JP6372922B2 - Resin composition, coating method using the same, and coating structure coated by the method - Google Patents

Resin composition, coating method using the same, and coating structure coated by the method Download PDF

Info

Publication number
JP6372922B2
JP6372922B2 JP2014554382A JP2014554382A JP6372922B2 JP 6372922 B2 JP6372922 B2 JP 6372922B2 JP 2014554382 A JP2014554382 A JP 2014554382A JP 2014554382 A JP2014554382 A JP 2014554382A JP 6372922 B2 JP6372922 B2 JP 6372922B2
Authority
JP
Japan
Prior art keywords
resin
meth
acrylate
resin composition
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014554382A
Other languages
Japanese (ja)
Other versions
JPWO2014103878A1 (en
Inventor
潤 金山
潤 金山
一博 黒木
一博 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of JPWO2014103878A1 publication Critical patent/JPWO2014103878A1/en
Application granted granted Critical
Publication of JP6372922B2 publication Critical patent/JP6372922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/061Polyesters; Polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、ライニング被覆材及び防水被覆材に適する樹脂組成物、該樹脂組成物を含有する被覆材および該被覆材を用いることを特徴とする被覆工法に関する。より詳しくは、低臭気性で塗膜乾燥性、二次接着性に優れ、ライニング材、防水材および繊維強化プラスチック等に使用可能な樹脂組成物であり、さらに、該樹脂組成物を含有する被覆材およびこの被覆材を用いることを特徴とするライニング被覆工法及び防水被覆工法に関する。   The present invention relates to a resin composition suitable for a lining coating material and a waterproof coating material, a coating material containing the resin composition, and a coating method using the coating material. More specifically, it is a resin composition that has low odor, is excellent in coating film drying properties and secondary adhesiveness, and can be used for lining materials, waterproof materials, fiber reinforced plastics, and the like, and further, a coating containing the resin composition The present invention relates to a lining coating method and a waterproof coating method characterized by using the coating material and the coating material.

近年、屋上、ベランダ、駐車場、工場などの床の防水施工や防食施工に、FRPの成形性と耐水性、機械的特性(強度など)などの利点を取り入れたFRP(防水)ライニングが利用されている。   In recent years, FRP (waterproof) lining that incorporates advantages such as moldability, water resistance, mechanical properties (strength, etc.) of FRP has been used for waterproofing and anticorrosion of floors such as rooftops, verandas, parking lots, and factories. ing.

FRP防水に使用する樹脂としては、下地との密着性、下地への追従性、硬化収縮の歪みの緩和を考慮して、軟質樹脂を使用する。使用される軟質樹脂は、建築工事標準仕様書・同解説 JASS8防水工事に記載されているように、樹脂硬化物の引張り強度が10〜50MPa、引張り伸び率が25〜120%のもので、さらに耐熱、耐酸、耐アルカリ処理後においても同性能を有し、かつ規定の保持率を維持しているものが利用されている。これらの特性を有するFRP防水用樹脂として、ラジカル重合性モノマーにスチレンモノマーを使用した軟質不飽和ポリエステル樹脂が使用されている。   As the resin used for FRP waterproofing, a soft resin is used in consideration of adhesion to the base, followability to the base, and relaxation of curing shrinkage distortion. The soft resin used has a tensile strength of 10-50 MPa and a tensile elongation of 25-120% of the cured resin, as described in the building construction standard specification / comment JASS8 waterproofing construction. Those having the same performance after heat resistance, acid resistance and alkali resistance treatment and maintaining a specified retention rate are used. As an FRP waterproofing resin having these characteristics, a soft unsaturated polyester resin using a styrene monomer as a radical polymerizable monomer is used.

FRP防水の施工作業において、ライニング作業工程で樹脂に含まれるラジカル重合性モノマーであるスチレンが揮発し、作業環境の悪化や臭気の問題を生じている。
さらに、前記臭気の問題を解決すべく、重合性モノマーとして(メタ)アクリル酸エステルの低臭気樹脂が用いられているが、これらを利用した低臭気性樹脂は、利用する(メタ)アクリル酸エステルがスチレンより薄膜での硬化が悪い特性があるため、ライニング施工等で硬化不良が起こりやすい。
In FRP waterproofing construction work, styrene, which is a radical polymerizable monomer contained in the resin, is volatilized in the lining work process, resulting in a worse working environment and problems of odor.
Furthermore, in order to solve the odor problem, a low odor resin of (meth) acrylic acid ester is used as a polymerizable monomer, and a low odor resin using these is used as a (meth) acrylic acid ester. However, since it has a property of being harder to cure in a thin film than styrene, poor curing is likely to occur during lining construction.

更にこれらアクリル系樹脂の硬化においては、空気中の酸素が重合阻害剤として働くため、塗膜樹脂及びライニング樹脂の硬化過程において空気中の酸素の浸透を遮断する方法が取られる。このため、従来、樹脂組成物中にパラフィンワックスと重合性希釈剤とを含有させ、該重合性希釈剤を揮発させること及び塗膜中の重合が進むに連れて重合性希釈剤中のパラフィン濃度を高め、溶解できなくなったパラフィンワックスを樹脂表面層(塗膜表面やライニング表面)に析出させ、結果として薄いパラフィンワックス層を形成させ空気遮断材として機能させて、硬化を促進させる方法が採られている。   Further, in curing these acrylic resins, oxygen in the air acts as a polymerization inhibitor, and therefore a method of blocking the permeation of oxygen in the air during the curing process of the coating film resin and the lining resin is taken. Therefore, conventionally, the resin composition contains a paraffin wax and a polymerizable diluent, volatilizes the polymerizable diluent, and the concentration of paraffin in the polymerizable diluent as the polymerization in the coating proceeds. The paraffin wax that can no longer be dissolved is deposited on the resin surface layer (coating surface or lining surface), and as a result, a thin paraffin wax layer is formed and functions as an air barrier material to accelerate curing. ing.

しかしながら、(メタ)アクリル酸エステルを使用した樹脂の場合、嫌気性が非常に強いためパラフィンワックスを多量に添加しなければならず、塗膜の二次接着性に影響を与えることが多い。そのため、空乾性能を有する(メタ)アクリル酸エステルや樹脂を併用する技術、特定の(メタ)アクリル酸エステルを配合したものなどが提案されている(例えば特許文献1〜6参照)が、これら以外の解決策として(メタ)アクリル酸エステルよりも嫌気性の弱い重合性モノマーを使用することについても望まれていた。   However, in the case of a resin using (meth) acrylic acid ester, the anaerobic property is very strong, so a large amount of paraffin wax must be added, which often affects the secondary adhesion of the coating film. For this reason, techniques for using (meth) acrylic acid esters and resins having air-drying performance in combination with specific (meth) acrylic acid esters have been proposed (see, for example, Patent Documents 1 to 6). As another solution, it has been desired to use a polymerizable monomer that is less anaerobic than (meth) acrylic acid ester.

特許第3278001号公報Japanese Patent No. 3278001 特許第3859857号公報Japanese Patent No. 3859857 特許第4973914号公報Japanese Patent No. 497914 特開平05−295862号公報JP 05-295862 A 特開2004−10771号公報Japanese Patent Laid-Open No. 2004-10771 特開2005−120305号公報JP 2005-120305 A

本発明は、(メタ)アクリル酸エステル以外の重合性モノマーも使用することで上記従来の問題点を解決し、低臭気性及び塗膜乾燥性、二次接着性に優れ、且つ硬化物の靭性及び耐久性に優れる樹脂組成物、これを含有する被覆材および該被覆材を用いた被覆工法の提供を目的とするものである。   The present invention solves the above-mentioned conventional problems by using a polymerizable monomer other than (meth) acrylic acid ester, and is excellent in low odor property, coating film drying property and secondary adhesiveness, and toughness of a cured product. It is another object of the present invention to provide a resin composition having excellent durability, a coating material containing the resin composition, and a coating method using the coating material.

そこで、本願発明者らは、上記課題を解決するため鋭意検討した結果、イタコン酸エステルを用いることで上記課題を解決することを見出した。
具体的に、本発明は、
[1](A)ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂及びエポキシ(メタ)アクリレート樹脂からなる群から選択される少なくとも1種類の樹脂、(B)イタコン酸ジベンジル、(C)スチレン系モノマーを除くラジカル重合性単量体、(D)ワックスを含むことを特徴とする樹脂組成物
[]前記(A)成分がグリシジルメタクリレート変性不飽和ポリエステル樹脂であることを特徴とする[1]に記載の樹脂組成物、
[]前記(C)成分が(メタ)アクリル酸エステルであることを特徴とする[1]又は[2]に記載の樹脂組成物、
[4][1]〜[]のいずれかに記載の樹脂組成物、並びに繊維強化材、充填材および骨材のいずれかを少なくとも1種組合せて得られる樹脂複合組成物であって、該樹脂組成物100質量部に対して、繊維強化材、充填材および骨材のいずれかの少なくとも1種を合計して1〜300質量部配合して得られる樹脂複合組成物、
[5][1]〜[]のいずれかに記載の樹脂組成物又は[]に記載の樹脂複合組成物を防水層として土木建築物に施工することを含む、土木建築物の防水被覆工法、
[6][1]〜[]のいずれかに記載の樹脂組成物又は[]に記載の樹脂複合組成物を保護層として土木建築物に施工することを含む、土木建築物のライニング被覆工法、
[7][1]〜[]のいずれかに記載の樹脂組成物又は[]に記載の樹脂複合組成物を用いて、防水層が施された被覆構造体、および、
[8][1]〜[]のいずれか1項に記載の樹脂組成物又は[]に記載の樹脂複合組成物を用いて、保護層が施された被覆構造体である。
The inventors of the present invention have intensively studied to solve the above problems, and as a result, have found that the above problems can be solved by using an itaconic acid ester.
Specifically, the present invention
[1] At least one resin selected from the group consisting of (A) polyester (meth) acrylate resin, urethane (meth) acrylate resin and epoxy (meth) acrylate resin, (B) dibenzyl itaconate , (C) styrene A radically polymerizable monomer excluding a monomer based on (D) a wax, and a resin composition ,
[ 2 ] The resin composition according to [1 ], wherein the component (A) is a glycidyl methacrylate-modified unsaturated polyester resin,
[ 3 ] The resin composition according to [1] or [2] , wherein the component (C) is a (meth) acrylic ester,
[4] A resin composite composition obtained by combining at least one of the resin composition according to any one of [1] to [ 3 ] and a fiber reinforcing material, a filler and an aggregate, A resin composite composition obtained by adding 1 to 300 parts by mass of at least one of a fiber reinforcement, a filler, and an aggregate with respect to 100 parts by mass of the resin composition;
[5] Waterproof coating for civil engineering buildings, comprising applying the resin composition according to any one of [1] to [ 3 ] or the resin composite composition according to [ 4 ] to a civil engineering building as a waterproof layer Construction method,
[6] A lining coating for civil engineering buildings comprising applying the resin composition according to any one of [1] to [ 3 ] or the resin composite composition according to [ 4 ] to a civil engineering building as a protective layer. Construction method,
[7] A covering structure provided with a waterproof layer using the resin composition according to any one of [1] to [ 3 ] or the resin composite composition according to [ 4 ], and
[8] A covering structure in which a protective layer is applied using the resin composition according to any one of [1] to [ 3 ] or the resin composite composition according to [ 4 ].

揮発性の高いモノマーの使用を控えることができるため、低臭気性であり、また、揮発性の高いモノマーの使用を控えても、塗膜表面乾燥性、二次接着性に優れ、さらに硬化させて得られる硬化物の強度特性、耐薬品性、耐熱性に優れ、防水被覆材等の土木建築材料の用途に大変有用である。   Since it can refrain from using highly volatile monomers, it has low odor, and even if it is refrained from using highly volatile monomers, it has excellent coating surface drying and secondary adhesive properties, and is further cured. The cured product obtained has excellent strength characteristics, chemical resistance, and heat resistance, and is very useful for civil engineering and building materials such as waterproof coatings.

本発明は、(A)ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂及びビニルエステル樹脂の中から少なくとも1つ以上を使用する。好ましくは、分子末端に少なくとも2個以上の(メタ)アクリロイル基を有するポリエステル(メタ)アクリレートを使用する。   In the present invention, at least one of (A) polyester (meth) acrylate resin, urethane (meth) acrylate resin and vinyl ester resin is used. Preferably, polyester (meth) acrylate having at least two (meth) acryloyl groups at the molecular terminals is used.

本発明の(A)成分として使用されるポリエステル(メタ)アクリレート樹脂とは、1分子中に2個以上の(メタ)アクリロイル基を有する飽和若しくは不飽和ポリエステルであり、飽和若しくは不飽和ポリエステルの末端に(メタ)アクリル化合物を反応させたものである。かかる樹脂の数平均分子量は、本発明の効果を奏する限り特に限定されないが、好ましくは500〜5000である。   The polyester (meth) acrylate resin used as the component (A) of the present invention is a saturated or unsaturated polyester having two or more (meth) acryloyl groups in one molecule, and the terminal of the saturated or unsaturated polyester. And (meth) acrylic compound. The number average molecular weight of the resin is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 500 to 5000.

本発明で用いられる飽和ポリエステルとは、飽和二塩基酸類と多価アルコール類との縮合反応、また、不飽和ポリエステルとはα,β−不飽和二塩基酸を含む二塩基酸類と多価アルコール類との縮合反応で得られるものである。   The saturated polyester used in the present invention is a condensation reaction between a saturated dibasic acid and a polyhydric alcohol, and the unsaturated polyester is a dibasic acid containing an α, β-unsaturated dibasic acid and a polyhydric alcohol. It is obtained by the condensation reaction.

ここでいう飽和二塩基酸類とは、例えば、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12−ドデカンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸無水物、4,4’−ビフェニルジカルボン酸、またこれらのジアルキルエステル等を挙げることができる。不飽和二塩基酸としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸等を挙げることができる。   Examples of the saturated dibasic acid herein include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, hexahydrophthalic anhydride, Hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2 , 3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid anhydride, 4,4′-biphenyldicarboxylic acid, and dialkyl esters thereof. Examples of the unsaturated dibasic acid include maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride and the like.

また、多価アルコール類とは、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、2−メチル−1,3−プロパンジオール、1,3−ブタンジオール、ネオペンチルグリコール、水素化ビスフェノールA、1,4−ブタンジオール、1,6−ヘキサンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドの付加物、1,2,3,4−テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,3−プロパンジオール、1,2−シクロヘキサングリコール、1,3−シクロヘキサングリコール、1,4−シクロヘキサングリコール、1,4−シクロヘキサンジメタノール、パラキシレングリコール、ビシクロヘキシル−4,4’−ジオール、2,6−デカリングリコール、2,7−デカリングリコール等を挙げることができる。   Polyhydric alcohols include, for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, 1,3 -Butanediol, neopentyl glycol, hydrogenated bisphenol A, 1,4-butanediol, 1,6-hexanediol, an adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, Glycerin, trimethylolpropane, 1,3-propanediol, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4-cyclohexane glycol, 1,4-cycl Hexane dimethanol, paraxylene glycol, bicyclohexyl-4,4'-diol, 2,6-decalin glycol, and 2,7-decalin glycol, and the like.

本発明の(A)として使用されるポリエステル(メタ)アクリレート樹脂に用いる(メタ)アクリル化合物としては、不飽和グリシジル化合物、アクリル酸またはメタクリル酸の如き各種の不飽和一塩基酸、およびそのグリシジルエステル類等である。好ましくは、グリシジル(メタ)アクリレートの使用が望ましい。   Examples of the (meth) acrylic compound used in the polyester (meth) acrylate resin used as (A) in the present invention include unsaturated glycidyl compounds, various unsaturated monobasic acids such as acrylic acid or methacrylic acid, and glycidyl esters thereof. Etc. Preferably, glycidyl (meth) acrylate is used.

本発明の(A)として使用されるウレタン(メタ)アクリレート樹脂は、ポリアルキレングリコール、ポリイソシアネート、1分子中に水酸基を1つ以上有する(メタ)アクリレートモノマーを反応させ合成して得られるウレタン(メタ)アクリレートであることが好ましい。更により好ましくは、ポリアルキレングリコールのアルキレン基の繰返し単位の炭素数が2から4のポリアルキレングリコールであり、より好ましくはポリプロピレングリコールである。
また、かかる樹脂の数平均分子量は、本発明の効果を奏する限り特に限定されないが、好ましくは500〜5000である。
The urethane (meth) acrylate resin used as (A) of the present invention is obtained by reacting and synthesizing polyalkylene glycol, polyisocyanate, and a (meth) acrylate monomer having one or more hydroxyl groups in one molecule ( A meth) acrylate is preferred. Even more preferred is a polyalkylene glycol having 2 to 4 carbon atoms in the repeating unit of the alkylene group of the polyalkylene glycol, and more preferred is polypropylene glycol.
Further, the number average molecular weight of the resin is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 500 to 5,000.

使用されるポリアルキレングリコール(好ましくは、ポリプロピレングリコール)としては、好ましくは重量平均分子量が200〜3000、より好ましくは300〜2000のものである。重量平均分子量が200以上であると、硬化物の柔軟性(伸び率)を十分に大きくすることができ、重量平均分子量が3000以下であると硬化物の強度を十分に保つことができる。ポリプロピレングリコール以外のポリアルキレングリコールの例としては、ポリエチレングリコール、ポリテトラメチレンエーテルグリコール(ポリテトラヒドロフラン)、ビスフェノールA及びビスフェノールFにアルキレンオキサイドを付加させたポリオールなどのポリエーテルポリオールが挙げられる。   The polyalkylene glycol (preferably polypropylene glycol) used preferably has a weight average molecular weight of 200 to 3000, more preferably 300 to 2000. When the weight average molecular weight is 200 or more, the flexibility (elongation rate) of the cured product can be sufficiently increased, and when the weight average molecular weight is 3000 or less, the strength of the cured product can be sufficiently maintained. Examples of polyalkylene glycols other than polypropylene glycol include polyether polyols such as polyethylene glycol, polytetramethylene ether glycol (polytetrahydrofuran), polyols obtained by adding alkylene oxide to bisphenol A and bisphenol F.

ポリアルキレングリコール以外に諸物性を損なわない範囲で、他のポリオールを併用できる。使用できるポリオールとしては、代表的にはポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、水素化ポリブタジエンポリオール等が挙げられる。
又、ポリエステルポリオールとは、二塩基酸類と多価アルコール類の縮合重合体又はポリカプロラクトンの様に環状エステル化合物の開環重合体であり、使用する二塩基酸類、及び多価アルコールとしては、前記のポリエステル(メタ)アクリレートの項に示した化合物を挙げることができる。
In addition to polyalkylene glycol, other polyols can be used in combination as long as various physical properties are not impaired. Typical examples of the polyol that can be used include polyester polyol, polycarbonate polyol, polybutadiene polyol, and hydrogenated polybutadiene polyol.
The polyester polyol is a ring-opening polymer of a cyclic ester compound such as a condensation polymer of dibasic acids and polyhydric alcohols or polycaprolactone, and the dibasic acids and polyhydric alcohols used are And the compounds shown in the section of polyester (meth) acrylate.

更に、ポリアルキレングリコールと併用できるポリオールとして、前記ポリエステルポリオールの原料として例示した各種の多価アルコール類を支障のない範囲で使用できる。   Furthermore, as the polyol that can be used in combination with the polyalkylene glycol, various polyhydric alcohols exemplified as the raw material for the polyester polyol can be used within a range where there is no problem.

本発明の(A)成分に使用されるウレタン(メタ)アクリレート樹脂には、ポリイソシアネートを用いる。用いられるポリイソシアネートとしては、4,4´−ジフェニルメタンジイソシアネート(以下MDIと略す)2,4−トリレンジイソシアネート及びその異性体または異性体の混合物、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、水素化キシリレンジイソシアネート、4,4´−ジシクロヘキシルメタンジイソシアネート、トリジンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート等を挙げることができ、それらの1種または2種以上を使用することができる。上記ポリイソシアネートのうちジイソシアネートが好ましく用いられる。   A polyisocyanate is used for the urethane (meth) acrylate resin used in the component (A) of the present invention. Examples of the polyisocyanate used include 4,4′-diphenylmethane diisocyanate (hereinafter abbreviated as MDI) 2,4-tolylene diisocyanate and its isomer or a mixture of isomers, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, and tetramethyl. Examples include xylylene diisocyanate, hydrogenated xylylene diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, tolidine diisocyanate, naphthalene diisocyanate, triphenylmethane triisocyanate, and the like, and one or more of them may be used. it can. Of the polyisocyanates, diisocyanates are preferably used.

さらに本発明の(A)成分に使用されるウレタン(メタ)アクリレート樹脂には、1分子に1個以上の水酸基を有する(メタ)アクリレートモノマーが使用される。用いられる1分子に1個以上の水酸基を有する(メタ)アクリレートモノマーとしては、たとえば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のモノ(メタ)アクリレート類、トリス(ヒドロキシエチル)イソシアヌル酸ジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多価(メタ)アクリレートモノマー類を挙げることができる。   Furthermore, the (meth) acrylate monomer which has a 1 or more hydroxyl group in 1 molecule is used for the urethane (meth) acrylate resin used for (A) component of this invention. Examples of the (meth) acrylate monomer having one or more hydroxyl groups in one molecule used include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, and polyethylene. Mono (meth) acrylates such as glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate, polyvalent (meth) such as tris (hydroxyethyl) isocyanuric acid di (meth) acrylate and pentaerythritol tri (meth) acrylate Mention may be made of acrylate monomers.

(A)成分に使用されるウレタン(メタ)アクリレート樹脂は、公知の方法で製造できる。その製造方法の例を挙げれば、(1)先ずポリイソシアネートとポリオールを好ましくはNCO/OH=1.3〜2で反応させ、末端イソシアネート化合物を生成させ、次いでそれに水酸基含有(メタ)アクリレート化合物をイソシアネート基に対して水酸基がほぼ等量になるように反応する方法と、(2)ポリイソシアネート化合物と水酸基含有(メタ)アクリレート化合物をNCO/OH=2以上で反応させ、片末端イソシアネートの化合物を生成させ、次いでポリオールを加えて反応する方法等が挙げられる。これら合成は、50℃〜100℃の温度で反応し、更に公知のウレタン化触媒を使用して合成することもできる。   The urethane (meth) acrylate resin used for the component (A) can be produced by a known method. As an example of the production method, (1) First, a polyisocyanate and a polyol are preferably reacted at NCO / OH = 1.3 to 2 to form a terminal isocyanate compound, and then a hydroxyl group-containing (meth) acrylate compound is added thereto. A method of reacting so that the hydroxyl groups are substantially equal to the isocyanate group, and (2) reacting a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound at NCO / OH = 2 or more, Examples include a method of producing and then reacting by adding a polyol. These syntheses can be synthesized by reacting at a temperature of 50 ° C. to 100 ° C. and further using a known urethanization catalyst.

本発明の(A)成分としてエポキシ(メタ)アクリレート樹脂を使用できる。使用できるエポキシ(メタ)アクリレート樹脂とは、好ましくは1分子中に2個以上の(メタ)アクリロイル基を有するもので、エポキシ樹脂と不飽和一塩基酸とをエステル化触媒の存在下で反応して得られるものである。
ここでいうエポキシ樹脂の例を挙げれば、ビスフェノールタイプまたはノボラックタイプのエポキシ樹脂単独、または、ビスフェノールタイプとノボラックタイプのエポキシ樹脂とを混合した樹脂などであって、その平均エポキシ当量が好ましくは150から450の範囲のものである。
また、かかる樹脂の数平均分子量は、本発明の効果を奏する限り特に限定されないが、好ましくは500〜5000である。
An epoxy (meth) acrylate resin can be used as the component (A) of the present invention. The epoxy (meth) acrylate resin that can be used preferably has two or more (meth) acryloyl groups in one molecule, and reacts an epoxy resin with an unsaturated monobasic acid in the presence of an esterification catalyst. Is obtained.
Examples of the epoxy resin mentioned here include a bisphenol type or novolac type epoxy resin alone, or a resin in which a bisphenol type and a novolac type epoxy resin are mixed, and the average epoxy equivalent is preferably from 150. It is in the range of 450.
Further, the number average molecular weight of the resin is not particularly limited as long as the effect of the present invention is exhibited, but is preferably 500 to 5,000.

ここで、上記ビスフェノールタイプのエポキシ樹脂として代表的なものを挙げれば、エピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られる実質的に1分子中に2個以上のエポキシ基を有するグリシジルエーテル型のエポキシ樹脂、メチルエピクロルヒドリンとビスフェノールA若しくはビスフェノールFとの反応により得られるメチルグリシジルエーテル型のエポキシ樹脂、あるいはビスフェノールAのアルキレンオキサイド付加物とエピクロルヒドリン若しくはメチルエピクロルヒドリンとから得られるエポキシ樹脂などである。また、上記ノボラックタイプのエポキシ樹脂として代表的なものには、フェノールノボラック又はクレゾールノボラックと、エピクロルヒドリン又はメチルエピクロルヒドリンとの反応により得られるエポキシ樹脂などがある。   Here, if a typical thing is mentioned as said bisphenol type epoxy resin, the glycidyl ether type | mold which has two or more epoxy groups in 1 molecule substantially obtained by reaction with epichlorohydrin and bisphenol A or bisphenol F will be mentioned. An epoxy resin, a methyl glycidyl ether-type epoxy resin obtained by reaction of methyl epichlorohydrin and bisphenol A or bisphenol F, an epoxy resin obtained from an alkylene oxide adduct of bisphenol A and epichlorohydrin or methyl epichlorohydrin, or the like. Typical examples of the novolak type epoxy resin include an epoxy resin obtained by a reaction of phenol novolak or cresol novolak with epichlorohydrin or methyl epichlorohydrin.

エポキシ(メタ)アクリレート樹脂に用いられる不飽和一塩基酸として代表的なものには、アクリル酸、メタアクリル酸、桂皮酸、クロトン酸、マレイン酸モノメチル、マレイン酸モノプロピル、マレイン酸モノ(2−エチルヘキシル)あるいはソルビン酸などがある。なお、これらの不飽和一塩基酸は、単独でも、2種以上混合しても用いられる。上記エポキシ樹脂と不飽和一塩基酸との反応は、好ましくは60〜140℃、特に好ましくは80〜120℃の温度においてエステル化触媒を用いて行われる。
上記のエステル化触媒としては、たとえばトリエチルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルアンリン若しくはジアザビシクロオクタンなどの如き三級アミン、トリフェニルホスフィンあるいはジエチルアミン塩酸塩などの如き公知の触媒がそのまま使用できる。
Typical examples of the unsaturated monobasic acid used for the epoxy (meth) acrylate resin include acrylic acid, methacrylic acid, cinnamic acid, crotonic acid, monomethyl maleate, monopropyl maleate, and mono (2- Ethyl hexyl) or sorbic acid. These unsaturated monobasic acids may be used alone or in combination of two or more. The reaction between the epoxy resin and the unsaturated monobasic acid is preferably performed using an esterification catalyst at a temperature of 60 to 140 ° C, particularly preferably 80 to 120 ° C.
Examples of the esterification catalyst include known tertiary amines such as triethylamine, N, N-dimethylbenzylamine, N, N-dimethylanline and diazabicyclooctane, triphenylphosphine, and diethylamine hydrochloride. The catalyst can be used as it is.

なお、本発明の樹脂組成物は、(A)〜(C)成分の樹脂中に、上記(A)成分の樹脂を30〜80質量%、好ましくは40〜60質量%含む。(A)〜(C)成分の樹脂中に(A)成分が30質量%以上であるとFRP防水層として十分な耐久性能を保持でき、80質量%以下であると良好なライニング作業性を保持することができる。   In addition, the resin composition of this invention contains 30-80 mass% of resin of the said (A) component in resin of (A)-(C) component, Preferably it is 40-60 mass%. When the component (A) is 30% by mass or more in the resin of the components (A) to (C), sufficient durability can be maintained as an FRP waterproof layer, and when the content is 80% by mass or less, good lining workability is maintained can do.

本発明は、(B)成分としてイタコン酸エステルを必須成分として含有する。イタコン酸エステルの具体例としては、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジプロピル、イタコン酸ジブチル、イタコン酸ジオクチル、イタコン酸ジアリル、イタコン酸ジベンジルなどが挙げられる。これらの中からモノマーの臭気などを考慮して選定して使用することが好ましい。好ましくは、イタコン酸ジベンジルを使用する。
これらのイタコン酸エステルを使用することで、表面乾燥性が向上し、ワックス類の使用量が低減され、二次接着性が向上する。イタコン酸エステルを使用しない場合には、表面乾燥性が低下し、ワックス類を多量に使用するため、二次接着性が低下する。
The present invention contains itaconic acid ester as an essential component as component (B). Specific examples of itaconic acid esters include dimethyl itaconate, diethyl itaconate, dipropyl itaconate, dibutyl itaconate, dioctyl itaconate, diallyl itaconate, dibenzyl itaconate and the like. Among these, it is preferable to select and use in consideration of the odor of the monomer. Preferably, dibenzyl itaconate is used.
By using these itaconic acid esters, the surface drying property is improved, the amount of waxes used is reduced, and the secondary adhesiveness is improved. When itaconic acid ester is not used, the surface drying property is lowered and a large amount of wax is used, so that the secondary adhesive property is lowered.

本発明の樹脂組成物は、(A)〜(C)成分の樹脂中に、(B)イタコン酸エステルを10〜50質量%、好ましくは20〜40質量%含む。(A)〜(C)成分の樹脂中にイタコン酸エステルが10質量%以上であるとワックスを多量に添加することなく表面乾燥性が得られるので、二次接着性が良好であり、50質量%以下であると粘度が高くならず作業性が良好である。   The resin composition of this invention contains 10-50 mass% of (B) itaconic acid ester in the resin of (A)-(C) component, Preferably 20-40 mass%. When the itaconic acid ester is 10% by mass or more in the resins of the components (A) to (C), the surface drying property can be obtained without adding a large amount of wax, so that the secondary adhesiveness is good and 50% by mass. If it is at most%, the viscosity will not increase and workability will be good.

本発明は、(C)イタコン酸エステル以外のラジカル重合性単量体を含有する。この(C)成分としては、揮発性の低い、スチレン系モノマーを除くラジカル重合性単量体を使用する。この具体例として、マレイン酸エステル、フマル酸エステル、(メタ)アクリル酸エステルが挙げられるが、好ましくは(メタ)アクリル酸エステルである。   The present invention contains (C) a radical polymerizable monomer other than itaconic acid ester. As this (C) component, the radically polymerizable monomer except a styrene-type monomer with low volatility is used. Specific examples thereof include maleic acid esters, fumaric acid esters, and (meth) acrylic acid esters, with (meth) acrylic acid esters being preferred.

(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリデシル、ジシクロペンテニロキシエチル(メタ)アクリレート、エチレングリコールモノメチルエーテル(メタ)アクリレート、エチレングリコールモノエチルエーテル(メタ)アクリレート、エチレングリコールモノブチルエーテル(メタ)アクリレート、エチレングリコールモノヘキシルエーテル(メタ)アクリレート、エチレングリコールモノ2ーエチルヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノブチルエーテル(メタ)アクリレート、ジエチレングリコールモノヘキシルエーテル(メタ)アクリレート、ジエチレングリコールモノ2ーエチルヘキシルエーテル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ( メタ) アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルジ(メタ)アクリレ-ト、ポリテトラメチレングリコールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、2−ヒドロキシ1,3ジメタクリロキシプロパン、イソシアヌル酸EO変性ジアクリレート、ペンタエリスリトールジアクリレートモノステアレート等の分子内に不飽和二重結合を有するモノマー、またはそれらのオリゴマー等が挙げられる。これらの中からモノマーの臭気を考慮して選定して使用することが好ましい。好ましくは、フェノキシエチル(メタ)アクリレートを使用する。   (Meth) acrylic acid ester includes methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, (Meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid lauryl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid benzyl, (meth) acrylic acid stearyl, (meth) acrylic acid tridecyl, dicyclopentenyloxyethyl (Meth) acrylate, ethylene glycol monomethyl ether (meth) acrylate, ethylene glycol monoethyl ether (meth) acrylate, ethylene glycol monobutyl ether (meth) acrylate, ethylene glycol monohexyl ether (meth) acrylate, ethylene glycol Mono-2-ethylhexyl ether (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monobutyl ether (meth) acrylate, diethylene glycol monohexyl ether (meth) acrylate, diethylene glycol mono-2-ethylhexyl ether (Meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypropyl (meth) acrylate, acetoacetoxyethyl (meth) acrylate, acetoacetoxypropyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, Triethylene glycol di (meth) acrylate Tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate , Neopentyl glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol Intramolecular such as di (meth) acrylate, 2-hydroxy 1,3 dimethacryloxypropane, isocyanuric acid EO-modified diacrylate, pentaerythritol diacrylate monostearate Monomers having an unsaturated double bond or the like oligomers thereof, and the like. Among these, it is preferable to select and use in consideration of the odor of the monomer. Preferably, phenoxyethyl (meth) acrylate is used.

本発明の樹脂組成物は、(A)〜(C)成分の樹脂中に、上記(C)の単量体を10〜50質量%、好ましくは20〜40質量%含む。(A)〜(C)成分の樹脂中に(C)成分が10質量%以上であるとワックスを多量に添加することなく表面乾燥性が得られるので、二次接着性が良好であり、50質量%以下であると粘度が高くならず作業性が良好である。   The resin composition of the present invention contains 10 to 50% by mass, preferably 20 to 40% by mass of the monomer (C) in the resins (A) to (C). When the component (C) is 10% by mass or more in the resins (A) to (C), the surface drying property can be obtained without adding a large amount of wax. When the content is less than or equal to mass%, the viscosity is not increased and the workability is good.

本発明の効果を損なわない範囲で、上記の(B)(C)成分以外にスチレン系のモノマーも併用できる。スチレン系のモノマーとは、スチレンおよびスチレンにアルキル基やハロゲン原子、ビニルなどの置換基が結合したものであり、具体例としては、ビニルトルエン、α−メチルスチレン、β−メチルスチレン、クロロスチレン、ジクロルスチレン、t−ブチルスチレン、ジビニルベンゼンなどが挙げられる。
更に上記の(B)(C)成分以外にエチルビニルエーテル、メチルビニルケトンなどのビニルモノマーや、ジアリルフタレート、ジアリルテレフタレート、ジアリルサクシネート、トリアリルシアヌレートなどのアリル化合物およびそれらのオリゴマーなどが挙げられる。これらのうち、樹脂組成物の低臭性を維持するためにはモノマーの揮発性及び臭気を考慮して選定することが好ましい。
しかしながら、上記のモノマーは極力使用を控えることが好ましく、使用しないことが更に好ましい。
As long as the effects of the present invention are not impaired, a styrene monomer can be used in addition to the components (B) and (C). Styrene monomers are those in which a substituent such as an alkyl group, a halogen atom, or vinyl is bonded to styrene and styrene. Specific examples include vinyltoluene, α-methylstyrene, β-methylstyrene, chlorostyrene, Examples include dichlorostyrene, t-butylstyrene, and divinylbenzene.
Further, in addition to the above components (B) and (C), vinyl monomers such as ethyl vinyl ether and methyl vinyl ketone, and allyl compounds such as diallyl phthalate, diallyl terephthalate, diallyl succinate, triallyl cyanurate and oligomers thereof can be mentioned. . Among these, in order to maintain the low odor of the resin composition, it is preferable to select in consideration of the volatility and odor of the monomer.
However, it is preferable to refrain from using the above monomers as much as possible, and it is more preferable not to use them.

本発明では、(D)成分としてワックスを必須成分として含有する。使用されるワックスとしては、石油系ワックス、オレフィン系ワックス、極性ワックス、特殊ワックスからなる群から選ばれる少なくとも1種が挙げられる。   In this invention, a wax is contained as an essential component as (D) component. Examples of the wax used include at least one selected from the group consisting of petroleum wax, olefin wax, polar wax, and special wax.

前記石油系ワックスとしては、たとえば、パラフィン系ワックス、マイクロクリスタリンワックスなどが挙げられる。前記オレフィン系ワックスとしては、たとえば、ポリエチレン、ポリプロピレンなどが挙げられる。さらに極性ワックスとしては、これらの石油系ワックス、オレフィン系ワックスに極性基(水酸基・エステル基など)を導入したワックス類やオレイン酸・リノール酸・リノレン酸などの不飽和脂肪酸エステルなどが挙げられる。特殊ワックスとしては、ビックケミー社製のByk S−750、Byk S−780などが挙げられる。
これらのワックスを使用することで、樹脂が硬化する際に塗膜表面やライニング層表面に析出して酸素遮断剤として有効に働き、塗膜やライニング層の表面乾燥性を得ることができる。これらのワックスを使用しないと、良好な表面乾燥性を得ることが難しい。
Examples of the petroleum wax include paraffin wax and microcrystalline wax. Examples of the olefin wax include polyethylene and polypropylene. Further, examples of polar waxes include waxes obtained by introducing polar groups (such as hydroxyl groups and ester groups) into these petroleum waxes and olefin waxes, and unsaturated fatty acid esters such as oleic acid, linoleic acid, and linolenic acid. Examples of the special wax include Byk S-750 and Byk S-780 manufactured by BYK Chemie.
By using these waxes, when the resin is cured, it precipitates on the surface of the coating film or the lining layer and effectively acts as an oxygen blocking agent, so that the surface drying property of the coating film or the lining layer can be obtained. Without these waxes, it is difficult to obtain good surface drying properties.

本発明の樹脂組成物は、(A)〜(D)成分の樹脂中に、(D)ワックスを0.05〜0.80質量%、好ましくは0.10〜0.50質量%含む。(A)〜(D)成分の樹脂中にワックスが0.05質量%以上であると表面乾燥性が良好であり、0.80質量%以下であると二次接着性が良好である。   The resin composition of the present invention contains 0.05 to 0.80 mass%, preferably 0.10 to 0.50 mass% of the wax (D) in the resins (A) to (D). When the wax is 0.05% by mass or more in the resins (A) to (D), the surface dryness is good, and when it is 0.80% by mass or less, the secondary adhesiveness is good.

本発明において、表面乾燥性を向上させる目的でコバルト系、バナジウム系、マンガン系等の有機酸金属石鹸類を併用することが好ましく、その中でもコバルトの有機酸塩が好適に使用できる。その添加量としては、(A)成分+(B)成分+(C)成分の合計100質量部に対して好ましくは0.1〜3質量部である。   In the present invention, it is preferable to use organic acid metal soaps such as cobalt-based, vanadium-based and manganese-based soaps for the purpose of improving the surface drying property, and among them, an organic acid salt of cobalt can be preferably used. The addition amount is preferably 0.1 to 3 parts by mass with respect to 100 parts by mass in total of the component (A) + the component (B) + the component (C).

本発明の組成物には、樹脂組成物を硬化させるため及び硬化速度を調整するために、ラジカル硬化剤、光ラジカル開始剤、硬化促進剤、重合禁止剤を使用することができる。
ラジカル硬化剤とは、有機過酸化物が挙げられ、具体的にはジアシルパーオキサイド系、パーオキシエステル系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ケトンパーオキサイド系、パーオキシケタール系、アルキルパーエステル系、パーカーボネート系等公知公用のものが使用される。
In the composition of the present invention, a radical curing agent, a photo radical initiator, a curing accelerator, and a polymerization inhibitor can be used for curing the resin composition and adjusting the curing rate.
Examples of the radical curing agent include organic peroxides, specifically, diacyl peroxides, peroxyesters, hydroperoxides, dialkyl peroxides, ketone peroxides, peroxyketals, alkyl peroxides. Known and publicly used ones such as ester-based and percarbonate-based ones are used.

光ラジカル開始剤とは、光増感剤であり具体的にはベンゾインアルキルエーテルのようなベンゾインエーテル系、ベンゾフェノン、ベンジル、メチルオルソベンゾイルベンゾエートなどのベンゾフェノン系、ベンジルジメチルケタール、2,2−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、4−イソプロピル−2−ヒドロキシ−2−メチルプロピオフェノン、1,1−ジクロロアセトフェノンなどのアセトフェノン系、2−クロロチオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントンなどのチオキサントン系等が挙げられる。   Photoradical initiators are photosensitizers, specifically benzoin ethers such as benzoin alkyl ether, benzophenones such as benzophenone, benzyl, methyl orthobenzoylbenzoate, benzyl dimethyl ketal, 2,2-diethoxy. Acetophenones such as acetophenone, 2-hydroxy-2-methylpropiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, 1,1-dichloroacetophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2 -Thioxanthone series such as isopropylthioxanthone and the like can be mentioned.

硬化促進剤としては、例えばナフテン酸コバルト、オクチル酸コバルト、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸バリウム等金属石鹸類、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等の金属キレート類、アニリン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、p−トルイジン、N,N−ジメチル−p−トルイジン、N,N−ビス(2-ヒドロキシエチル)−p−トルイジン、4-(N,N−ジメチルアミノ)ベンズアルデヒド、4−[N,N−ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4−(N−メチル−N−ヒドロキシエチルアミノ)ベンズアルデヒド、N,N−ビス(2−ヒドロキシプロピル)−p−トルイジン、N−エチル−m−トルイジン、トリエタノールアミン、m−トルイジン、ジエチレントリアミン、ピリジン、フェニリモルホリン、ピペリジン、N,N−ビス(ヒドロキシエチル)アニリン、ジエタノールアニリン等のN,N−置換アニリン、N,N−置換−p−トルイジン、4-(N,N−置換アミノ)ベンズアルデヒド等のアミン類、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセチルブチルラクトン、ジメチルアセトアセタミドなどのβ-ジケトンなどが挙げられる。   Examples of the curing accelerator include metal soaps such as cobalt naphthenate, cobalt octylate, zinc octylate, vanadium octylate, copper naphthenate, and barium naphthenate, and metals such as vanadium acetyl acetate, cobalt acetyl acetate, and iron acetylacetonate. Chelates, aniline, N, N-dimethylaniline, N, N-diethylaniline, p-toluidine, N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, 4 -(N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N-hydroxyethylamino) benzaldehyde, N, N-bis ( 2-hydroxypropyl) -p-toluidine, N-ethyl-m-toluene N, N-substituted anilines such as idin, triethanolamine, m-toluidine, diethylenetriamine, pyridine, phenylmorpholine, piperidine, N, N-bis (hydroxyethyl) aniline, diethanolaniline, N, N-substituted-p- Examples include amines such as toluidine and 4- (N, N-substituted amino) benzaldehyde, and β-diketones such as acetylacetone, methyl acetoacetate, ethyl acetoacetate, acetylbutyllactone, and dimethylacetoacetamide.

重合禁止剤としては、例えばトリハイドロベンゼン、トルハイドロキノン、1,4−ナフトキノン、パラベンゾキノン、ハイドロキノン、ベンゾキノン、ハイドロキノンモノメチルエーテル、p−tert−ブチルカテコール、2,6−ジ−tert−ブチル−4−メチルフェノール、フェノチアジン等を挙げることができる。好ましくは樹脂組成物に、10〜1000ppm添加しうるものである。   Examples of the polymerization inhibitor include trihydrobenzene, toluhydroquinone, 1,4-naphthoquinone, parabenzoquinone, hydroquinone, benzoquinone, hydroquinone monomethyl ether, p-tert-butylcatechol, 2,6-di-tert-butyl-4- Examples thereof include methylphenol and phenothiazine. Preferably, 10 to 1000 ppm can be added to the resin composition.

硬化剤の添加量は、好ましくは樹脂組成物の合計量100質量部に対して、0.1〜6質量部である。本発明においてはジアシルパーオキサイド系のベンゾイルパーオキサイド、パーオキシエステル系及びハイドロパーオキサイド系のt−ブチルパーオキシベンゾエート、クメンハイドロパーオキサイドを使用することが好ましい。又、硬化促進剤の添加量は、0.1〜5質量部の範囲で使用する。本発明においてはβ−ジケトン系促進剤、コバルト金属石鹸系促進剤と使用が好ましい。なお、硬化促進剤は、2種以上の組み合わせで使用しても良く、更に予め樹脂に添加しておいても良いし、使用時に添加しても良い。   The addition amount of the curing agent is preferably 0.1 to 6 parts by mass with respect to 100 parts by mass of the total amount of the resin composition. In the present invention, it is preferable to use diacyl peroxide-based benzoyl peroxide, peroxy ester-based and hydroperoxide-based t-butyl peroxybenzoate, and cumene hydroperoxide. Moreover, the addition amount of a hardening accelerator is used in 0.1-5 mass parts. In the present invention, it is preferable to use a β-diketone accelerator and a cobalt metal soap accelerator. The curing accelerator may be used in a combination of two or more, and may be added to the resin in advance or may be added at the time of use.

また、本発明の樹脂組成物を被覆材として用いるときは、必要に応じて、揺変性付与剤、揺変性付与助剤、増粘剤、着色剤、可塑剤等を、本発明の効果を阻害しない範囲内で含んでいてもよい。
上記揺変性付与剤としては、具体的には、無水微粉末シリカ、アスベスト、クレー等が挙げられる。また、揺変性付与助剤としては、具体的には、ポリエチレングリコール、グリセリン、ポリヒドロキシカルボン酸アミド、有機4級アンモニウム塩、BYK−R−605(商品名;ビックケミージャパン(株)製)等が挙げられる。
増粘剤としては、具体的には、酸化マグネシウム、酸化カルシウム、酸化亜鉛等の金属酸化物が挙げられる。
着色剤としては、具体的には、有機顔料、無機顔料、染料等が挙げられる。
可塑剤としては、具体的には、塩素化パラフィン、リン酸エステル、フタル酸エステル等が挙げられる。
Further, when the resin composition of the present invention is used as a coating material, a thixotropic agent, a thixotropic agent, a thickener, a colorant, a plasticizer, and the like are inhibited as necessary. It may be included within the range not to be.
Specific examples of the thixotropic agent include anhydrous fine powder silica, asbestos, and clay. As the thixotropic agent, specifically, polyethylene glycol, glycerin, polyhydroxycarboxylic acid amide, organic quaternary ammonium salt, BYK-R-605 (trade name; manufactured by Big Chemie Japan Co., Ltd.), etc. Is mentioned.
Specific examples of the thickener include metal oxides such as magnesium oxide, calcium oxide, and zinc oxide.
Specific examples of the colorant include organic pigments, inorganic pigments, dyes, and the like.
Specific examples of the plasticizer include chlorinated paraffin, phosphate ester, and phthalate ester.

本発明では、成分(A)〜(D)を含む樹脂組成物に、繊維補強材、充填材、骨材の少なくとも1種を混合して樹脂複合組成物を調製する。使用される繊維補強材としては、例えば、ガラス繊維、アミド、アラミド、ビニロン、ポリエステル、フェノール等の有機繊維、カーボン繊維、金属繊維、セラミック繊維或いはこれらの混合物を用いることができる。施工性、経済性を考慮した場合、好ましいのはガラス繊維及び有機繊維であり、特に好ましいのはガラス繊維である。また、繊維の形態は、平織り、朱子織り、不織布、マット、ロービング、チョップ、編み物、組み物、これらの複合構造の物等があるが、施工法、厚み保持等によりマット状が好ましい。また、ガラスロービングを20〜100mmにカットしてチョップドストランドにして使用することも可能である。上記(A)〜(D)成分を含む樹脂組成物100質量部に対して、繊維補強材成分を1〜50質量部が好ましい。   In the present invention, a resin composite composition is prepared by mixing at least one of a fiber reinforcing material, a filler, and an aggregate with a resin composition containing components (A) to (D). Examples of the fiber reinforcing material used include glass fibers, amides, aramids, vinylons, polyesters, phenols, and other organic fibers, carbon fibers, metal fibers, ceramic fibers, and mixtures thereof. In consideration of workability and economy, glass fibers and organic fibers are preferable, and glass fibers are particularly preferable. The fiber may be plain weave, satin weave, non-woven fabric, mat, roving, chop, knitted fabric, braided fabric, or a composite structure thereof. The mat shape is preferable due to construction method, thickness maintenance, and the like. Moreover, it is also possible to cut glass roving into 20-100 mm and use it as a chopped strand. The fiber reinforcement component is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin composition containing the components (A) to (D).

充填剤としては、具体的には、炭酸カルシウム、水酸化アルミニウム、フライアッシュ、硫酸バリウム、タルク、クレー、ガラス粉末など、骨材としては、珪砂・砂利・砕石などが挙げられる。これらをモルタル用として使用するときは、これらの粒径が5mm以下程度のものが好ましい。充填剤または骨材の配合量としては、上記(A)〜(D)成分を含む樹脂組成物100質量部に対して、充填剤及び骨材成分を合計1〜300質量部使用することが好ましい。   Specific examples of the filler include calcium carbonate, aluminum hydroxide, fly ash, barium sulfate, talc, clay, and glass powder. Examples of the aggregate include quartz sand, gravel, and crushed stone. When these are used for mortar, those having a particle size of about 5 mm or less are preferable. As a compounding quantity of a filler or an aggregate, it is preferable to use 1-300 mass parts of fillers and an aggregate component with respect to 100 mass parts of resin compositions containing the said (A)-(D) component. .

本発明の樹脂組成物からなる防水被覆構造体またはライニング被覆構造体は、防水材及びライニング材組成物または複合組成物を用いて土木建築物の基体上に、ウレタン系、エポキシ系、ポリエステル系等種々のものから施工性、基体状況等を勘案して適宜選択されたプライマーを塗布する工程、プライマー乾燥後に、本発明の防水組成物、ライニング組成物または複合組成物をハンドレイアップやスプレーアップ法等で被覆施工する工程などからなる工程を経て形成される。   The waterproof coating structure or lining coating structure comprising the resin composition of the present invention is a urethane-based, epoxy-based, polyester-based, etc. on a civil engineering building base using a waterproof material and a lining material composition or composite composition. Applying a primer appropriately selected in consideration of workability, substrate condition, etc. from various things, after primer drying, hand lay-up or spray-up method of the waterproof composition, lining composition or composite composition of the present invention It is formed through a process consisting of a process of coating and the like.

本発明の樹脂組成物は目的用途に応じ、防水被覆構造体またはライニング被覆構造体の上に種々の材料と組合せて利用される。防水材として用いた場合には、防水被覆構造体の上に耐候性に優れるフッ素系、アクリル系、ウレタン系、アクリルシリコン系等の公知慣用のトップコートと称される上塗り塗料が塗布される。また表面を車両走行用として使う場合は走路表面に硅砂や壁砂等を散布して、すべり止め施工をする方法も採られる。   The resin composition of the present invention is used in combination with various materials on a waterproof coating structure or lining coating structure depending on the intended use. When used as a waterproof material, a top coating material called a well-known and commonly used top coat such as a fluorine-based, acrylic-based, urethane-based, or acrylic-silicon-based material having excellent weather resistance is applied on the waterproof coating structure. In addition, when the surface is used for running a vehicle, a method of preventing slipping by spraying dredged sand or wall sand on the surface of the runway is also employed.

本発明で基体とは、例えばセメントコンクリート、アスファルトコンクリート、ALC板、PC板、FRP、プラスチック、木質物、金属などの単独あるいは組み合わせて構成されたものを意味し、その形状はいずれのものでも良く、土木建築物の表面であれば球面、曲面、円柱面、平面、垂直面、斜面、天井面等のいずれでも良い。コンクリート、金属等の堅固な基体の場合には必要に応じて下地処理、プライマー処理等を行うと良い。   In the present invention, the substrate means, for example, a cement concrete, asphalt concrete, ALC plate, PC plate, FRP, plastic, wood, metal, or the like, and any shape thereof may be used. As long as it is a surface of a civil engineering building, any of a spherical surface, a curved surface, a cylindrical surface, a flat surface, a vertical surface, a slope, a ceiling surface and the like may be used. In the case of a solid substrate such as concrete or metal, it is advisable to perform base treatment, primer treatment or the like as necessary.

本発明の樹脂組成物は、反応性モノマーの揮散量を低く抑えて、臭気が少なくできるので施工時の臭気が問題となる住宅密集地での新設または補修工事、店舗等の新設または補修工事等の用途に適しており、またこれを用いた土木建築物の防水被覆構造体はFRPの耐久性を保持しているため、建築物の屋根、屋上、開放廊下、ベランダ、外壁、地下外壁、室内及び水槽類の防水構造体及びメンブレン防水構造体として適する。特に屋外防水では、人や車がその上を通行しても十分耐久性を保持するので、重歩行防水や駐車場等の被覆用材として利用できる。   The resin composition of the present invention suppresses the volatilization amount of the reactive monomer and can reduce the odor, so that the odor at the time of construction is a problem in new construction or repair work in densely populated houses, new establishment or repair work in stores, etc. The waterproof covering structure of civil engineering buildings using this material retains the durability of FRP, so it can be used for building roofs, rooftops, open corridors, verandas, exterior walls, underground exterior walls, indoors. And a waterproof structure for aquariums and a waterproof structure for membranes. In particular, outdoor waterproofing can be used as a covering material for heavy walk waterproofing, parking lots, and the like because it has sufficient durability even when a person or a vehicle passes over it.

以下に本発明を実施例によって更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.

[合成例1]ポリエステルメタアクリレート〔PMA―1〕の合成
温度計、攪拌機、ガス導入口、及び還流冷却器を備えた5リットルの四つ口フラスコに、ジプロピレングリコール1142g、無水フタル酸1868gを仕込み、窒素雰囲気中205℃まで昇温し3時間反応し、100℃まで冷却した。空気下で、これにメチルハイドロキノン0.6g、グリシジルメタアクリレート1076gを加え、120〜130℃で2時間反応させて、冷却して数平均分子量1150のポリエステルメタアクリレート4000gを得た。この重合体を以下[PMA−1]とした。
[Synthesis Example 1] Synthesis of polyester methacrylate [PMA-1] Into a 5-liter four-necked flask equipped with a thermometer, a stirrer, a gas inlet, and a reflux condenser, 1142 g of dipropylene glycol and 1868 g of phthalic anhydride were added. The mixture was charged, heated to 205 ° C. in a nitrogen atmosphere, reacted for 3 hours, and cooled to 100 ° C. Under air, 0.6 g of methylhydroquinone and 1076 g of glycidyl methacrylate were added thereto, reacted at 120 to 130 ° C. for 2 hours, and cooled to obtain 4000 g of polyester methacrylate having a number average molecular weight of 1150. This polymer was hereinafter referred to as [PMA-1].

[合成例2]ウレタンメタアクリレート〔UMA−1〕の合成
温度計、攪拌機、ガス導入口、及び還流冷却器を備えた5リットルの四つ口フラスコに、ポリプロピレングリコール(重量平均分子量1000)1695g、4,4´−ジフェニルメタンジイソシアネート847g、ライトエステルL−8(炭素数12〜15の長鎖アルキル基を有する(メタ)アクリレートモノマーの混合物)847g、ハイドロキノン0.6gを仕込み、乾燥空気雰囲気中70℃まで昇温した。内温が70℃に達したら、触媒としてジブチルチンジラウレート1.5gを添加し、1時間攪拌した後、ポリプロピレングリコール(重量平均分子量400)365g、4,4´−ジフェニルメタンジイソシアネート456g、ジブチルチンジラウレート1.8gを添加し、攪拌を続け、1時間後及び1.5時間後に反応物のIRピークを測定し変化がないことを確認した後、ヒドロキシプロピルメタクリレート790gを30分かけて添加した。攪拌を続け、1時間後にIRにてイソシアネートのピークが消失したことを確認して冷却して、数平均分子量2400のウレタンメタアクリレート樹脂5000gを得た。この重合体を以下[UMA−1]とした。
[Synthesis Example 2] Synthesis of urethane methacrylate [UMA-1] In a 5-liter four-necked flask equipped with a thermometer, a stirrer, a gas inlet, and a reflux condenser, 1695 g of polypropylene glycol (weight average molecular weight 1000), 847 g of 4,4′-diphenylmethane diisocyanate, 847 g of light ester L-8 (mixture of (meth) acrylate monomers having a long-chain alkyl group having 12 to 15 carbon atoms) and 0.6 g of hydroquinone were charged in a dry air atmosphere at 70 ° C. The temperature was raised to. When the internal temperature reached 70 ° C., 1.5 g of dibutyltin dilaurate was added as a catalyst, and after stirring for 1 hour, 365 g of polypropylene glycol (weight average molecular weight 400), 456 g of 4,4′-diphenylmethane diisocyanate, dibutyltin dilaurate 1 .8 g was added and stirring was continued. After 1 hour and 1.5 hours, the IR peak of the reaction product was measured to confirm that there was no change, and then 790 g of hydroxypropyl methacrylate was added over 30 minutes. Stirring was continued, and after 1 hour, the isocyanate peak was confirmed to have disappeared by IR, followed by cooling to obtain 5000 g of urethane methacrylate resin having a number average molecular weight of 2400. This polymer was hereinafter referred to as [UMA-1].

[合成例3]エポキシメタアクリレート樹脂〔EPMA−1〕の合成
温度計、攪拌機、不活性ガス導入口および還流冷却器を備えた5リットルの四つ口フラスコに、ビスフェノールAとエピクロルヒドリンとの反応により得られたエポキシ当量が189なるアラルダイトAER−2063(旭化成イーマテリアルズ株)製)2750g、メタクリル酸1251g、メチルハイドロキノン1.2gおよびトリエチルアミン12gを仕込み、130℃まで昇温させ、同温度で4時間反応させ、酸価10で冷却し、数平均分子量700のエポキシメタアクリレート樹脂4000gを得た。この重合体を以下[EPMA−1]とした。
[Synthesis Example 3] Synthesis of epoxy methacrylate resin [EPMA-1] A 5-liter four-necked flask equipped with a thermometer, a stirrer, an inert gas inlet and a reflux condenser was reacted with bisphenol A and epichlorohydrin. 2750 g of Araldite AER-2063 (Asahi Kasei E-Materials Co., Ltd.) having an epoxy equivalent weight of 189 was obtained, 1251 g of methacrylic acid, 1.2 g of methylhydroquinone and 12 g of triethylamine were added, the temperature was raised to 130 ° C., and 4 hours at the same temperature. It was made to react, it cooled by the acid value 10, and 4000 g of epoxy methacrylate resin of the number average molecular weight 700 was obtained. This polymer was designated as [EPMA-1] below.

[合成例5]イタコン酸ジベンジルの調製
温度計、攪拌機、ガス導入口、及び還流冷却器を備えた5リットルの四つ口フラスコに、イタコン酸1660g、ベンジルアルコール2800g、触媒としてパラトルエンスルホン酸22.3gを加え、窒素雰囲気中120℃で25時間反応を行い、酸価6.8で冷却し、イタコン酸ジベンジル4000gを得た。
Synthesis Example 5 Preparation of Dibenzyl Itaconic Acid In a 5 liter four-necked flask equipped with a thermometer, stirrer, gas inlet, and reflux condenser, itaconic acid 1660 g, benzyl alcohol 2800 g, and paratoluenesulfonic acid 22 as a catalyst .3 g was added, and the reaction was performed at 120 ° C. for 25 hours in a nitrogen atmosphere, followed by cooling with an acid value of 6.8 to obtain 4000 g of dibenzyl itaconate.

[実施例1〜4]
合成例で合成したPMA−1を表2に示す配合比で混合溶解して樹脂液を得た。
塗膜の乾燥性、ライニング時の二次接着性を測定し、結果を表2に示す。
実施例4の硬化物の引張り試験結果及び促進劣化試験結果を表4に示す。
[Examples 1 to 4]
PMA-1 synthesized in the synthesis example was mixed and dissolved at a blending ratio shown in Table 2 to obtain a resin solution.
The drying property of the coating film and the secondary adhesion during lining were measured, and the results are shown in Table 2.
Table 4 shows the tensile test results and accelerated deterioration test results of the cured product of Example 4.

[比較例1〜4]
実施例と同様に合成例で合成したPMA−1及びUMA−1、EPMA−1を表3に示す配合比で混合溶解した樹脂液を得た。塗膜の乾燥性、ライニング時の二次接着性を測定し、結果を表3に示す。
[Comparative Examples 1-4]
The resin liquid which mixed and dissolved PMA-1, UMA-1, and EPMA-1 which were synthesize | combined by the synthesis example similarly to the Example by the compounding ratio shown in Table 3 was obtained. The drying property of the coating film and the secondary adhesion during lining were measured, and the results are shown in Table 3.

以下に各評価方法及び評価基準を示す。
[塗膜乾燥時間(指触乾燥性)の測定]
25℃でゲル化時間が30分となるように調整された樹脂に下記に示す硬化剤、促進剤を混合し、組成物の一部を300mm×300mm(縦×横)の大きさで厚さ50mmのコンクリート板上に0.3mmの厚みに塗布した。指触乾燥性により、硬化物の塗膜乾燥性を確認し、タックフリーとなった時間を測定した。
Each evaluation method and evaluation criteria are shown below.
[Measurement of coating film drying time (dryness to touch)]
A curing agent and an accelerator shown below are mixed with a resin adjusted to have a gelation time of 30 minutes at 25 ° C., and a part of the composition is 300 mm × 300 mm (length × width) in thickness. It apply | coated to the thickness of 0.3 mm on a 50 mm concrete board. The dryness of the coated film of the cured product was confirmed based on the dryness to the touch, and the time when the tack became free was measured.

○硬化剤 328E(化薬アクゾ製) 1.5%
○促進剤 8%オクチル酸コバルト 1.0%
アセチルブチルラクトン 0.5%
○ Curing agent 328E (made by Kayaku Akzo) 1.5%
○ Accelerator 8% Cobalt octylate 1.0%
Acetyl butyl lactone 0.5%

[二次接着性の評価]
300mm×300mm(縦×横)の大きさで厚さ50mmのコンクリート板に、プライマーとして低臭気ビニルエステル樹脂NSR−112(昭和電工製)を厚さ0.3mmとなるように硬化剤を混合して塗布し、2時間後に塗膜が乾燥した状態を確認してから、調整した樹脂組成物に硬化剤を混合して450g/m2のガラスマットを用いて1プライの積層(FRPライニング)を行った。乾燥してから3日後に表面処理を行わずに、そのまま調整した樹脂組成物に硬化剤、促進剤を混合して、450g/m2のガラスマットを用いて2層目の積層(FRPライニング)を行った。2層目の積層を行った翌日にピーリング式試験にて接着性を確認し、破壊モードを測定した。母材破壊を○、界面剥離を×とした。
[Evaluation of secondary adhesion]
A hardener is mixed with a low odor vinyl ester resin NSR-112 (manufactured by Showa Denko) as a primer on a concrete plate of 300 mm x 300 mm (length x width) and thickness 50 mm to a thickness of 0.3 mm. After confirming that the coating film was dried after 2 hours, a curing agent was mixed with the prepared resin composition, and a one-ply lamination (FRP lining) was performed using a 450 g / m 2 glass mat. went. Three days after drying, the surface treatment is not performed, and the resin composition prepared as it is is mixed with a curing agent and an accelerator, and a second layer is laminated using a 450 g / m 2 glass mat (FRP lining). Went. The next day after the second layer was laminated, the adhesiveness was confirmed by a peeling test, and the failure mode was measured. Base material destruction was marked with ○, and interface peeling was marked with ×.

[硬化物の評価(引張り試験・促進劣化試験)]
調整した樹脂組成物に硬化剤を混合して脱気した後に、300mm×300mm×3mm(縦×横×厚)の大きさの離型処理した型に樹脂を注入し、室温で8時間硬化させた後、さらに40℃の硬化炉中で24時間後硬化させ、注形板を作成した。JISK7113に従って試験片を作製して、引張り強度及び伸び率を測定した。
更にJASS8記載の表1に示す促進劣化処理を行い、処理後の試験片についても引張り強度及び伸び率を測定し、耐久性の評価をした。結果を表4に示す。
[Evaluation of cured product (tensile test / accelerated deterioration test)]
After mixing the cured resin with the prepared resin composition and degassing, the resin is poured into a mold that has been subjected to a mold release treatment of 300 mm × 300 mm × 3 mm (length × width × thickness) and cured at room temperature for 8 hours. After that, it was further cured for 24 hours in a curing furnace at 40 ° C. to prepare a cast plate. Test pieces were prepared according to JISK7113, and the tensile strength and elongation were measured.
Furthermore, the accelerated deterioration process shown in Table 1 described in JASS8 was performed, and the tensile strength and the elongation rate were measured for the test pieces after the process to evaluate the durability. The results are shown in Table 4.

Figure 0006372922
Figure 0006372922

Figure 0006372922
Figure 0006372922

Figure 0006372922
Figure 0006372922

Figure 0006372922
Figure 0006372922

なお、2012年12月27日に出願された日本特許出願2012−285455号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。   The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2012-285455 filed on Dec. 27, 2012 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (8)

(A)ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂及びエポキシ(メタ)アクリレート樹脂からなる群から選択される少なくとも1種類の樹脂、(B)イタコン酸ジベンジル、(C)スチレン系モノマーを除くラジカル重合性単量体、および(D)ワックスを配合したことを特徴とする樹脂組成物。 (A) at least one resin selected from the group consisting of a polyester (meth) acrylate resin, a urethane (meth) acrylate resin, and an epoxy (meth) acrylate resin, (B) dibenzyl itaconate , and (C) a styrene monomer. A resin composition comprising a radically polymerizable monomer to be removed and (D) a wax. 前記(A)成分がグリシジルメタクリレート変性ポリエステルメタクリレート樹脂であることを特徴とする請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the component (A) is a glycidyl methacrylate-modified polyester methacrylate resin. 前記(C)成分が(メタ)アクリル酸エステルであることを特徴とする請求項1又は2に記載の樹脂組成物。 The component (C) (meth) resin composition according to claim 1 or 2, characterized in that the acrylic acid ester. 請求項1〜のいずれか1項に記載の樹脂組成物、並びに繊維強化材、充填材および骨材の少なくとも1種から得られる樹脂複合組成物であって、該樹脂組成物100質量部に対して、繊維強化材、充填材および骨材を合計して1〜300質量部配合して得られる樹脂複合組成物。 A resin composite composition obtained from at least one of the resin composition according to any one of claims 1 to 3 and a fiber reinforcing material, a filler, and an aggregate, wherein 100 parts by mass of the resin composition On the other hand, a resin composite composition obtained by adding 1 to 300 parts by mass of a fiber reinforcing material, a filler, and an aggregate. 請求項1〜のいずれか1項に記載の樹脂組成物又は請求項に記載の樹脂複合組成物を防水層として土木建築物に施工することを特徴とする、土木建築物の防水被覆工法。 A waterproof coating method for civil engineering buildings, wherein the resin composition according to any one of claims 1 to 3 or the resin composite composition according to claim 4 is applied to a civil engineering building as a waterproof layer. . 請求項1〜のいずれか1項に記載の樹脂組成物又は請求項に記載の樹脂複合組成物を保護層として土木建築物に施工することを特徴とする、土木建築物のライニング被覆工法。 A lining coating method for civil engineering buildings, wherein the resin composition according to any one of claims 1 to 3 or the resin composite composition according to claim 4 is applied to a civil engineering building as a protective layer. . 請求項1〜のいずれか1項に記載の樹脂組成物又は請求項に記載の樹脂複合組成物を用いて、防水層が施された被覆構造体。 A covering structure provided with a waterproof layer using the resin composition according to any one of claims 1 to 3 or the resin composite composition according to claim 4 . 請求項1〜のいずれか1項に記載の樹脂組成物又は請求項に記載の樹脂複合組成物を用いて、保護層が施された被覆構造体。 The coating structure in which the protective layer was given using the resin composition of any one of Claims 1-3 , or the resin composite composition of Claim 4 .
JP2014554382A 2012-12-27 2013-12-19 Resin composition, coating method using the same, and coating structure coated by the method Active JP6372922B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012285455 2012-12-27
JP2012285455 2012-12-27
PCT/JP2013/084103 WO2014103878A1 (en) 2012-12-27 2013-12-19 Resin composition, covering method using same, and covered structure covered by said method

Publications (2)

Publication Number Publication Date
JPWO2014103878A1 JPWO2014103878A1 (en) 2017-01-12
JP6372922B2 true JP6372922B2 (en) 2018-08-15

Family

ID=51020965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554382A Active JP6372922B2 (en) 2012-12-27 2013-12-19 Resin composition, coating method using the same, and coating structure coated by the method

Country Status (2)

Country Link
JP (1) JP6372922B2 (en)
WO (1) WO2014103878A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029125A (en) * 2014-07-25 2016-03-03 昭和電工株式会社 Two-pack curable resin composition, covering material, covering method and covering structure
CN107835736A (en) * 2015-07-21 2018-03-23 株式会社大阪曹达 Lining composition
JP2018002888A (en) * 2016-07-01 2018-01-11 昭和電工株式会社 Vinyl ester resin composition
JP6932517B2 (en) * 2017-02-23 2021-09-08 ジャパンコンポジット株式会社 Radical curable resin composition, resin cured material layer and construction method
JP7183580B2 (en) * 2018-06-14 2022-12-06 Dic株式会社 Concrete protection material
FR3116824B1 (en) * 2020-12-01 2023-11-03 Bostik Sa Two-component adhesive composition based on itaconate monomer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079617A (en) * 1998-05-18 2000-03-21 Toray Ind Inc Production of member for civil engineering and construction
JP4441868B2 (en) * 2004-12-09 2010-03-31 Dic株式会社 Curable resin composition for civil engineering and building materials, civil engineering and building materials for application, and civil engineering buildings
JP5549895B2 (en) * 2009-03-25 2014-07-16 ディーエスエム アイピー アセッツ ビー.ブイ. Resin composition
WO2010108939A1 (en) * 2009-03-25 2010-09-30 Dsm Ip Assets B.V. Vinyl ester resin composition
DE102012219652A1 (en) * 2012-10-26 2014-04-30 Hilti Aktiengesellschaft Vinyl ester resin-based resin composition, reaction resin mortar containing the same and use thereof

Also Published As

Publication number Publication date
JPWO2014103878A1 (en) 2017-01-12
WO2014103878A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP6372922B2 (en) Resin composition, coating method using the same, and coating structure coated by the method
JP3994297B2 (en) Resin composition and civil engineering building material
JP2016029125A (en) Two-pack curable resin composition, covering material, covering method and covering structure
EP3533809A1 (en) Radical-polymerizable resin composition
JP2011231231A (en) Radically curable unsaturated resin composition and coating material
JP2008106169A (en) Curable resin composition
JP4973914B2 (en) Curable resin composition and waterproof material composition
JP5179696B2 (en) Low odor resin composition, coating material containing the same, and coating method using the same
JP4147468B2 (en) Resin composition
JP2009263445A (en) Method for storing air-drying unsaturated resin composition, civil engineering construction structure using the same, and construction method of civil engineering construction structure
EP2497790A1 (en) Polyester (meth)acrylate resin composition, coated structure, and method for constructing same
JP4982987B2 (en) Resin composition for coating
JP4780369B2 (en) RESIN COMPOSITION FOR SHEET MOLDING COMPOUND AND BULK MOLDING COMPOUND AND ITS APPLICATION
JP5131156B2 (en) Radical polymerizable resin composition
JP2003268054A (en) Free radical curing resin composition and civil engineering building material using the same
JP2003301020A (en) Curable resin composition and adhesive
JP4100120B2 (en) Covering structure
JP4392591B2 (en) Cast molding resin composition and cast molding product
JP3244077B2 (en) Vinyl ester resin composition
WO2020040052A1 (en) Curable resin composition and cured product therefrom
JP4861601B2 (en) Fiber reinforced plastic molding material and fiber reinforced plastic molding
JP4911921B2 (en) Radical curable resin composition and method for curing the same
JP2005015642A (en) Radically polymerizable resin composition
JPH10120736A (en) Curable resin composition, frp molded material and coating material
JP4193490B2 (en) Floor covering structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180713

R150 Certificate of patent or registration of utility model

Ref document number: 6372922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350