000" (7.8mm I.D. x 30cm) x 1 "TSKgel G2000" (7.8mm I.D. x 30cm) x 1 Detector: RI (differential refractometer)
Column temperature: 40°C
Eluent: tetrahydrofuran (THF)
Flow rate: 1.0 mL/min Injection volume: 100 μL (sample concentration 4 mg/mL in tetrahydrofuran solution)
Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.
(単分散ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Monodisperse polystyrene)
"TSKgel Standard Polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel Standard Polystyrene F-550" manufactured by Tosoh Corporation
(合成例1:ポリエステル(メタ)アクリレート(A1-1)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにジエチレンチルグリコール400部、トリエチレングリコール300部、無水フタル酸450部、メチルテトラヒドロフタル酸500部を仕込み、エステル化触媒としてモノブチル錫オキサイド0.5部、メチルハイドロキノン0.5部を添加し、220℃で10時間反応させた。その後、130℃まで冷却し、次いでグリシジルメタクリレート90部を投入し、5時間反応させ、数平均分子量5400のポリエステル(メタ)アクリレート(A1-1)を得た。
(Synthesis Example 1: Synthesis of polyester (meth)acrylate (A1-1))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 400 parts of diethylenetyl glycol, 300 parts of triethylene glycol, 450 parts of phthalic anhydride, and 500 parts of methyltetrahydrophthalic acid, and 0.5 parts of monobutyltin oxide and 0.5 parts of methylhydroquinone were added as esterification catalysts, and the mixture was reacted for 10 hours at 220° C. Thereafter, the mixture was cooled to 130° C., and then 90 parts of glycidyl methacrylate was added and reacted for 5 hours to obtain a polyester (meth)acrylate (A1-1) having a number average molecular weight of 5,400.
(合成例2:ポリエステル(メタ)アクリレート(A1-2)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにネオペンチルグリコール125部、1,3ブタンジオール135部、無水フタル220部、メチルテトラヒドロフタル酸250部を仕込み、エステル化触媒としてモノブチル錫オキサイド0.5部を添加し、220℃で12時間反応させた。その後、130℃まで冷却し、次いでグリシジルメタクリレート90部を投入し、5時間反応させ、数平均分子量2543、のポリエステル(メタ)アクリレート(A1-2)を得た。
(Synthesis Example 2: Synthesis of polyester (meth)acrylate (A1-2))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 125 parts of neopentyl glycol, 135 parts of 1,3-butanediol, 220 parts of phthalic anhydride, and 250 parts of methyltetrahydrophthalic acid, and 0.5 parts of monobutyltin oxide was added as an esterification catalyst, followed by reaction for 12 hours at 220° C. Thereafter, the mixture was cooled to 130° C., and then 90 parts of glycidyl methacrylate was added and reacted for 5 hours to obtain polyester (meth)acrylate (A1-2) having a number average molecular weight of 2543.
(合成例3:ポリエステル(メタ)アクリレート(A1-3)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにプロピレングリコール90部、ジエチレングリコール160部、無水マレイン酸30部、メチルテトラヒドロフタル酸400部、セバシン酸180部を仕込み、エステル化触媒としてモノブチル錫オキサイド0.5部を添加し、220℃で11時間反応させた。その後、130℃まで冷却し、次いでグリシジルメタクリレート90部を投入し、5時間反応させ、数平均分子量1151のポリエステル(メタ)アクリレート(A1-3)を得た。
(Synthesis Example 3: Synthesis of polyester (meth)acrylate (A1-3))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 90 parts of propylene glycol, 160 parts of diethylene glycol, 30 parts of maleic anhydride, 400 parts of methyltetrahydrophthalic acid, and 180 parts of sebacic acid, and 0.5 parts of monobutyltin oxide was added as an esterification catalyst, and the mixture was reacted for 11 hours at 220° C. Thereafter, the mixture was cooled to 130° C., and then 90 parts of glycidyl methacrylate was added and reacted for 5 hours to obtain a polyester (meth)acrylate (A1-3) having a number average molecular weight of 1,151.
(合成例4:ポリエステル(メタ)アクリレート(A1-4)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにエチレングリコール190部、トリエチレングリコール400部、アジピン酸40部、無水フタル酸400部、コハク酸350部を仕込み、エステル化触媒としてモノブチル錫オキサイド0.5部を添加し、220℃で11時間反応させた。その後、130℃まで冷却し、次いでグリシジルメタクリレート40部、アリルグリシジルエーテル30部を投入し、5時間反応させ、数平均分子量4333のポリエステル(メタ)アクリレート(A1-4)を得た。
(Synthesis Example 4: Synthesis of polyester (meth)acrylate (A1-4))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 190 parts of ethylene glycol, 400 parts of triethylene glycol, 40 parts of adipic acid, 400 parts of phthalic anhydride, and 350 parts of succinic acid, and 0.5 parts of monobutyltin oxide was added as an esterification catalyst, followed by reaction for 11 hours at 220° C. Thereafter, the mixture was cooled to 130° C., and then 40 parts of glycidyl methacrylate and 30 parts of allyl glycidyl ether were added and reacted for 5 hours to obtain a polyester (meth)acrylate (A1-4) having a number average molecular weight of 4,333.
(合成例5:ポリエステル(メタ)アクリレート(RA1-1)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにエチレングリコール180部、トリエチレングリコール400部、アジピン酸440部、無水マレイン酸30部、無水フタル酸400部を仕込み、エステル化触媒としてモノブチル錫オキサイド0.5部を添加し、220℃で11時間反応させた。その後、130℃まで冷却し、次いでグリシジルメタクリレート40部を投入し、5時間反応させ、数平均分子量4580のポリエステル(メタ)アクリレート(RA1-1)を得た。 
(Synthesis Example 5: Synthesis of polyester (meth)acrylate (RA1-1))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 180 parts of ethylene glycol, 400 parts of triethylene glycol, 440 parts of adipic acid, 30 parts of maleic anhydride, and 400 parts of phthalic anhydride, and 0.5 parts of monobutyltin oxide was added as an esterification catalyst, and the mixture was reacted for 11 hours at 220° C. Thereafter, the mixture was cooled to 130° C., and then 40 parts of glycidyl methacrylate was added and reacted for 5 hours to obtain a polyester (meth)acrylate (RA1-1) having a number average molecular weight of 4580.
(合成例6:エポキシ(メタ)アクリレート(A2-1)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにビスフェノールAとエピクロルヒドリンとの反応により得られたエポキシ当量188であるエピクロン850(DIC株式会社製)500質量部、アクリル酸150質量部、ハイドロキノン0.5質量部およびトリエチルアミン1.5質量部を仕込み、120℃まで昇温させ、同時間で10時間反応させ、数平均分子量1260のエポキシ(メタ)アクリレート(A2-1)を得た。
(Synthesis Example 6: Synthesis of epoxy (meth)acrylate (A2-1))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 500 parts by mass of Epicron 850 (manufactured by DIC Corporation) having an epoxy equivalent of 188 obtained by the reaction of bisphenol A with epichlorohydrin, 150 parts by mass of acrylic acid, 0.5 parts by mass of hydroquinone, and 1.5 parts by mass of triethylamine, and the mixture was heated to 120° C. and reacted for 10 hours at the same time to obtain an epoxy (meth)acrylate (A2-1) having a number average molecular weight of 1,260.
(合成例7:エポキシ(メタ)アクリレート(A2-2)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコにビスフェノールFとエピクロルヒドリンとの反応により得られたエポキシ当量172であるエピクロン830(DIC株式会社製)400質量部、メタクリル酸200質量部、ハイドロキノン0.5質量部およびトリエチルアミン1.5質量部を仕込み、120℃まで昇温させ、同時間で10時間反応させ、数平均分子量620のエポキシ(メタ)アクリレート(A2-2)を得た。
(Synthesis Example 7: Synthesis of epoxy (meth)acrylate (A2-2))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 400 parts by mass of Epicron 830 (manufactured by DIC Corporation) having an epoxy equivalent of 172 obtained by reacting bisphenol F with epichlorohydrin, 200 parts by mass of methacrylic acid, 0.5 parts by mass of hydroquinone, and 1.5 parts by mass of triethylamine, and the mixture was heated to 120° C. and reacted for 10 hours to obtain an epoxy (meth)acrylate (A2-2) having a number average molecular weight of 620.
(合成例8:ウレタン(メタ)アクリレート(A3-1)の合成)
 温度計、攪拌機、不活性ガス導入口、空気導入口及び環流冷却器を備えた反応容器に数平均分子量1000のポリプロピレングリコール(PPGと略す)500質量部とトリレンジイソシアネート(TDIと略す)172質量部を仕込み、窒素気流下80℃で2時間反応させた。NCO当量が600とほぼ理論当量値となったので、50℃まで冷却した。空気気流下、ハイドロキノン0.07質量部を加え、2-ヒドロキシエチルメタクリレート(HEMAと略す)135質量部を加え、90℃で4時間反応させた。NCO%が0.1%以下となった時点で、ターシャリーブチルカテコール(TBCと略す)0.07質量部添加し、数平均分子量1582ウレタンメタクリレート(A3-1)を得た。
(Synthesis Example 8: Synthesis of urethane (meth)acrylate (A3-1))
A reaction vessel equipped with a thermometer, a stirrer, an inert gas inlet, an air inlet and a reflux condenser was charged with 500 parts by mass of polypropylene glycol (abbreviated as PPG) having a number average molecular weight of 1000 and 172 parts by mass of tolylene diisocyanate (abbreviated as TDI), and reacted for 2 hours at 80°C under a nitrogen stream. Since the NCO equivalent was 600, which was almost the theoretical equivalent value, it was cooled to 50°C. Under an air stream, 0.07 parts by mass of hydroquinone was added, and 135 parts by mass of 2-hydroxyethyl methacrylate (abbreviated as HEMA) was added, and the reaction was carried out for 4 hours at 90°C. When the NCO% became 0.1% or less, 0.07 parts by mass of tertiary butyl catechol (abbreviated as TBC) was added, and urethane methacrylate (A3-1) having a number average molecular weight of 1582 was obtained.
(合成例9:不飽和ポリエステル(A4-1)の合成)
 温度計、撹拌機、不活性ガス導入口および還流冷却器を備えた四口フラスコに水270質量部とジシクロペンタジエン1980質量部、ハイドロキノン0.5質量部、エチレングリコール450質量部を仕込み、窒素気流下80℃で4時間反応させた。酸化210となった時点で無水マレイン酸1370質量部を仕込み、200℃で6時間反応させ、酸化8.0、数平均分子量540の不飽和ポリエステル樹脂(A4-1)を得た。 
(Synthesis Example 9: Synthesis of Unsaturated Polyester (A4-1))
A four-neck flask equipped with a thermometer, a stirrer, an inert gas inlet, and a reflux condenser was charged with 270 parts by mass of water, 1980 parts by mass of dicyclopentadiene, 0.5 parts by mass of hydroquinone, and 450 parts by mass of ethylene glycol, and reacted for 4 hours at 80° C. under a nitrogen stream. When the oxidation reached 210, 1370 parts by mass of maleic anhydride was charged and reacted for 6 hours at 200° C. to obtain an unsaturated polyester resin (A4-1) with an oxidation of 8.0 and a number average molecular weight of 540.
(実施例1:ラジカル重合性組成物(1)の調製及び評価)
 攪拌機、還流冷却管、温度計を備えた遮光容器に、ポリエステル(メタ)アクリレート(A1-1)5質量部、エポキシメタクリレート(A2-1)5質量部、不飽和ポリエステル樹脂(A4-1)10質量部、メタクリル酸メチルを25質量部、2-エチルヘキシルアクリレートを5質量部、2-ヒドロキシエチルメタクリレートを10質量部、ジシクロペンテニルオキシエチルメタクリレートを25質量部、フェノキシエチルメタクリレート5質量部、ジエチレングリコールジメタクリレートを5質量部、EO変性ビスフェノールAジメタクリレートを5質量部、メチル化β-シクロデキストリン0.5質量部、130°Fパラフィンワックスを0.1質量部加え、60℃下で加熱溶解させ、ラジカル重合性組成物(1)を得た。
 このラジカル重合性組成物(1)100質量部に硬化促進剤として6%オクチル酸コバルト0.5質量部、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン0.2質量部、N,N-ジメチル-p-トルイジン0.2質量部、を添加調合し、評価用組成物(1)を得た。
(Example 1: Preparation and evaluation of radically polymerizable composition (1))
A light-shielding container equipped with a stirrer, a reflux condenser, and a thermometer was charged with 5 parts by mass of polyester (meth)acrylate (A1-1), 5 parts by mass of epoxy methacrylate (A2-1), 10 parts by mass of unsaturated polyester resin (A4-1), 25 parts by mass of methyl methacrylate, 5 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of 2-hydroxyethyl methacrylate, 25 parts by mass of dicyclopentenyloxyethyl methacrylate, 5 parts by mass of phenoxyethyl methacrylate, 5 parts by mass of diethylene glycol dimethacrylate, 5 parts by mass of EO-modified bisphenol A dimethacrylate, 0.5 parts by mass of methylated β-cyclodextrin, and 0.1 parts by mass of 130° F. paraffin wax, and the mixture was heated and dissolved at 60° C. to obtain a radically polymerizable composition (1).
To 100 parts by mass of this radical polymerizable composition (1), 0.5 parts by mass of 6% cobalt octylate, 0.2 parts by mass of N,N-bis(2-hydroxyethyl)-p-toluidine, and 0.2 parts by mass of N,N-dimethyl-p-toluidine were added as a curing accelerator and mixed to obtain a composition for evaluation (1).
[粘度の評価]
 上記で得たラジカル重合性組成物(1)を、JISK6901:2008の「5.5.1ブルックフィールド形粘度計法を用いる場合」に準拠して、表7のタイプi、BM粘度計により5℃における粘度を測定し、下記基準により評価した。
 ○:50mPa・s未満
 ×:50mPa・s以上
[Evaluation of Viscosity]
The viscosity of the radically polymerizable composition (1) obtained above was measured at 5° C. using a type i BM viscometer in Table 7 in accordance with JIS K6901:2008 “5.5.1 When using a Brookfield viscometer method”, and evaluated according to the following criteria.
○: Less than 50 mPa·s ×: 50 mPa·s or more
[薄膜硬化性の評価]
 上記で得た評価用組成物(1)50質量部に、40質量%ベンゾイルパーオキサイド溶液を2質量部添加・混合し、評価用試料とした。この評価用試料をスレート板上に0.1kg/mの量で刷毛にて塗り広げ、5℃及び40℃の各条件下、指触にてタックフリーとなる時間を測定し、薄膜硬化性を評価した。
 〇:60分未満
 ×:60分以上
[Evaluation of thin film curability]
2 parts by mass of 40% by mass benzoyl peroxide solution was added to 50 parts by mass of the evaluation composition (1) obtained above and mixed to prepare an evaluation sample. This evaluation sample was spread on a slate board with a brush in an amount of 0.1 kg/ m2 , and the time until the sample became tack-free when touched with a finger was measured under each condition of 5°C and 40°C, to evaluate thin film curability.
○: Less than 60 minutes ×: More than 60 minutes
[湿潤面接着性の評価]
 上記で得た評価用組成物(1)50質量部に、40質量%ベンゾイルパーオキサイド溶液を2質量部添加・混合し、評価用試料とした。この評価用試料を23℃環境下、1日水浸し、その後取出して水滴を拭き取った舗装板の上に、0.1kg/mの量で刷毛にて塗り広げた。その塗膜を1日養生した後、建研式引張試験機(サンコーテクノ株式会社製「テクノスターRT-3000LD」)を使用して、垂直に引張り、剥離強度を測定し、以下の基準により湿潤面接着性を評価した。
〇1.5N/mm以上
×1.5N/mm未満
[Evaluation of Wet Surface Adhesion]
2 parts by mass of 40% by mass benzoyl peroxide solution was added to 50 parts by mass of the evaluation composition (1) obtained above and mixed to prepare an evaluation sample. This evaluation sample was immersed in water for 1 day in a 23°C environment, then taken out and spread with a brush at an amount of 0.1 kg/ m2 on a paving board on which water droplets had been wiped off. After curing the coating for 1 day, the coating was pulled vertically using a Kenken-type tensile tester ("Technostar RT-3000LD" manufactured by Sanko Techno Co., Ltd.) to measure the peel strength, and the wet surface adhesion was evaluated according to the following criteria.
○1.5N/ mm2 or more × less than 1.5N/ mm2
(実施例2~4:ラジカル重合性組成物(2)~(4)の調製及び評価)
 実施例1の配合を表1の通りに変更した以外は、実施例1と同様にして、ラジカル重合性組成物(2)~(4)を調製し、各物性を評価した。
(Examples 2 to 4: Preparation and evaluation of radically polymerizable compositions (2) to (4))
Radical polymerizable compositions (2) to (4) were prepared in the same manner as in Example 1, except that the formulation in Example 1 was changed as shown in Table 1, and the physical properties were evaluated.
(比較例1~3:ラジカル重合性組成物(R1)~(R3)の調製及び評価)
実施例1の配合を表1の通りに変更した以外は、実施例1と同様にして、ラジカル重合性組成物(R1)~(R3)を調製し、各物性を評価した。
(Comparative Examples 1 to 3: Preparation and Evaluation of Radically Polymerizable Compositions (R1) to (R3))
Radical polymerizable compositions (R1) to (R3) were prepared in the same manner as in Example 1, except that the formulation in Example 1 was changed as shown in Table 1, and the physical properties were evaluated.
 上記で得たラジカル重合性組成物(1)~(4)の組成を表1に示す。 The compositions of the radically polymerizable compositions (1) to (4) obtained above are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記で得たラジカル重合性組成物(R1)~(R3)の組成を表2に示す。 The compositions of the radically polymerizable compositions (R1) to (R3) obtained above are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表中の略号は下記の通りである。
  MMA:メチルメタクリレート
  2-EHA:2-エチルヘキシルアクリレート
  HEMA:2-ヒドロキシエチルメタクリレート
  ACMO:アクリロイルモルホリン
  DCPDOEMA:ジシクロペンテニルオキシエチルメタクリレート
  PheOEMA:フェノキシエチルメタクリレート
  DEGDMA:ジエチレングリコールジメタクリレート
  NPGDMA:ネオペンチルグリコールジメタクリレート
The abbreviations in the table are as follows.
MMA: methyl methacrylate 2-EHA: 2-ethylhexyl acrylate HEMA: 2-hydroxyethyl methacrylate ACMO: acryloylmorpholine DCPDOEMA: dicyclopentenyloxyethyl methacrylate PheOEMA: phenoxyethyl methacrylate DEGDMA: diethylene glycol dimethacrylate NPGDMA: neopentyl glycol dimethacrylate
  上記の実施例1~4の評価結果を表3に示す。 The evaluation results for Examples 1 to 4 above are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記の比較例1~3の評価結果を表4に示す。 The evaluation results for Comparative Examples 1 to 3 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1~4の本発明のラジカル重合性組成物は、低粘度であり、薄膜硬化性に優れ、湿潤面接着強度に優れる塗膜が得られることが確認された。 It was confirmed that the radically polymerizable compositions of the present invention in Examples 1 to 4 have low viscosity, excellent thin film curing properties, and can produce coatings with excellent wet surface adhesive strength.
 比較例1は、ポリエステル(メタ)アクリレート(A1)の原料として、環状不飽和脂肪族多塩基酸を使用しない例であるが、薄膜硬化性が不十分であることが確認された。 Comparative Example 1 is an example in which a cyclic unsaturated aliphatic polybasic acid is not used as a raw material for polyester (meth)acrylate (A1), and it was confirmed that the thin film curing property was insufficient.
 比較例2は、ラジカル重合性樹脂(A)に対する(メタ)アクリル単量体(B)の使用量が、本発明の下限を下回る例であるが、粘度が高すぎることが確認された。 Comparative Example 2 is an example in which the amount of (meth)acrylic monomer (B) used relative to the radical polymerizable resin (A) is below the lower limit of the present invention, but it was confirmed that the viscosity was too high.
 比較例3は、シクロデキストリン誘導体(C)及びワックス(D)を用いない例であるが、湿潤面接着力及び薄膜硬化性が不十分であることが確認された。 Comparative Example 3 is an example in which the cyclodextrin derivative (C) and wax (D) are not used, and it was confirmed that the wet surface adhesion and thin film curing properties were insufficient.

Claims (5)

  1.  ポリエステル(メタ)アクリレート(A1)を含むラジカル重合性樹脂(A)と、(メタ)アクリル単量体(B)と、シクロデキストリン誘導体(C)と、ワックス(D)とを含有するラジカル重合性組成物であって、前記ポリエステル(メタ)アクリレート(A1)が環状不飽和脂肪族多塩基酸を必須原料とするものであり、前記ラジカル重合性樹脂(A)100質量部に対し、前記(メタ)アクリル単量体(B)が120~1,000質量部であることを特徴とするラジカル重合性組成物。 A radical polymerizable composition containing a radical polymerizable resin (A) containing a polyester (meth)acrylate (A1), a (meth)acrylic monomer (B), a cyclodextrin derivative (C), and a wax (D), the polyester (meth)acrylate (A1) having a cyclic unsaturated aliphatic polybasic acid as an essential raw material, and the (meth)acrylic monomer (B) is 120 to 1,000 parts by mass per 100 parts by mass of the radical polymerizable resin (A).
  2.  前記ラジカル重合性樹脂(A)が、エポキシ(メタ)アクリレート(A2)、ウレタン(メタ)アクリレート(A3)、及び不飽和ポリエステル(A4)からなる群より選ばれる1以上の樹脂を含むものである請求項1記載のラジカル重合性組成物。 The radical polymerizable composition according to claim 1, wherein the radical polymerizable resin (A) contains one or more resins selected from the group consisting of epoxy (meth)acrylate (A2), urethane (meth)acrylate (A3), and unsaturated polyester (A4).
  3.  前記シクロデキストリン誘導体(C)が、前記ラジカル重合性樹脂(A)及び前記(メタ)アクリル単量体(B)の合計100質量部に対し、0.05~5質量部である請求項1記載のラジカル重合性組成物。 The radical polymerizable composition according to claim 1, wherein the cyclodextrin derivative (C) is 0.05 to 5 parts by mass per 100 parts by mass of the radical polymerizable resin (A) and the (meth)acrylic monomer (B) combined.
  4.  前記ワックス(D)が、前記ラジカル重合性樹脂(A)及び前記(メタ)アクリル単量体(B)の合計100質量部に対し、0.01~3質量部である請求項1記載のラジカル重合性組成物。 The radical polymerizable composition according to claim 1, wherein the wax (D) is 0.01 to 3 parts by mass per 100 parts by mass of the total of the radical polymerizable resin (A) and the (meth)acrylic monomer (B).
  5.  請求項1~4いずれか1項に記載のラジカル重合性組成物からなるコンクリート用プライマー。 A primer for concrete comprising the radical polymerizable composition according to any one of claims 1 to 4.
PCT/JP2023/042850 2022-12-20 2023-11-30 Radical-polymerizable composition WO2024135270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-203104 2022-12-20
JP2022203104 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024135270A1 true WO2024135270A1 (en) 2024-06-27

Family

ID=91588314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042850 WO2024135270A1 (en) 2022-12-20 2023-11-30 Radical-polymerizable composition

Country Status (1)

Country Link
WO (1) WO2024135270A1 (en)

Similar Documents

Publication Publication Date Title
US9074112B2 (en) Methacrylate-based adhesive compositions
JP5003853B2 (en) Radical curable resin composition
JPH11209628A (en) Resin composition and civil engineering and building material
JP6057123B2 (en) Radical polymerizable resin composition, primer, and floor slab waterproof structure
JP6134757B2 (en) Curable resin composition, concrete coating composition and lining material
JP6394077B2 (en) Radical polymerizable composition, concrete repair material and road primer
KR102163353B1 (en) Radically polymerizable resin composition, and civil engineering and construction materilas
JP5743043B1 (en) Concrete repair material
JP4150960B2 (en) Resin-coated structure
WO2024135270A1 (en) Radical-polymerizable composition
JP6252019B2 (en) Radical polymerizable resin composition and civil engineering building material
JP5953732B2 (en) Composite covering structure
JP6801222B2 (en) Primer for concrete
JP2022077778A (en) Curable composition, coating material composition, and cured products thereof
JP5927892B2 (en) Composite covering structure
JP2024005579A (en) Radical polymerizable composition
JP7293763B2 (en) Active energy ray hardening type concrete protective material
JP2013141764A (en) Composite coating structure
JP2022042661A (en) Primer for concrete
JP2023005502A (en) primer for concrete
WO2024128006A1 (en) Radical-polymerizable composition
JPS6254711A (en) Urethane-modified acrylate resin composition
JP2022042660A (en) Primer for concrete
WO2016171034A1 (en) Radical polymerizable resin composition and primer for civil engineering and construction
JP2024005580A (en) Radical polymerizable composition