JP6134757B2 - Curable resin composition, concrete coating composition and lining material - Google Patents

Curable resin composition, concrete coating composition and lining material Download PDF

Info

Publication number
JP6134757B2
JP6134757B2 JP2015162477A JP2015162477A JP6134757B2 JP 6134757 B2 JP6134757 B2 JP 6134757B2 JP 2015162477 A JP2015162477 A JP 2015162477A JP 2015162477 A JP2015162477 A JP 2015162477A JP 6134757 B2 JP6134757 B2 JP 6134757B2
Authority
JP
Japan
Prior art keywords
mass
parts
resin composition
concrete
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015162477A
Other languages
Japanese (ja)
Other versions
JP2017039852A (en
Inventor
宣秋 中山
宣秋 中山
博 飯森
博 飯森
Original Assignee
株式会社コーケン
博 飯森
博 飯森
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コーケン, 博 飯森, 博 飯森 filed Critical 株式会社コーケン
Priority to JP2015162477A priority Critical patent/JP6134757B2/en
Publication of JP2017039852A publication Critical patent/JP2017039852A/en
Application granted granted Critical
Publication of JP6134757B2 publication Critical patent/JP6134757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Description

本発明は、特に、低臭気性、接着性、耐薬品性、表面空気硬化性、耐熱性、耐摩耗性、高反応性、耐久性に優れ、下水道処理施設のコンクリ−トの表面塗布のライニング材、人孔内面等の補修用ライニング材及び食品工場、医薬品工場、電子材料関連工場のコンクリ−ト施設の補修ライニング材等の形成に適した硬化性樹脂組成物、及びこの硬化性樹脂組成物を含むコンクリ−ト被覆組成物及びライニング材に関するものである。   The present invention is particularly excellent in low odor, adhesiveness, chemical resistance, surface air curing, heat resistance, wear resistance, high reactivity, durability, and lining for surface coating of concrete in sewerage treatment facilities. Curable resin composition suitable for formation of lining materials for repairing materials, inner surfaces of human holes, etc., and repair lining materials for concrete facilities in food factories, pharmaceutical factories, and electronic material factories, and this curable resin composition The present invention relates to a concrete coating composition and a lining material.

下水道処理施設のコンクリ−ト構造物の気相部は硫黄酸化細菌による硫化水素が硫酸化し、長期間の使用により、表面が脆弱化して施設の構造強度に影響を与える。   The gas phase part of the concrete structure of the sewage treatment facility is sulphated by hydrogen sulfide by sulfur-oxidizing bacteria, and the surface is weakened by long-term use, affecting the structural strength of the facility.

老朽化した下水道処理施設の補修方法には、通常既存の劣化コンクリ−ト構造物の壁面の劣化層厚に断面修復材を塗布硬化後にプライマ−を塗布し、次いで、不陸調整を目的として素地調整材を塗布型の樹脂ライニング材を塗布する工法が用いられている。また、構造物新設の場合は、コンクリ−ト下地にプライマ−を塗布し、次いで、不陸調整を目的として素地調整材を塗布型後に防食被覆樹脂ライニング材を塗布する工法が用いられている。   The repair method for an aging sewerage treatment facility is usually applied by applying a cross-section repair material to the deterioration layer thickness of the wall surface of an existing deteriorated concrete structure, applying a primer after curing, and then applying a base material for the purpose of adjusting unevenness. A method of applying a coating resin lining material to the adjusting material is used. In the case of a new structure, a method is used in which a primer is applied to a concrete base, and then a base material is applied for the purpose of adjusting unevenness, and then an anticorrosion coating resin lining material is applied.

上記のコンクリ−ト下地用プライマ−の技術については、多数の提案がなされている。低臭性プライマ−樹脂組成物としては、エポキシ樹脂とアクリル酸および/またはメタクリル酸を反応して得られる(a)ビニルエステル又は変性物(0.5〜4.5質量部)と(b)低揮発性脂環式1官能アクリル系モノマ−(99.5〜95.5質量部)からなる反応性組成物100質量部に、(c)無溶剤型ウレタン樹脂(5〜30質量部)、硬化剤および硬化促進剤を含有するコンクリ−ト防食無臭被覆用プライマ−材組成物が特許文献1(特開2002-60282号公報)に開示されており、そのプライマ−はノンスチレン型ビニルエステル樹脂(70〜95重量部)及び無溶剤型ウレタン樹脂(5〜30重量部)からなる。ノンスチレン型ビニルエステル樹脂はとしては、ビニルエステル40〜90重量部と低揮発性ラジカル重合型単量体60〜10重量部とを含有する組成物が特許文献2(特開平10-231453号公報)に開示されており、ノンスチレン型ビニルエステル樹脂を単独でプライマ−として鋼材防食被覆に使用する。ノンスチレン型ビニルエステル樹脂の構成としては、ビニルエステル40〜90重量部と低揮発性ラジカル重合型単量体60〜10重量部とを含有する組成物が特許文献3(特開2000-63448号公報)に開示され、ノンスチレン型ビニルエステル樹脂として、ビニルエステル40〜90重量部と低揮発性ラジカル重合型単量体60〜10重量部とを含有する組成物であって、ノンスチレン型ビニルエステル樹脂及び無溶剤型ウレタン樹脂を硬化させてなるスレ−ト素地のプライマ−が特許文献4(特開2000-63449号)に開示されている。   Many proposals have been made for the technology of the primer for the concrete base. The low odor primer resin composition includes (a) a vinyl ester or a modified product (0.5 to 4.5 parts by mass) obtained by reacting an epoxy resin with acrylic acid and / or methacrylic acid, and (b) a low volatile fat. 100 parts by weight of a reactive composition comprising a cyclic monofunctional acrylic monomer (99.5 to 95.5 parts by weight) contains (c) a solventless urethane resin (5 to 30 parts by weight), a curing agent and a curing accelerator. A primer material composition for a concrete, corrosion-proof and odorless coating is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2002-60282), and the primer comprises a non-styrene type vinyl ester resin (70 to 95 parts by weight) and It consists of solvent-free urethane resin (5-30 parts by weight). As the non-styrene type vinyl ester resin, a composition containing 40 to 90 parts by weight of a vinyl ester and 60 to 10 parts by weight of a low volatile radical polymerization type monomer is disclosed in Japanese Patent Application Laid-Open No. 10-231453. And a non-styrene type vinyl ester resin is used alone as a primer for a steel material anticorrosion coating. As a constitution of the non-styrene type vinyl ester resin, a composition containing 40 to 90 parts by weight of a vinyl ester and 60 to 10 parts by weight of a low volatile radical polymerization type monomer is disclosed in JP-A-2000-63448. And a composition containing 40 to 90 parts by weight of a vinyl ester and 60 to 10 parts by weight of a low-volatile radical polymerization monomer as a non-styrene type vinyl ester resin, A primer for a sheet substrate obtained by curing an ester resin and a solventless urethane resin is disclosed in Patent Document 4 (Japanese Patent Laid-Open No. 2000-63449).

その他、スチレンによる臭気を抑えた低臭性樹脂組成物については、多数の提案がなされている。例えば、ポリエステルアクリレ−ト不飽和ポリエステルを主として用いた低揮発重合性組成物が特許文献5(特開平6−211952号公報)に開示されている。ポリエ−テルアクリルウレタン樹脂、エポキシアクリレ−ト等の分子末端に(メタ)メタアクリロイル基を有する樹脂、乾性油及び/又はそれらの脂肪酸化合物を用いた空乾性付与型重合体及び分子量160以上の(メタ)アクリロイル基を有するエチレン性不飽和単量体からなる樹脂組成物が特許文献6(特開平8−283357号公報)に開示されている。メタクリル酸とエピコ−ト828(油化シェル(株)製、ビスフェノ−ル系エポキシ樹脂、エポキシ等量187)等から得られるビニルエステル樹脂及びスチレン等の重合性単量体、グリシドオキシシランを含有してなる組成物を加熱処理してなるライニング組成物が特許文献7(特開平11−12448号公報)に開示され、ビニルエステル(例,エピコ−ト828とメタクリル酸の反応物)、低揮発性ラジカル重合性単量体を含有するノンスチレン型ビニルエステル樹脂及び鱗片状無機充填剤等を含有するコンクリ−ト防食被覆材組成物が特許文献8(特開平10−231453号公報)に開示されている。   In addition, many proposals have been made on low-odor resin compositions that suppress the odor caused by styrene. For example, a low-volatile polymerizable composition mainly using a polyester acrylate unsaturated polyester is disclosed in Patent Document 5 (Japanese Patent Laid-Open No. 6-211952). Polyacrylic urethane resins, resins having a (meth) methacryloyl group at the molecular ends such as epoxy acrylate, air-drying imparting polymers using a drying oil and / or fatty acid compounds thereof, and a molecular weight of 160 or more A resin composition comprising an ethylenically unsaturated monomer having a (meth) acryloyl group is disclosed in Patent Document 6 (Japanese Patent Laid-Open No. 8-283357). A vinyl ester resin obtained from methacrylic acid and Epicote 828 (manufactured by Yuka Shell Co., Ltd., bisphenol epoxy resin, epoxy equivalent 187) and the like, a polymerizable monomer such as styrene, and glycidoxysilane A lining composition obtained by heat-treating a composition containing it is disclosed in Patent Document 7 (Japanese Patent Application Laid-Open No. 11-12448), and vinyl ester (eg, reaction product of epicoat 828 and methacrylic acid), low A concrete anticorrosive coating material composition containing a non-styrene type vinyl ester resin containing a volatile radical polymerizable monomer and a flaky inorganic filler is disclosed in Patent Document 8 (Japanese Patent Laid-Open No. 10-231453). Has been.

ビスフェノ−ルAおよびまたはFと脂肪族ジグリシジルエ−テル型エポキシ化合物,エポキシ(メタ)アクリレ−ト,エポキシ(メタ)アクリレ−ト,及び分子量が160以上でかつ25℃における粘度が100mPa・s以下の重合性(メタ)アクリル系モノマ−(II)を含む硬化性樹脂組成物(特許文献9(特開2001−240632号公報)),エポキシ樹脂と(メタ)アクリル酸から得られるビニルエステルと低揮発性の脂環式1官能(メタアクリルレ−ト系モノマ−からなる反応性組成物,無溶剤型ウレタン樹脂,硬化剤等を有するコンクリ−ト防食無臭被覆用プライマ−材組成物(特許文献10(特開2002−60282号公報)),エポキシ(メタ)アクリル酸を反応させて得られる化合物を含む硬化性樹脂組成物(特許文献11(特開2006−169311号公報))が提案されている。   Bisphenol A and / or F and an aliphatic diglycidyl ether type epoxy compound, epoxy (meth) acrylate, epoxy (meth) acrylate, and a molecular weight of 160 or more and a viscosity at 25 ° C. of 100 mPa · s or less Curable resin composition containing polymerizable (meth) acrylic monomer (II) (Patent Document 9 (Japanese Patent Laid-Open No. 2001-240632)), vinyl ester obtained from epoxy resin and (meth) acrylic acid, and low volatility Alicyclic monofunctional (reactive composition comprising a methacrylic monomer, a solvent-free urethane resin, a primer composition for a rust-free coating for a rust-proof coating (Patent Document 10) (Japanese Patent Laid-Open No. 2002-60282)), a curable resin composition containing a compound obtained by reacting epoxy (meth) acrylic acid (special Document 11 (JP 2006-169311)) have been proposed.

以上から、エピコ−ト828と(メタ)アクリル酸とを反応させて得られる低分子のエポキシアクリレ−トと低揮発性ラジカル重合性単量体との組み合わせは知られており,さらに特許文献11では,ビスフェノ−ルAのエチレンオキサイド付加体に(メタ)アクリル酸を反応して得られる化合物を用いている。しかしながら,このような樹脂組成物を,下水道処理施設のコンクリ−トの表面塗布のライニング材として使用しても,低臭性,耐水性,耐薬品性,耐久性,付着性,空気乾燥性の性能においてまだ十分とは言えない。   From the above, a combination of a low molecular weight epoxy acrylate obtained by reacting epicoat 828 and (meth) acrylic acid and a low volatile radical polymerizable monomer is known, and further, patent literature 11 uses a compound obtained by reacting (meth) acrylic acid with an ethylene oxide adduct of bisphenol A. However, even if such a resin composition is used as a lining material for the surface coating of concrete in sewerage treatment facilities, it has low odor, water resistance, chemical resistance, durability, adhesion, and air drying properties. It is still not enough in performance.

特開2002−60282号公報Japanese Patent Laid-Open No. 2002-60282 特開平10−231453号公報JP-A-10-231453 特開2000−63448号公報JP 2000-63448 A 特開2000−63449号公報JP 2000-63449 A 特開平6−211952号公報JP-A-6-211952 特開平8−283357号公報JP-A-8-283357 特開平11−12448号公報Japanese Patent Laid-Open No. 11-12448 特開平10−231453号公報JP-A-10-231453 特開2001−240632号公報JP 2001-240632 A 特開2002−60282号公報Japanese Patent Laid-Open No. 2002-60282 特開2006−169311号公報JP 2006-169311 A

従来より、湿気硬化型ウレタンプライマ−にはトルエン、キシレンが使用されている。トルエン及びキシレンは、ウレタン樹脂への溶解性、減粘性、乾燥性に優れているが、毒物および劇物取締法(厚生労働省)並びに悪臭防止法(環境省)の規制対象物質であり、最近では室内環境汚染(シックハウス)の濃度指針対象物質(厚生労働省)としても挙げられている。しかも、これらの溶媒は、PRTR(経済産業省および環境省)で第1種指定化学物質に挙げられており、さらに文部科学省においても平成14年より学校の新築・改築工事引き渡し時に濃度測定が義務付けられている。このように、これらの溶媒は、その毒性の問題より、今後さらに規制が厳しくなることが予想される。上記トルエン、キシレンの対策として、水を主な溶媒とする水性プライマ−や、非芳香族系溶剤を使用するシステムが提案されているが、前者(水性プライマー)は下地コンクリ―トへの含浸性、ヌレ性、冬季低温環境での乾燥不良、接着不良等の実用上問題があり、後者(非芳香族系溶剤)はプライマ−層に揮発せずに残留すると、上層被覆材が膨張するフクレ由来要因となり、また、プライマ−塗布後、指触乾燥時間(指が触れたときに感触で乾燥が確認できるまでの時間)が長い等課題がある。   Conventionally, toluene and xylene have been used for moisture-curing urethane primers. Toluene and xylene are excellent in solubility in urethane resin, viscosity reduction, and drying properties, but are regulated by the Poisonous and Deleterious Substances Control Law (Ministry of Health, Labor and Welfare) and the Odor Control Law (Ministry of the Environment). It is also listed as a concentration guideline substance (Ministry of Health, Labor and Welfare) for indoor environmental pollution (sick house). Moreover, these solvents are listed as PRTR (Ministry of Economy, Trade and Industry and Ministry of the Environment) as Class 1 Designated Chemical Substances, and the Ministry of Education, Culture, Sports, Science and Technology has also been measuring concentrations at the time of handing over new construction / renovation works of schools since 2002. Mandatory. Thus, these solvents are expected to become more restrictive in the future due to toxicity problems. As countermeasures against toluene and xylene, water-based primers that use water as the main solvent and systems that use non-aromatic solvents have been proposed, but the former (water-based primer) is impregnated into the ground concrete. There are practical problems such as wettability, poor drying in low-temperature environment in winter, poor adhesion, etc. The latter (non-aromatic solvent) is derived from blister which expands the upper layer coating material when it remains without volatilizing in the primer layer In addition, there are problems such as a long touch drying time (a time until drying can be confirmed by touch when a finger touches) after primer application.

また、塗布型の樹脂ライニング材に使用される硬化性樹脂組成物としては、従来から不飽和ポリエステル樹脂組成物が使用されており、最近ではエポキシ樹脂に不飽和一塩基酸、特にアクリル酸あるいはメタクリル酸を反応させて得られるエポキシ(メタ)アクリレ−トを含む樹脂組成物(一般にビニルエステル樹脂組成物)が使用されるようになっている。   In addition, as a curable resin composition used for a coating type resin lining material, an unsaturated polyester resin composition has been conventionally used. Recently, an unsaturated monobasic acid, particularly acrylic acid or methacrylic acid is used as an epoxy resin. A resin composition (generally a vinyl ester resin composition) containing an epoxy (meth) acrylate obtained by reacting an acid is used.

塗布型ライニング材に使用される公知の不飽和ポリエステル樹脂組成物及びビニルエステル樹脂組成物は、共重合可能な単量体としては、一般にスチレンモノマ−が用いられている。しかしながら、このエステルとスチレンとの混合物は特有の臭気があり、施工周辺環境に拡散するため、発生するスチレンを活性炭吸着装置により吸着する方法が導入されている。また、スチレンはPRTR制度(化学物質排出把握管理促進法)の第一種指定化学物質による排出量、移動量公表制度が適用されている。しかも、スチレンは平成26年11月1日付で特定化学物質に指定(厚生労働省)されており、その管理が必要である上、スチレン含有不飽和ポリエステル樹脂及びビニルエステル樹脂中のスチレン濃度の規制も厳しくなっており、その対策が迫られている。   In the known unsaturated polyester resin composition and vinyl ester resin composition used for the coating type lining material, a styrene monomer is generally used as a copolymerizable monomer. However, since this mixture of ester and styrene has a peculiar odor and diffuses to the environment around the construction, a method of adsorbing the generated styrene with an activated carbon adsorption device has been introduced. For styrene, the PRTR system (Chemical Emission Control Management Promotion Act) has been applied to the system for the release and transfer of the amount of designated type 1 designated chemical substances. Moreover, styrene has been designated as a specified chemical substance on November 1, 2014 (Ministry of Health, Labor and Welfare), and its management is necessary. In addition, styrene concentration in styrene-containing unsaturated polyester resins and vinyl ester resins is regulated. The situation is getting strict and measures are being urged.

エポキシ樹脂に不飽和1塩基酸、特にアクリル酸あるいはメタクリル酸を反応させて得られるいわゆるエポキシアクリレ−ト(又はエポキシメタクリレ−ト)と、このエポキシ(メタ)アクリレートのエステルと共重合可能な単量体の混合物とを含む組成物は公知である。この組成物は、従来、例えば繊維強化プラスチックのマトリックスとして使用されていた。   It is possible to copolymerize so-called epoxy acrylate (or epoxy methacrylate) obtained by reacting an epoxy resin with an unsaturated monobasic acid, particularly acrylic acid or methacrylic acid, and an ester of this epoxy (meth) acrylate. Compositions comprising a mixture of monomers are known. This composition has heretofore been used, for example, as a matrix for fiber-reinforced plastics.

従って、本発明の目的は、プライマ−及び防食被覆材の防食工法について前記の欠点を解消し、低臭気性、耐水性、耐薬品性、耐久性、付着性、空気乾燥性に優れた硬化性樹脂組成物を提供するものである。   Therefore, the object of the present invention is to eliminate the above-mentioned drawbacks of the primer and the anticorrosion coating method of the anticorrosion coating material, and to have a low odor, water resistance, chemical resistance, durability, adhesion, and air drying properties. A resin composition is provided.

また、本発明の目的は、上記硬化性樹脂組成物を用いた上記特性を有するコンクリ−ト被覆組成物を提供するものである。さらに、本発明の目的は、上記硬化性樹脂組成物を用いた上記特性を有するライニング材を提供するものである。   Moreover, the objective of this invention is providing the concrete coating composition which has the said characteristic using the said curable resin composition. Furthermore, the objective of this invention is providing the lining material which has the said characteristic using the said curable resin composition.

前記課題について発明者等が鋭意検討した結果、エポキシアクリレ−トとして、酸価が特定値より低く、且つ特定の分子量範囲にあるものを硬化性樹脂組成物に用いることにより、低臭気性であって、上記特性に優れたものが得られやすいことが明らかとなった。さらに、エチレンオキサイド付加モル数2〜10のエトキシ化ビスフェノ−ルAジメタクリレ−トと、分子量300以下のアルコ−ル残基として環内に炭素間二重結合又は窒素原子を1個有する環状炭化水素基を含む基を有する単官能性(メタ)アクリレ−ト系モノマ−とを特定の割合で使用し、かつ、平均分子量及び水酸基価で特定したポリオ−ルと、カルボジイミド変性MDIとを特定の割合で含有させた硬化性樹脂組成物が、コンクリ−ト下地への優れた付着性、低臭気性に優れ、かつ、防食被覆組成物として耐水性、耐薬品性、空気乾燥性に優れていることが判明し、本発明に到達した。すなわち、本発明は下記の通りである。   As a result of intensive studies by the inventors on the above-mentioned problems, as an epoxy acrylate, by using a curable resin composition having an acid value lower than a specific value and in a specific molecular weight range, it has low odor. Thus, it has been clarified that a product excellent in the above characteristics can be easily obtained. Further, an ethoxylated bisphenol A dimethacrylate having 2 to 10 moles of ethylene oxide added and a cyclic hydrocarbon having one carbon-carbon double bond or one nitrogen atom in the ring as an alcohol residue having a molecular weight of 300 or less. A monofunctional (meth) acrylate monomer having a group containing a group is used in a specific ratio, and a polyol specified by an average molecular weight and a hydroxyl value and a carbodiimide-modified MDI are in a specific ratio. The curable resin composition contained in (1) has excellent adhesion to the concrete substrate, excellent low odor, and is excellent in water resistance, chemical resistance and air drying properties as an anticorrosive coating composition. As a result, the present invention has been reached. That is, the present invention is as follows.

(A)芳香族系エポキシ樹脂と(メタ)アクリル酸との反応物を含み、数平均分子量が500〜1100の範囲で、酸価が10KOHmg/g以下であるエポキシ(メタ)アクリレ−ト、
(B)アルキレンオキサイド付加モル数2〜10の2官能性(メタ)アクリレ−トモノマ−のエトキシ化ビスフェノ−ルAジメタクリレ−ト、
(C)分子量が300以下のアルコ−ル残基として環内に炭素間二重結合又は窒素原子を1個のみを有する環状炭化水素基を含む基を有する単官能性(メタ)アクリレ−ト系モノマ−、及び、
(D)水酸基価160KOHmg/g以下、数平均分子量1000以上のポリオ−ル
を含み、さらに、(A)、(B)、(C)及び(D)の合計100質量部に対して、(E)ポリイソシアネ−ト1〜30質量部を含有することを特徴とする硬化性樹脂組成物である。
(A) an epoxy (meth) acrylate containing a reaction product of an aromatic epoxy resin and (meth) acrylic acid, having a number average molecular weight in the range of 500 to 1100 and an acid value of 10 KOH mg / g or less;
(B) ethoxylated bisphenol A dimethacrylate of a bifunctional (meth) acrylate monomer having 2 to 10 moles of alkylene oxide addition,
(C) Monofunctional (meth) acrylate system having a group containing a cyclic hydrocarbon group having only one carbon-carbon double bond or one nitrogen atom in the ring as an alcohol residue having a molecular weight of 300 or less Monomer, and
(D) a polyol having a hydroxyl value of 160 KOHmg / g or less and a number average molecular weight of 1000 or more, and (E) with respect to a total of 100 parts by mass of (A), (B), (C) and (D) (E ) A curable resin composition containing 1 to 30 parts by mass of a polyisocyanate.

本発明の硬化性樹脂組成物は、コンクリ−ト構造物下地に対して優れた付着強度、耐水性、速硬化乾燥皮膜、低臭性を実現するので、コンクリート防食被覆用のプライマ−樹脂組成物や、コンクリート防食被覆用の硬化性組成物として特に適している。   The curable resin composition of the present invention realizes excellent adhesion strength, water resistance, fast-curing and drying film, and low odor to the concrete structure substrate, so that the primer resin composition for concrete anticorrosion coating And is particularly suitable as a curable composition for concrete anticorrosion coating.

上記本発明の硬化性樹脂組成物の好適態様は以下の通りである。   Preferred embodiments of the curable resin composition of the present invention are as follows.

上記硬化性組成物を、コンクリート防食被覆の際に、コンクリートに直接塗布する下地(プライマー)として使用する場合は、成分(A)〜(D)の配合割合を、(A)エポキシ(メタ)アクリレ−ト10〜25質量部、(B)エトキシ化ビスフェノ−ルAジメタクリレ−ト5〜15質量部、(C)単官能性(メタ)アクリレ−ト系モノマ−50〜70質量部、(D)ポリオ−ル5〜15質量部にすることが好ましい。
また、上記硬化性組成物を、プライマーよりも厚膜のコンクリ−ト防食被覆に使用する場合には、その配合を、(A)エポキシ(メタ)アクリレ−ト30〜60質量部、(B)エトキシ化ビスフェノ−ルAジメタクリレ−ト10〜30質量部、(C)単官能性(メタ)アクリレ−ト系モノマ−20〜40質量部、(D)ポリオ−ル5〜15質量部とすることが好ましい。
When the curable composition is used as an undercoat (primer) that is applied directly to concrete in the case of concrete anticorrosion coating, the mixing ratio of components (A) to (D) is changed to (A) epoxy (meth) acrylate. -10 to 25 parts by mass of (B) ethoxylated bisphenol A dimethacrylate 5 to 15 parts by mass, (C) monofunctional (meth) acrylate monomer 50 to 70 parts by mass, (D) It is preferable to use 5 to 15 parts by mass of polyol.
Moreover, when using the said curable composition for concrete anticorrosion coating | cover of a film thicker than a primer, the mixture is (A) 30-60 mass parts of epoxy (meth) acrylate, (B) Ethoxylated bisphenol A dimethacrylate 10-30 parts by mass, (C) monofunctional (meth) acrylate monomer-20-40 parts by mass, (D) polyol 5-15 parts by mass Is preferred.

硬化性樹脂組成物は、好ましくは、成分(A)、(B)、(C)及び(D)を含む主剤(主硬化剤)とし、成分(E)を含む副主剤(副剤、副硬化剤)とに区別し、使用直前に主剤と副主剤と混合するいわゆる2液型主剤(2液型硬化剤)とすることが、貯蔵性の点からは好ましい。   The curable resin composition is preferably a main agent (main curing agent) containing components (A), (B), (C) and (D), and a secondary main agent (subagent, sub-curing) containing component (E). From the viewpoint of storability, it is preferable to make a so-called two-component main agent (two-component curing agent) that is mixed with the main agent and the auxiliary main agent immediately before use.

この硬化性樹脂組成物において、アルキレンオキサイドとしては、プロピレンオキサイド又はエチレンオキサイド(特にエチレンオキサイド)が好ましい。樹脂組成物硬化物の常温水又は温水浸漬による白化を抑えるのに有効である。更に、プロピレンオキサイド又はエチレンオキサイド(特にエチレンオキサイド)を用いた硬化性樹脂組成物では、硬化物の耐薬品性(耐酸化性)が向上する。   In this curable resin composition, the alkylene oxide is preferably propylene oxide or ethylene oxide (particularly ethylene oxide). It is effective to suppress whitening of the cured resin composition due to room temperature water or hot water immersion. Furthermore, in the curable resin composition using propylene oxide or ethylene oxide (particularly ethylene oxide), the chemical resistance (oxidation resistance) of the cured product is improved.

また、本発明は、上記硬化性樹脂組成物を含むライニング材に関するものでもあり、好ましくはその硬化性樹脂組成物が有機過酸化物を含有する。   Moreover, this invention is also related with the lining material containing the said curable resin composition, Preferably the curable resin composition contains an organic peroxide.

さらに本発明は、上記硬化性樹脂組成物に加えて、成分(A)〜(E)に対し化学的に不活性な微粒子及び/又は粒状の無機骨材材料を含む充填材を含有するコンクリ−ト被覆組成物に関するものである。   Furthermore, the present invention provides a concrete containing a filler containing fine particles and / or granular inorganic aggregate materials that are chemically inert to the components (A) to (E) in addition to the curable resin composition. G coating composition.

また、本発明は、上記硬化性樹脂組成物に加えて充填材及び好ましくは有機過酸化物を含むライニング材に関するものでもある。充填材は特に限定されないが、樹脂組成物に対し不活性な微粒子及び/又は粒状の無機骨材材料などを1種以上使用することができる。   The present invention also relates to a lining material containing a filler and preferably an organic peroxide in addition to the curable resin composition. The filler is not particularly limited, but one or more kinds of fine particles and / or granular inorganic aggregate materials that are inert to the resin composition can be used.

更に、本発明の硬化性樹脂組成物と、ワックス成分及び/又はパラフィン成分とを含む組成物は、コンクリート構造物、プライマー層、ライニング材及び/又は他の層(膜)を覆うトップコート層用の組成物として使用することができる。ワックス(パラフィン)を含む組成物は、防水性に優れているので、特に最上層で露出し、水や空気に曝されるトップコート層に適してる。2液型主剤とする場合、ワックス成分(パラフィン成分)は、主剤、副主剤のいずれに添加してもよいが、分散性を考慮すると、必要であれば加熱して主剤に完全に分散させることが望ましい。   Furthermore, the composition containing the curable resin composition of the present invention and a wax component and / or a paraffin component is used for a top coat layer covering a concrete structure, a primer layer, a lining material and / or another layer (film). It can be used as a composition. Since the composition containing wax (paraffin) is excellent in waterproofness, it is particularly suitable for a top coat layer exposed at the uppermost layer and exposed to water or air. In the case of a two-component main agent, the wax component (paraffin component) may be added to either the main agent or the auxiliary main agent. However, in consideration of dispersibility, if necessary, the wax component should be heated and completely dispersed in the main agent. Is desirable.

本発明の硬化性樹脂組成物は、スチレンを添加しない非スチレン型ビニルエステル樹脂であって、エポキシ(メタ)クリレ−トと、高反応性、空気乾燥性付与且つ低揮発性を備えた特定の重合性単官能(メタ)アクリルモノマ−と、アルキレンオキサイド(エチレンオキサイド)付加モル数が特定範囲のエトキシ化ビスフェノ−ルAジメタクリレ−ト、及び、耐水性、耐熱劣化性、耐候性付与のフェニル基を有する単官能(メタ)アクリルモノマ−を特定の組成比で用いている。これにより、スチレン揮発は全くなく、表面乾燥性及び硬化性が良好で、無機質骨材との組成比の増減により硬化物の耐磨耗性、コンクリ−トに被覆し温水に長期浸漬した時の付着強度安定性が、いずれも既存のスチレン型ビニルエステル樹脂硬化物より優れた特性を示す。   The curable resin composition of the present invention is a non-styrene type vinyl ester resin to which styrene is not added, and is a specific resin having epoxy (meth) acrylate, high reactivity, imparting air drying properties and low volatility. Polymerizable monofunctional (meth) acrylic monomer, ethoxylated bisphenol A dimethacrylate having a specific number of added moles of alkylene oxide (ethylene oxide), and phenyl group for imparting water resistance, heat deterioration resistance and weather resistance A monofunctional (meth) acrylic monomer having a specific composition ratio is used. As a result, there is no styrene volatilization, surface dryness and curability are good, wear resistance of the cured product by increasing / decreasing the composition ratio with inorganic aggregate, when coated with concrete, and when immersed in warm water for a long time Adhesive strength stability is superior to existing styrene-type vinyl ester resin cured products.

本発明のプライマ−は揮発性が低く、環境汚染がほとんど起こらない。また、硬化物の表面の指触乾燥性を短時間で形成可能である。   The primer of the present invention has low volatility and hardly causes environmental pollution. Moreover, the dryness of touching the surface of the cured product can be formed in a short time.

さらに、本発明のコンクリ−ト被覆組成物及びライニング材は、硬化前後でスチレン臭が発生せず、周辺環境汚染をもたらさない。また、コンクリ−ト被覆組成物、ライニング材は表面硬化後に指蝕乾燥性を早期付与が可能なため施工後の開放時間が短くなる。   Furthermore, the concrete coating composition and the lining material of the present invention do not generate styrene odor before and after curing and do not cause environmental pollution. In addition, since the concrete coating composition and the lining material can be imparted with dryness to dryness after surface hardening at an early stage, the opening time after construction is shortened.

以下に、本発明の硬化性樹脂組成物に用いる成分(A)、(B)、(C)、(D)及び(E)と、任意に添加可能なその他の成分について詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, components (A), (B), (C), (D) and (E) used in the curable resin composition of the present invention and other components which can be optionally added will be described in detail. The present invention is not limited to this.

<成分(A)>
本発明において硬化性樹脂組成物の必須成分の一つである芳香族系エポキシ(メタ)アクリレ−ト(A)とは、芳香族系エポキシ化合物と(メタ)アクリル酸より得られるものである。
<Component (A)>
In the present invention, the aromatic epoxy (meth) acrylate (A), which is one of the essential components of the curable resin composition, is obtained from an aromatic epoxy compound and (meth) acrylic acid.

本発明の樹脂組成物の(A)成分の芳香族系エポキシ(メタ)アクリレ−トの原料として用いられる芳香族系エポキシ樹脂としては、分子内に芳香族を有するエポキシ樹脂であるものであり、例えば、フェノ−ルノボラック型エポキシ樹脂、ビスフェノ−ルA型エポキシ樹脂、ビスフェノ−ルF型エポキシ樹脂、ビスフェノ−ルS型エポキシ樹脂、アルキルフェノ−ル型エポキシ樹脂、レゾルシン型エポキシ樹脂、N−グリシジルアミン型エポキシ樹脂、臭素化ビスフェノ−ルA型エポキシ樹脂等を挙げることができる。こられのエポキシ樹脂はそれぞれ単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらのうち、ビスフェノ−ルA型エポキシ樹脂が、コンクリ−ト被覆硬化性樹脂組成物及びライニング材硬化物に均衡のとれた特性をもたらすので、より好ましい。   The aromatic epoxy resin used as a raw material for the aromatic epoxy (meth) acrylate of the component (A) of the resin composition of the present invention is an epoxy resin having an aromatic in the molecule, For example, phenol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alkylphenol type epoxy resin, resorcin type epoxy resin, N-glycidylamine Type epoxy resin, brominated bisphenol A type epoxy resin, and the like. These epoxy resins may be used alone or in combination of two or more. Of these, bisphenol A type epoxy resins are more preferred because they provide balanced properties to the concrete coating curable resin composition and the cured lining material.

エポキシ樹脂に反応させる不飽和一塩基酸は一般にアクリル酸、メタクリル酸であるが、他の不飽和一塩基酸、例えばクロトン酸、ソルビタン酸、桂皮酸、アクリル酸ダイマ−、モノメチルアクリレ−ト、モノメチルフマレ−ト、モノシクロヘキシルフマレ−トあるいはソルビン酸等を少量併用することができる。これら酸は単独もしくは2種以上を併せて用いられる。   The unsaturated monobasic acid to be reacted with the epoxy resin is generally acrylic acid or methacrylic acid, but other unsaturated monobasic acids such as crotonic acid, sorbitan acid, cinnamic acid, acrylic acid dimer, monomethyl acrylate, A small amount of monomethyl fumarate, monocyclohexyl fumarate or sorbic acid can be used in combination. These acids are used alone or in combination of two or more.

本発明の硬化性樹脂組成物に用いられる芳香族系エポキシ(メタ)アクリレ−ト(A)は、上記芳香族系エポキシ樹脂と(メタ)アクリル酸の通常の反応から得られるものであり、エポキシ樹脂と(メタ)アクリル酸の反応比率は、モル比で通常0.9〜1.1:1.1〜0.9の範囲である。この際の反応は通常80〜130℃で行われ、反応触媒としてトリエチルアミン、ジメチルアニリン等の3級アミン類、トリメチルベンジルアンモニウムクロライド、ピリジニウムクロライドなどの4級アンモニウム塩類、水酸化リチウム、塩化リチウムなどの無機塩類が用いられる。必要に応じて重合禁止剤が用いられる。   The aromatic epoxy (meth) acrylate (A) used in the curable resin composition of the present invention is obtained from a normal reaction of the aromatic epoxy resin and (meth) acrylic acid, and is an epoxy. The reaction ratio of the resin and (meth) acrylic acid is usually in the range of 0.9 to 1.1: 1.1 to 0.9 in terms of molar ratio. The reaction at this time is usually performed at 80 to 130 ° C., and the reaction catalyst includes tertiary amines such as triethylamine and dimethylaniline, quaternary ammonium salts such as trimethylbenzylammonium chloride and pyridinium chloride, lithium hydroxide, lithium chloride and the like. Inorganic salts are used. A polymerization inhibitor is used as necessary.

重合禁止剤としてはハイドロキノン、メチルハイドロキノンなどのハイドロキノン類、ベンゾキノン、メチル−p−ベンソキノンなどのベンゾキノン類、t−プチルカテコ−ルなどのカテコ−ル類、2,6−ジ−t−ブチル−t−メチルフェノ−ル、4−メトキシフェノ−ルなどのフェノ−ル類、フェノチアジンなどが上げられる。エステル化触媒は、芳香族系エポキシ樹脂と(メタ)アクリル酸との合計100質量部に対し、0.01〜10質量部の範囲で使用することが可能であり、好ましくは0.05〜5質量部の範囲である。0.01質量部未満ではエステル化反応が極端に遅くなり、10質量部を超える場合は、エステル化反応が極端に速くなり、急激な発熱により温度制御が難しくなるので好ましくない。   Polymerization inhibitors include hydroquinones such as hydroquinone and methylhydroquinone, benzoquinones such as benzoquinone and methyl-p-benzoquinone, catechols such as t-butyl catechol, 2,6-di-t-butyl-t- Examples include phenols such as methylphenol and 4-methoxyphenol, and phenothiazine. The esterification catalyst can be used in the range of 0.01 to 10 parts by mass, preferably 0.05 to 5 parts per 100 parts by mass in total of the aromatic epoxy resin and (meth) acrylic acid. It is the range of mass parts. When the amount is less than 0.01 parts by mass, the esterification reaction is extremely slow. When the amount exceeds 10 parts by mass, the esterification reaction becomes extremely fast, and temperature control becomes difficult due to rapid heat generation, which is not preferable.

本発明において、上記数平均分子量が500〜1100、酸価が10KOHmg/g以下の芳香族系エポキシ(メタ)アクリレ−ト(A)の使用量は特に限定されないが、コンクリート防食被覆用プライマー樹脂組成物の用途では、本発明の硬化性樹脂組成物を構成する必須成分である(A)、(B)、(C)及び(D)の硬化性樹脂組成物の合計量100質量部(質量%)に対し、10〜25質量部(質量%)の範囲である。10質量部未満では得られる硬化性樹脂組成物の硬化物は被膜強度が低く、長時間温水浸漬時に白化現象が発生する。25質量部を超えると、組成物が高粘度になりるためコンクリ−トへの浸透性が低く、コンクリ−ト表面で接着はく離が発生しやすい。   In the present invention, the amount of the aromatic epoxy (meth) acrylate (A) having a number average molecular weight of 500 to 1100 and an acid value of 10 KOHmg / g or less is not particularly limited, but it is a primer resin composition for concrete anticorrosion coating. In the use of the product, the total amount of the curable resin composition of (A), (B), (C) and (D), which is an essential component constituting the curable resin composition of the present invention, is 100 parts by mass (% by mass). ) To 10 to 25 parts by mass (mass%). If the amount is less than 10 parts by mass, the cured product of the resulting curable resin composition has low film strength, and whitening occurs when immersed in warm water for a long time. When the amount exceeds 25 parts by mass, the composition becomes highly viscous, so that the permeability to the concrete is low, and adhesion peeling tends to occur on the surface of the concrete.

(A)の使用量は用途に合わせて適宜変更可能であり、例えばコンクリート防食被覆用硬化性樹脂組成物の用途では、芳香族系エポキシ(メタ)アクリレート(A)の使用量は、(A)〜(D)成分の合計100質量部に対し、30〜60質量部の範囲である。30質量部未満では得られる硬化性樹脂組成物の硬化物は長時間温水浸漬時に白化現象が発生し、60質量部を超えると硬化時に収縮き裂が発生しやすい。いずれの用途の場合でも、芳香族系エポキシ(メタ)アクリレート(A)の数平均分子量が500未満では末端のアクリロイル基濃度が大きくなりすぎて吸水率が大きくなる欠点があり、また、末端基とエステル結合密度が大きくなると耐アルカリ性が低下する。また、数平均分子量が1100を超えると合成時及び硬化性樹脂組成物の粘度が高くなりすぎて作業性が低下する上、耐溶剤性も劣る。なお、本発明では、数平均分子量は、高速液体クロマトグラフィーGPC法(ゲル透過クロマトグラフィー法)を用いて測定される値である。   The amount of (A) used can be appropriately changed according to the application. For example, in the use of a curable resin composition for concrete anticorrosion coating, the amount of aromatic epoxy (meth) acrylate (A) used is (A) It is the range of 30-60 mass parts with respect to a total of 100 mass parts of (D) component. If the amount is less than 30 parts by mass, the cured product of the resulting curable resin composition causes a whitening phenomenon when immersed in warm water for a long time, and if it exceeds 60 parts by mass, a shrinkage crack is likely to occur during curing. In any case, if the number average molecular weight of the aromatic epoxy (meth) acrylate (A) is less than 500, there is a drawback that the terminal acryloyl group concentration becomes too high and the water absorption is increased. As the ester bond density increases, the alkali resistance decreases. On the other hand, if the number average molecular weight exceeds 1100, the viscosity of the curable resin composition during synthesis and the curable resin composition becomes too high, resulting in poor workability and poor solvent resistance. In the present invention, the number average molecular weight is a value measured using a high performance liquid chromatography GPC method (gel permeation chromatography method).

上記性能の均衡を図るため、芳香族系エポキシ樹脂1モル中に、通常分子量500以下の液状タイプのエポキシ樹脂0.3〜0.7モル%、分子量900以上の固形タイプのエポキシ樹脂0.7〜0.3モル%の組成比の樹脂を用い、この樹脂と(メタ)アクリル酸との反応物から芳香族系エポキシ(メタ)アクリレ−トを得る。なお、酸価10KOHmg/g以上では、刺激臭を有する不飽和一塩基酸のアクリル酸又はメタクリル酸のモノマ−が芳香族系エポキシ(メタ)アクリレ−トに残留するため、好ましくない。なお、分子量はポリスチレン換算値であり、酸価は、JIS−K−2501―2003により測定した値である。   In order to balance the above performance, 0.3 mol% to 0.7 mol% of a liquid type epoxy resin having a molecular weight of 500 or less and 0.7 wt% of a solid type epoxy resin having a molecular weight of 900 or more in 1 mol of an aromatic epoxy resin. Using a resin having a composition ratio of ˜0.3 mol%, an aromatic epoxy (meth) acrylate is obtained from a reaction product of this resin and (meth) acrylic acid. An acid value of 10 KOH mg / g or more is not preferable because an unsaturated monobasic acid acrylic acid or methacrylic acid monomer having an irritating odor remains in the aromatic epoxy (meth) acrylate. The molecular weight is a polystyrene equivalent value, and the acid value is a value measured according to JIS-K-2501-2003.

<成分(B)>
本発明に用いる樹脂組成物の(B)を構成するアルキレンオキサイド付加、特に、エチレンオキサイド付加モル数2〜10のエトキシ化ビスフェノ−ルAジメタクリレ−トとしては、ビスフェノ−ルA及び/又はビスフェノ−ルFにアルキレンオキサイドを付加させた2価アルコ−ルとメタクリル酸とのエステル化合物が挙げられる。ビスフェノ−ルについては、ビスフェノ−ルAが好ましく、この場合、反応性を考慮すると、エチレンオキサイドがより好ましい。
<Component (B)>
As the alkylene oxide addition constituting the resin composition (B) used in the present invention, in particular, as the ethoxylated bisphenol A dimethacrylate having 2 to 10 moles of ethylene oxide addition, bisphenol A and / or bisphenol- An ester compound of a divalent alcohol obtained by adding alkylene oxide to F and methacrylic acid may be mentioned. As for bisphenol, bisphenol A is preferable, and in this case, ethylene oxide is more preferable in consideration of reactivity.

本発明において、(B)のエトキシ化ビスフェノ−ルAジメタクリレ−トのエチレンオキサイド付加モル数が10を超えると、架橋密度が必要以上に低下し、硬化性樹脂組成物の反応性が低下するだけではなく、硬化物の耐水性、特に常温水及び温水浸漬時の重量変化率が増加する。また、耐薬品性として、特に日本下水道事業団の指針で指定している試験法では、浸透深さが増加し、繊維強化材との親和性、接着力が低下するため、液相環境での使用は不適であることが分かった。なおこの試験法は、10%の硫酸水溶液に120日間硬化物を浸漬して電子線マイクロアナライザ−(EPMA)で硫酸中の硫黄の浸透深さによりライニング材の耐久性の寿命予測する方法である。また、エチレンオキサイドの付加モル数が2未満では、樹脂組成物の粘度が高くなりすぎ、作業が行いにくくなる欠点があり好ましくない。   In the present invention, when the number of moles of ethylene oxide added to the ethoxylated bisphenol A dimethacrylate of (B) exceeds 10, the crosslinking density is unnecessarily lowered and the reactivity of the curable resin composition is only lowered. Instead, the water resistance of the cured product, particularly the rate of change in weight when immersed in room temperature water and warm water, is increased. In addition, chemical resistance, especially in the test methods specified by the guidelines of the Japan Sewerage Corporation, increases the penetration depth and decreases the affinity and adhesive strength with fiber reinforcements. Use proved unsuitable. In this test method, the cured product is immersed in a 10% sulfuric acid aqueous solution for 120 days, and the durability life prediction of the lining material is performed based on the penetration depth of sulfur in sulfuric acid with an electron beam microanalyzer (EPMA). . On the other hand, when the added mole number of ethylene oxide is less than 2, it is not preferable because the viscosity of the resin composition becomes too high and the work becomes difficult.

本発明において、アルキレンオキサイド付加アルコキシ化ビスフェノ−ルAジメタクリレ−ト(B)の含有量は特に限定されないが、コンクリート防食被覆用プライマー樹脂組成物の用途では、(A)、(B)、(C)及び(D)の合計100質量%(質量部)に対し、好ましくは5〜15質量%(質量部)の範囲である。すなわち、5質量%未満では得られる硬化性樹脂組成物の硬化物の表面に、常温水及び温水浸漬時で白化現象が発生する。また、15質量%を超えると、水中及び温水浸漬時に硬化性樹脂組成物の硬化物にフクレが発生するため好ましくない。   In the present invention, the content of the alkylene oxide-added alkoxylated bisphenol A dimethacrylate (B) is not particularly limited. However, in the application of the primer resin composition for concrete anticorrosion coating, (A), (B), (C ) And (D) in a total amount of 100% by mass (parts by mass), preferably 5 to 15% by mass (parts by mass). That is, when it is less than 5% by mass, a whitening phenomenon occurs on the surface of the cured product of the resulting curable resin composition when immersed in normal temperature water and warm water. On the other hand, if it exceeds 15% by mass, swelling is generated in the cured product of the curable resin composition when immersed in water or warm water, which is not preferable.

(B)の使用量は用途に合わせて適宜変更可能であり、例えばコンクリート防食被覆用硬化性樹脂組成物の用途では、成分(A)〜(D)の合計100質量%に対し、10〜30質量%の範囲である。10質量%未満では得られる硬化性樹脂組成物の硬化物表面に、常温水及び温水浸漬時に白化現象が発生する。また30質量%を超えると、水中及び温水浸漬時に硬化性樹脂組成物の硬化物にフクレが発生するため好ましくない。   The usage-amount of (B) can be suitably changed according to a use. For example, in the use of the curable resin composition for concrete anticorrosion coating, it is 10-30 with respect to a total of 100 mass% of component (A)-(D). It is the range of mass%. If it is less than 10% by mass, a whitening phenomenon occurs on the surface of the cured product of the resulting curable resin composition when immersed in normal temperature water and warm water. On the other hand, if it exceeds 30% by mass, swelling is generated in the cured product of the curable resin composition when immersed in water or warm water, which is not preferable.

エトキシ化ビスフェノ−ルAジ(メタ)アクリレ−トは、特開平7−268079号公報記載の公知の方法で製造可能であり、具体的には、先ず、ビスフェノ−ルAのエチレンオキサイド付加物のジグリシジルエ−テルとしては、ビスフェノ−ルAにエチレンオキサイドを付加した含核ポリオ−ルとエピハロヒドリンとをエ−テル反応させエチレンオキサイド付加ビスフェノ−ルAジグリシジルを得る。次いでエステル化触媒を使用して、メタアクリル酸又はアクリル酸との反応物のエトキシ化ビスフェノ−ルAジ(メタ)アクリレ−トを得る。   Ethoxylated bisphenol A di (meth) acrylate can be produced by a known method described in JP-A-7-268079. Specifically, first, an ethylene oxide adduct of bisphenol A is prepared. As the diglycidyl ether, a nucleated polyol obtained by adding ethylene oxide to bisphenol A and an epihalohydrin are subjected to an ether reaction to obtain ethylene oxide-added bisphenol A diglycidyl. An esterification catalyst is then used to obtain ethoxylated bisphenol A di (meth) acrylate, which is a reaction product with methacrylic acid or acrylic acid.

<成分(C)>
本発明において、(C)で表される環内にアルコ−ル残基として炭素間二重結合又は窒素原子を1個有する環状炭化水素基を含む基を有する1官能(メタ)アクリレ−ト系モノマ−であり、分子量が240以上、かつ25℃の粘度が100mPa・s以下(JIS K6901の4.4.1記載のブルックフィールド形粘度計を使用)、蒸気圧が0.5mmHg以下のものが好ましい。具体的には、ジシクロペンテニルオキシエチルアクリレ−ト、ジシクロペンテニルオキシエチルメタアクリレ−ト、ジシクロペンテニルアクリレ−ト、ジシクロペンテニルメタクリレ−ト、ペンタメチルピペリジルメタクリレ−ト及びペンタメチルピペリジルアクリレ−トなどが上げられ、これらは単独で使用してもよいし、2種類以上を併用してもよい。これらのうちでも、本発明では、低臭気性、反応性、硬化物の特性から、ジシクロペンテニルオキシエチルメタクリレ−ト、ジシクロペンテニルオキシエチルアクリレ−ト、ジシクロペンテニルメタクリレ−ト、ペンタメチルピペリジルメタクリレ−トからなる群より選択される1種以上を用いることが好ましい。
<Ingredient (C)>
In the present invention, a monofunctional (meth) acrylate system having a group containing a cyclic hydrocarbon group having one carbon-carbon double bond or one nitrogen atom as an alcohol residue in the ring represented by (C) A monomer having a molecular weight of 240 or more, a viscosity at 25 ° C. of 100 mPa · s or less (using a Brookfield viscometer described in 4.4.1 of JIS K6901), and a vapor pressure of 0.5 mmHg or less. preferable. Specifically, dicyclopentenyloxyethyl acrylate, dicyclopentenyloxyethyl methacrylate, dicyclopentenyl acrylate, dicyclopentenyl methacrylate, pentamethylpiperidyl methacrylate, and Pentamethylpiperidyl acrylate and the like are listed, and these may be used alone or in combination of two or more. Among these, in the present invention, dicyclopentenyloxyethyl methacrylate, dicyclopentenyloxyethyl acrylate, dicyclopentenyl methacrylate, because of low odor, reactivity, and properties of the cured product, It is preferable to use one or more selected from the group consisting of pentamethylpiperidyl methacrylate.

上記1官能(メタ)アクリル系モノマ−(C)の使用量は特に限定されないが、コンクリート防食被覆用プライマー樹脂組成物の用途では、必須成分である(A)、(B)、(C)及び(D)の合計量100質量部(質量%)に対し、50〜70質量部(質量%)の範囲であり、50質量部未満では硬化性樹脂組成物硬化物のコンクリ−トへの浸透性及び表面指触乾燥性が劣る上、硬化性樹脂組成物の粘度が高くなりすぎ、作業性に劣る。また、70質量部を超えると、高温水浸漬時に硬化物の表面にフクレが発生し、耐久性に劣るものとなる。よって、上記範囲50〜70質量部で使用することが好ましい。   Although the usage-amount of the said monofunctional (meth) acrylic-type monomer (C) is not specifically limited, In the use of the primer resin composition for concrete anticorrosion coating, it is an essential component (A), (B), (C) and It is the range of 50-70 mass parts (mass%) with respect to 100 mass parts (mass%) of the total amount of (D), and if it is less than 50 mass parts, the permeability to the concrete of the curable resin composition cured product. And surface finger touch dryness is inferior, and the viscosity of the curable resin composition becomes too high, resulting in poor workability. Moreover, when it exceeds 70 mass parts, a swelling will generate | occur | produce on the surface of hardened | cured material at the time of high temperature water immersion, and it will be inferior to durability. Therefore, it is preferable to use in the said range of 50-70 mass parts.

(C)成分の使用量は用途に合わせて適宜変更可能であり、例えば、コンクリート防食被覆用硬化性樹脂組成物の用途では、1官能(メタ)アクリル系モノマ−(C)の使用量は、成分(A)〜(D)の合計100質量部に対し、20〜40質量部の範囲にあり、20質量部未満では硬化物の表面指触乾燥性が劣る上、硬化性樹脂組成物の粘度が更に高くなりすぎ、作業性が非常に劣る。また、40質量部を超えると、高温水浸漬時に硬化物表面のフクレが大きくなり、耐久性に劣るものとなる。従って、上記範囲20〜40質量部で使用することがより好ましい。   (C) The usage-amount of a component can be suitably changed according to a use, for example, in the use of the curable resin composition for concrete anticorrosion coating, the usage-amount of monofunctional (meth) acrylic-type monomer (C) is, It exists in the range of 20-40 mass parts with respect to a total of 100 mass parts of component (A)-(D), and when it is less than 20 mass parts, the surface touch dryness of hardened | cured material is inferior, and the viscosity of curable resin composition Becomes too high, and workability is very poor. Moreover, when it exceeds 40 mass parts, the swelling of the cured | curing material surface will become large at the time of high temperature water immersion, and it will be inferior to durability. Therefore, it is more preferable to use in the said range 20-40 mass parts.

<成分(D)>
本発明において、(D)で表される成分、すなわち、水酸基価160KOHmg/g以下、数平均分子量1000以上のポリオ−ルの具体例としては、ポリオキシプロピレンジオ−ル、ポリオキシプロピレントリオ−ル、ポリオキシプロピレンエチレントリオ−ルがあり、その他トリオ−ル誘導体、例えば、グリセリン、トリメチロ−ルプロパン、ヘキサントリオ−ル等のポリエ−テルポリオ−ルも使用することができる。グリセリンのポリエ−ルポリオ−ルを単独、又は、トリオ−ルとジオ−ルの混合物からなるものを用いることが好ましく、ポリオ−ル又はその混合物の平均官能基数2〜3、数平均分子量1000以上、水酸基価160以下(mgKOH/g)が好ましい。ここで、平均官能基数とは、ポリオール1分子当たりのNCO基と反応する官能基(活性水酸基)の個数である。また、水酸基価は、JISK1557−1:2007 「プラスチック−ポリウレタン原料ポリオ−ル 試験方法−第1部:水酸基価の求め方」記載のA法を適用して測定した値である。数平均分子量は、上記水酸基価を用い、下記式(1):
平均分子量=(56,110×官能基数)/(水酸基価)・・・・・・(1)
により算出された値である。
<Component (D)>
In the present invention, specific examples of the component represented by (D), that is, a polyol having a hydroxyl value of 160 KOH mg / g or less and a number average molecular weight of 1000 or more include polyoxypropylene diol and polyoxypropylene triol. Polyoxypropylene ethylene triol, and other triol derivatives such as polyether polyol such as glycerin, trimethylolpropane and hexanetriol can also be used. It is preferable to use a glycerol polyester polyol alone or a mixture of a triol and a diol, the average functional group number 2-3 of the polyol or a mixture thereof, a number average molecular weight of 1000 or more, A hydroxyl value of 160 or less (mgKOH / g) is preferred. Here, the average number of functional groups is the number of functional groups (active hydroxyl groups) that react with NCO groups per molecule of polyol. The hydroxyl value is a value measured by applying the method A described in JIS K1557-1: 2007 “Plastics—Polyurethane raw material polyol test method—Part 1: Determination of hydroxyl value”. For the number average molecular weight, the hydroxyl value is used and the following formula (1):
Average molecular weight = (56,110 × number of functional groups) / (hydroxyl value) (1)
Is a value calculated by

ポリオールが混合物の場合は、各ポリオール成分がそれぞれ上記好適な水酸基価(160以下)であることが好ましいが、混合物全体について上記方法で測定した水酸基価が160mgKOH以下になるのであれば、混合物中の1以上のポリオール成分の水酸基価が160mgKOHを超えてもよい。また、各ポリオール成分がそれぞれ数平均分子量1000以下であることが好ましいが、混合物全体の数平均分子量が1000以下になるのであれば、いずれか1種のポリオールが数平均分子量1000未満あっても良い。n種類(nは1以上の整数)のポリオールの混合物の場合、各ポリオールの数平均分子量と、当該ポリオールのモル比(単一ポリオールのモル数/ポリオール混合物全体のモル数)を乗じた積をn種類のポリオールについてそれぞれ算出し、算出したこれら積を合計した値が混合物全体の数平均分子量となる。   When the polyol is a mixture, each polyol component preferably has the above-mentioned preferred hydroxyl value (160 or less). However, if the hydroxyl value measured by the above method for the entire mixture is 160 mgKOH or less, The hydroxyl value of one or more polyol components may exceed 160 mgKOH. Each polyol component preferably has a number average molecular weight of 1000 or less, but any number of polyols may have a number average molecular weight of less than 1000 as long as the number average molecular weight of the entire mixture is 1000 or less. . In the case of a mixture of n types of polyols (n is an integer of 1 or more), the product obtained by multiplying the number average molecular weight of each polyol by the molar ratio of the polyol (number of moles of a single polyol / number of moles of the entire polyol mixture). Each of the n types of polyols is calculated, and the sum of these calculated products is the number average molecular weight of the entire mixture.

なお、好ましくは、ポリオ−ル(D)としては、ポリオキシプロピレントリオ−ル単独でもよいし、ポリオキシプロピレントリオールとポリオキシプロピレンジオ−ルとの混合物でもよい。2官能ジオ−ル単独では硬化物の表面の指触乾燥時間が長くなり好ましくはない。また、そのモル比(ポリオキシプロピレントリオール/ポリオキシプピレンジオ−ル)が、1.0/0〜0.4/0.6であることが好ましい。また、ポリオ―ルの数平均分子量は水酸基当たりの分子量が1000〜5000が好ましく、特には1000〜4000が好ましい。その数平均分子量が1000未満では硬化速度が速くなりすぎ、硬化物も脆くなり、水中及び温水浸漬時にフクレが発生するため好ましくない。また、数平均分子量が5000を超えると硬化速度が遅くなり、表面乾燥時間が長くなり、コンクリ−ト付着強度も低下するため好ましくない。   Preferably, the polyol (D) may be a polyoxypropylene triol alone or a mixture of a polyoxypropylene triol and a polyoxypropylene diol. A bifunctional diol alone is not preferable because the dry time of touching the surface of the cured product becomes long. In addition, the molar ratio (polyoxypropylene triol / polyoxypropylene diol) is preferably 1.0 / 0 to 0.4 / 0.6. The number average molecular weight of the polyol is preferably 1000 to 5000, more preferably 1000 to 4000, as the molecular weight per hydroxyl group. If the number average molecular weight is less than 1000, the curing rate becomes too fast, the cured product becomes brittle, and bulges are generated when immersed in water and warm water, which is not preferable. On the other hand, if the number average molecular weight exceeds 5,000, the curing rate becomes slow, the surface drying time becomes long, and the concrete adhesion strength also decreases, which is not preferable.

上記ポリオ―ル(D)の使用量は、コンクリート防食被覆用プライマー、コンクリート防食被覆、その他何れの用途であっても、(A)、(B)、(C)及び(D)の合計100質量部に対して、5〜15質量部の範囲にあり、5質量部未満ではそのプライマー硬化物は付着強度が劣る。また、15質量部を超えると硬化被膜の表面乾燥性が劣るので、上記範囲5〜15質量部で使用することが好ましい。   The amount of the above-mentioned polyol (D) used is a total of 100 masses of (A), (B), (C) and (D) regardless of whether it is a primer for concrete anticorrosion coating, a concrete anticorrosion coating, or any other use. If it is less than 5 parts by mass, the cured primer product has poor adhesion strength. Moreover, since the surface drying property of a cured film will be inferior when it exceeds 15 mass parts, it is preferable to use in the said range of 5-15 mass parts.

<成分(E)>
成分(E)は、少なくとも成分(D)とは別剤とすることが好ましく、成分(E)を副主剤とする場合は、副主剤は成分(E)以外の添加剤を含有してもよい。以下に、成分(E)について詳細に説明する。
<Ingredient (E)>
Component (E) is preferably at least a component separate from component (D), and when component (E) is a secondary agent, the secondary agent may contain additives other than component (E). . Below, a component (E) is demonstrated in detail.

本発明において、(E)ポリイソシアネ−トはイソシアネート基を2以上含む化合物であって、例えば、2,4−トリレンジイソシアネ−ト(TDI),2,6−トリレンジイソシアネ−ト(TDI)、2,6−トリレンジイソシアネ−ト(TDI)、1−クロロ−2,4−フェニレンジイソシアネ−ト、m−フェニレンジイソシアネ−ト、p−フェニレンジイソシアネ−ト、4,4’−ジフェニルメタンジイソシアネ−ト(4,4’−MDI)、2,4’−ジフェニルメタンジイソシアネ−ト(2,4’−MDI)、2,2’−ジフェニルメタンジイソシアネ−ト(2,2’−MDI)、3,3’−メトキシ−4,4’−ビフェニレンジイソシアネ−ト、2,2’,5,5’−テトラメチル−4,4’−ビフェニレンジイソシアネ−ト、1,5−ナフタリンジイソシアネ−ト(NDI)、4,4’−ジフェニルプロバンジイソシアネ−ト等及びこれらのイソシアネレ−ト体、カルボジイミド体、ウレトンイミン体等の誘導体、ポリメチレンポリフェニルポリイソシアネ−ト等の芳香族ポリイソシアネ−トからなる群より選択される1種以上を用いる。   In the present invention, (E) polyisocyanate is a compound containing two or more isocyanate groups. For example, 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate (TDI) ), 2,6-tolylene diisocyanate (TDI), 1-chloro-2,4-phenylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4 , 4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 2,2'-diphenylmethane diisocyanate (2,2′-MDI), 3,3′-methoxy-4,4′-biphenylene diisocyanate, 2,2 ′, 5,5′-tetramethyl-4,4′-biphenylene diisocyanate -G, 1 5-naphthalene diisocyanate (NDI), 4,4′-diphenylpropane diisocyanate and the like, and derivatives of these isocyanates, carbodiimides, uretonimines, etc., polymethylene polyphenyl polyisocyanate One or more selected from the group consisting of aromatic polyisocyanates such as

これらのうち、ジフェニルメタンジイソシアネ−ト体MDIのイソシアヌレ−ト体から選ばれた少なくとも1種を用いることが好ましく、これらのMDI単独、又は、4,4’−ジフェニルメタンジイソシアネ−ト(4,4’−MDI)と2,4’−ジフェニルメタンジイソシアネ−ト(2,4’−MDI)との混合系が好適に用いられる。   Among these, it is preferable to use at least one selected from isocyanurates of diphenylmethane diisocyanate MDI. These MDIs alone or 4,4′-diphenylmethane diisocyanate (4 , 4′-MDI) and 2,4′-diphenylmethane diisocyanate (2,4′-MDI) are preferably used.

上記本発明のポリイソシアネ−ト化合物(E)の使用量は、コンクリート防食被覆用プライマー、コンクリート防食被覆、その他何れの用途であっても、本発明の硬化性樹脂組成物を構成する(A)、(B)、(C)及び(D)の合計100質量部に対して1〜30質量部の範囲であり、1質量部未満ではプライマ−組成物の硬化物は付着強度が劣り、30質量部を超えると硬化被膜の表面乾燥性が劣る。よって、上記範囲での使用が好ましい。   The amount of the polyisocyanate compound (E) of the present invention used is a primer for concrete anticorrosion coating, a concrete anticorrosion coating, or any other use, which constitutes the curable resin composition of the present invention (A), (B), (C) and (D) are in the range of 1 to 30 parts by mass with respect to 100 parts by mass in total, and if it is less than 1 part by mass, the cured product of the primer composition has poor adhesion strength, and 30 parts by mass If it exceeds 1, the surface drying property of the cured film is inferior. Therefore, the use within the above range is preferable.

<その他の成分>
本発明の樹脂組成物は、上記成分(A)〜(E)のみでも使用できるが、他の成分を添加することもできる。硬化性樹脂組成物を2以上の薬剤(例:主及び副主剤)とする場合、これら他の成分はいずれか1以上の薬剤に添加すればよい。以下に、他の成分の具体例を説明する。
<Other ingredients>
The resin composition of the present invention can be used only with the above components (A) to (E), but other components can also be added. When the curable resin composition is used as two or more drugs (eg, main and auxiliary main agents), these other components may be added to any one or more drugs. Specific examples of other components will be described below.

シックハウス問題及び化学物質排出把握管理移動登録法(PRTR法)などによるスチレン排出濃度規制を考慮して、以下の架橋用重合性ビニルモノマ−を他の成分として添加し、架橋用重合性モノマ−を大幅に軽減する樹脂組成物として使用してもよい。この成分は、主剤に添加して使用することが好ましい。   Considering the sick house problem and the regulation of styrene emission concentration by the PRTR method, the chemical substance emission control management registration method (PRTR method) etc., the following polymerizable vinyl monomers for crosslinking are added as other components to greatly increase the polymerizable monomers for crosslinking. It may be used as a resin composition that alleviates the above. This component is preferably used by being added to the main agent.

架橋用重合性ビニルモノマ−としては、芳香族系であるスチレン、ビニルトルエンまたはα−メチルスチレンなどが上げられる。また、メタクリル系であるメチルメタクリレ−ト、エチルメタクリレ−ト、n−ブチルメタクリレ−ト、イソブチルメタクリレ−ト、2−エチルヘキシルメタクリレ−ト等が上げられる。これら架橋用重合性モノマ−は、単独使用でも2種以上併用でもよいが、一般的にはスチレンが使用される。架橋性重合性ビニルモノマ−の配合量は、(A)、(B)、(C)及び(D)の合計100質量部に対して40質量部(架橋用重合性モノマ−含有率30%以下)以下が好ましい。通常、ビニルエステル樹脂の架橋性重合性モノマ−の含有率は40〜50質量部である。このため、架橋性重合性モノマ−含有率を大幅に低減し、作業時の揮発量を著しく低減できる低架橋性重合性モノマ−含有樹脂組成物として適用できる。   Examples of the polymerizable vinyl monomer for crosslinking include aromatic styrene, vinyl toluene, and α-methylstyrene. Further, methacrylic methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate and the like can be mentioned. These crosslinking polymerizable monomers may be used alone or in combination of two or more, but styrene is generally used. The compounding amount of the crosslinkable polymerizable vinyl monomer is 40 parts by mass with respect to a total of 100 parts by mass of (A), (B), (C) and (D) (content of polymerizable monomer for crosslinking is 30% or less). The following is preferred. Usually, the content of the crosslinkable polymerizable monomer of the vinyl ester resin is 40 to 50 parts by mass. For this reason, it can be applied as a low crosslinkable polymerizable monomer-containing resin composition capable of greatly reducing the content of the crosslinkable polymerizable monomer and significantly reducing the volatilization amount during operation.

本発明の樹脂組成物は、上記成分(A)〜(D)及び(E)のみで乾燥性に優れたことが特徴であるが、より乾燥性を向上させる目的でパラフィン及び/又はワックス類を併用してもよい。硬化性樹脂組成物を2液型とする場合、このパラフィン及び/又はワックス類は主剤に添加することが好ましい。パラフィン及び/又はワックス類を含む樹脂組成物は、酸素遮蔽性が高いので、最表面を覆うトップコート層に特に適している。   The resin composition of the present invention is characterized in that only the above components (A) to (D) and (E) are excellent in drying properties, but for the purpose of improving drying properties, paraffin and / or waxes are used. You may use together. When the curable resin composition is a two-component type, it is preferable to add the paraffin and / or wax to the main agent. Since the resin composition containing paraffin and / or waxes has high oxygen shielding properties, it is particularly suitable for a top coat layer covering the outermost surface.

本発明の樹脂組成物に用いられるパラフィン及び/又はワックス類としては、パラフィンワックス、ポリエチレンワックスス、又は、ステアリン酸、1,2−ヒドロキシステアリン酸などの高級脂肪酸などが上げられるが、好ましくはパラフィンワックスが用いられる。このパラフィン及び/又はワックス塗膜表面における硬化反応中の空気遮断作用、耐汚れ性の向上を目的に添加される。添加率としては成分(A)、(B)、(C)及び(D)の樹脂組成物100質量部に対して0.1〜5質量部、好ましくは0.2〜2質量部である。   Examples of paraffins and / or waxes used in the resin composition of the present invention include paraffin wax, polyethylene wax, or higher fatty acids such as stearic acid and 1,2-hydroxystearic acid, preferably paraffin. Wax is used. It is added for the purpose of improving the air blocking action and the stain resistance during the curing reaction on the paraffin and / or wax coating surface. As an addition rate, it is 0.1-5 mass parts with respect to 100 mass parts of resin compositions of component (A), (B), (C), and (D), Preferably it is 0.2-2 mass parts.

本発明において使用可能な不活性な微粒子状及び/又は粉状の無機骨材材料としては、砂、シリカ粉末、粉砕岩石、炭酸カルシウム、アルミナ粉、クレ−、珪石粉、タルク、ガラス粉、シリカパウダ−、水酸化アルミニウム、珪砂、珪酸アルミニウム、珪酸マグネシウム、セメントなどを使用することができる。硬化性組成物を2液型とする場合、これらの無機骨材料は、主剤と副主剤のいずれか一方又は両方に添加することができるが、分散性を考慮すると、主剤に添加することが好ましい。   Examples of inert fine particle and / or powdery inorganic aggregate materials that can be used in the present invention include sand, silica powder, crushed rock, calcium carbonate, alumina powder, clay, quartzite powder, talc, glass powder, and silica powder. -Aluminum hydroxide, silica sand, aluminum silicate, magnesium silicate, cement and the like can be used. When the curable composition is made into a two-component type, these inorganic bone materials can be added to either or both of the main agent and the auxiliary main agent, but are preferably added to the main agent in consideration of dispersibility. .

さらに、不活性な微粒子及び/又は粒状の無機骨材材料の使用量は、所望の流動性などの作業性に応じ、また、コンクリ−ト組成物の硬化物の強度などにより決定されるが、その添加量は、硬化性樹脂組成物の成分(A)、(B)、(C)、(D)の合計100質量部に対して30〜600質量部の範囲とされる。無機骨材の平均粒径は0.02〜10mm、好ましくは0.05〜5mmである。また、骨材の珪砂は、JISG5901−1968で規定される1号珪砂(平均粒径5〜2.5mm)、2号珪砂(粒径2.5〜1.2mm)、3号珪砂(粒径1.2〜0.6mm)、4号珪砂(粒径0.6〜0.3mm)、5号珪砂(粒砂0.3〜0.15mm)、6号珪砂(粒砂0.15〜0.074mm)、7号珪砂(粒径0.074mm以下)も用いることができる。   Furthermore, the amount of inert fine particles and / or granular inorganic aggregate material used depends on workability such as desired fluidity and is determined by the strength of the cured product of the concrete composition. The addition amount is set in a range of 30 to 600 parts by mass with respect to 100 parts by mass in total of components (A), (B), (C), and (D) of the curable resin composition. The average particle diameter of the inorganic aggregate is 0.02 to 10 mm, preferably 0.05 to 5 mm. Moreover, the silica sand of the aggregate is No. 1 silica sand (average particle diameter of 5 to 2.5 mm), No. 2 silica sand (particle diameter of 2.5 to 1.2 mm), No. 3 silica sand (particle diameter) specified by JISG5901-1968. 1.2-0.6 mm), No. 4 silica sand (particle size 0.6-0.3 mm), No. 5 silica sand (grain sand 0.3-0.15 mm), No. 6 silica sand (grain sand 0.15-0) 074 mm) and No. 7 silica sand (particle size of 0.074 mm or less) can also be used.

珪砂の他に使用可能な、不活性な微粒子及び/又は粒状の無機骨材材料は、炭酸カルシウム、フライアッシュ、クレ−、アルミナ粉、珪石粉、タルク、シリカパウダ−、ガラス粉、マイカ、水酸化アルミニウム、珪酸アルミニウム、珪酸マグルシウム、セメント、大理石等が好ましい。微粒子の平均粒径は、好ましくは0.5μm〜20μm程度である。この不活性な微粒子及び/又は粒状の無機骨材材料添加率は、硬化性樹脂組成物の成分(A)、(B)、(C)及び(D)の合計100質量部に対して2.5〜100質量部の量の充填材が添加されることが好ましい。また、充填材は、単独で用いても、2種類以上を併用してもよい。   Inactive fine particles and / or granular inorganic aggregate materials that can be used in addition to silica sand are calcium carbonate, fly ash, clay, alumina powder, silica powder, talc, silica powder, glass powder, mica, hydroxylation Aluminum, aluminum silicate, magnesium silicate, cement, marble and the like are preferable. The average particle diameter of the fine particles is preferably about 0.5 μm to 20 μm. This inert fine particle and / or granular inorganic aggregate material addition rate is 2. with respect to a total of 100 parts by mass of the components (A), (B), (C) and (D) of the curable resin composition. It is preferred to add 5 to 100 parts by weight of filler. Moreover, a filler may be used independently or may use 2 or more types together.

本発明の硬化性樹脂組成物は、さらに、上記樹脂組成物(A)、(B)、(C)、(D)及び(E)のみでも使用できるが、本発明の硬化性樹脂組成物のうち、(A)、(B)、(C)及び(D)の合計100質量部に対して5〜50質量部の鱗片状無機充填材を加えたコンクリ−トライニング材に関する。硬化性組成物を2液型とする場合、鱗片状無機充填材は、分散性を考慮して主剤に添加することが好ましい。   The curable resin composition of the present invention can be used only with the resin compositions (A), (B), (C), (D) and (E), but the curable resin composition of the present invention Among these, it is related with the concrete lining material which added 5-50 mass parts scale-like inorganic filler with respect to a total of 100 mass parts of (A), (B), (C), and (D). When making a curable composition into a 2 liquid type, it is preferable to add a scaly inorganic filler to a main ingredient in consideration of dispersibility.

上記鱗片状無機充填材としては、ガラスフレ−ク、マイカフレ−クなどが上げられるが、これらのうちでもガラスフレ−クを用いることがより好ましい。鱗片状無機充填材としては、通常、平均粒子径10〜4000μmのものを用いることが可能であるが、コンクリ−ト被覆組成物の作業性を良好に保持するには、平均粒子径の100〜1000μmの範囲であるものを用いることが、より好ましい。   Examples of the scale-like inorganic filler include glass flakes and mica flakes. Among these, it is more preferable to use glass flakes. As the flaky inorganic filler, those having an average particle diameter of 10 to 4000 μm can be usually used, but in order to keep the workability of the concrete coating composition well, the average particle diameter of 100 to It is more preferable to use one having a range of 1000 μm.

本発明における硬化性樹脂組成物、特に主剤に添加する有機過酸化物は、ケトンパ−オキサイド類、例えばメチルエチルケトンパ−オキサイドなど;ハイドロパ−オキサイド類、例えばクメンハイドロパ−オキサイド、t−ブチルハイドロパ−オキサイドなど;パ−オキシエステル類、例えばt−ブチルパ−オキシオクトエ−ト、t−ブチルパ−オキシベンゾエ−トなど;ジアルキルパ−オキサイド類、例えばジクミルパ−オキサイドなど;ジアシルパ−オキサイド類、例えばラウロイルパ−オキサイド、ベンゾイルパ−オキサイドなど公知のものが使用される。   The organic peroxide added to the curable resin composition, particularly the main agent in the present invention includes ketone peroxides such as methyl ethyl ketone peroxide; hydroperoxides such as cumene hydroperoxide and t-butyl hydroperoxide. Peroxyesters such as t-butyl peroxyoctate and t-butyl peroxybenzoate; Dialkyl peroxides such as dicumyl peroxide; Diacyl peroxides such as lauroyl peroxide, benzoyl peroxide Known materials such as oxide are used.

有機過酸化物の使用量は、本発明に用いられる樹脂組成物、特に主剤を構成する(A)、(B)、(C)及び(D)の合計量100質量部に対して0.01〜10質量部の範囲である。   The amount of organic peroxide used is 0.01 with respect to 100 parts by mass of the total amount of (A), (B), (C) and (D) constituting the resin composition used in the present invention, particularly the main agent. It is the range of -10 mass parts.

本発明はさらに、(A)、(B)、(C)及び(D)の合計100質量部に対して0.01〜5質量部の芳香族アミン系促進剤及び/又は多価金属塩及び/又は錯体を硬化性樹脂組成物(特に、主剤)に加え、次いで有機過酸化物を混合した熱硬化性樹脂組成物(又は主剤)を形成し、この熱硬化性樹脂組成物(又は、主及び副主剤)を、ライニング材を硬化促進するに際して配合する。0.01質量部未満では硬化が十分でなく、5質量部を越えても、それ以上の効果を示さない。   The present invention further includes 0.01 to 5 parts by mass of an aromatic amine accelerator and / or a polyvalent metal salt with respect to a total of 100 parts by mass of (A), (B), (C) and (D). / Or a complex is added to the curable resin composition (especially the main agent), and then a thermosetting resin composition (or main agent) mixed with an organic peroxide is formed, and this thermosetting resin composition (or main agent) is formed. And an auxiliary agent) are added to accelerate the curing of the lining material. If it is less than 0.01 part by mass, curing is not sufficient, and if it exceeds 5 parts by mass, no further effect is exhibited.

芳香族アミン系促進剤としては、アニリン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、トルイジン、N,N−ジメチル−P−トルイジンなどの一種以上の組合せで用いることができる。   As the aromatic amine accelerator, one or more combinations of aniline, N, N-dimethylaniline, N, N-diethylaniline, toluidine, N, N-dimethyl-P-toluidine and the like can be used.

次に、多価金属塩及び/又は錯体としては、ナフテン酸、オクテン酸の多価金属塩などがあり、多価金属としては、カルシウム、銅、マンガン、コバルト、バナジウムなどがある。特に好ましくは、オクチル酸コバルト、ナフテン酸コバルトがある。   Next, examples of the polyvalent metal salt and / or complex include naphthenic acid and polyvalent metal salt of octenoic acid, and examples of the polyvalent metal include calcium, copper, manganese, cobalt, vanadium and the like. Particularly preferred are cobalt octylate and cobalt naphthenate.

錯体としては、アセチルアセトン、コバルトアセチルアセトネ−ト、マンガンアセチルアセトネ−トなどがある。   Examples of the complex include acetylacetone, cobalt acetylacetonate, and manganese acetylacetonate.

また、こられの樹脂組成物、コンクリ−ト被覆組成物、ライニング材には、顔料、酸化防止剤、流動制御剤、チキソトロピ−剤、可塑剤などを必要に応じて添加することも可能である。硬化性組成物を2液型とする場合、これら添加剤は主剤と副主剤のいずれに添加してもよいが、分散性を考慮すると主剤に添加することが好ましい。   In addition, pigments, antioxidants, flow control agents, thixotropic agents, plasticizers, and the like can be added to these resin compositions, concrete coating compositions, and lining materials as necessary. . When the curable composition is a two-component type, these additives may be added to either the main agent or the auxiliary main agent, but it is preferable to add them to the main agent in consideration of dispersibility.

本発明の実施例により説明するが,本発明はこれに限定されるものではない。実施例中「部」は特に断らない限り「質量部」である。   The present invention will be described by way of examples, but the present invention is not limited thereto. In the examples, “part” is “part by mass” unless otherwise specified.

‐芳香族系エポキシメタクリレ−ト成分(A)の製造:
攪拌機、コンデンサ−、温度計、空気導入管を備えた2リッルの四つ口フラスコに、エポキシ樹脂として、三菱化学(株)社のjER828を148g、jER1001を360g及びjER1002を240gそれぞれ投入し、攪拌下に毎分10リットルの乾燥空気を吹き込みながら130℃まで昇温した。昇温後、ハイドロキノン(重合禁止剤)0.3g、トリメチルベンジルアンモニウムクロライド2gを添加し、メタクリル酸172gを2時間かけて滴下した。滴下終了後3時間経過したところから、1時間毎に酸価の測定を開始し、10KOHmg/g以下になったことを確認した後、100℃まで冷却し、成分(A)を得た。この成分(A)の数平均分子量を、後述する方法で測定したところ約750であった。
-Production of aromatic epoxy methacrylate component (A):
As a epoxy resin, 148 g of jER828, 360 g of jER1001, and 240 g of jER1002 were added as epoxy resins to a 2 liter four-necked flask equipped with a stirrer, a condenser, a thermometer, and an air introduction tube. The temperature was raised to 130 ° C. while blowing 10 liters of dry air every minute. After the temperature increase, 0.3 g of hydroquinone (polymerization inhibitor) and 2 g of trimethylbenzylammonium chloride were added, and 172 g of methacrylic acid was added dropwise over 2 hours. The measurement of the acid value was started every 1 hour after 3 hours had passed after the completion of dropping, and after confirming that it was 10 KOHmg / g or less, the mixture was cooled to 100 ° C. to obtain component (A). It was about 750 when the number average molecular weight of this component (A) was measured by the method mentioned later.

‐成分(A)〜(E)の配合
上記工程で作製した成分(A)200質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)100質量部と、ジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)600質量部と、ポリエ−テルポリオ−ル(D)(旭硝子社 エクセノ−ルE240:数平均分子量3000、水酸基価56mgKOH/g)100質量部を加えて溶解し、室温まで冷却した。この混合物100質量部(成分(A)〜(D)の混合物100質量部)に対して、ポリイソシアネ−ト化合物10質量部を成分(E)の副主剤として加えたものを硬化性プライマー樹脂組成物とした。
-Blending of components (A) to (E) To 200 parts by mass of component (A) prepared in the above step, 2.6 mol of ethylene oxide addition ethoxylated bisphenol A dimethacrylate (B) (Shin Nakamura Chemical Co., Ltd.) 100 parts by mass of BPE-100), 600 parts by mass of dicyclopentenyloxyethyl methacrylate (C) (Hitachi Chemical Industry Co., Ltd., FA-512MT), and polyether polyol (D) (Asahi Glass Co., Ltd. Exanol E240) : Number average molecular weight 3000, hydroxyl value 56 mg KOH / g) 100 parts by mass was added and dissolved, and cooled to room temperature. A curable primer resin composition obtained by adding 10 parts by mass of a polyisocyanate compound as an auxiliary agent of component (E) to 100 parts by mass of this mixture (100 parts by mass of the mixture of components (A) to (D)). It was.

なお、ポリイソシアネート化合物は、三井化学(株)製のコスモネ−トLKであり、カルボジイミド変性MDIを15〜25%、メチレンビス(4,1−フェニレン)ジイソシアネ−トを70〜80%、2,4ジフェニルメタンジイソシアネ−トを1〜5%含有する(全て質量%)。   The polyisocyanate compound is Cosmonate LK manufactured by Mitsui Chemicals, Inc., 15 to 25% carbodiimide-modified MDI, 70 to 80% methylenebis (4,1-phenylene) diisocyanate, 2,4 1-5% of diphenylmethane diisocyanate is contained (all by mass).

上記組成物に、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを下記表1の配合割合で混合した配合物を用い、離型処理したガラス板上でチョップストランドマットMC−450(日東紡績株式会社製)3プライ(3枚)を、ガラス含有量30%のFRPに積層し、25℃で72時間硬化させ、積層板を得た。この積層板及び樹脂組成物について、以下の試験を行った。   Chop on a release-treated glass plate using a composition in which 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylniline were mixed in the composition shown in Table 1 below. Strand mat MC-450 (manufactured by Nitto Boseki Co., Ltd.) 3 plies (3 sheets) were laminated on FRP having a glass content of 30% and cured at 25 ° C. for 72 hours to obtain a laminate. The following test was done about this laminated board and resin composition.

‐測定方法
磨耗量はJISA1453(建築材料及び建築構成部分の摩耗試験方法(研磨紙法))の摩耗輪法で測定、摩耗輪CS−17、荷重1kg、回転数1000rpmで測定した。
-Measurement method The amount of wear was measured by the wear wheel method of JIS A 1453 (abrasion test method for building materials and building components (abrasive paper method)), wear wheel CS-17, load 1 kg, rotation speed 1000 rpm.

数平均分子量は、高速液体クロマトグラフィ−(GPC)により測定し、ポリスチレン換算値として示した。   The number average molecular weight was measured by high performance liquid chromatography (GPC) and indicated as a polystyrene equivalent value.

スチレンの揮発量としては、表1の配合で6%ナフテン酸コバルト、過酸化物、ジメチルニリンを硬化性樹脂組成物と十分に混合した配合物100gを直径145mmのガラスシャ−レに入れ、60分後重量変化率を測定した。   As the volatilization amount of styrene, 100 g of a mixture obtained by thoroughly mixing 6% cobalt naphthenate, peroxide, and dimethylniline with a curable resin composition in the composition shown in Table 1 was placed in a glass dish having a diameter of 145 mm, and 60 minutes After weight change rate was measured.

硬さ試験のバ−コル硬度は、JISK7060(ガラス繊維強化プラスチックのバ−コル硬さ試験法に規定された測定方法に基づき測定した。   The bar hardness of the hardness test was measured based on the measurement method specified in JIS K7060 (Barcol hardness test method of glass fiber reinforced plastic).

EPMA(電子線マイクロアナライザ−)は、積層板を10%硫酸水溶液中に120日間浸漬し、硫酸中の硫黄の浸透深さを測定した。下水道施設のコンクリ−ト構造物の気相部は硫酸環境に置かれているため、硫黄浸透深さから樹脂塗膜厚さの寿命が予測できる。   EPMA (electron beam microanalyzer) was obtained by immersing the laminate in a 10% sulfuric acid aqueous solution for 120 days and measuring the penetration depth of sulfur in sulfuric acid. Since the gas phase part of the concrete structure of the sewerage facility is placed in a sulfuric acid environment, the life of the resin coating thickness can be predicted from the sulfur penetration depth.

表面乾燥時間は、表1の割合で配合した配合物を、20℃室温のガラス板上にアプリケ−タ−を用いて塗布した。この塗布膜について、表面乾燥性について指触試験を実施する。更に、評価方法は脱脂綿(片面の面積が約2〜3cm)を塗膜表面に押し付けても脱脂綿が粘着によって塗膜表面に残らなくなるまでの時間を測定した。 For the surface drying time, the blended compounds in the proportions shown in Table 1 were applied onto a glass plate at 20 ° C. room temperature using an applicator. For this coating film, a finger touch test is performed for surface drying. Furthermore, the evaluation method measured the time until the absorbent cotton did not remain on the coating film surface even if the absorbent cotton (the area of one side was about 2 to 3 cm 2 ) was pressed against the coating film surface.

コンクリ−ト付着強度は、建研式引張り試験機でJISA6916に従って試験を行い、接着強度を測定した。   The concrete adhesion strength was measured by a Kenken tensile tester according to JIS A6916, and the adhesive strength was measured.

コンクリ−トピ−リング試験は、JISA5304規格歩道板(サイズ;300mm×300mm)に、各実施例の硬化性樹脂組成物の配合物(各表に記載の割合で配合)をプライマ−として、塗布量150g/mで塗布、指触乾燥(指で触って乾燥確認)後、各実施例の硬化性樹脂組成物に100質量部にガラスフレ−クRCF−140(日本板硝子株式会社製)30質量部、クリスタライトAA((株)龍森製珪石粉)20質量部、6%ナフテン酸コバルト1.5質量部、過酸化物(日油 パ−キュア−K)2.5質量部を配合したものを素地調整材として700g/m塗布し、指触乾燥後、更に、上記プライマー用の硬化性樹脂組成物の配合物100質量部にガラスフレ−クRCF−140を10質量部添加した配合物を表面保護層として1kg/m塗布(厚み0.6mm)して防食被覆層を形成した。25℃、72時間硬化養生してから、幅×長さ×厚み=20mm×90mm×2mmのFRP板内で、上記長さ方向片末端に未接着部分20mmを残してエポキシ接着剤で接着した。なお、未接着部の中心に直径2mmの孔を開け、バネ秤先端のフックをこの孔に挿入して、JISK6256の加硫ゴムの接着試験方法に準拠して、90度ピーリングを測定した。 The concrete peeling test was conducted using a JIS 5304 standard sidewalk board (size: 300 mm x 300 mm) as a primer with the composition of the curable resin composition of each example (mixed in the proportions described in each table) as a primer. After coating at 150 g / m 2 and touch-drying (touch with finger to confirm drying), 100 parts by mass of the curable resin composition of each example and 30 parts by mass of glass flake RCF-140 (manufactured by Nippon Sheet Glass Co., Ltd.) , Crystallite AA (silica stone powder manufactured by Tatsumori Co., Ltd.) 20 parts by mass, 1.5% by mass of 6% cobalt naphthenate, and 2.5 parts by mass of peroxide (NOF Percure-K) A base material prepared by applying 700 g / m 2 as a substrate preparation material, dried by touching, and further adding 10 parts by weight of glass flake RCF-140 to 100 parts by weight of the primer curable resin composition. Surface protection 1 kg / m 2 coated with (thickness 0.6 mm) was formed anticorrosive coating layer as. After curing at 25 ° C. for 72 hours, in an FRP plate of width × length × thickness = 20 mm × 90 mm × 2 mm, the unbonded portion was left at one end in the length direction and adhered with an epoxy adhesive. A hole with a diameter of 2 mm was formed in the center of the unbonded portion, and a hook at the tip of the spring balance was inserted into this hole, and 90 ° peeling was measured in accordance with the vulcanized rubber adhesion test method of JIS K6256.

重量変化率は,実施例1の配合割合の樹脂組成物を十分混合してから10gを、直径40mm(高さ15mm)のガラスシャ−レに流し込み,25℃,72時間硬化させてから脱型した注型物を温水(80℃)に96時間浸漬した後に重量変化率を測定した。また、EPMA、バ−コル硬度及び摩耗量は前記記載方法で測定した。   Regarding the rate of change in weight, 10 g of the resin composition having the blending ratio of Example 1 was thoroughly mixed, poured into a glass dish having a diameter of 40 mm (height 15 mm), cured at 25 ° C. for 72 hours, and then demolded. After the casting was immersed in warm water (80 ° C.) for 96 hours, the rate of weight change was measured. Moreover, EPMA, Barcol hardness, and abrasion amount were measured by the above-mentioned method.

‐実施例1の測定結果
表1に示したように、実施例1の樹脂組成物を用いた場合、コンクリ−ト付着強度及びコンクリ−トピ−リング強度は高かった。また、コンクリ−トに、実施例1の樹脂組成物を用いたプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬し、60日後に観察したところ、プライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった(温水浸漬試験)。この温水浸漬後のコンクリ−ト付着強度及びコンクリ−トピ−リング強度は初期値を維持していた。また、温水(80℃)浸漬吸水率は、1.2%と低い値を示した。
-Measurement result of Example 1 As shown in Table 1, when the resin composition of Example 1 was used, the concrete adhesion strength and the concrete peeling strength were high. Moreover, when the specimen which laminated | stacked the primer which used the resin composition of Example 1, the base material preparation material, and the surface protection material on the concrete was immersed in the 80 degreeC warm water whole surface and observed 60 days later, primer was obtained. -No abnormality was observed between the layers, the base material adjusting material layer and the surface protective layer (warm water immersion test). The concrete adhesion strength and concrete peeling strength after the warm water immersion maintained the initial values. Moreover, warm water (80 degreeC) immersion water absorption showed the low value with 1.2%.

実施例1と同じ芳香族系エポキシメタクリレ−ト(A)150質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)100質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)650質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)100質量部を加えて溶解後、室温まで冷却し、上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)10質量部を加えて硬化性プライマー樹脂組成物を得た。   150 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 1, 100 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd. BP-6EM), 650 parts by mass of dicyclopentenyloxyethyl methacrylate (C) and 100 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Exanol E240) were added and dissolved, then cooled to room temperature, and the above (A), ( 10 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) was added to 100 parts by mass of the total of B), (C) and (D) to obtain a curable primer resin composition.

この樹脂組成物に、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを表1の配合で添加した配合物で、実施例1に記載の方法で積層板を作成し、この積層体及び樹脂組成物について実施例1と同じ方法で試験を行った。その結果を表1に示す。実施例2においても、コンクリ−ト付着強度及びコンクリ−トピ−リング強度は高かった。また、実施例1と同じ温水浸漬試験を行ったところ、プライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。また、温水(80℃)浸漬吸水率は、1%前後の低い値を示した。   To this resin composition, 6% cobalt naphthenate, peroxide (Nippon Percure-K) and dimethylniline were added according to the formulation shown in Table 1, and the laminate was formed by the method described in Example 1. The laminate and the resin composition were prepared and tested in the same manner as in Example 1. The results are shown in Table 1. Also in Example 2, the concrete adhesion strength and the concrete peeling strength were high. Moreover, when the same hot water immersion test as Example 1 was done, there was no abnormality in each layer of a primer layer, a base material adjusting material layer, and a surface protective layer. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value around 1%.

実施例1と同じ芳香族系エポキシメタクリレ−ト(A)200質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)50質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)600質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE1030:数平均分子量1,000)150質量部を加えて溶解後、室温まで冷却した後、(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)20質量部を加えて樹脂組成物を作成し、更に、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを表1の配合で添加して配合物を作成した。   200 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 1, 50 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd. BP-6EM), 600 parts by mass of dicyclopentenyloxyethyl methacrylate (C) (Hitachi Chemical Industry Co., Ltd., FA-512MT), 150 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Exenol E1030: number average molecular weight 1,000) In addition, after dissolution and cooling to room temperature, 20 mass of isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) with respect to a total of 100 mass parts of (A), (B), (C) and (D). To make a resin composition, and then add 6% cobalt naphthenate, peroxide (Nissan Percure-K) and dimethylniline in the composition shown in Table 1 to make a composition. Made.

この配合物を用い、実施例1と同じ条件で積層板を作成し、この積層体及び樹脂組成物について、原則、実施例1と同じ方法で試験を行ったが、コンクリ−トピ−リング試験については、素地調整材用の樹脂組成物100質量部に対し、6%ナフテン酸コバルトの量を1.0質量部、パ−キュア−Kの量を2.0質量部に変えた以外は、実施例1と同じ条件とした。   Using this blend, a laminate was prepared under the same conditions as in Example 1, and this laminate and resin composition were tested in principle by the same method as in Example 1, but the concrete peeling test was performed. Was carried out except that the amount of 6% cobalt naphthenate was changed to 1.0 part by mass and the amount of Percure-K was changed to 2.0 parts by mass with respect to 100 parts by mass of the resin composition for the substrate conditioner. The conditions were the same as in Example 1.

実施例1と同じ芳香族系エポキシメタクリレ−ト(A)150質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)150質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)550質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)150質量部を加えて70℃に加温し、更に、下記表1の配合で20%濃度120度F/(FA−512MT)パラフィンワックスを添加して溶解後、室温まで冷却し、上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)25質量部を加えて硬化性樹脂組成物とした。   Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE-100) to 150 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 1. 150 parts by mass, 550 parts by mass of dicyclopentenyloxyethyl methacrylate (C), 150 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Exanol E240) were added and heated to 70 ° C. After adding 20% concentration 120 degrees F / (FA-512MT) paraffin wax in the formulation of Table 1 and dissolving, the mixture was cooled to room temperature, and a total of 100 of the above (A), (B), (C) and (D) 25 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) was added to the mass part to obtain a curable resin composition.

上記組成物に、更に、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを添加した配合物を用い、実施例1と同じ条件で積層板を作成した。この積層体及び樹脂組成物について、コンクリ−トピ−リング試験を実施例3と同じ条件に変更した以外は、実施例1と同じ条件で各試験を行った。その結果を表1に記載する。   A laminate was prepared under the same conditions as in Example 1, using a composition in which 6% cobalt naphthenate, peroxide (Nissan Percure-K) and dimethylniline were further added to the above composition. About this laminated body and resin composition, each test was done on the same conditions as Example 1 except having changed the concrete peeling test into the same conditions as Example 3. FIG. The results are listed in Table 1.

<比較例1>
実施例1と同じエポキシ樹脂(三菱化学(株)社のjER828を148g、jER1001を360g及びjER1002を240g)を実施例1と同じ条件で攪拌、昇温させ、130℃まで昇温した後、ハイドロキノン(重合禁止剤)0.3g、トリメチルベンジルアンモニウムクロライド2gを添加し、メタクリル酸172gを2時間かけて滴下した。滴下終了後3時間経過したところから、1時間毎に酸価の測定を開始し、酸価が17KOHmg/gになったことを確認した後、100℃まで冷却し、数平均分子量750の成分(A)を得た。この芳香族系エポキシ(メタ)アクリレ−ト(A)400質量部に実施例1のエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)500質量部及びジシクロペンテニルオキシエチルメタクリレ−ト(C)100質量部を加えて溶解後、室温まで冷却し、樹脂組成物を得た。この樹脂組成物に表1の6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は、25℃、24時間経過後も未硬化であった。
<Comparative Example 1>
The same epoxy resin as in Example 1 (148 g of jER828 from Mitsubishi Chemical Corporation, 360 g of jER1001 and 240 g of jER1002) was stirred and heated under the same conditions as in Example 1 and heated to 130 ° C., and then hydroquinone (Polymerization inhibitor) 0.3 g and trimethylbenzylammonium chloride 2 g were added, and 172 g of methacrylic acid was added dropwise over 2 hours. After 3 hours from the end of dropping, measurement of the acid value was started every hour, and after confirming that the acid value became 17 KOH mg / g, the mixture was cooled to 100 ° C. and a component having a number average molecular weight of 750 ( A) was obtained. To 400 parts by mass of this aromatic epoxy (meth) acrylate (A), 2.6 parts by mass of ethylene oxide of Example 1, ethoxylated bisphenol A dimethacrylate (B) 500 parts by mass and dicyclopentenyloxyethyl 100 parts by weight of methacrylate (C) was added and dissolved, and then cooled to room temperature to obtain a resin composition. The blend obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in Table 1 to this resin composition was uncured even after 24 hours at 25 ° C.

<比較例2>
比較例1と同じ芳香族系エポキシ(メタ)アクリレ−ト(A)50質量部に実施例1のエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)200質量部及びジシクロペンテニルオキシエチルメタクリレ−ト(C)400質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)350質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)40質量部を加えて硬化性プライマ−用樹脂組成物を得た。この組成物に、表1の配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は、25℃、24時間経過後も未硬化であった。
<Comparative example 2>
The same amount of the aromatic epoxy (meth) acrylate (A) as in Comparative Example 1 was added to 200 parts by mass of the ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) of Example 1 and di The above-mentioned (A), (B) cooled to room temperature after adding 400 parts by mass of cyclopentenyloxyethyl methacrylate (C) and 350 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Exanol E240) , (C) and (D) were added to 40 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) with respect to 100 parts by mass in total to obtain a resin composition for a curable primer. The composition obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K to the composition shown in Table 1 was uncured even after 24 hours at 25 ° C.

<比較例3>
比較例1と同じ芳香族系エポキシメタアクリレ−ト(A)500質量部に実施例1のフェノキシエチルメタクリレ−ト(C)500質量部を加えて溶解後、室温まで冷却し、樹脂組成物を得た。この樹脂組成物に表1の配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は25℃、24時間経過後も未硬化であった。
<Comparative Example 3>
After adding 500 parts by mass of the phenoxyethyl methacrylate (C) of Example 1 to 500 parts by mass of the same aromatic epoxy methacrylate (A) as in Comparative Example 1, the resin composition was cooled to room temperature. I got a thing. A blend obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in the blend of Table 1 to this resin composition was uncured after 24 hours at 25 ° C.

<比較例4>
‐芳香族系エポキシメタクリレ−ト(A)の製造(数平均分子量約1300)
実施例1と同じ四つ口フラスコに、jER828(三菱化学)93g、jER1002(三菱化学)180g及びjER1004 990gを仕込み攪拌下に毎分10リットルの乾燥空気を吹き込みながら130℃まで昇温した。昇温後、ハイドロキノン(重合禁止剤)0.3g、トリメチルベンジルアンモニウムクロライド2gを添加し、メタクリル酸172gを2時間かけて滴下した。滴下終了後3時間経過したところから1時間毎に酸価の測定を開始し、18KOHmg/gになったことを確認した後、100℃まで冷却し、数平均分子量約1300の芳香族系エポキシメタクリレ−トの製造物を得た。
<Comparative example 4>
-Production of aromatic epoxy methacrylate (A) (number average molecular weight about 1300)
Into the same four-necked flask as in Example 1, 93 g of jER828 (Mitsubishi Chemical), 180 g of jER1002 (Mitsubishi Chemical) and 990 g of jER1004 were charged and heated to 130 ° C. while blowing 10 liters of dry air per minute with stirring. After the temperature increase, 0.3 g of hydroquinone (polymerization inhibitor) and 2 g of trimethylbenzylammonium chloride were added, and 172 g of methacrylic acid was added dropwise over 2 hours. The acid value measurement was started every hour after 3 hours from the end of the dropping, and after confirming that the acid value reached 18 KOH mg / g, the mixture was cooled to 100 ° C. and aromatic epoxy methacrylate having a number average molecular weight of about 1300. A product of rate was obtained.

‐成分(A)〜(E)の配合
上記製造物40質量部に、下記表1の配合で成分(B)、(C)及び(D)を添加、溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対して、(E)イソシアネ−ト化合物40質量部を加えて樹脂組成物を得た。なお、成分(B)には、エチレンオキサイド30モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(新中村化学工業社 NKライトエステル BPE−1300)を用い、成分(C)、(D)は実施例1と同じ種類のものを用いた。この樹脂組成物に、下記表に示すように、6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加して配合物を作成し、その硬化物について、実施例1と同じ方法で特性値を測定した。その結果を下記表に示す。
-Composition of components (A) to (E) The components (B), (C) and (D) were added to the 40 parts by mass of the product in the following Table 1 and dissolved, and then cooled to room temperature (A ), (B), (C) and (D) in total, 100 parts by mass of (E) isocyanate compound was added to obtain a resin composition. For component (B), ethylene oxide 30 mol addition ethoxylated bisphenol A dimethacrylate (Shin-Nakamura Chemical Co., Ltd. NK Light Ester BPE-1300) was used, and components (C) and (D) were examples. The same type as 1 was used. To this resin composition, as shown in the following table, 6% cobalt naphthenate, dimethylaniline and Percure-K were added to prepare a blend. The cured product was characterized in the same manner as in Example 1. The value was measured. The results are shown in the table below.

上記樹脂組成物に、表1の配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した樹脂組成物は、コンクリ−ト付着強度及びコンクリ−トピ−リング強度が低く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬25日し後では、いずれもプライマ−層、素地調整材層、表面保護層の各層間で微小のフクレ、剥離が無数に発生した。また、温水(80℃)浸漬吸水率は、本発明の樹脂組成物の3倍前後と高く、温水浸漬後のコンクリ−ト付着強度及びコンクリ−トピ−リング強度の初期値に対する低下率は大きい。   The resin composition obtained by adding 6% cobalt naphthenate, dimethylaniline, and Percure-K in the composition shown in Table 1 has low concrete adhesion strength and concrete peeling strength, and After the specimen, in which the primer, the base material adjusting material, and the surface protective material are laminated on the concrete, is immersed in warm water at 80 ° C. for 25 days, all layers of the primer layer, the base material adjusting material layer, and the surface protective layer are used. Innumerable minute blisters and peeling occurred. Moreover, the hot water (80 degreeC) immersion water absorption rate is as high as about 3 times of the resin composition of this invention, and the fall rate with respect to the initial value of the concrete adhesion strength and concrete peeling strength after warm water immersion is large.

<比較例5>
比較例4の製造で得た数平均分子量1300の芳香族系エポキシメタアクリレ−ト(A)45質量部にエチレンオキサイド30モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(新中村化学工業社 NKライトエステル BPE−1300)(B)3質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)32質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)20質量部を加えて溶解後、室温まで冷却した。上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)(E)40質量部を加えて硬化性プライマ−樹脂組成物を得た。この樹脂組成物に表1の6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は、表面乾燥時間が長く、コンクリ−ト付着強度及びコンクリ−トとのピ−リング強度は常温水及び温水浸漬後極端に低下した。また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬後7日でプライマ−層、素地調整材層、表面保護層の各層間で微小のフクレ、剥離が無数に発生した。また、温水(80℃)浸漬重量変化率は、本発明実施例の3倍前後と高い。該硬化性樹脂組成物について、実施例1の記載の方法により注型物及び積層板を作成し、特性値を測定した。その結果を表1に示す。
<Comparative Example 5>
Ethylene oxide 30 mol addition ethoxylated bisphenol A dimethacrylate (Shin Nakamura Chemical Co., Ltd. NK) to 45 parts by mass of aromatic epoxy methacrylate (A) having a number average molecular weight of 1300 obtained in the production of Comparative Example 4 Light ester BPE-1300) (B) 3 parts by mass, dicyclopentenyloxyethyl methacrylate (C) 32 parts by mass, polyol (D) (Asahi Glass Co., Ltd. Exenol E240) 20 parts by mass are added and dissolved. Then, it cooled to room temperature. A curable primer obtained by adding 40 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) to 100 parts by mass in total of the above (A), (B), (C) and (D). -A resin composition was obtained. A blend obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in Table 1 to this resin composition has a long surface drying time, a concrete adhesion strength and a peeling strength with a concrete. Decreased drastically after immersion in room temperature water and warm water. In addition, a specimen in which a primer, a base material adjusting material, and a surface protective material are laminated on a concrete is immersed in warm water at 80 ° C. for 7 days and then minutely between each layer of the primer layer, the base material adjusting material layer, and the surface protective layer. Numerous swelling and peeling occurred. Moreover, the warm water (80 degreeC) immersion weight change rate is as high as about 3 times the Example of this invention. About this curable resin composition, the cast material and the laminated board were created by the method of Example 1, and the characteristic value was measured. The results are shown in Table 1.

<比較例6>
成分(A)〜(E)に代え、スチレン型ビニルエステル樹脂(昭和電工 リポキシR804)100質量部に、表1の6%ナフテン酸コバルト及びメチルエチルケトンパ−オキサイド(日油 パ−メックNS)を添加した配合物のコンクリ−ト付着強度、コンクリ−トとのピ−リング強度及びスチレン揮発量などを測定した。その測定結果を表1に示す。スチレン揮発量は80g/mと極めて高い。上記のスチレン型ビニルエステル樹脂100質量部に表1の6%ナフテン酸コバルト及びメチルエチルケトンパ−オキサイド(日油 パ−メックNS)を添加した配合物を、実施例1の記載の方法により、注型物及び積層板を作成して特性値を測定し、EPMA、バ−コル硬度及び摩耗量も測定した。その結果を表1に示す。
<Comparative Example 6>
In place of components (A) to (E), 6% cobalt naphthenate and methyl ethyl ketone peroxide (NOF Parmec NS) shown in Table 1 were added to 100 parts by mass of styrene type vinyl ester resin (Showa Denko Lipoxy R804). The concrete adhesion strength, peeling strength with concrete, and styrene volatilization amount were measured. The measurement results are shown in Table 1. The amount of styrene volatilized is as high as 80 g / m 2 . A compound obtained by adding 6% cobalt naphthenate and methyl ethyl ketone peroxide (NOF Parmec NS) shown in Table 1 to 100 parts by mass of the styrene type vinyl ester resin was cast by the method described in Example 1. Articles and laminates were prepared and characteristic values were measured, and EPMA, Barcol hardness and wear were also measured. The results are shown in Table 1.

<比較例7>
比較例4の製造で得た数平均分子量1300の芳香族系エポキシメタクリレ−ト(A)30質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)10質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)40質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)20質量部を加え70℃に加温し、更に、表1の配合で20%120度F/(FA-512MT)パラフィンワックスを溶解して溶解後、室温まで冷却し、上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)(E)35質量部を加えてワックス含有樹脂組成物とし、この樹脂組成物に、表1に示す配合で、6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加して配合物を得、実施例1に記載の方法により特性値を測定した。その結果を表1に示す。
<Comparative Example 7>
Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (new) to 30 parts by mass of aromatic epoxy methacrylate (A) having a number average molecular weight of 1300 obtained in the production of Comparative Example 4 Nakamura Chemical Co., Ltd. BPE-100) 10 parts by mass, dicyclopentenyloxyethyl methacrylate (C) 40 parts by mass, polyol (D) (Asahi Glass Co., Ltd. Exanol E240) 20 parts by mass was added to 70 ° C. Further, 20% 120 degrees F / (FA-512MT) paraffin wax was dissolved in the formulation shown in Table 1 and dissolved, and then cooled to room temperature. The above (A), (B), (C) and ( D) 35 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) (E) is added to 100 parts by mass of the total to obtain a wax-containing resin composition. 6% in combination Putian cobalt, dimethylaniline and Pas - give a formulation with the addition of curing -K, characteristic values were measured by the method described in Example 1. The results are shown in Table 1.

比較例7の組成物を用い、原則、実施例1と同じ条件で各評価を行ったが、コンクリートピーリング試験のみは実施例3と同じ条件とした。その結果を下記表1に記載する。   In principle, each evaluation was performed using the composition of Comparative Example 7 under the same conditions as in Example 1. However, only the concrete peeling test was performed under the same conditions as in Example 3. The results are listed in Table 1 below.

<比較例8>
比較例4の製造で得た数平均分子量1300の芳香族系エポキシメタクリレ−ト(A)30質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)10質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)25質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)35質量部を加えて溶解後、室温まで冷却し、混合物を得た。該混合物100質量部を70℃に加温し、20%120度F/(FA-512MT)パラフィンワックス2.0質量部を溶解した。上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)(E)35質量部を加えて硬化性プライマ−樹脂組成物を得た。表1の配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加して樹脂組成物を作成し、実施例1と同様の項目並びに表面乾燥性を測定した。
<Comparative Example 8>
Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (new) to 30 parts by mass of aromatic epoxy methacrylate (A) having a number average molecular weight of 1300 obtained in the production of Comparative Example 4 Nakamura Chemical Co., Ltd. BPE-100) 10 parts by mass, dicyclopentenyloxyethyl methacrylate (C) 25 parts by mass, polyol (D) (Asahi Glass Co., Ltd. Exanol E240) 35 parts by mass The mixture was cooled to room temperature to obtain a mixture. 100 parts by mass of the mixture was heated to 70 ° C. to dissolve 2.0 parts by mass of 20% 120 ° F./(FA-512MT) paraffin wax. A curable primer obtained by adding 35 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) to 100 parts by mass in total of the above (A), (B), (C) and (D). -A resin composition was obtained. A resin composition was prepared by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in the formulation shown in Table 1, and the same items as in Example 1 and the surface drying property were measured.

‐数平均分子量約750の芳香族系エポキシメタクリレ−ト(A)の製造:
実施例1で用いた四つ口フラスコにjER828(三菱化学)148g、jER1001(三菱化学)360g及びjER1002 240gを仕込み攪拌下に毎分10リットルの乾燥空気を吹き込みながら130℃まで昇温した。昇温後、ハイドロキノン(重合禁止剤)0.3g、トリメチルベンジルアンモニウムクロライド2gを添加し、メタクリル酸172gを2時間かけて滴下した。滴下終了後3時間経過したところから、1時間毎に酸価の測定を開始し、10KOHmg/g以下になったことを確認した後、100℃まで冷却して(A)の製造物を得た。
-Production of aromatic epoxy methacrylate (A) having a number average molecular weight of about 750:
The four-necked flask used in Example 1 was charged with 148 g of jER828 (Mitsubishi Chemical), 360 g of jER1001 (Mitsubishi Chemical) and 240 g of jER1002, and heated to 130 ° C. while blowing 10 liters of dry air per minute with stirring. After the temperature increase, 0.3 g of hydroquinone (polymerization inhibitor) and 2 g of trimethylbenzylammonium chloride were added, and 172 g of methacrylic acid was added dropwise over 2 hours. The acid value measurement was started every 1 hour after 3 hours had passed after the completion of the dropwise addition, and after confirming that it was 10 KOH mg / g or less, the product was cooled to 100 ° C. to obtain the product (A). .

‐樹脂組成物の配合
上記製造物450質量部にエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)200質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)250質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)100質量部の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。なお、表2中、(E)ポリイソシアネート欄には、ポリイソシアネートの質量部に加えて、その下段に(E)成分中のカルボジイミド変性MDIの質量%も記載した。表2に記載の配合で、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルアニリンを表2に記載の割合で良く混合した後、金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。この樹脂硬化物について、バ−コル硬度、硫黄浸透深さを測定した。その結果を表2に示す。
-Blending of resin composition 200 parts by mass of ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE-100) to 450 parts by mass of the above product, dicyclopentenyloxy Isocyanate with respect to a total of 100 parts by mass of 250 parts by mass of ethyl methacrylate (C) (Hitachi Chemical Industry Co., Ltd. FA-512MT) and 100 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Exanol E240). 20 parts by mass of Compound (E) (Cosmonate LK manufactured by Mitsui Chemicals) was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. In Table 2, in the (E) polyisocyanate column, in addition to the mass part of the polyisocyanate, the mass% of the carbodiimide-modified MDI in the component (E) is also described in the lower part. In the formulation shown in Table 2, 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylaniline were mixed well in the proportions shown in Table 2, and then poured into a mold at 25 ° C. And cured for 72 hours to obtain a cured resin (cast material) having a thickness of 3 mm. About this resin hardened | cured material, bar hardness and sulfur penetration depth were measured. The results are shown in Table 2.

この樹脂組成物を用い、原則、実施例1と同じ条件で試験を行った。ただし、コンクリートピーリング試験については、表面保護層のガラスフレークRCF−140の量を10質量部から15質量部に代えた以外は、実施例1と同じ条件とした。その結果を表2に記載する。表2に示した配合で、6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した樹脂組成物のコンクリ−ト付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層,表面保護層の各層間で異常は全く無かった。また、温水(80℃)浸漬吸水率は1.2%と低い値を示した。   Using this resin composition, the test was performed under the same conditions as in Example 1 in principle. However, the concrete peeling test was performed under the same conditions as in Example 1 except that the amount of the glass flake RCF-140 of the surface protective layer was changed from 10 parts by mass to 15 parts by mass. The results are listed in Table 2. The resin composition containing 6% cobalt naphthenate, dimethylaniline and Percure-K with the composition shown in Table 2 has high concrete adhesion strength and concrete peeling strength. After 60 days of immersing the specimen, in which the primer, the base material adjusting material, and the surface protective material were laminated on the entire surface in 80 ° C. warm water, there was no abnormality between the primer layer, the base material adjusting material layer, and the surface protective layer. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value with 1.2%.

実施例5の製造で得た数平均分子量750の芳香族系エポキシメタクリレ−ト(A)45質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)25質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)10質量部の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。表2の実施例6の記載の配合割合で、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルアニリンを良く混合した後、金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。この樹脂硬化物をバ−コル硬度、硫黄浸透深さは前記の方法で測定した。その結果を表2に示す。なお、コンクリ−トピ−リング試験は、表面保護層に用いるガラスフレ−クRCF−140の量を、実施例5と同様に15質量部に変えた以外は、実施例1と同じ条件で行い、その他の試験も実施例1と同じ条件で行った。   Ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd.) was added to 45 parts by mass of the aromatic epoxy methacrylate (A) having a number average molecular weight of 750 obtained in the production of Example 5. BP-6EM) 20 parts by mass, dicyclopentenyloxyethyl methacrylate (C) 25 parts by mass, polyol (D) (Asahi Glass Co., Ltd. Exanol E240) 10 parts by mass, 20 parts by mass of an isocyanate compound (E) (Cosmonate LK manufactured by Mitsui Chemicals) was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylaniline were mixed well in the blending ratio described in Example 6 in Table 2, and then poured into a mold. Curing was performed for a time to obtain a cured resin (cast material) having a thickness of 3 mm. This cured resin was measured for Barcol hardness and sulfur penetration depth by the methods described above. The results are shown in Table 2. The concrete peeling test was performed under the same conditions as in Example 1 except that the amount of glass flake RCF-140 used for the surface protective layer was changed to 15 parts by mass as in Example 5. This test was also performed under the same conditions as in Example 1.

実施例6の樹脂組成物に、表2に示す割合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。また,温水(80℃)浸漬吸水率は、1%前後低い値を示した。   The composition obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K to the resin composition of Example 6 in the proportions shown in Table 2 has high concrete adhesion strength and concrete peeling strength. After 60 days of complete immersion of the specimen in which the primer, base material adjusting material and surface protective material are laminated on the concrete in 80 ° C warm water, there is an abnormality between the primer layer, the base material adjusting material layer and the surface protective layer. There was nothing at all. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value around 1%.

実施例5の製造で得た数平均分子量750の芳香族系エポキシメタクリレ−ト(A)45質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)25質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)10質量部の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)30質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。表2の実施例6欄に記載の配合で、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルアニリンを混合した後、金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。   Ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd.) was added to 45 parts by mass of the aromatic epoxy methacrylate (A) having a number average molecular weight of 750 obtained in the production of Example 5. BP-6EM) 20 parts by mass, dicyclopentenyloxyethyl methacrylate (C) 25 parts by mass, polyol (D) (Asahi Glass Co., Ltd. Exanol E240) 10 parts by mass, 30 parts by mass of isocyanate compound (E) (Cosmonate LK manufactured by Mitsui Chemicals) was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. After mixing 6% cobalt naphthenate, peroxide (Nissan Percure-K) and dimethylaniline with the formulation described in Example 6 column of Table 2, the mixture was poured into a mold and 72 hours at 25 ° C. Curing was performed to obtain a cured resin (cast material) having a thickness of 3 mm.

コンクリートピーリング試験の表面保護層の配合割合を、実施例6と同じ条件とした以外は、実施例1と同じ条件で各試験を行い、結果を表2に記載した。   Each test was conducted under the same conditions as in Example 1 except that the blending ratio of the surface protective layer in the concrete peeling test was the same as in Example 6. The results are shown in Table 2.

レジンコンクリ−トは、該樹脂組成物100質量部に20%120度F/(FA-512MT)パラフィンワックス2.0質量部を溶解した後、先ず6%ナフテン酸コバルト1.0質量部、ジメチルアニリン0.5質量部、パ−キュア−K2.0質量部を添加、混合し、次いで無機骨材材料(表2記載配合の混合珪砂)450質量部を添加し配合物を得た。この配合物について,圧縮強度及び曲げ強度測定用供試体は40×40×160mmのモ−ルドに上記配合物を流し込み作成した。引張強度は直径2.5cmの棒状モ−ルドに流し込み作成した。   The resin concrete was prepared by dissolving 2.0 parts by mass of 20% 120 ° F./(FA-512MT) paraffin wax in 100 parts by mass of the resin composition, and then, first, 1.0 part by mass of 6% cobalt naphthenate, dimethyl 0.5 parts by mass of aniline and 2.0 parts by mass of Percure-K were added and mixed, and then 450 parts by mass of an inorganic aggregate material (mixed silica sand described in Table 2) was added to obtain a blend. For this blend, a specimen for measuring compressive strength and bending strength was prepared by pouring the blend into a 40 × 40 × 160 mm mold. The tensile strength was prepared by pouring into a rod-shaped mold having a diameter of 2.5 cm.

この樹脂組成物に表2に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。また、温水(80℃)浸漬吸水率は1%前後低い値を示した。   The composition obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K to the resin composition shown in Table 2 has high concrete adhesion strength and concrete peeling strength. The specimens laminated with the primer, the base material adjusting material, and the surface protective material were all immersed in warm water at 80 ° C. and after 60 days, there were no abnormalities between the primer layer, the base material adjusting material layer, and the surface protective layer. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value around 1%.

実施例5の製造で得た芳香族系エポキシメタクリレ−ト(A)(数平均分子量約750、酸価が10mgKOH/g以下)45質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)25質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)10質量部の合計100質量部を70℃に加温し、20%濃度120度F/(FA−512MT)パラフィンワックス2質量部を溶解してワックス含有組成物を作成し、この組成物の(A)〜(D)の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。該樹脂組成物100質量部に6%ナフテン酸コバルト1.0質量部、ジメチルアニリン0.2質量部、パ−キュア−K2.0質量部を添加し配合物を得た。この配合物を金型中に流し込み、25℃で72時間養生後脱型し、厚さ3mmの樹脂硬化物(注型物)を得た。この樹脂硬化物を、以下の通り条件を変えたが、原則、実施例1に記載の方法により特性値を測定した。その結果を表2に示す。   In 45 parts by mass of the aromatic epoxy methacrylate (A) (number average molecular weight of about 750, acid value of 10 mg KOH / g or less) obtained in the production of Example 5, 2.6 mol of ethylene oxide addition ethoxylated bisphenol- 20 parts by mass of A-dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE-100), 25 parts by mass of dicyclopentenyloxyethyl methacrylate (C), polyol (D) (Asahi Glass Co., Ltd. E240) A total of 100 parts by mass of 10 parts by mass is heated to 70 ° C., and a wax-containing composition is prepared by dissolving 2 parts by mass of a 20% concentration of 120 degrees F / (FA-512MT) paraffin wax. The total amount of (A) to (D) is 100 parts by mass, and after adding 20 parts by mass of the isocyanate compound (E) (Cosmonate LK manufactured by Mitsui Chemicals), the mixture is cooled to room temperature, A curable resin composition was obtained. To 100 parts by mass of the resin composition, 1.0% by mass of 6% cobalt naphthenate, 0.2 part by mass of dimethylaniline, and 2.0 parts by mass of Percure-K were added to obtain a blend. This compound was poured into a mold, cured at 25 ° C. for 72 hours, and then demolded to obtain a cured resin product (cast material) having a thickness of 3 mm. Although the conditions of this cured resin were changed as follows, in principle, the characteristic values were measured by the method described in Example 1. The results are shown in Table 2.

レジンコンクリートの評価試験は、無機骨材材料を、混合珪砂450質量部からガラスフレ−クRCF−140(日本板硝子株式会社製)40質量部へ変えた以外は、実施例7と同じ条件で行った。   The resin concrete evaluation test was performed under the same conditions as in Example 7 except that the inorganic aggregate material was changed from 450 parts by mass of mixed silica sand to 40 parts by mass of glass flake RCF-140 (manufactured by Nippon Sheet Glass Co., Ltd.). .

コンクリ−トピ−リング試験については、素地調整材用の配合を、実施例3と同様に、6%ナフテン酸コバルトの量を1.0質量部、パ−キュア−Kの量を2.0質量部に変えた以外は、実施例1と同じ条件とした。   For the concrete peeling test, the amount of 6% cobalt naphthenate was 1.0 parts by mass, and the amount of Percure-K was 2.0 parts by mass, as in Example 3, for the preparation for the base material. The conditions were the same as in Example 1 except that the part was changed to the part.

実施例5の製造で得た芳香族系エポキシメタクリレ−ト(A)45質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)25質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)10質量部の合計100質量部を70℃に加温し、20%濃度120度F/(FA−512MT)パラフィンワックス2質量部を溶解した後、(A)〜(D)の合計100質量部に対し、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物とした。該樹脂組成物100質量部に6%ナフテン酸コバルト1.0質量部、ジメチルアニリン0.2質量部、パ−キュア−K2.0質量部を添加し配合物を得た。この配合物についても実施例1と同じ条件で樹脂硬化物(注型物)を得、その特性値を測定した。その結果を表2に示す。   Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE) was added to 45 parts by mass of the aromatic epoxy methacrylate (A) obtained in the production of Example 5. -100) 20 parts by mass, 25 parts by mass of dicyclopentenyloxyethyl methacrylate (C), and 10 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Exanol E240) were added to 70 ° C in total. After warming and dissolving 2 parts by mass of 20% concentration of 120 ° F / (FA-512MT) paraffin wax, the isocyanate compound (E) (Mitsui Chemicals) is added to 100 parts by mass of (A) to (D). (Cosmonate LK) 20 parts by mass was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. To 100 parts by mass of the resin composition, 1.0% by mass of 6% cobalt naphthenate, 0.2 part by mass of dimethylaniline, and 2.0 parts by mass of Percure-K were added to obtain a blend. Also for this blend, a cured resin (cast product) was obtained under the same conditions as in Example 1, and the characteristic values thereof were measured. The results are shown in Table 2.

レジンコンクリ−トは、実施例9の樹脂組成物を用い、実施例8と同じ配合で配合物を作成して、実施例7、8と同じ方法で評価した。   For the resin concrete, the resin composition of Example 9 was used, a formulation was prepared with the same formulation as Example 8, and evaluated in the same manner as in Examples 7 and 8.

コンクリ−トピ−リング試験は、実施例8と同様に、素地調整材用の配合を、6%ナフテン酸コバルトの量を1.0質量部、パ−キュア−Kの量を2.0質量部に変えた以外は、実施例1と同じ条件とした。その他の試験は、実施例1と同様とした。   In the concrete peeling test, in the same manner as in Example 8, the composition for the substrate preparation material was changed to 1.0 part by mass of 6% cobalt naphthenate and 2.0 parts by mass of Percure-K. The conditions were the same as in Example 1, except that Other tests were the same as in Example 1.

<比較例9>
‐数平均分子量約750の芳香族系エポキシメタクリレ−ト(A)の製造:
実施例1で用いた四つ口フラスコに、実施例5と同じエポキシ樹脂(jER828(三菱化学)148g、jER1001(三菱化学)360g及びjER1002 240g)を投入し、攪拌下に毎分10リットルの乾燥空気を吹き込みながら130℃まで昇温した後、ハイドロキノン(重合禁止剤)0.3g、トリメチルベンジルアンモニウムクロライド2gを添加し、メタクリル酸172gを2時間かけて滴下した。滴下終了後3時間経過したところから、1時間毎に酸価の測定を開始し、17KOHmg/gになったことを確認した後、100℃まで冷却して、数平均分子量750の成分(A)を得た。この芳香族系エポキシ(メタ)アクリレ−ト(A)20質量部に実施例5のエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)50質量部及びジシクロペンテニルオキシエチルメタクリレ−ト(C)30質量部を加えて溶解後、室温まで冷却し、樹脂組成物を得た。この樹脂組成物に表2の配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は25℃、24時間経過後も未硬化であった。
<Comparative Example 9>
-Production of aromatic epoxy methacrylate (A) having a number average molecular weight of about 750:
The four-necked flask used in Example 1 is charged with the same epoxy resin as in Example 5 (jER828 (Mitsubishi Chemical) 148 g, jER1001 (Mitsubishi Chemical) 360 g and jER1002 240 g) and dried at 10 liters per minute with stirring. After raising the temperature to 130 ° C. while blowing air, 0.3 g of hydroquinone (polymerization inhibitor) and 2 g of trimethylbenzylammonium chloride were added, and 172 g of methacrylic acid was added dropwise over 2 hours. After 3 hours from the end of the dropwise addition, the acid value measurement was started every hour, and after confirming that the acid value became 17 KOHmg / g, the mixture was cooled to 100 ° C. Got. Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) 50 parts by mass and dicyclopentenyloxyethyl 20 parts by mass of this aromatic epoxy (meth) acrylate (A) 30 parts by weight of methacrylate (C) was added and dissolved, and then cooled to room temperature to obtain a resin composition. A blend obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in the blend of Table 2 to this resin composition was uncured even after 24 hours at 25 ° C.

<比較例10>
比較例9の製造で得た芳香族系エポキシ(メタ)アクリレ−ト(A)70質量部に実施例1のエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)20質量部及びジシクロペンテニルオキシエチルメタクリレ−ト(C)10質量部を加え、更に(A)〜(C)の合計100質量部に対してイソシアネート化合物(E)(三井化学製のコスモネートLK)50質量部を加えて溶解後、室温まで冷却し、樹脂組成物を得た。この樹脂組成物に、表2の配合で6%ナフテン酸コバルト,ジメチルアニリン及びパ−キュア−Kを添加した配合物は25℃、24時間経過後も未硬化であった。
<Comparative Example 10>
Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) 20 masses of Example 1 to 70 mass parts of aromatic epoxy (meth) acrylate (A) obtained by manufacture of the comparative example 9. And 10 parts by mass of dicyclopentenyloxyethyl methacrylate (C), and an isocyanate compound (E) (Cosmonate LK manufactured by Mitsui Chemicals) with respect to a total of 100 parts by mass of (A) to (C) 50 parts by mass was added and dissolved, and then cooled to room temperature to obtain a resin composition. A blend obtained by adding 6% cobalt naphthenate, dimethylaniline, and Percure-K to the resin composition in the formulation shown in Table 2 was uncured after 24 hours at 25 ° C.

<比較例11>
比較例9の製造で得た芳香族系エポキシメタアクリレ−ト(A)50質量部に実施例1のエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)20質量部、ポリオール(D)(旭硝子社 エクセノールE240:数平均分子量3000、水酸基価56mgKOH/g)30質量部を加えて溶解後、室温まで冷却し、樹脂組成物を得た。この樹脂組成物に表2の配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は25℃、24時間経過後も未硬化であった。
<Comparative Example 11>
Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) 20 parts by mass to 50 parts by mass of the aromatic epoxy methacrylate (A) obtained in the production of Comparative Example 9 Polyol (D) (Asahi Glass Co., Ltd. Exenol E240: number average molecular weight 3000, hydroxyl value 56 mgKOH / g) was added and dissolved, and then cooled to room temperature to obtain a resin composition. A blend obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in the blend of Table 2 to this resin composition was uncured even after 24 hours at 25 ° C.

<比較例12>
比較例12では、芳香族系エポキシメタアクリレ−ト(A)を以下のように変更した。
<Comparative Example 12>
In Comparative Example 12, the aromatic epoxy methacrylate (A) was changed as follows.

‐芳香族系エポキシメタクリレ−ト(A)の製造:
実施例1で用いた四つ口フラスコにjER828(三菱化学)93g、jER1002(三菱化学)180g及びjER1004 990gを仕込み攪拌下に毎分10リットルの乾燥空気を吹き込みながら130℃まで昇温した。昇温後、ハイドロキノン(重合禁止剤)0.3g、トリメチルベンジルアンモニウムクロライド2gを添加し、メタクリル酸172gを2時間かけて滴下した。滴下終了後3時間経過したところから、1時間毎に酸価の測定を開始し、18KOHmg/gになったことを確認した後、100℃まで冷却し、数平均分子量約1300の芳香族系エポキシメタクリレ−トの製造物を得た。該製造物(A)50質量部にジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)40質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240)10質量部を加え、更に、(A)、(C)、(D)の合計100質量部に対して、イソシアネート化合物(E)(三井化学製、コスモネートLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。
-Production of aromatic epoxy methacrylate (A):
The four-necked flask used in Example 1 was charged with 93 g of jER828 (Mitsubishi Chemical), 180 g of jER1002 (Mitsubishi Chemical) and 990 g of jER1004, and heated to 130 ° C. while blowing 10 liters of dry air per minute with stirring. After the temperature increase, 0.3 g of hydroquinone (polymerization inhibitor) and 2 g of trimethylbenzylammonium chloride were added, and 172 g of methacrylic acid was added dropwise over 2 hours. After 3 hours from the end of dropping, measurement of the acid value was started every hour, and after confirming that the acid value reached 18 KOH mg / g, the mixture was cooled to 100 ° C. and an aromatic epoxy having a number average molecular weight of about 1300. A product of methacrylate was obtained. 50 parts by mass of the product (A) and 40 parts by mass of dicyclopentenyloxyethyl methacrylate (C) (Hitachi Chemical Industry Co., Ltd. FA-512MT), polyol (D) (Asahi Glass Co., Ltd. Excell E240) 10 After adding mass parts, and further adding 20 mass parts of isocyanate compound (E) (Mitsui Chemicals Cosmonate LK) to 100 mass parts in total of (A), (C), (D), It cooled to room temperature and obtained curable resin composition.

該硬化性樹脂組成物について,実施例5の記載の方法により特性値を測定し、その他は実施例1と同じ条件で試験を行った。その結果を表2に示す。   About this curable resin composition, the characteristic value was measured by the method of Example 5, and the test was done on the same conditions as Example 1 except others. The results are shown in Table 2.

比較例12の樹脂組成物に、表2に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は低く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬25日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で微小のフクレ、剥離が無数に発生した。また、温水(80℃)浸漬吸水率は、本発明の樹脂組成物の3倍前後と高い。   The concrete adhesion strength and concrete peeling strength of the composition obtained by adding 6% cobalt naphthenate, dimethylaniline and percure-K to the resin composition of Comparative Example 12 in the composition shown in Table 2 are low, A specimen in which a primer, a base material adjusting material, and a surface protective material are laminated on the concrete is immersed in warm water at 80 ° C. on the entire surface. After 25 days, all of the primer layer, the base material adjusting material layer, and the surface protective layer are microscopic. Innumerable swelling and peeling occurred. Moreover, warm water (80 degreeC) immersion water absorption is as high as about 3 times of the resin composition of this invention.

<比較例13>
比較例12の製造で得た芳香族系エポキシメタアクリレ−ト(A)50質量部にエチレンオキサイド30モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(新中村化学工業社 NKライトエステル BPE−1300)(B)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)20質量部、ポリオール(D)(旭硝子社、エクセノールE240)10質量部の(A)、(B)、(C)、(D)の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)5質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。この樹脂組成物に表2の配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は表面乾燥時間が長く、コンクリ−ト付着強度及びコンクリ−トとのピ−リング強度は常温水及び温水浸漬後極端に低下した。また,コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬後7日でプライマ−層、素地調整材層、表面保護層の各層間で微小のフクレ、剥離が無数に発生した。また、温水(80℃)浸漬重量変化率は、本発明の樹脂組成物の実施例の3倍前後と高い。また、実施例5と同じ方法で注型物及び積層板を作成して特性値を測定し、EPMA,バ−コル硬度及び摩耗量は前記記載の方法で測定した。その結果を表2に示す。
<Comparative Example 13>
Ethylene oxide 30 mol addition ethoxylated bisphenol A dimethacrylate (Shin-Nakamura Chemical Co., Ltd., NK Light Ester BPE-1300) to 50 parts by mass of the aromatic epoxy methacrylate (A) obtained in the production of Comparative Example 12 ) (B) 20 parts by mass, dicyclopentenyloxyethyl methacrylate (C) 20 parts by mass, polyol (D) (Asahi Glass Co., Exenol E240) 10 parts by mass (A), (B), (C) , (D) is added to 5 parts by mass of the isocyanate compound (E) (Cosmonate LK manufactured by Mitsui Chemicals), and then cooled to room temperature to obtain a curable resin composition. It was. A blend obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in the composition of Table 2 to this resin composition has a long surface drying time, a concrete adhesion strength and a peeling with a concrete. The strength decreased drastically after immersion in normal temperature water and warm water. In addition, a specimen in which a primer, a substrate conditioner, and a surface protective material are laminated on a concrete is immersed in warm water at 80 ° C. for 7 days after the entire surface of the primer layer, substrate conditioner layer, and surface protective layer. Numerous swelling and peeling occurred. Moreover, the warm water (80 degreeC) immersion weight change rate is as high as about 3 times of the Example of the resin composition of this invention. Further, casts and laminates were prepared by the same method as in Example 5, and characteristic values were measured. EPMA, bar hardness, and wear were measured by the methods described above. The results are shown in Table 2.

<比較例14>
スチレン型ビニルエステル樹脂(昭和電工 リポキシR804)100質量部に、表2の6%ナフテン酸コバルト及びメチルエチルケトンパ−オキサイド(日油 パ−メックNS)を添加した配合物のコンクリ−ト付着強度、コンクリ−トとのピ−リング強度及びスチレン揮発量などの測定結果を表2に示す。スチレン揮発量は80g/m2と極めて高い。上記のスチレン型ビニルエステル樹脂100質量部に表2の6%ナフテン酸コバルト及びメチルエチルケトンパ−オキサイド(日油 パ−メックN)を添加した配合物を、実施例5の記載の方法により特性値を測定した。また,EPMA、バ−コル硬度及び摩耗量は前記記載の方法で測定した。これらの結果も表2に示す。
<Comparative example 14>
Concrete adhesion strength of a composition obtained by adding 6% cobalt naphthenate and methyl ethyl ketone peroxide (NOF Parmec NS) shown in Table 2 to 100 parts by mass of a styrene type vinyl ester resin (Showa Denko Lipoxy R804). Table 2 shows the measurement results such as the peeling strength with styrene and the volatile amount of styrene. The amount of styrene volatilized is as high as 80 g / m2. A compound obtained by adding 6% cobalt naphthenate and methyl ethyl ketone peroxide (NOF Parmec N) shown in Table 2 to 100 parts by mass of the above styrene type vinyl ester resin was subjected to a characteristic value by the method described in Example 5. It was measured. Further, EPMA, bar hardness and wear amount were measured by the above-described methods. These results are also shown in Table 2.

<比較例15>
比較例12の製造で得た芳香族系エポキシメタクリレ−ト(A)55質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)25質量部を加えて溶解後70℃に加温し、20%120度F/(FA-512MT)パラフィンワックスを溶解した後、6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを下記表2の配合で添加し、室温まで冷却し、配合物を得た。
<Comparative Example 15>
Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE) was added to 55 parts by mass of the aromatic epoxy methacrylate (A) obtained in the production of Comparative Example 12. -100) 20 parts by mass and dicyclopentenyloxyethyl methacrylate (C) 25 parts by mass were dissolved and heated to 70 ° C. to dissolve 20% 120 ° F./(FA-512MT) paraffin wax. Thereafter, 6% cobalt naphthenate, dimethylaniline and Percure-K were added according to the formulation shown in Table 2 below, and the mixture was cooled to room temperature to obtain a formulation.

この配合物を金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。この樹脂硬化物を実施例1に記載の方法により特性値を測定した。その他の評価結果と共に下記表2に示す。なお、評価試験のうち、レジンコンクリートは、実施例7と同じ条件で評価を行った。コンクリ−トピ−リング試験は、素地調整材用の配合を実施例3と同じに変えた以外は、実施例1と同じ条件で評価した。その他試験は実施例1と同じ条件で行った。   This blend was poured into a mold and cured at 25 ° C. for 72 hours to obtain a cured resin (cast material) having a thickness of 3 mm. Characteristic values of the cured resin were measured by the method described in Example 1. It shows in following Table 2 with other evaluation results. In the evaluation test, the resin concrete was evaluated under the same conditions as in Example 7. The concrete peeling test was evaluated under the same conditions as in Example 1 except that the composition for the base material was changed to the same as in Example 3. Other tests were performed under the same conditions as in Example 1.

<比較例16>
比較例12の製造で得た芳香族系エポキシメタクリレ−ト(A)55質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)15質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)20質量部、ポリオール(D)(旭硝子社 エクセノールE240)10質量部を混合して70℃に加温し、20%120度F/(FA-512MT)パラフィンワックスを下記表2の配合で添加し、溶解させた後、(A)、(B)、(C)、(D)の合計100質量部に対して、イソシアネ−ト化合物(E)(カルボジイミド変性MDIを含まない三井化学製 コスモネ−ト)40質量部を加えて溶解後、室温まで冷却した樹脂組成物に、6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを下記表2の配合で添加して配合物を得た。該配合物を金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。この樹脂硬化物を実施例5に記載の方法により特性値を測定した。
<Comparative Example 16>
Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE) was added to 55 parts by mass of the aromatic epoxy methacrylate (A) obtained in the production of Comparative Example 12. -100) 15 parts by mass, 20 parts by mass of dicyclopentenyloxyethyl methacrylate (C) and 10 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Exenol E240) were mixed and heated to 70 ° C., and 20% 120 Degree F / (FA-512MT) paraffin wax was added and dissolved in the composition shown in Table 2 below, and then isocyanine was added to 100 parts by mass of (A), (B), (C), and (D). -To compound (E) (Cosmonate manufactured by Mitsui Chemicals, which does not contain carbodiimide-modified MDI) was dissolved by adding 40 parts by mass, and then cooled to room temperature with 6% cobalt naphthenate and dimethylanisate. Emissions and Pa - to obtain a formulation with the addition of curing -K the formulation shown in Table 2 below. The blend was poured into a mold and cured at 25 ° C. for 72 hours to obtain a cured resin (cast material) having a thickness of 3 mm. Characteristic values of the cured resin were measured by the method described in Example 5.

その結果を、他の評価結果と共に表2に示す。ガラスフレ−ク入り樹脂組成物は表2の実施例7のレジンコンクリ−ト特性欄に記載したものと同様の試験を行って評価した。レジンコンクリートは、実施例8のように配合物の無機骨材を変えた以外は、実施例7と同じ条件で評価した。コンクリ−トピ−リング試験は、実施例3と同様に素地調整材の配合を変えた以外は、実施例1と同じ条件とした。その他試験は実施例1と同じ条件で行った。   The results are shown in Table 2 together with other evaluation results. The resin composition containing glass flakes was evaluated by conducting the same tests as those described in the resin concrete characteristics column of Example 7 in Table 2. Resin concrete was evaluated under the same conditions as in Example 7 except that the inorganic aggregate of the blend was changed as in Example 8. The concrete peeling test was carried out under the same conditions as in Example 1 except that the composition of the base material was changed in the same manner as in Example 3. Other tests were performed under the same conditions as in Example 1.

<比較例17>
比較例12の製造で得た芳香族系エポキシメタクリレ−ト(A)55質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)15質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)20質量部、(D)ポリオール(D)(旭硝子社、エクセノールE240)10質量部を混合し、70℃に加温して、20%120度F/(FA-512MT)パラフィンワックスを下記表2の配合で添加し、溶解した後、(A)、(B)、(C)、(D)の合計100質量部に対してイソシアネ−ト化合物(E)(カルボジイミド変性MDIを含む三井化学製コスモネ−ト)40質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。この組成物に、6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを表2の配当で添加した配合物を金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。この樹脂硬化物を実施例5に記載の方法により特性値を測定した。その結果を他の評価結果と共に表2に示す。
<Comparative Example 17>
Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE) was added to 55 parts by mass of the aromatic epoxy methacrylate (A) obtained in the production of Comparative Example 12. -100) 15 parts by mass, dicyclopentenyloxyethyl methacrylate (C) 20 parts by mass, (D) polyol (D) (Asahi Glass Co., Ltd., Exenol E240) 10 parts by mass are mixed and heated to 70 ° C. 20% 120 degrees F / (FA-512MT) paraffin wax was added and dissolved in the composition shown in Table 2 below, and the total amount of (A), (B), (C), and (D) was 100 parts by mass. On the other hand, 40 parts by mass of an isocyanate compound (E) (Cosmonate manufactured by Mitsui Chemicals, including carbodiimide-modified MDI) was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. To this composition, 6% cobalt naphthenate, dimethylaniline, and Percure-K were added at the dividend shown in Table 2 and poured into a mold and cured at 25 ° C. for 72 hours to cure a resin having a thickness of 3 mm. A product (cast) was obtained. Characteristic values of the cured resin were measured by the method described in Example 5. The results are shown in Table 2 together with other evaluation results.

他の評価結果のうち、レジンコンクリートは、実施例8のように配合物の無機骨材を変えた以外は、実施例7と同じ条件で評価した。コンクリ−トピ−リング試験は、素地調整材の配合を実施例3のように変えた以外は、実施例1と同じ条件で行った。その他試験は実施例1と同じ条件とした。   Among other evaluation results, the resin concrete was evaluated under the same conditions as in Example 7 except that the inorganic aggregate of the blend was changed as in Example 8. The concrete peeling test was performed under the same conditions as in Example 1 except that the composition of the base material was changed as in Example 3. Other tests were performed under the same conditions as in Example 1.

(D)ポリイソシアネ−ト化合物(E)として三井化学製 コスモネ−トLK(カルボジイミド変性MDI15〜25%、メチレンビス(4,1−フェニレン)ジイソシアネ−ト 70〜80%、2,4ジフェニルメタンジイソシアネ−ト1〜5%)を用いた樹脂組成物の実施例について説明する。   (D) Cosmonate LK (carbodiimide-modified MDI 15 to 25%, methylenebis (4,1-phenylene) diisocyanate 70 to 80%, 2,4 diphenylmethane diisocyanate manufactured by Mitsui Chemicals as polyisocyanate compound (E) Examples of resin compositions using 1 to 5%) will be described.

実施例1で製造した芳香族エポキシメタクリレート(A)150質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)100質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)650質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE4030:数平均分子量 4000、水酸基価42mgKOH/g)100質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)10質量部を加えて硬化性プライマ−樹脂組成物を得た。   To 150 parts by mass of the aromatic epoxy methacrylate (A) produced in Example 1, 2.6 parts of ethylene oxide addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE-100) 100 parts by mass , 650 parts by mass of dicyclopentenyloxyethyl methacrylate (C) (Hitachi Chemical Industry Co., Ltd., FA-512MT), polyol (D) (Asahi Glass Co., Ltd. Exenol E4030: number average molecular weight 4000, hydroxyl value 42 mg KOH / g ) After adding 100 parts by weight and dissolving, the total amount of 100 parts by weight of the above (A), (B), (C) and (D) cooled to room temperature is equivalent to an isocyanate compound (Cosmonate manufactured by Mitsui Chemicals). LK) 10 parts by mass were added to obtain a curable primer-resin composition.

当組成物に6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを、表3の実施例10の欄の配合で良く混合した。この配合物を用い、実施例1と同じ条件で積層板を得た。また、バ−コル硬度、硫黄浸透深さは前記の方法で測定した。その結果を表3に示す。コンクリ−トピ−リング試験及びその他の試験も実施例1と同じ条件で評価し、結果を表3に記載した。   To this composition, 6% cobalt naphthenate, peroxide (Nissan Percure-K) and dimethylniline were mixed well in the formulation of Example 10 in Table 3. Using this formulation, a laminate was obtained under the same conditions as in Example 1. The bar hardness and sulfur penetration depth were measured by the above methods. The results are shown in Table 3. The concrete peeling test and other tests were also evaluated under the same conditions as in Example 1, and the results are shown in Table 3.

表3に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。温水浸漬後のコンクリ−ト付着強度及びコンクリ−トピ−リング強度は初期値を維持している。また、温水(80℃)浸漬吸水率は1.2%と低い値を示した。   The composition shown in Table 3 with 6% cobalt naphthenate, dimethylaniline and Percure-K added has high concrete adhesion strength and concrete peel strength. The specimens laminated with the material and the surface protective material were completely immersed in warm water at 80 ° C. After 60 days, no abnormality was found between the primer layer, the base material adjusting material layer, and the surface protective layer. The concrete adhesion strength and concrete peeling strength after immersion in warm water maintain initial values. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value with 1.2%.

実施例10と同じ芳香族系エポキシメタクリレ−ト(A)150質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)100質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)650質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE1030:数平均分子量1000、水酸基価160mgKOH/g)100質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)20質量部を加えて硬化性プライマ−樹脂組成物を得た。当組成物を用い、実施例1、10と同じ条件で積層板を作成し、特性値を測定した。その他試験も、実施例1、10と同じ条件で行った。これらの結果を表3に示す。   150 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 10, 100 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd. BP-6EM), After adding 650 parts by weight of dicyclopentenyloxyethyl methacrylate (C) and 100 parts by weight of polyol (D) (Asahi Glass Co., Ltd. Exanol E1030: number average molecular weight 1000, hydroxyl value 160 mg KOH / g), Addition of 20 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) to a total of 100 parts by mass of the above (A), (B), (C) and (D) cooled to room temperature. A primer-resin composition was obtained. Using this composition, a laminate was prepared under the same conditions as in Examples 1 and 10, and the characteristic values were measured. Other tests were also performed under the same conditions as in Examples 1 and 10. These results are shown in Table 3.

実施例11の樹脂組成物に、表3に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。また、温水(80℃)浸漬吸水率は1%前後低い値を示した。   The concrete adhesion strength and concrete peeling strength of the blend obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K to the resin composition of Example 11 in the blend shown in Table 3 are high. After 60 days of complete immersion of the specimen in which the primer, base material adjusting material and surface protective material are laminated on the concrete in 80 ° C warm water, there is an abnormality between the primer layer, the base material adjusting material layer and the surface protective layer. There was nothing at all. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value around 1%.

実施例10と同じ芳香族系エポキシメタクリレ−ト(A)200質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)50質量部及びジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)600質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240:数平均分子量3000−トリオ−ル及びエクセノ−ルE2020:数平均分子量2000の両者のモル比0.7/0.3、数平均分子量2,700)150質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)20質量部を加えて硬化性プライマ−樹脂組成物を得た。当組成物に、表3に記載の配合で6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを添加して配合物を作成した。この樹脂硬化物を実施例10に記載の方法により特性値を測定した。その結果を表3に示す。コンクリ−トピ−リング試験は、素地調整材の配合を実施例3(6%ナフテン酸コバルト,1.0質量部、パ−キュア−K2.0質量部)と同じにした以外は、実施例1と同じ条件で評価試験を行った。その他試験は実施例1と同じ条件で行った。   200 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 10, 50 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd., BP-6EM) 600 parts by mass of dicyclopentenyloxyethyl methacrylate (C) (Hitachi Chemical Industry Co., Ltd., FA-512MT), polyol (D) (Asahi Glass Co., Ltd. Exanol E240: number average molecular weight 3000-triol and exeno- (E) 2020: molar ratio of the number average molecular weight 2000 of 0.7 / 0.3, number average molecular weight 2,700) 150 parts by mass was added and dissolved, and then cooled to room temperature (A), (B), ( C) and (D) are added to 20 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) for a total of 100 parts by mass of the curable primer tree. To obtain a composition. To this composition, 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylniline were added according to the formulation shown in Table 3 to prepare a formulation. The characteristic values of the cured resin were measured by the method described in Example 10. The results are shown in Table 3. The concrete peeling test was carried out in the same manner as in Example 1 except that the composition of the base material was the same as in Example 3 (6% cobalt naphthenate, 1.0 part by mass, Percure-2.0 parts by mass). An evaluation test was performed under the same conditions as those described above. Other tests were performed under the same conditions as in Example 1.

実施例10と同じ芳香族系エポキシメタクリレ−ト(A)150質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)150質量部及びジシクロペンテニルオキシエチルメタクリレ−ト(C)550質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240:数平均分子量3000−トリオ−ル及びエクセノ−ルE2020:数平均分子量2000の両者のモル比0.5/0.5、数平均分子量2500)150質量部を加え、70℃に加温し、20%濃度120度F/(FA−512MT)パラフィンワックスを下記表3の配合で添加し、溶解後、室温まで冷却し、上記(A)、(B)、(C)及び(D)の合計100質量部に対してイソシアネ−ト化合物(三井化学製 コスモネ−トLK)25質量部を加えて硬化性プライマ−樹脂組成物を得た。当組成物に6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを表3の配合で混合し、その樹脂硬化物を実施例10に記載の方法により特性値を測定した。その結果を他の評価結果と共に表3に示す。   Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE-100) to 150 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 10 150 parts by mass and 550 parts by mass of dicyclopentenyloxyethyl methacrylate (C), polyol (D) (Asahi Glass Co., Ltd. Excell E240: number average molecular weight 3000-triol and Excell E2020: number average 150 parts by mass of a molar ratio of 0.5 / 0.5 and a number average molecular weight of 2500) having a molecular weight of 2000 are added and heated to 70 ° C., and a 20% concentration of 120 degrees F / (FA-512MT) paraffin wax is shown in the table below. After adding and dissolving, the mixture was cooled to room temperature, and the isocyanate was added to 100 parts by mass of the total of (A), (B), (C) and (D). 25 parts by mass of a compound (Cosmonate LK manufactured by Mitsui Chemicals) was added to obtain a curable primer resin composition. To this composition, 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylniline were mixed according to the composition shown in Table 3, and the cured resin was measured for the characteristic values by the method described in Example 10. It was measured. The results are shown in Table 3 together with other evaluation results.

コンクリ−トピ−リング試験は、素地調整材の配合を実施例3と同じ(6%ナフテン酸コバルト1.0質量部、パ−キュア−K2.0質量部)とした以外は、実施例1と同じ条件で評価試験を行った。その他試験は実施例1と同じ条件で行った。   The concrete peeling test was carried out in the same manner as in Example 1 except that the composition of the base material was the same as in Example 3 (1.0 part by mass of 6% cobalt naphthenate, 2.0 parts by mass of Percure-K). An evaluation test was performed under the same conditions. Other tests were performed under the same conditions as in Example 1.

<比較例18>
数平均分子量約750の芳香族系エポキシメタクリレ−ト(A)の製造:
実施例1と同じ四つ口フラスコにjER828(三菱化学)148g,jER1001(三菱化学)360g及びjER1002 240gを仕込み攪拌下に毎分10リットルの乾燥空気を吹き込みながら130℃まで昇温した。昇温後,ハイドロキノン(重合禁止剤)0.3g,トリメチルベンジルアンモニウムクロライド2gを添加し、メタクリル酸172gを2時間かけて滴下した。滴下終了後3時間経過したところから、1時間毎に酸価の測定を開始し、17KOHmg/gになったことを確認した後100℃まで冷却した。当製造物150質量部にエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)100質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)650質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE837:数平均分子量 6000、水酸基価28mgKOH/g)100質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対してイソシアネ−ト化合物(三井化学製 コスモネ−トLK)10質量部を加えて硬化性プライマ−樹脂組成物を得た。
<Comparative Example 18>
Production of aromatic epoxy methacrylate (A) having a number average molecular weight of about 750:
148 g of jER828 (Mitsubishi Chemical), 360 g of jER1001 (Mitsubishi Chemical) and 240 g of jER1002 were charged into the same four-necked flask as in Example 1, and the temperature was raised to 130 ° C. while blowing 10 liters of dry air per minute with stirring. After the temperature rise, 0.3 g of hydroquinone (polymerization inhibitor) and 2 g of trimethylbenzylammonium chloride were added, and 172 g of methacrylic acid was added dropwise over 2 hours. The acid value measurement was started every 1 hour after 3 hours had passed after the completion of the dropwise addition, and after confirming that it was 17 KOH mg / g, the mixture was cooled to 100 ° C. Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin Nakamura Chemical Co., Ltd. BPE-100) 100 parts by mass, dicyclopentenyloxyethyl methacrylate (150 parts by mass) C) 650 parts by mass (Hitachi Chemical Industry Co., Ltd. FA-512MT), polyol (D) (Asahi Glass Co., Ltd. Excell E837: number average molecular weight 6000, hydroxyl value 28 mg KOH / g) 100 parts by mass were added and dissolved, then room temperature 10 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) to a total of 100 parts by mass of the above (A), (B), (C) and (D) cooled to a curable primer A resin composition was obtained.

当組成物に、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを表3の比較例18の欄に記載の配合割合で良く混合した後、実施例1と同じ条件で積層板を作成した。各評価試験を実施例1と同じ条件で行い、その結果を表3に記載した。表3に示す6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度の初期値は低く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間でフクレが発生した。温水浸漬後のコンクリ−ト付着強度及びコンクリ−トピ−リング強度は初期値から大幅に低下した。また、温水(80℃)浸漬吸水率は、3.5%と高い値を示した。さらに、表面乾燥時間が長く、タック解消には24時間以上の測定結果となった。   To this composition, 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylniline were mixed well in the blending ratios described in the column of Comparative Example 18 in Table 3, and then Example 1 and A laminate was prepared under the same conditions. Each evaluation test was performed under the same conditions as in Example 1, and the results are shown in Table 3. The initial values of the concrete adhesion strength and concrete peeling strength of the blends containing 6% cobalt naphthenate, dimethylaniline and Percure-K shown in Table 3 are low. After 60 days of immersing the test piece on which the adjusting material and the surface protective material were laminated in 80 ° C. warm water, swelling occurred in each of the primer layer, the base material adjusting material layer, and the surface protective layer. The concrete adhesion strength and concrete peeling strength after immersion in warm water were greatly reduced from the initial values. Moreover, warm water (80 degreeC) immersion water absorption showed the high value with 3.5%. Furthermore, the surface drying time was long, and the measurement result was 24 hours or more for tack elimination.

<比較例19>
比較例18と同じ芳香族系エポキシメタクリレ−ト(A)150質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)100質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)650質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE430:数平均分子量400−トリオ−ル、水酸基価400mgKOH/g、エクセノ−ルE1020−ジオ−ル:数平均分子量1000、水酸基価112mgKOH/g、トリオ−ル/ジオ−ルのモル比 0.3/0.7、数平均分子量820)100質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対してイソシアネ−ト化合物(三井化学製 コスモネ−トLK)20質量部を加えて硬化性プライマ−樹脂組成物を得た。当組成物に6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンについて実施例1、10と同じ条件で積層板を作成し、特性値を測定した。その結果を表3に示す。
<Comparative Example 19>
150 parts by mass of the same aromatic epoxy methacrylate (A) as in Comparative Example 18, 100 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd. BP-6EM), 650 parts by mass of dicyclopentenyloxyethyl methacrylate (C), polyol (D) (Asahi Glass Co., Ltd. Excell E430: number average molecular weight 400-triol, hydroxyl value 400 mg KOH / g, Excell E1020- Diol: Number average molecular weight 1000, hydroxyl value 112 mg KOH / g, triol / diol molar ratio 0.3 / 0.7, number average molecular weight 820) Add 100 parts by mass and cool to room temperature The isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) 20 with respect to a total of 100 parts by mass of the above (A), (B), (C) and (D) Curable primer added an amount unit - to obtain a resin composition. A laminate was prepared for this composition with 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylniline under the same conditions as in Examples 1 and 10, and the characteristic values were measured. The results are shown in Table 3.

比較例19の樹脂組成物について実施例1と同じ条件で評価試験を行い、その結果を表3に記載した。表3に示す配合で、6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度の初期値は低く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間でフクレが発生した。温水浸漬後のコンクリ−ト付着強度及びコンクリ−トピ−リング強度は初期値から大幅に低下した。また、温水(80℃)浸漬吸水率は6.0%と高い値を示した。   The resin composition of Comparative Example 19 was subjected to an evaluation test under the same conditions as in Example 1. The results are shown in Table 3. In the composition shown in Table 3, the initial values of the concrete adhesion strength and concrete peeling strength of the composition in which 6% cobalt naphthenate, dimethylaniline and Percure-K were added were low. -After immersing the specimen in which the base material-adjusting material and the surface protective material were laminated in 80 ° C warm water all over 60 days, swelling occurred in each of the primer layer, the base material-adjusting material layer, and the surface protective layer. The concrete adhesion strength and concrete peeling strength after immersion in warm water were greatly reduced from the initial values. Moreover, the hot water (80 degreeC) immersion water absorption showed the high value as 6.0%.

実施例1と同じ条件で芳香族系エポキシメタクリレート(A)を製造し、当製造物400質量部にエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)200質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)(日立化成工業社 FA−512MT)300質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE820:数平均分子量4900、水酸基価34mgKOH/g)100質量部の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し,硬化性樹脂組成物を得た。表4の実施例14の記載の配合で、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルアニリンの配合の割合で混合した後、金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。   An aromatic epoxy methacrylate (A) was produced under the same conditions as in Example 1, and 2.6 mol of ethylene oxide added ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd.) was added to 400 parts by mass of the product. BPE-100) 200 parts by mass, dicyclopentenyloxyethyl methacrylate (C) (Hitachi Chemical Industry Co., Ltd. FA-512MT) 300 parts by mass, polyol (D) (Asahi Glass Co., Ltd. Excell E820: number average After adding and dissolving 20 parts by mass of isocyanate compound (E) (Cosmonate LK manufactured by Mitsui Chemicals) to 100 parts by mass of 100 parts by mass of molecular weight 4900 and hydroxyl value 34 mgKOH / g), the mixture is cooled to room temperature. A curable resin composition was obtained. After mixing at the blending ratio of 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylaniline in the formulation described in Example 14 in Table 4, the mixture was poured into a mold at 25 ° C. And cured for 72 hours to obtain a cured resin (cast material) having a thickness of 3 mm.

コンクリ−トピ−リング試験は、実施例6と同様に、表面保護層に用いるガラスフレ−クRCF−140の量を、硬化性樹脂組成物100質量部に対し15質量部に代えた以外は、実施例1と同じ条件で行い、その他の試験も実施例1と同じ条件で行った。表4に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。また、温水(80℃)浸漬吸水率は1.2%と低い値を示した。   The concrete peeling test was conducted in the same manner as in Example 6 except that the amount of the glass flake RCF-140 used for the surface protective layer was changed to 15 parts by mass with respect to 100 parts by mass of the curable resin composition. The test was performed under the same conditions as in Example 1, and other tests were performed under the same conditions as in Example 1. The concrete adhesion strength and concrete peeling strength of the composition with 6% cobalt naphthenate, dimethylaniline and Percure-K added in the composition shown in Table 4 are high, and the concrete has a primer and substrate preparation. The specimens laminated with the material and the surface protective material were completely immersed in warm water at 80 ° C. After 60 days, no abnormality was found between the primer layer, the base material adjusting material layer, and the surface protective layer. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value with 1.2%.

実施例14と同じ芳香族系エポキシメタクリレ−ト(A)40質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)30質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE1030:数平均分子量1000、水酸基価160mgKOH/g)10質量部の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。表4の実施例15の欄に記載の配合で、6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルアニリンを良く混合した後、金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。各硬化物及び組成物に関し、原則、実施例1と同じ条件で評価試験を行ったが、コンクリ−トピ−リング試験は、実施例6と同様に、表面保護層に用いるガラスフレ−クRCF−140の量を、硬化性樹脂組成物100質量部に対し15質量部に代え、その他は実施例1と同じ条件とした。   40 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 14, 20 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd. BP-6EM), To 100 parts by mass in total of 30 parts by mass of dicyclopentenyloxyethyl methacrylate (C) and 10 parts by mass of polyol (D) (Asahi Glass Co., Ltd. Excell E1030: number average molecular weight 1000, hydroxyl value 160 mg KOH / g) On the other hand, 20 mass parts of isocyanate compound (E) (Cosmonate LK manufactured by Mitsui Chemicals) was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. 6% cobalt naphthenate, peroxide (Nissan Percure-K) and dimethylaniline were mixed well in the formulation described in the column of Example 15 in Table 4, and then poured into a mold at 25 ° C. It was cured for 72 hours to obtain a cured resin (cast material) having a thickness of 3 mm. For each cured product and composition, in principle, an evaluation test was performed under the same conditions as in Example 1. However, in the same manner as in Example 6, the glass flake RCF-140 used for the surface protective layer was used in the concrete peeling test. Was changed to 15 parts by mass with respect to 100 parts by mass of the curable resin composition, and the other conditions were the same as in Example 1.

実施例15の樹脂組成物を表4に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。また、温水(80℃)浸漬吸水率は1.2%と低い値を示した。   The resin composition of Example 15 having the composition shown in Table 4 and containing 6% cobalt naphthenate, dimethylaniline and Percure-K has high concrete adhesion strength and concrete peeling strength. -Specimens, substrate conditioning material, and surface protective material laminated on the substrate were all immersed in warm water at 80 ° C. After 60 days, there was no abnormality between the primer layer, substrate conditioning material layer, and surface protective layer. There was no. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value with 1.2%.

実施例14と同じ芳香族系エポキシメタクリレ−ト(A)40質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)30質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240:数平均分子量3000、水酸基価56mgKOH/g、−トリオ−ル及びエクセノ−ルE2020:数平均分子量2000、水酸基価56mgKOH/gの両者のモル比0.7/0.3、数平均分子量2700)10質量部の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物を得た。表4の実施例16欄に記載の配合で6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルアニリンを良く混合した後、金型中へ流し込み、25℃で72時間硬化させ、厚さ3mmの樹脂硬化物(注型物)を得た。レジンコンクリ−トは、実施例7と同じ条件で評価試験を行った。コンクリ−トピ−リング試験は、実施例6と同様に、表面保護層に用いるガラスフレ−クRCF−140の量を、硬化性樹脂組成物100質量部に対し15質量部に代え、その他は実施例1と同じ条件とした。その他評価試験も実施例1と同じ条件で行い、その結果を表4に記載した。実施例16の樹脂組成物に表4に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物のコンクリート付着強度及びコンクリ−トピ−リング強度は高く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間で異常は全く無かった。また、温水(80℃)浸漬吸水率は1%前後低い値を示した。   40 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 14, 20 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd. BP-6EM), 30 parts by mass of dicyclopentenyloxyethyl methacrylate (C), polyol (D) (Asahi Glass Co., Ltd. Excell E240: number average molecular weight 3000, hydroxyl value 56 mg KOH / g, -triol and Excell E2020 : Number average molecular weight 2000, hydroxyl value 56 mg KOH / g molar ratio 0.7 / 0.3, number average molecular weight 2700) Isocyanate compound (E) (Mitsui) for a total of 100 parts by mass Chemical Cosmonate LK) 20 parts by mass was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. After thoroughly mixing 6% cobalt naphthenate, peroxide (NOF Percure-K) and dimethylaniline with the formulation described in Example 16 column of Table 4, the mixture was poured into a mold and 72 hours at 25 ° C. Curing was performed to obtain a cured resin (cast material) having a thickness of 3 mm. The resin concrete was subjected to an evaluation test under the same conditions as in Example 7. In the concrete peeling test, the amount of the glass flake RCF-140 used for the surface protective layer was changed to 15 parts by mass with respect to 100 parts by mass of the curable resin composition in the same manner as in Example 6. 1 and the same conditions. Other evaluation tests were also performed under the same conditions as in Example 1, and the results are shown in Table 4. The composition obtained by adding 6% cobalt naphthenate, dimethylaniline and Percure-K in the composition shown in Table 4 to the resin composition of Example 16 has high concrete adhesion strength and concrete peeling strength. -Specimens, substrate conditioning material, and surface protective material laminated on the substrate were all immersed in warm water at 80 ° C. After 60 days, there was no abnormality between the primer layer, substrate conditioning material layer, and surface protective layer. There was no. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value around 1%.

実施例14と同じ芳香族系エポキシメタクリレ−ト(A)40質量部に、エチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(新中村化学工業社 BPE−100)20質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)30質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE240:数平均分子量3000−トリオ−ル及びエクセノ−ルE2020:数平均分子量2000の両者のモル比0.5/0.5、数平均分子量2,500)10質量部を添加し、70℃に加温し、20%濃度120度F/(FA−512MT)パラフィンワックス2.0質量部を溶解した後、(A)、(B)、(C)、(D)の合計100質量部に対して、イソシアネ−ト化合物(E)(三井化学製 コスモネ−トLK)20質量部を加えて溶解後、室温まで冷却し、硬化性樹脂組成物とした。この樹脂組成物に、表4の配合で6%ナフテン酸コバルト、パ−キュア−Kを添加し配合物を得た。   Ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Shin-Nakamura Chemical Co., Ltd. BPE-100) to 40 parts by mass of the same aromatic epoxy methacrylate (A) as in Example 14 20 parts by mass, 30 parts by mass of dicyclopentenyloxyethyl methacrylate (C), polyol (D) (Asahi Glass Co., Ltd. Excell E240: number average molecular weight 3000-triol and Excell E2020: number average 10 parts by mass of a molar ratio of 0.5 / 0.5 and a number average molecular weight of 2,500) with a molecular weight of 2000 are added, heated to 70 ° C., and a 20% concentration of 120 degrees F / (FA-512MT) paraffin wax. After dissolving 2.0 parts by mass, the isocyanate compound (E) (Cosmonate manufactured by Mitsui Chemicals) is used with respect to 100 parts by mass in total of (A), (B), (C), and (D). (LK) 20 parts by mass was added and dissolved, and then cooled to room temperature to obtain a curable resin composition. To this resin composition, 6% cobalt naphthenate and Percure-K were added according to the formulation shown in Table 4 to obtain a formulation.

この配合物を金型中に流し込み、25℃で72時間養生後脱型し、厚さ3mmの樹脂硬化物(注型物)を得た。この樹脂硬化物を実施例1に記載の方法により特性値を測定した。ガラスフレ−ク入り樹脂組成物の配合を、無機骨材の配合を実施例8と同様に変更(ガラスフレ−クRCF−140(日本板硝子株式会社製)40質量部)した以外は、実施例7と同じ条件でレジンコート試験を行った。コンクリ−トピ−リング試験は、素地調整材の配合を実施例3と同様(6%ナフテン酸コバルト1.0質量部、パ−キュア−K2.0質量部)に変更した以外は実施例1と同じ条件で評価試験を行った。その他試験は実施例1と同じ条件で行い、結果を表4に記載した。   This compound was poured into a mold, cured at 25 ° C. for 72 hours, and then demolded to obtain a cured resin (cast material) having a thickness of 3 mm. Characteristic values of the cured resin were measured by the method described in Example 1. Example 7 except that the composition of the resin composition containing glass flakes was changed in the same manner as in Example 8 (40 parts by mass of glass flake RCF-140 (manufactured by Nippon Sheet Glass Co., Ltd.)). A resin coat test was conducted under the same conditions. The concrete peeling test was performed in the same manner as in Example 1 except that the composition of the substrate preparation material was changed to the same as in Example 3 (1.0 part by mass of 6% cobalt naphthenate, 2.0 parts by mass of Percure-K). An evaluation test was performed under the same conditions. Other tests were performed under the same conditions as in Example 1, and the results are shown in Table 4.

<比較例20>
比較例18と同じ芳香族系エポキシメタクリレ−ト(A)400質量部に、エチレンオキサイド6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)(共栄社化学社 BP−6EM)200質量部、ジシクロペンテニルオキシエチルメタクリレ−ト(C)300質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE430−トリオ−ル:数平均分子量400、水酸基価400mgKOH/g、エクセノ−ルE720−ジオ−ル、数平均分子量700、水酸基価160mgKOH/g、モル比0.3/0.7、数平均分子量610)100質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)20質量部を加えて硬化性樹脂組成物を得た。当組成物に6%ナフテン酸コバルト、過酸化物(日油 パ−キュア−K)及びジメチルニリンを表4の配合で混合して実施例1と同じ条件で積層板を作成し、特性値を測定した。実施例1と同じ条件で各評価試験を行い、その結果を表4に記載した。
<Comparative Example 20>
To 400 parts by mass of the same aromatic epoxy methacrylate (A) as in Comparative Example 18, 200 parts by mass of ethylene oxide 6 mol addition ethoxylated bisphenol A dimethacrylate (B) (Kyoeisha Chemical Co., Ltd. BP-6EM) 300 parts by mass of dicyclopentenyloxyethyl methacrylate (C), polyol (D) (Asahi Glass Co., Ltd. Excell E430-triol: number average molecular weight 400, hydroxyl value 400 mg KOH / g, Excell E720- Diol, number average molecular weight 700, hydroxyl value 160 mg KOH / g, molar ratio 0.3 / 0.7, number average molecular weight 610) 100 parts by mass were added and dissolved, and then cooled to room temperature (A), (B ), (C) and (D) are added to 20 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) with respect to 100 parts by mass in total. A composition was obtained. A 6% cobalt naphthenate, a peroxide (Nissan Percure-K) and dimethylniline were mixed in the composition of Table 4 under the same conditions as in Example 1, and a characteristic value was determined. It was measured. Each evaluation test was performed under the same conditions as in Example 1, and the results are shown in Table 4.

比較例20の硬化性樹脂組成物を表4に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は表面乾燥時間が長く、コンクリ−ト付着強度及びコンクリ−トピ−リング強度の初期値は低く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間でフクレを発生した。また,温水(80℃)浸漬吸水率は、8%と高い低い値を示し、イオウ浸透深さも大きかった。   The curable resin composition of Comparative Example 20 containing 6% cobalt naphthenate, dimethylaniline and Percure-K in the formulation shown in Table 4 has a long surface drying time, a concrete adhesion strength and a concrete content. The initial value of the toe ring strength is low. In addition, the specimen layered with a primer, a base material adjusting material, and a surface protective material on the concrete is fully immersed in warm water at 80 ° C. Swelling was generated between the material layer and the surface protective layer. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value as high as 8%, and the sulfur penetration depth was also large.

<比較例21>
比較例18と同じ芳香族系エポキシ(メタ)アクリレ−ト(A)400質量部に実施例1と同じエチレンオキサイド2.6モル付加エトキシ化ビスフェノ−ルAジメタクリレ−ト(B)200質量部及びジシクロペンテニルオキシエチルメタクリレ−ト(C)300質量部、ポリオ−ル(D)(旭硝子社 エクセノ−ルE837:数平均分子量6,000,水酸基価28mgKOH/g)100質量部を加えて溶解後、室温まで冷却した上記(A)、(B)、(C)及び(D)の合計100質量部に対して、イソシアネ−ト化合物(三井化学製 コスモネ−トLK)20質量部を加えて硬化性樹脂組成物を得た。この組成物そ用い、実施例14に記載の方法により積層板を作成した。この積層板及び樹脂組成物について、実施例1と同じ条件で評価試験を行い、その結果を表4に記載した。
<Comparative Example 21>
400 parts by mass of the same aromatic epoxy (meth) acrylate (A) as in Comparative Example 18 and 2.6 parts by mass of ethylene oxide 2.6 mol addition ethoxylated bisphenol A dimethacrylate (B) as in Example 1 and Dissolve by adding 300 parts by weight of dicyclopentenyloxyethyl methacrylate (C) and 100 parts by weight of polyol (D) (Asahi Glass Co., Ltd. Excell E837: number average molecular weight 6,000, hydroxyl value 28 mg KOH / g). Then, 20 parts by mass of an isocyanate compound (Cosmonate LK manufactured by Mitsui Chemicals) is added to 100 parts by mass of the above (A), (B), (C) and (D) cooled to room temperature. A curable resin composition was obtained. Using this composition, a laminate was prepared by the method described in Example 14. About this laminated board and resin composition, the evaluation test was done on the same conditions as Example 1, and the result was described in Table 4.

比較例21の硬化性樹脂組成物に、表4に示す配合で6%ナフテン酸コバルト、ジメチルアニリン及びパ−キュア−Kを添加した配合物は表面乾燥時間が長く、タックが24時間後でも解消できなかった。また、コンクリ−ト付着強度及びコンクリ−トピ−リング強度の初期値は低く、また、コンクリ−トにプライマ−、素地調整材、表面保護材を積層した供試体を80℃の温水に全面浸漬60日後ではいずれもプライマ−層、素地調整材層、表面保護層の各層間でフクレを発生した。また、温水(80℃)浸漬吸水率は、6%と高い低い値を示し、イオウ浸透深さも大きかった。   The formulation obtained by adding 6% cobalt naphthenate, dimethylaniline and percure-K to the curable resin composition of Comparative Example 21 in the formulation shown in Table 4 has a long surface drying time, and tack is eliminated even after 24 hours. could not. In addition, the initial values of the concrete adhesion strength and concrete peeling strength are low, and a specimen in which a primer, a base material adjusting material and a surface protective material are laminated on the concrete is immersed in hot water at 80 ° C. 60 In all days, swelling occurred between the primer layer, the base material adjusting material layer, and the surface protective layer. Moreover, the hot water (80 degreeC) immersion water absorption showed the low value as high as 6%, and sulfur penetration depth was also large.

Figure 0006134757
Figure 0006134757

Figure 0006134757
Figure 0006134757

Figure 0006134757
Figure 0006134757

Figure 0006134757
Figure 0006134757

Claims (10)

(A)芳香族系エポキシ樹脂と(メタ)アクリル酸との反応物を含み、数平均分子量が500〜1100の範囲で、かつ、酸価が10KOHmg/g以下のエポキシ(メタ)アクリレ−トと、
(B)アルキレンオキサイド付加モル数2〜10の2官能性(メタ)アクリレ−トモノマ−のエトキシ化ビスフェノ−ルAジメタクリレ−トと、
(C)数平均分子量が300以下の、アルコ−ル残基として環内に1個の炭素間二重結合、あるいは、環内に1個の窒素原子を有する環状炭化水素基を含む基を有する単官能性(メタ)アクリレ−ト系モノマ−と、
(D)水酸基価(KOHmg/g)160以下、数平均分子量1000以上のポリオ−ルと、
を含み、
成分(A)、(B)、(C)及び(D)の合計100質量部に対し、更に、(E)ポリイソシアネートを1〜30質量部含むことを特徴とする硬化性樹脂組成物。
(A) an epoxy (meth) acrylate containing a reaction product of an aromatic epoxy resin and (meth) acrylic acid, having a number average molecular weight in the range of 500 to 1100 and an acid value of 10 KOH mg / g or less; ,
(B) an ethoxylated bisphenol A dimethacrylate of a bifunctional (meth) acrylate monomer having 2 to 10 moles of alkylene oxide addition,
(C) a number average molecular weight of 300 or less, alcohol - as Le residues, one carbon-carbon double bond in the ring, or a group containing a cyclic hydrocarbon group having one ChissoHara child in the ring A monofunctional (meth) acrylate monomer having
(D) a polyol having a hydroxyl value (KOHmg / g) of 160 or less and a number average molecular weight of 1,000 or more;
Including
A curable resin composition comprising 1 to 30 parts by mass of (E) polyisocyanate with respect to 100 parts by mass in total of components (A), (B), (C) and (D).
(A)エポキシ(メタ)アクリレ−ト10〜25質量部と、
(B)エトキシ化ビスフェノ−ルAジメタクリレ−ト5〜15質量部と、
(C)単官能性(メタ)アクリレ−ト系モノマ−50〜70質量部と、
(D)ポリオ−ル5〜15質量部と、
を含み、コンクリート防食被覆用のプライマーとして使用される請求項1に記載の硬化性樹脂組成物。
(A) 10-25 parts by mass of epoxy (meth) acrylate,
(B) 5 to 15 parts by mass of ethoxylated bisphenol A dimethacrylate;
(C) 50 to 70 parts by mass of a monofunctional (meth) acrylate monomer;
(D) 5 to 15 parts by mass of polyol,
The curable resin composition according to claim 1, which is used as a primer for concrete anticorrosion coating.
(A)エポキシ(メタ)アクリレ−ト30〜60質量部と、
(B)エトキシ化ビスフェノ−ルAジメタクリレ−ト10〜30質量部と、
(C)単官能性(メタ)アクリレ−ト系モノマ−20〜40質量部と、
(D)ポリオ−ル5〜15質量部と、
を含み、コンクリ−ト防食被覆に使用される請求項1に記載の硬化性樹脂組成物。
(A) 30-60 parts by mass of epoxy (meth) acrylate,
(B) 10-30 parts by mass of ethoxylated bisphenol A dimethacrylate;
(C) monofunctional (meth) acrylate monomer-20 to 40 parts by mass;
(D) 5 to 15 parts by mass of polyol,
The curable resin composition according to claim 1, which is used for a concrete anticorrosion coating.
前記成分(A)、(B)、(C)、(D)及び(E)は、前記成分(A)、(B)、(C)及び(D)を含む主剤と、前記成分(E)を含む副主剤とに区別され、
使用の際には、前記主剤及び前記副主剤が混合される請求項1〜3のいずれか1項に記載の硬化性樹脂組成物。
The components (A), (B), (C), (D) and (E) are the main component containing the components (A), (B), (C) and (D), and the component (E). Is distinguished from secondary agents containing
The curable resin composition according to any one of claims 1 to 3, wherein the main agent and the auxiliary main agent are mixed in use.
前記(E)ポリイソシアネ−トが、ジフェニルメタンジイソシアネ−ト(MDI)のカルポジイミド体、MDIのウレトンイミン体およびMDIのイソシアヌレ−ト体からなる群より選択される少なくとも1種のMDI誘導体を含有することを特徴とする請求項1〜4のいずれか1項に記載の硬化性樹脂組成物。   The polyisocyanate (E) contains at least one MDI derivative selected from the group consisting of a carpositimide form of diphenylmethane diisocyanate (MDI), a uretonimine form of MDI, and an isocyanurate form of MDI. The curable resin composition of any one of Claims 1-4 characterized by these. (A)、(B)、(C)及び(D)の合計100質量部に対して、さらに、0.5〜10質量部の有機過酸化物を含有していることを特徴とする請求項1〜5のいずれか1項に記載の硬化性樹脂組成物。   The organic peroxide is further contained in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass in total of (A), (B), (C) and (D). The curable resin composition according to any one of 1 to 5. 請求項1〜6のいずれか1項に記載の硬化性樹脂組成物を含むコンクリ−ト被覆組成物。   The concrete coating composition containing the curable resin composition of any one of Claims 1-6. (A)、(B)、(C)及び(D)の合計100質量部に対して、さらに、平均粒径0.02〜10mmの不活性な微粒子状及び/又は粉状の無機骨材材料30〜600質量部を含有することを特徴とする請求項7に記載のコンクリ−ト被覆組成物。   (A), (B), (C), and 100 parts by mass of (D), and further, an inert fine particle and / or powdery inorganic aggregate material having an average particle size of 0.02 to 10 mm. The concrete coating composition according to claim 7, comprising 30 to 600 parts by mass. 請求項1〜6のいずれか1項に記載の硬化性樹脂組成物を含むライニング材。   The lining material containing the curable resin composition of any one of Claims 1-6. (A)、(B)、(C)及び(D)の合計100質量部に対して、さらに、鱗片状無機充填剤5〜50質量部を含有することを特徴とする請求項9に記載のライニング材。   It contains 5-50 mass parts of scale-like inorganic fillers with respect to a total of 100 mass parts of (A), (B), (C), and (D), It is characterized by the above-mentioned. Lining material.
JP2015162477A 2015-08-20 2015-08-20 Curable resin composition, concrete coating composition and lining material Active JP6134757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015162477A JP6134757B2 (en) 2015-08-20 2015-08-20 Curable resin composition, concrete coating composition and lining material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015162477A JP6134757B2 (en) 2015-08-20 2015-08-20 Curable resin composition, concrete coating composition and lining material

Publications (2)

Publication Number Publication Date
JP2017039852A JP2017039852A (en) 2017-02-23
JP6134757B2 true JP6134757B2 (en) 2017-05-24

Family

ID=58203186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162477A Active JP6134757B2 (en) 2015-08-20 2015-08-20 Curable resin composition, concrete coating composition and lining material

Country Status (1)

Country Link
JP (1) JP6134757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608611A (en) * 2018-10-23 2019-04-12 合肥科天水性科技有限责任公司 A kind of epoxy acrylic resin modified aqueous polyurethane and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7286915B2 (en) * 2018-03-30 2023-06-06 東ソー株式会社 Two-component polyurethane resin-forming composition, two-component polyurethane resin adhesive composition
CN115572524B (en) * 2022-11-05 2023-06-13 上海立邦长润发涂料有限公司 UV vacuum spraying anti-cracking transparent primer
CN117645502B (en) * 2024-01-30 2024-04-02 湖南固特邦土木技术发展有限公司 Surface sealing coating for repairing concrete cracks

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05262837A (en) * 1992-03-23 1993-10-12 Nippon Kayaku Co Ltd Ultraviolet-curing resin composition for transmission screen and cured product thereof
JPH05320286A (en) * 1992-05-19 1993-12-03 Nippon Kayaku Co Ltd Resin composition, ultraviolet-curable resin composition for transmission screen, and cured material thereof
JP4066009B2 (en) * 2001-08-20 2008-03-26 大日本インキ化学工業株式会社 Resin composition for primer and painted body
JP4516290B2 (en) * 2003-07-18 2010-08-04 エヌパット株式会社 Resin composition for post-installation anchors
JP2005187780A (en) * 2003-12-26 2005-07-14 Hitachi Chem Co Ltd Lining composition and civil-engineering constructed structural body by using the same
JP2006052271A (en) * 2004-08-10 2006-02-23 Japan Composite Co Ltd Unsaturated polyurethane resin composition, artificial stone molding material, and artificial stone molded product
JP2007016184A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Elastomer, photosensitive composition, photosensitive film, and method for forming permanent pattern
JP2011231231A (en) * 2010-04-28 2011-11-17 Dic Corp Radically curable unsaturated resin composition and coating material
JP5570946B2 (en) * 2010-07-28 2014-08-13 三洋化成工業株式会社 UV curable resin composition for optical parts
JP6451974B2 (en) * 2013-07-22 2019-01-16 Dic株式会社 Curable composition and cured product thereof
CN103694861B (en) * 2013-12-12 2016-02-10 嘉宝莉化工集团股份有限公司 Dual modified, dual cure epoxy acrylate coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608611A (en) * 2018-10-23 2019-04-12 合肥科天水性科技有限责任公司 A kind of epoxy acrylic resin modified aqueous polyurethane and preparation method thereof

Also Published As

Publication number Publication date
JP2017039852A (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6694866B2 (en) Low temperature curing cross section restoration material and cross section restoration method using the same
JP6567599B2 (en) Curable resin composition, concrete coating composition and lining material
JP6134757B2 (en) Curable resin composition, concrete coating composition and lining material
JP5457644B2 (en) Low temperature curable resin composition, coating film forming method using the same, resin mortar and fiber reinforced resin
JPWO2019004125A1 (en) Radical polymerizable resin composition and structure restoration material
JP5336730B2 (en) Adhesive structure bonded using radical polymerizable adhesive for fiber reinforced plastic and method for producing the same
JP2016029125A (en) Two-pack curable resin composition, covering material, covering method and covering structure
JP2017214441A (en) Resin composition, crack injection material, and crack repair method
TWI652301B (en) Concrete repair material
JP6751330B2 (en) Composition for repairing cement asphalt fill layer
JP5384715B1 (en) Curable resin composition, concrete coating composition and lining material
JP4374990B2 (en) Radical polymerizable resin composition
JP4982987B2 (en) Resin composition for coating
JPWO2020040052A1 (en) Curable resin composition and its cured product
JP4440613B2 (en) Curable resin composition and method for curing the same
JP4911921B2 (en) Radical curable resin composition and method for curing the same
JP4066081B2 (en) Concrete primer resin composition and structure thereof
JP7419807B2 (en) Low odor resin composition
JP7358940B2 (en) thermosetting resin composition
JP4462068B2 (en) Thixotropic radical polymerization molding material, production method thereof and molded article
JP4119705B2 (en) Civil engineering coatings
WO2024135270A1 (en) Radical-polymerizable composition
JP2020153109A (en) Active energy ray curable concrete protection material
JP2005146205A (en) Covering material, covering material for civil engineering and construction industry and paint for wood working
JP2009179989A (en) Floor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170111

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6134757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250