JP5017768B2 - Silicon carbide semiconductor element - Google Patents

Silicon carbide semiconductor element Download PDF

Info

Publication number
JP5017768B2
JP5017768B2 JP2004160514A JP2004160514A JP5017768B2 JP 5017768 B2 JP5017768 B2 JP 5017768B2 JP 2004160514 A JP2004160514 A JP 2004160514A JP 2004160514 A JP2004160514 A JP 2004160514A JP 5017768 B2 JP5017768 B2 JP 5017768B2
Authority
JP
Japan
Prior art keywords
plane
trench
sic
main surface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004160514A
Other languages
Japanese (ja)
Other versions
JP2005340685A (en
Inventor
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2004160514A priority Critical patent/JP5017768B2/en
Publication of JP2005340685A publication Critical patent/JP2005340685A/en
Application granted granted Critical
Publication of JP5017768B2 publication Critical patent/JP5017768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0475Changing the shape of the semiconductor body, e.g. forming recesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

半導体材料として炭化珪素を用いたMOSFET又はIGBT等の電圧駆動のMOS型電力用半導体素子、特にトレンチ型の半導体素子に関する。   The present invention relates to a voltage-driven MOS type power semiconductor device such as a MOSFET or IGBT using silicon carbide as a semiconductor material, particularly a trench type semiconductor device.

炭化珪素半導体は、バンドギャップが4H−SiCで3.25eVとSiの1.12eVに対して3倍程度大きく、電界強度がSi(0.3MV/cm)より1桁近く大きくなる(2〜4MV/cm)という特徴を持つ。電力用半導体素子においては、素子がオン状態におけるオン抵抗が、以下の式のように電界強度の3乗に逆比例して減少、また移動度の逆数に比例して減少する。
RDRIFT=(4BV)/(μεECR ) ・・式(1)
ここで、BVは絶縁耐圧、μはキャリアの移動度、εは半導体の誘電率、ECRは半導体の臨界電界強度である。このRDRIFTがユニポーラデバイスの最小オン抵抗であり、このオン抵抗と絶縁耐圧との関係がユニポーラリミットと呼ばれる。
従って、移動度がSiより低いことと考え合わせても、Siと比べて数100分の1にオン抵抗を低減することができ、次世代の電力用半導体素子として期待されている。現在までに、ダイオード、トランジスタ、サイリスタなど様々な構造のデバイスが試作され、その一部が実用化されている。
Silicon carbide semiconductors have a band gap of 4H-SiC, 3.25 eV and about 3 times larger than 1.12 eV of Si, and the electric field strength is nearly an order of magnitude larger than Si (0.3 MV / cm) (2 to 4 MV / cm). It has the characteristics. In a power semiconductor device, the on-resistance when the device is in an on state decreases in inverse proportion to the third power of the electric field strength and decreases in proportion to the reciprocal of mobility as shown in the following equation.
R DRIFT = (4BV 2 ) / (μεE CR 3 ) ・ ・ Expression (1)
Here, BV is the dielectric strength, mu is the carrier mobility, epsilon is the dielectric constant of the semiconductor, E CR is the critical electric field strength of the semiconductor. This RDRIFT is the minimum on-resistance of the unipolar device, and the relationship between this on-resistance and the withstand voltage is called a unipolar limit.
Therefore, even if it is considered that the mobility is lower than that of Si, the on-resistance can be reduced to several hundredth of that of Si, which is expected as a next-generation power semiconductor device. To date, devices with various structures such as diodes, transistors, and thyristors have been prototyped, and some of them have been put into practical use.

その中で図11にトランジスタの一形態であるnチャネルDIMOSFET (Double Implanted MOSFET)の1セルの断面図を示す。一般的な作成方法として、まず低抵抗N型炭化珪素基板1の上に同じN型ドリフト層2を形成する。そこにイオン注入で深いP型のベース領域3を一般的にアルミニウム(Al)を用いて選択的に形成する。さらに低抵抗のN型ソース領域4をP型ベース領域3に囲まれるように一般的に窒素(N)あるいは燐(P)のイオン注入でP型ベース領域3内に選択的に形成する。このとき重要なのは、ベース領域3のN型ソース領域4とN型ドリフト層2に挟まれた表面部分のチャネル領域5の幅を各セル間で一定にすることであり、この幅を精度良く作製する方法としては、例えば特許文献1に記載されている。その後、ゲート酸化膜6を形成した後、ポリシリコンによるゲート電極7、N型ソース領域4とP型ベース領域に接続する金属のソース電極8、裏面のN型炭化珪素基板1に接続する金属のドレイン電極9を形成する。10はゲート電極7とソース電極8との絶縁をするための層間絶縁膜である。   Among them, FIG. 11 shows a cross-sectional view of one cell of an n-channel DIMOSFET (Double Implanted MOSFET) which is one form of a transistor. As a general production method, first, the same N type drift layer 2 is formed on a low resistance N type silicon carbide substrate 1. A deep P-type base region 3 is selectively formed there by generally using aluminum (Al). Further, a low-resistance N-type source region 4 is selectively formed in the P-type base region 3 by ion implantation of nitrogen (N) or phosphorus (P) so as to be surrounded by the P-type base region 3. What is important at this time is that the width of the channel region 5 in the surface portion sandwiched between the N-type source region 4 and the N-type drift layer 2 in the base region 3 is made constant between the cells, and this width is manufactured with high accuracy. As a method of doing this, it is described in Patent Document 1, for example. Thereafter, after forming the gate oxide film 6, the gate electrode 7 made of polysilicon, the metal source electrode 8 connected to the N-type source region 4 and the P-type base region, and the metal connected to the N-type silicon carbide substrate 1 on the back surface are formed. A drain electrode 9 is formed. Reference numeral 10 denotes an interlayer insulating film for insulating the gate electrode 7 from the source electrode 8.

実際の動作は、予めソース電極8をアース電位にしておき、ゲート電極7に負バイアスを印加すると、N型ソース領域4とN型ドリフト層2に挟まれたチャネル領域5には正孔が誘起された蓄積状態となり、このnチャネルMOSFETでは電子を伝導キャリアとするので、電流は流れない。ドレイン電極9に正の高電圧を印加するとベース領域3とドリフト層2間の接合が逆バイアス状態になるので、空乏層がベース領域3内とドリフト層領域2内に広がり、電流を低く抑えたまま高電圧を維持しており、これがオフ状態である。この状態からゲート電極7に正バイアスを印加するとソース領域4とドリフト層2に挟まれたベース領域3の表面のチャネル領域5に電子が誘起された反転状態になり、電子がソース電極8、ソース領域4、反転したチャネル領域5、ドリフト層2、基板1、ドレイン電極9の順に流れるオン状態となる。再び、ゲート電極に負バイアスを印加するとチャネル領域5の反転が消滅し、電子の流れる経路が遮断されてオフ状態になる。   In actual operation, when the source electrode 8 is set to the ground potential in advance and a negative bias is applied to the gate electrode 7, holes are induced in the channel region 5 sandwiched between the N-type source region 4 and the N-type drift layer 2. In this n-channel MOSFET, electrons are used as conduction carriers, so that no current flows. When a positive high voltage is applied to the drain electrode 9, the junction between the base region 3 and the drift layer 2 is in a reverse bias state, so that the depletion layer extends into the base region 3 and the drift layer region 2, and the current is kept low. The high voltage is maintained and this is in the off state. When a positive bias is applied to the gate electrode 7 from this state, an inverted state is brought about in which electrons are induced in the channel region 5 on the surface of the base region 3 sandwiched between the source region 4 and the drift layer 2. The region 4, the inverted channel region 5, the drift layer 2, the substrate 1, and the drain electrode 9 are turned on in this order. When a negative bias is applied again to the gate electrode, the inversion of the channel region 5 disappears, the electron flow path is cut off, and the transistor is turned off.

このオン状態におけるオン抵抗は、上記の電流経路に沿って図示矢印12のように、ソース電極の接触抵抗、ソース領域の抵抗、チャネル領域のチャネル抵抗、ドリフト層2のゲート酸化膜6との界面近傍を電子が移動するときの蓄積抵抗、ドリフト層2内のゲート酸化膜6近傍から下方のドレインに向かって流れるときにn型ドリフト層2が両隣のp型ベース層3に挟まれていることによって生じるJFET抵抗、p型ベース層3の厚さを除いたドリフト層2の厚さ方向の抵抗、基板抵抗、そしてドレインの接触抵抗の総和となる。
このDIMOSFETは、原理的にビルトイン電圧が無いので、オン電圧をバイポーラデバイスに比べて低くできる。ユニポーラデバイスなのでオン状態時にキャリアのデバイス内での蓄積がないのでスイッチングロスが小さい。またゲート電極に正負の小さな電圧を印加してオン、オフ動作させる電圧駆動なので、駆動回路が簡単になるなどの長所がある。
The on-resistance in the on-state is the contact resistance of the source electrode, the resistance of the source region, the channel resistance of the channel region, and the interface of the drift layer 2 with the gate oxide film 6 as shown by the arrow 12 in the above-described current path. Storage resistance when electrons move in the vicinity, n-type drift layer 2 is sandwiched between adjacent p-type base layers 3 when flowing from the vicinity of gate oxide film 6 in drift layer 2 toward the lower drain Is the sum of the JFET resistance, the resistance in the thickness direction of the drift layer 2 excluding the thickness of the p-type base layer 3, the substrate resistance, and the drain contact resistance.
Since this DIMOSFET has no built-in voltage in principle, the on-voltage can be made lower than that of a bipolar device. Since it is a unipolar device, there is no accumulation in the carrier device in the on state, so switching loss is small. Further, since the voltage driving is performed by applying a small positive / negative voltage to the gate electrode to perform the on / off operation, there is an advantage that the driving circuit is simplified.

これに対して、トレンチゲート構造を持つUMOSFETの1セルの断面図を図12に示す。n型低抵抗基板1上にn型ドリフト層2をエピタキシャル成長させ、さらにp型ベース領域3をエピタキシャル成長させる。その後、窒素(N)あるいは燐(P)のイオン注入によりソース領域4を形成する。その後、Reactive Ion Etching法により、トレンチ11を形成し、そのトレンチ11を覆うようにゲート酸化膜6をそしてゲート酸化膜6上にゲート電極7を形成する。このゲート電極7を層間絶縁膜10で覆った後、ベース層3とソース領域4にソース電極が接触できるように層間絶縁膜10をエッチングして窓開けし、ソース電極8を形成する。最後にドレイン電極9をウェハ裏面に形成してnチャネル型UMOSFETが完成する。
実際の動作は、前記の図11のnチャネルDIMOSFET と同じである。
しかし、UMOSFETでは構造上チャネル領域5がトレンチ11の側面に形成されるため、オン状態におけるオン抵抗は、図示矢印13で示すように、DIMOSFETでは加算されるドリフト層2のゲート酸化膜6との界面近傍を電子が移動するときの蓄積抵抗、ドリフト層2内のゲート酸化膜6近傍から下方のドレインに向かって流れるときにn型ドリフト層2が両隣のp型ベース層3に挟まれていることによって生じるJFET抵抗がないので、蓄積抵抗とJFET抵抗が発生しない分低減できるという長所がある。また、JFET抵抗が存在しないので、隣り合わせのp型ベース層3間の距離を小さくできるので、セルピッチを小さくできて、オン抵抗をDIMOSFETよりも小さくできるというメリットがある。
In contrast, FIG. 12 shows a cross-sectional view of one cell of a UMOSFET having a trench gate structure. An n-type drift layer 2 is epitaxially grown on the n-type low resistance substrate 1, and a p-type base region 3 is further epitaxially grown. Thereafter, the source region 4 is formed by ion implantation of nitrogen (N) or phosphorus (P). Thereafter, a trench 11 is formed by a reactive ion etching method, a gate oxide film 6 is formed so as to cover the trench 11, and a gate electrode 7 is formed on the gate oxide film 6. After the gate electrode 7 is covered with the interlayer insulating film 10, the interlayer insulating film 10 is etched to open a window so that the source electrode can come into contact with the base layer 3 and the source region 4, thereby forming the source electrode 8. Finally, the drain electrode 9 is formed on the back surface of the wafer to complete the n-channel UMOSFET.
The actual operation is the same as that of the n-channel DIMOSFET of FIG.
However, since the channel region 5 is structurally formed on the side surface of the trench 11 in the UMOSFET, the ON resistance in the ON state is the same as that of the gate oxide film 6 of the drift layer 2 added in the DIMOSFET as indicated by the arrow 13 in the figure. Storage resistance when electrons move near the interface, n-type drift layer 2 is sandwiched between adjacent p-type base layers 3 when flowing from the vicinity of gate oxide film 6 in drift layer 2 toward the lower drain Since there is no JFET resistance caused by this, there is an advantage that the storage resistance and the JFET resistance can be reduced as much as possible. Further, since there is no JFET resistance, the distance between the adjacent p-type base layers 3 can be reduced, so that there is an advantage that the cell pitch can be reduced and the on-resistance can be made smaller than that of the DIMOSFET.

以上のようなことから、特に1〜2kV程度の耐圧を持つトランジスタにおいては、オン抵抗が無視できないため、オン抵抗を微細化により低減できるUMOSFETが有望である。
しかし、実際のデバイスでは、上記で説明したように様々な抵抗成分が存在しており、これら抵抗成分は、絶縁耐圧が低くなればなるほど、ドリフト層の抵抗に対して割合が増加していくことが問題となっている。
また、MOSFETにおいては、以下の式で示されるチャネル抵抗成分が大きな割合を占めているという問題がある。
CH=L/{WCOX μ(V−V)} ・・式(2)
ここで、Lはチャネル長、Wはチャネル幅、COXは酸化膜容量、μはキャリアの移動度、Vはゲート電圧、Vはゲートのしきい値電圧である。この(2)式からRCHは、電子の移動度μの影響を大きく受けることがわかる。
For the above reasons, in particular, in a transistor having a withstand voltage of about 1 to 2 kV, the on-resistance cannot be ignored. Therefore, a UMOSFET that can reduce the on-resistance by miniaturization is promising.
However, in the actual device, there are various resistance components as described above, and the ratio of these resistance components to the resistance of the drift layer increases as the withstand voltage decreases. Is a problem.
In addition, in the MOSFET, there is a problem that a channel resistance component represented by the following formula occupies a large proportion.
R CH = L / {WC OX μ n (V G -V T)} ·· formula (2)
Here, L is the channel length, W is the channel width, C OX is oxide capacitance, the mu n is the mobility, V G is the gate voltage, V T of the carrier is the threshold voltage of the gate. From this equation (2), it is understood that R CH is greatly affected by the electron mobility μ n .

MOSFETでは炭化けい素とゲート酸化膜との界面に存在するトラップ準位に電子が捕獲されて実際に伝導に寄与する電子の数が減少したり、トラップされた電子によるクーロン散乱のため移動度がバルクの値より低下するという問題がある。以下に移動度向上の取り組みの例を順次説明する。
まず、UMOSFETが作製されるSiCの結晶構造、結晶面について説明する。図13に単位セル構造とMOS界面に主に用いられる六方晶炭化珪素の結晶面を示す。主な六方晶炭化珪素には、一対のSi-Cから成る層がc軸方向に4層周期で積層された構造になっている4H-SiCと6層周期で積層されている6H-SiCがある。4H-SiCでは図13の単位格子内に5層、6H-SiCでは7層含まれている。
図13の(a)は六角柱の上面が(0001)面、底面が(000-1)面であり、(b)は六角柱の側面が(1-100)面、(c)は(1-100)面と垂直な面の(11-20)面、(d)は上面の六角形の一辺を共有しかつ底面と成す角が54.7°である面が、4H(03-38)面あるいは6H(01-14)面と呼ばれている面である。なお、ここで、格子面の記号の説明をすると、負の指数については、結晶学上、数字に上付きのバー(−)を用いるが、電子出願の関係上、数字の前に(−)の符号を付けることとする。そして、等価な対称性を持つ面については{ }で表し、結晶内の方向を示す場合は[ ]で表し、等価な方向すべてを示す場合は〈 〉で表すこととする。
In a MOSFET, electrons are trapped at the trap level existing at the interface between silicon carbide and the gate oxide film, and the number of electrons actually contributing to conduction is reduced, or the mobility is increased due to Coulomb scattering by the trapped electrons. There is a problem that it falls below the bulk value. Examples of efforts to improve mobility will be described below sequentially.
First, the crystal structure and crystal plane of SiC from which a UMOSFET is fabricated will be described. FIG. 13 shows a crystal plane of hexagonal silicon carbide mainly used for the unit cell structure and the MOS interface. The main hexagonal silicon carbide includes 4H-SiC, which has a structure in which a pair of Si-C layers are stacked in the c-axis direction at a four-layer cycle, and 6H-SiC, which is stacked at a six-layer cycle. is there. In 4H-SiC, five layers are included in the unit cell of FIG. 13, and in 6H-SiC, seven layers are included.
In FIG. 13, (a) is the (0001) plane of the hexagonal column, (000-1) plane of the bottom, (b) is the (1-100) plane of the hexagonal column, (c) is (1) (11-20) plane that is perpendicular to the (-100) plane, (d) is a 4H (03-38) plane or a plane that shares one side of the hexagon on the top surface and has an angle of 54.7 ° with the bottom surface. This surface is called the 6H (01-14) surface. Here, when describing the symbols on the lattice plane, for negative indices, a superscript bar (-) is used in numbers for crystallography, but (-) in front of the numbers because of electronic application. The sign of A plane having equivalent symmetry is represented by {}, when indicating a direction in the crystal by [], and when indicating all equivalent directions, it is represented by <>.

現在は、(0001)面あるいは(000-1)面が主表面である炭化珪素単結晶インゴットがバルク成長され、そのウェハを切り出し、研磨して(0001)面、(000-1)面を主表面とする炭化珪素ウェハが作製される。従って、DIMOSFETにおいては、これらの面をMOS界面として素子が作製される。
非特許文献1の記載を参照するところによると、4H-SiCの各結晶面上にMOS界面を形成し、その時のMOSFETの移動度を調査した結果、実効移動度(effective mobility)が(0001)、(11-20)、(03-38)面でそれぞれ、3.8cm2/Vs、5.4cm2/Vs、10.6cm2/Vsと(0001)面より(11-20)面や(03-38)面上のMOSFETの移動度が高いことが報告されている。この理由として4Hあるいは6H-SiCの(0001)面はSi(111)面と、4Hあるいは6H-SiCの(11-20)面や4Hあるいは6H-SiCの(1-100)面はSi(110)面と、4H-SiC(03-38)面あるいは6H-SiC(01-14)面はSi(100)面と等価な面と説明されており、Siでも(100)面、(110)面、(111)面の順に移動度が高い。この理由として、原子の面密度が低いほど界面準位密度が下がり、その界面準位に捕獲される伝導電子が少なくなることや捕獲された電子からのクーロン散乱が少なくなることによると説明されている。また、4H-SiC(03-38)面あるいは6H-SiC(01-14)面を用いたMOSFETが特許文献2に記載されている。
Currently, a silicon carbide single crystal ingot whose main surface is the (0001) plane or the (000-1) plane is bulk-grown, and the wafer is cut out and polished so that the (0001) plane and the (000-1) plane are the main surfaces. A silicon carbide wafer as a surface is produced. Therefore, in the DIMOSFET, an element is manufactured using these surfaces as MOS interfaces.
According to the description of Non-Patent Document 1, a MOS interface was formed on each crystal surface of 4H-SiC, and the mobility of the MOSFET at that time was investigated. As a result, the effective mobility was (0001). , (11-20), (03-38) plane, respectively, 3.8cm 2 /Vs,5.4cm 2 /Vs,10.6cm 2 / Vs and the (0001) plane from (11-20) plane and (03-38 It is reported that the mobility of MOSFET on the surface is high. This is because the (0001) plane of 4H or 6H-SiC is the Si (111) plane, the (11-20) plane of 4H or 6H-SiC, and the (1-100) plane of 4H or 6H-SiC is Si (110). ) Surface and 4H-SiC (03-38) surface or 6H-SiC (01-14) surface are described as equivalent to Si (100) surface, and even in Si, (100) surface, (110) surface The mobility is higher in the order of (111) planes. This is explained by the fact that the lower the surface density of the atoms, the lower the interface state density, the less the conduction electrons trapped in the interface states, and the less Coulomb scattering from the trapped electrons. Yes. Patent Document 2 describes a MOSFET using a 4H—SiC (03-38) plane or a 6H—SiC (01-14) plane.

このような特性をSiC-UMOSFETに利用したものとして、特許文献3においてSiC(000-1)面を主表面とし、ゲートトレンチの溝が主表面からソース、ベース層を貫通してドリフト層に貫通し、(11-20)面をトレンチ側壁とした構造の提案や特許文献4においてSiC(000-1)面を主表面とし、ゲートトレンチの溝が主表面からソース、ベース層を貫通してドリフト層に貫通し、(1-100)面をトレンチ側壁とした構造の提案がなされている。
さらに特許文献5においては、(11-20)面をMOSチャネル面として用いながら、主表面を(1-100)面、(0001)面、(11-20)面とした場合の様々なケースについての提案がなされている。
特許第3460585号公報 特開2002-261275号公報 特開平9-199724号公報 特開平10-247732号公報 特開平7-131016号公報 ヒロシ ヤノ、タイチ ヒラオ、ツネノブ キモト、ヒロユキ マツナミ(Hiroshi Yano,Taichi Hirao,Tsunenobu kimoto,and Hiroyuki Matsunami)「エスアイオウツウ/エスアイシー インターフェース プロパティス オン バリアス サーフェス オリエンテーションス(SiO2/SiC Interface Properties on Various Surface Orientations), マテリアルス リサーチ ソサイティ シンポジウム プロシーディング(Mat. Res. Soc. Symp. Proc., Vol.742, 2003 Materials Research Society pp.219-226」
Using these characteristics for SiC-UMOSFET, in Patent Document 3, the main surface is the SiC (000-1) surface, and the groove of the gate trench penetrates from the main surface to the source and base layers and penetrates to the drift layer. In addition, in the proposal of a structure with the (11-20) plane as a trench sidewall and in Patent Document 4, the SiC (000-1) plane is the main surface, and the groove of the gate trench drifts from the main surface through the source and base layers. There has been proposed a structure that penetrates the layer and has the (1-100) plane as a trench sidewall.
Further, in Patent Document 5, various cases in which the main surface is the (1-100) plane, the (0001) plane, and the (11-20) plane while using the (11-20) plane as the MOS channel plane. Proposals have been made.
Japanese Patent No. 3460585 JP 2002-261275 A Japanese Patent Laid-Open No. 9-19724 Japanese Patent Laid-Open No. 10-247732 Japanese Unexamined Patent Publication No. 7-11016 Hiroshi Yano, Taichi Hirao, Tsuneenobu kimoto, and Hiroyuki Matsunami “Sio Itsu / SIC Interface Properties on Various Surface Orientations” ), Materials Research Society Symposium Proceding (Mat. Res. Soc. Symp. Proc., Vol.742, 2003 Materials Research Society pp.219-226)

しかしながら、六方晶炭化珪素ウェハ上にUMOSFETを作製する場合、特許文献3や特許文献4のように主表面が(000-1)面である場合、結晶c軸に平行ならせん転位やマイクロパイプと呼ばれる中空欠陥がUMOSFETが作製される最表面に到達し、逆バイアス時のリーク電流の増加や絶縁破壊電圧の低下を引き起こす問題があった。
また、特許文献5では、(11-20)面を主表面とするSiCウェハをエッチングしてMOS界面として(11-20)面を露出させているが、この(11-20)側壁面は主表面に対して60°の角度とする必要があり、垂直側壁と比較してエッチングが困難であると言う問題がある。
また、特許文献5に記載されているように(1-100)面を主表面とするウェハに垂直にトレンチを掘り(11-20)面を出し、その面上にMOS構造を形成する方法では、トレンチ底のコーナが直角になり、このコーナにおいて電界が集中して、平行平板のpn接合で規定される絶縁耐圧と比べて低い逆電圧で絶縁破壊を引き起こすと言う問題があった。特許文献3や特許文献4における手法においても移動度はまだ不十分である。また、トレンチ底部の角度が直角であると電界集中を起こし、早期絶縁破壊につながると言う問題もある。
However, when manufacturing a UMOSFET on a hexagonal silicon carbide wafer, if the main surface is the (000-1) plane as in Patent Documents 3 and 4, screw dislocations or micropipes parallel to the crystal c-axis There was a problem that the hollow defect called reached the outermost surface on which the UMOSFET was fabricated, causing an increase in leakage current and a decrease in breakdown voltage during reverse bias.
In Patent Document 5, a SiC wafer having the (11-20) plane as the main surface is etched to expose the (11-20) plane as the MOS interface, but this (11-20) side wall is the main surface. The angle needs to be 60 ° with respect to the surface, and there is a problem that etching is difficult as compared with the vertical side wall.
Further, as described in Patent Document 5, a method of digging a trench perpendicularly to a wafer having a (1-100) plane as a main surface to form a (11-20) plane and forming a MOS structure on that plane is as follows. The corner at the bottom of the trench has a right angle, and the electric field concentrates at this corner, causing a problem that dielectric breakdown is caused at a reverse voltage lower than the dielectric strength defined by the parallel plate pn junction. Even in the methods in Patent Document 3 and Patent Document 4, the mobility is still insufficient. Another problem is that if the angle at the bottom of the trench is a right angle, electric field concentration occurs, leading to early dielectric breakdown.

移動度を確保してMOSチャネル部の抵抗を抑えつつ上記の問題点を解決するためには、(1-100)面と成す角が5°以内の面を主表面とする第1の伝導型である炭化珪素半導体基板上に基板と同じ構造をも第1の伝導型であるドリフト層を有するウェハ上に第2の伝導型であるベース層第1の伝導型であるソース層を順次形成しソース層およびベース層を貫通しドリフト層に達するトレンチと、該トレンチ内に絶縁層とゲート電極を有するMOS構造であって、トレンチ側壁が[0001]と平行あるいは成す角が10°以下であり、かつ{1-100}面と側壁の成す角が60°±10°であるようなトレンチ側壁である炭化珪素半導体素子とすると良い。 In order to solve the above problems while ensuring the mobility and suppressing the resistance of the MOS channel part, the first conductivity type whose main surface is a plane whose angle formed with the (1-100) plane is within 5 ° base layer is a second conductivity type on a wafer having a drift layer which is a first conductivity type Chi also the same structure as the substrate in der Ru carbonization silicon semiconductor substrate, the source layer is a first conductivity type Are sequentially formed , a MOS structure having a trench that penetrates the source layer and the base layer and reaches the drift layer, and an insulating layer and a gate electrode in the trench, and the angle of the trench sidewall parallel to or forming [0001] is 10 It is preferable that the silicon carbide semiconductor element has a trench sidewall such that the angle formed by the {1-100} plane and the sidewall is 60 ° ± 10 °.

(1-100)面は、c軸と垂直な面であるので、らせん転位、マイクロパイプが主表面に露出しないため、大幅に転位密度を低減できる。さらに、上記のトレンチ側壁を用いるとトレンチ底部コーナが鈍角となり、電界集中が緩和される。 Since the (1-100) plane is a plane perpendicular to the c-axis, screw dislocations and micropipes are not exposed on the main surface, so that the dislocation density can be greatly reduced. Furthermore, the trench bottom corners Using the above trench sidewalls becomes obtuse, electric field concentration Ru is relaxed.

本発明は、主表面の面方位とトレンチ側壁の面方位を特定することにより、移動度の向上によるオン抵抗の低減と、歩留まりの向上が図られる効果を奏する。According to the present invention, by specifying the plane orientation of the main surface and the plane orientation of the trench sidewall, there is an effect that the on-resistance can be reduced by improving the mobility and the yield can be improved.

図1は本発明の実施例のトレンチを有するMOSFETの製造工程を示した断面図である。まず、(11-20)面と成す角が5°以内の面を主表面とするn型4H-SiCあるいは6H-SiC基板1上に順次、熱CVD法により5μm、1016cm-3のn型ドリフト層2、1μm、1017cm-3のp型ベース層3、0.5μm、1019cm-3のn型ソース層4をエピタキシャル成長で形成させる(図1(a))。
その基板1をソース層4、ベース層3を部分的に完全に除去できる深さまで反応性イオンエッチング法により70°以上で、この場合垂直にエッチングして、2.1μmの深さとなるようにトレンチ11を形成する。この実施例では、トレンチ側壁のMOS界面が4H-SiC(03-38)面と成す角が10°以内の面あるいは6H-SiC(01-14)面と成す角が10°以内の面となるように<11-20>方向から見たときのトレンチ外周の長方形の長辺が<1-100>方向から54.7°の成す角となるようにエッチングした。
このようにトレンチ11を形成した後、30nm程度のゲート酸化膜6を形成する。さらにゲートトレンチ部をすべて覆うようにボロンをドーピングしたポリSiを堆積してゲート電極7とする。さらにこのポリSiのゲート電極7の表面のみを酸化して層間絶縁膜10としての酸化膜を形成する(図1(b))
その後、反応性イオンエッチングにより、選択的にn型ソース層4の一部をp型ベース層3が露出するまで除去する。その後この露出されたpベース層3に金属電極8aを形成する(図1(c))。
FIG. 1 is a sectional view showing a manufacturing process of a MOSFET having a trench according to an embodiment of the present invention. First, on the n-type 4H-SiC or 6H-SiC substrate 1 whose main surface is an angle formed with the (11-20) plane within 5 °, n of 5 μm and 10 16 cm -3 are sequentially deposited by thermal CVD. A type drift layer 2, a 1 μm, 10 17 cm −3 p-type base layer 3, and a 0.5 μm, 10 19 cm −3 n-type source layer 4 are formed by epitaxial growth (FIG. 1A).
The substrate 1 is etched to 70 ° or more by a reactive ion etching method to a depth at which the source layer 4 and the base layer 3 can be partially removed completely . In this case , the trench 11 is etched to a depth of 2.1 μm. Form. In this embodiment, the angular MOS interface formed with the 4H-SiC (03-38) plane surface or 6H-SiC corners within 10 ° formed by the (01-14) plane of the trench sidewall is plane within 10 ° Thus, etching was performed so that the long side of the rectangle on the outer periphery of the trench when viewed from the <11-20> direction had an angle of 54.7 ° from the <1-100> direction.
After forming the trench 11 in this way, a gate oxide film 6 of about 30 nm is formed. Further, poly-Si doped with boron is deposited so as to cover the entire gate trench, thereby forming the gate electrode 7. Further, only the surface of the poly-Si gate electrode 7 is oxidized to form an oxide film as an interlayer insulating film 10 (FIG. 1B).
Thereafter, a part of the n-type source layer 4 is selectively removed by reactive ion etching until the p-type base layer 3 is exposed. Thereafter, a metal electrode 8a is formed on the exposed p base layer 3 (FIG. 1 (c)).

その後nソースコンタクト用の金属を形成してソース電極8とし、裏面の酸化膜を除去してドレイン電極9を形成する。(図1(d))。
以下、UMOSFET(トレンチMOSFET)のソース電極、ゲート電極が形成される基板主表面の面方位とトレンチ側壁の面方位を検討した実施例について説明する。
Thereafter, a metal for n source contact is formed to form the source electrode 8, and the oxide film on the back surface is removed to form the drain electrode 9. (FIG. 1 (d)).
Hereinafter, an embodiment in which the surface orientation of the main surface of the substrate on which the source electrode and the gate electrode of UMOSFET (trench MOSFET) are formed and the surface orientation of the trench sidewall will be described.

図2は、半導体基板14の面方位とトレンチ11の面方位を示すための構造図であり、(a)は平面図,(b)は(a)のA−A線の断面図である。トレンチ11の側壁のMOS界面が4H-SiC(03-38)面と成す角が10°以内の面あるいは6H-SiC(01-14)面と成す角が10°以内の面となるように半導体基板14の主表面<11-20>方向から見たときのトレンチ外周の長方形の長辺が<1-100>方向から54.7°の成す角となるようにエッチングしている。側壁は主表面に対して70°以上で、この場合垂直にエッチンク゛している。
図3は、半導体基板14の面方位とトレンチ11の面方位を示すための構造図である。トレンチ11の側壁のMOS界面が(1-100)面と成す角が10°以内の面となるように半導体基板14の主表面<11-20>方向から見たときのトレンチ外周の長方形の長辺が<1-100>方向と垂直となるようにエッチングしている。
図4は、半導体基板14の面方位とトレンチ11の面方位を示すための構造図であり、(a)は平面図,(b)は(a)のA−A線の断面図である。トレンチ11の側壁のMOS界面が4H-SiC(03-38)面と成す角が10°以内の面あるいは6H-SiC(01-14)面と成す角が10°以内の面となるように半導体基板14の主表面<11-20>方向から見たときのトレンチ外周の形状を菱形あるいは平行四辺形とし<1-100>方向に対して一対の面を54.7°傾け、その一対の面の内面が成す角度を70.6°となるようにエッチングしている。
2A and 2B are structural diagrams for illustrating the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11, wherein FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line AA of FIG. Semiconductor such angular MOS interface formed with the 4H-SiC (03-38) plane surface or 6H-SiC corners within 10 ° formed by the (01-14) plane of the side wall of the trench 11 becomes a plane within 10 ° Etching is performed so that the long side of the outer periphery of the trench as viewed from the main surface <11-20> direction of the substrate 14 is at an angle of 54.7 ° from the <1-100> direction. The side walls are more than 70 ° with respect to the main surface and in this case are etched vertically.
FIG. 3 is a structural diagram for illustrating the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11. The length of the rectangle on the outer periphery of the trench when viewed from the direction of the main surface <11-20> of the semiconductor substrate 14 so that the angle formed by the MOS interface on the side wall of the trench 11 is within 10 ° with the (1-100) plane Etching is performed so that the sides are perpendicular to the <1-100> direction.
4A and 4B are structural views for showing the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11, wherein FIG. 4A is a plan view and FIG. 4B is a cross-sectional view taken along line AA in FIG. Semiconductor such angular MOS interface formed with the 4H-SiC (03-38) plane surface or 6H-SiC corners within 10 ° formed by the (01-14) plane of the side wall of the trench 11 becomes a plane within 10 ° The shape of the outer periphery of the trench when viewed from the main surface <11-20> direction of the substrate 14 is a rhombus or a parallelogram, and the pair of surfaces are inclined by 54.7 ° with respect to the <1-100> direction, and the inner surfaces of the pair of surfaces Etching is performed so that the angle formed by becomes 70.6 °.

図5は、半導体基板14の面方位とトレンチ11の面方位を示すための構造図である。半導体基板14の主表面<11-20>方向から見たときのトレンチ11外周の形状を菱形あるいは平行四辺形とし、一対の辺とその下方に広がる側面を<0001>方向と平行にして(1-100)面とし、その面と成す角が144.7°となるようにエッチングすることにより4H-SiC(03-38)面あるいは6H-SiC(01-14)面としている。主表面は<11-20>と成す角が5°以内の面で、トレンチ11は面方位に対して成す角が10°以内の面である。
図6は、半導体基板14の面方位とトレンチ11の面方位を示すための構造図である。半導体基板14の主表面<11-20>方向から見たときのトレンチ11外周の形状を六角形とするものである。トレンチ11の各側面に1から6までの番号をつけると、面1,4は<1-100>方向に対して54.7°の角度をなす4H-SiC(03-38)面あるいは6H-SiC(01-14)面である。面2,5は<1-100>方向と同じく54.7°の角度を成し、かつ面1,4と70.6°の角度をなす面1,4とは別の4H-SiC(03-38)面あるいは6H-SiC(01-14)面である。さらに面3,6は<0001>方向に平行であり、(1-100)面である。主表面は面方位に対して成す角が5°以内の面で、トレンチ11は面方位に対して成す角が10°以内の面である。
実施例1においては、ゲートトレンチ側壁を主表面に対して垂直に形成することができ、エッチング条件の条件範囲が広がった。
(11-20)面を主表面とする基板を用いることで、従来の(000-1)面を主表面とする基板では欠陥密度が100個/cm 2 あり、90%の歩留まりが得られる素子面積が10 -3 cm 2 (300μm角)であったものが、欠陥密度を1個/cm 2 に低減、90%の歩留まりが得られる素子面積が0.1cm 2 (3mm角)と増加した。
移動度に関しても、4H-SiC(03-38)面あるいは6H-SiC(01-14)面をMOS界面とした場合では、200cm 2 /Vs、(1-100)面をMOS界面とした場合では100cm 2 /Vsと従来技術と遜色のない値が得られた。
FIG. 5 is a structural diagram for illustrating the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11. The shape of the outer periphery of the trench 11 when viewed from the main surface <11-20> direction of the semiconductor substrate 14 is a rhombus or a parallelogram, and a pair of sides and a side surface extending below the pair are parallel to the <0001> direction (1 -100) plane, and the 4H-SiC (03-38) plane or 6H-SiC (01-14) plane is formed by etching so that the angle formed with the plane is 144.7 °. The main surface is a surface whose angle formed with <11-20> is within 5 °, and the trench 11 is a surface whose angle formed with respect to the surface orientation is within 10 °.
FIG. 6 is a structural diagram for illustrating the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11. The shape of the outer periphery of the trench 11 when viewed from the main surface <11-20> direction of the semiconductor substrate 14 is a hexagon. If numbers 1 to 6 are assigned to each side surface of the trench 11, the surfaces 1 and 4 are 4H-SiC (03-38) or 6H-SiC (5H) with an angle of 54.7 ° to the <1-100> direction. 01-14). Surfaces 2 and 5 form an angle of 54.7 °, similar to the <1-100> direction, and 4H-SiC (03-38) surface, which is different from surfaces 1 and 4 that form an angle of 70.6 ° with surfaces 1 and 4 Alternatively, it is a 6H-SiC (01-14) plane. Further, the surfaces 3 and 6 are parallel to the <0001> direction and are (1-100) surfaces. The main surface is a surface whose angle with respect to the plane orientation is within 5 °, and the trench 11 is a surface whose angle with respect to the plane orientation is within 10 °.
In Example 1, the side wall of the gate trench can be formed perpendicular to the main surface, and the range of etching conditions has been expanded.
By using a substrate having the (11-20) plane as the main surface, the conventional substrate having the (000-1) plane as the main surface has a defect density of 100 / cm 2 and a device yield of 90%. Although the area was 10 −3 cm 2 (300 μm square), the defect density was reduced to 1 piece / cm 2, and the device area where 90% yield was obtained increased to 0.1 cm 2 (3 mm square).
Regarding mobility, when the 4H-SiC (03-38) surface or 6H-SiC (01-14) surface is the MOS interface, it is 200 cm 2 / Vs, and when the (1-100) surface is the MOS interface, A value comparable to that of the conventional technology of 100 cm 2 / Vs was obtained.

図1の製造工程の工程断面図において、(03-38)面を主表面とするn型4H-SiCあるいは(01-14)面を主表面とするn型6H-SiC基板1上に順次、熱CVD法により5μm、1016cm-3のn型ドリフト層2、1μm、1017cm-3のp型ベース層3、0.5μm、1019cm-3のn型ソース層4をエピタキシャル成長させる。その基板1をソース層4、ベース層3を部分的に完全に除去できる深さまで反応性イオンエッチング法により70°以上で、この場合垂直にエッチングして、2.1μmの深さとなるようにトレンチ11を形成する。この場合、トレンチ11の側壁のMOS界面が(11-20)面となるように4H-SiC<03-38>あるいは6H-SiC<01-14>方向から見たときのトレンチ外周の長方形の長辺が<1-100>方向に平行になるようにエッチングする。その後、30nm程度のゲート酸化膜6を形成する。さらにゲートトレンチ部をすべて覆うようにボロンをドーピングしたポリSiを堆積してゲート電極7とする。さらにこのポリSi電極の表面のみを酸化して層間絶縁膜10としての酸化膜を形成する。その後、反応性イオンエッチングにより、選択的にn型ソース層4の一部をp型ベース層3が露出するまで除去する。その後この露出されたpベース層3に金属電極8aを形成する。その後nソースコンタクト用の金属を形成してソース電極8とし、裏面の酸化膜を除去してドレイン電極9を形成する。図7は、半導体基板14の面方位とトレンチ11の面方位を示すための構造図であり、(a)は平面図,(b)は(a)のA−A線の断面図である。トレンチ11の側壁のMOS界面が(11-20)面となるように半導体基板14の主表面4H-SiC(03-38)面あるいは6H-SiC(01-14)面から見たときのトレンチ外周の長方形の長辺が<11-20>方向と垂直となるようにエッチングしている。主表面は面方位に対して成す角が5°以内の面で、トレンチ11は面方位に対して成す角が10°以内の面である。
実施例2においては、特許文献5のように、(11-20)面を主表面とするSiCウェハに対し、トレンチの側壁を主表面に対して60°の角度とする場合では、60°±10°に収まる素子の割合は2インチウェハ内において60%程度であったが、本発明のように垂直にエッチングした場合では、主表面に対して80°以上のトレンチの側壁となる割合が90%以上に向上した。
また、4H-SiC(03-38)面あるいは6H-SiC(01-14)面を主表面とする基板を用いることで、絶縁耐圧として理論耐圧の80%以上の絶縁耐圧が得られるものを良品と定義した場合に、従来の(000-1)面を主表面とする基板では90%の歩留まりが得られる素子面積が10 -3 cm 2 (300μm角)であったものが、1cm 2 (3.3mm角)まで増加した。
さらに、移動度に関しても、(000-1)面をMOS界面とした場合では75cm 2 /Vsの移動度であったものが、(11-20)面をMOS界面とすることにより、150cm 2 /Vsと増加し、MOSチャネル抵抗を1/2に低減することができた。
{1-100}面を主表面とする基板を用いることで、絶縁耐圧として理論耐圧の80%以上の絶縁耐圧が得られるものを良品と定義した場合に、ゲートトレンチを含まないpnダイオードにおいて従来の(000-1)面を主表面とする基板では90%の歩留まりが得られる素子面積が10 -3 cm 2 (300μm角)であったものが、0.1cm 2 (3.3mm角)まで増加した。
さらに、{1-100}を主表面とする基板上にUMOSFETを作製した場合において、全素子数の8割の素子が達成できる絶縁耐圧は、垂直にゲートトレンチをエッチングした場合では理論値の60%であったのに対し、できるだけ{1-100}面に近づけた面上にMOS構造を作製した場合では理論値の70%、できるだけ4H-SiC{03-38}面あるいは6H-SiC{01-14}面に近づけた面上にMOS構造を作製した場合では理論値の80%となり、トレンチ底部の炭化珪素外のコーナ角度が大きくなるほど絶縁耐圧が向上すると言う効果が得られた。
{0001}あるいは{000-1}を主表面とする基板上にUMOSFETを作製した場合において、全素子数の8割の素子が達成できる絶縁耐圧は、垂直にゲートトレンチをエッチングした場合では理論値の60%であったのに対し、できるだけ4H-SiC{03-38}面あるいは6H-SiC{01-14}面に近づけた面上にMOS構造を作製した場合では理論値の80%となり、トレンチ底部の炭化珪素外のコーナ角度が大きくなるほど絶縁耐圧が向上すると言う効果が得られた。
また、移動度も(11-20)面、(1-100)面とも150cm 2 /Vsであったのに対し、4H-SiC{03-38}面あるいは6H-SiC{01-14}面上にMOS構造を形成することによって200cm 2 /Vsの値が得られ、チャネル抵抗を低減できた。
In the process cross-sectional view of the manufacturing process of FIG. 1, the n-type 4H-SiC having the (03-38) plane as the main surface or the n-type 6H-SiC substrate 1 having the (01-14) plane as the main surface in sequence, 5μm by a thermal CVD method, 10 16 cm -3 of n-type drift layer 2,1μm, 10 17 cm -3 of p-type base layer 3,0.5Myuemu, a 10 19 cm n-type source layer 4 -3 is epitaxially grown. The substrate 1 is etched to 70 ° or more by a reactive ion etching method to a depth at which the source layer 4 and the base layer 3 can be partially removed completely . In this case , the trench 11 is etched to a depth of 2.1 μm. Form. In this case, the rectangular length of the outer periphery of the trench when viewed from the 4H-SiC <03-38> or 6H-SiC <01-14> direction so that the MOS interface on the sidewall of the trench 11 is the (11-20) plane. Etch so that the sides are parallel to the <1-100> direction. Thereafter, a gate oxide film 6 having a thickness of about 30 nm is formed. Further, poly-Si doped with boron is deposited so as to cover the entire gate trench, thereby forming the gate electrode 7. Further, only the surface of the poly-Si electrode is oxidized to form an oxide film as the interlayer insulating film 10. Thereafter, a part of the n-type source layer 4 is selectively removed by reactive ion etching until the p-type base layer 3 is exposed. Thereafter, a metal electrode 8 a is formed on the exposed p base layer 3. Thereafter, a metal for n source contact is formed to form the source electrode 8, and the oxide film on the back surface is removed to form the drain electrode 9. 7A and 7B are structural diagrams for illustrating the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11, wherein FIG. 7A is a plan view and FIG. 7B is a cross-sectional view taken along line AA of FIG. The outer periphery of the trench when viewed from the main surface 4H-SiC (03-38) surface or 6H-SiC (01-14) surface of the semiconductor substrate 14 so that the MOS interface on the side wall of the trench 11 becomes the (11-20) surface. Etching is performed such that the long side of the rectangle is perpendicular to the <11-20> direction. The main surface is a surface whose angle with respect to the plane orientation is within 5 °, and the trench 11 is a surface whose angle with respect to the plane orientation is within 10 °.
In Example 2, as in Patent Document 5, when the side wall of the trench is at an angle of 60 ° with respect to the main surface with respect to the SiC wafer having the (11-20) plane as the main surface, 60 ° ± The proportion of elements that fall within 10 ° was about 60% in a 2-inch wafer. However, when etched vertically as in the present invention, the proportion of trench sidewalls of 80 ° or more with respect to the main surface was 90%. It improved to more than%.
In addition, a non-defective product that can obtain a withstand voltage of 80% or more of the theoretical withstand voltage by using a substrate whose main surface is the 4H-SiC (03-38) or 6H-SiC (01-14) surface. In the conventional substrate with the (000-1) plane as the main surface, the element area where 90% yield was obtained was 10 -3 cm 2 (300 μm square), but 1 cm 2 (3.3 mm square).
Furthermore, with regard mobility (000-1) as in the case where the surface was MOS interface was mobility of 75 cm 2 / Vs is by a MOS interface (the 11-20) plane, 150 cm 2 / Vs increased, and the MOS channel resistance was reduced to 1/2.
In the case of a pn diode that does not include a gate trench, when a substrate with a {1-100} surface as the main surface is defined as a non-defective product that can withstand a withstand voltage of 80% or more of the theoretical withstand voltage. In the substrate with the (000-1) plane as the main surface, the element area where 90% yield was obtained was 10 −3 cm 2 (300 μm square), but increased to 0.1 cm 2 (3.3 mm square). .
Furthermore, when a UMOSFET is fabricated on a substrate having {1-100} as the main surface, the withstand voltage that can be achieved by 80% of the total number of elements is a theoretical value of 60 when the gate trench is etched vertically. However, when a MOS structure is fabricated on a surface as close to the {1-100} plane as possible, it is 70% of the theoretical value, and as much as possible the 4H-SiC {03-38} plane or 6H-SiC {01 When the MOS structure was fabricated on a surface close to the -14} surface, the theoretical value was 80%, and the effect of increasing the dielectric strength with increasing corner angle outside the silicon carbide at the bottom of the trench was obtained.
When a UMOSFET is fabricated on a substrate with {0001} or {000-1} as the main surface, the breakdown voltage that can be achieved by 80% of the total number of elements is the theoretical value when the gate trench is etched vertically. When the MOS structure is fabricated on the surface as close to the 4H-SiC {03-38} surface or 6H-SiC {01-14} surface as much as possible, it becomes 80% of the theoretical value. The effect was obtained that the withstand voltage improved as the corner angle outside the silicon carbide at the bottom of the trench increased.
Also, the mobility was 150cm 2 / Vs for both (11-20) plane and (1-100) plane , but on 4H-SiC {03-38} plane or 6H-SiC {01-14} plane By forming a MOS structure, a value of 200 cm 2 / Vs was obtained, and the channel resistance could be reduced.

図1の製造工程の工程断面図において、(1-100)面を主表面とするn型4H-SiCあるいは6H-SiC基板1上に順次、熱CVD法により5μm、1016cm-3のn型ドリフト層2、1μm、1017cm-3のp型ベース層3、0.5μm、1019cm-3のn型ソース層4をエピタキシャル成長させる。その基板1をソース層4、ベース層3を部分的に完全に除去できる深さまで反応性イオンエッチング法により70°以上で、この場合垂直にエッチングして、2.1μmの深さとなるようにトレンチ11を形成する。その後、30nm程度のゲート酸化膜6を形成する。さらにゲートトレンチ部をすべて覆うようにボロンをドーピングしたポリSiを堆積してゲート電極7とする。さらにこのポリSi電極の表面のみを酸化して層間絶縁膜10としての酸化膜を形成する。その後、反応性イオンエッチングにより、選択的にn型ソース層4の一部をp型ベース層3が露出するまで除去する。その後この露出されたpベース層3に金属電極8aを形成する。その後nソースコンタクト用の金属を形成してソース電極8とし、裏面の酸化膜を除去してドレイン電極9を形成する。 In the process cross-sectional view of the manufacturing process of FIG. 1, an n-type 4H-SiC or 6H-SiC substrate 1 having a (1-100) plane as a main surface is sequentially deposited by thermal CVD to 5 μm and 10 16 cm −3 n. -type drift layer 2,1μm, 10 17 cm -3 of p-type base layer 3,0.5Myuemu, a 10 19 cm n-type source layer 4 -3 is epitaxially grown. The substrate 1 is etched to 70 ° or more by a reactive ion etching method to a depth at which the source layer 4 and the base layer 3 can be partially removed completely . In this case , the trench 11 is etched to a depth of 2.1 μm. Form. Thereafter, a gate oxide film 6 having a thickness of about 30 nm is formed. Further, poly-Si doped with boron is deposited so as to cover the entire gate trench, thereby forming the gate electrode 7. Further, only the surface of the poly-Si electrode is oxidized to form an oxide film as the interlayer insulating film 10. Thereafter, a part of the n-type source layer 4 is selectively removed by reactive ion etching until the p-type base layer 3 is exposed. Thereafter, a metal electrode 8 a is formed on the exposed p base layer 3. Thereafter, a metal for n source contact is formed to form the source electrode 8, and the oxide film on the back surface is removed to form the drain electrode 9.

図8は半導体基板14の面方位とトレンチ11の面方位を示すための構造図であり、(a)は平面図,(b)は(a)のA−A線の断面図である。この場合、トレンチ11の側壁のMOS界面が一対の対向した(01-10)面と(-1010)面となるように[1-100]方向から見たときのトレンチ外周の長方形の長辺が[0001]に平行であり、かつトレンチ外周の長方形の長辺を含む面が(1-100)面に対して成す角ができるだけ60°に近づくように60°±10°にエッチングする。このように斜めの角度でエッチングするためには、エッチングマスクをテーパ状にすることと、ガス圧横方向エッチングを促進することが効果的である。主表面は面方位に対して成す角が5°以内の面で、トレンチ11は面方位に対して成す角が10°以内の面である。
図9は半導体基板14の面方位とトレンチ11の面方位を示すための構造図であり、(a)は平面図,(b)は(a)のA−A線の断面図、(c)はトレンチの側壁の結晶面を説明するための説明図である。トレンチ11の側壁のMOS界面が一対の対向した4H-SiC(03-38)面と4H-SiC(0-338)面あるいは6H-SiC(01-14)面と6H-SiC(0-114)面となるように[01-10]方向から見たときのトレンチ外周の長方形の長辺が[-2110]方向に平行であり、かつトレンチ外周の長方形の長辺を含む面が(01-10)面に対して成す角ができるだけ35.3°に近づくように35.3°±10°にエッチングしている。主表面は面方位に対して成す角が5°以内の面で、トレンチ11は面方位に対して成す角が10°以内の面である。
8A and 8B are structural views for showing the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11, wherein FIG. 8A is a plan view and FIG. 8B is a cross-sectional view taken along line AA of FIG. In this case, the rectangular long side of the outer periphery of the trench when viewed from the [1-100] direction so that the MOS interface on the sidewall of the trench 11 becomes a pair of opposed (01-10) plane and (-1010) plane is Etching is performed to 60 ° ± 10 ° so that an angle formed by a plane parallel to [0001] and including the long side of the outer periphery of the trench with respect to the (1-100) plane is as close to 60 ° as possible. To etch Thus at an oblique angle, the method comprising an etching mask in a tapered shape, it is effective to promote the lateral etching in the gas pressure. The main surface is a surface whose angle with respect to the plane orientation is within 5 °, and the trench 11 is a surface whose angle with respect to the plane orientation is within 10 °.
9A and 9B are structural views for showing the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11, wherein FIG. 9A is a plan view, FIG. 9B is a cross-sectional view taken along line AA in FIG. These are explanatory drawings for demonstrating the crystal plane of the side wall of a trench. The MOS interface on the side wall of the trench 11 is a pair of 4H-SiC (03-38) plane and 4H-SiC (0-338) plane or 6H-SiC (01-14) plane and 6H-SiC (0-114) facing each other. When viewed from the [01-10] direction so as to be a plane, the long side of the outer periphery of the trench is parallel to the [-2110] direction and the plane including the long side of the outer periphery of the trench is (01-10 Etching is performed at 35.3 ° ± 10 ° so that the angle formed with respect to the surface is as close to 35.3 ° as possible. The main surface is a surface whose angle with respect to the plane orientation is within 5 °, and the trench 11 is a surface whose angle with respect to the plane orientation is within 10 °.

図1の製造工程の工程断面図において、(1-100)面を主表面とするn型4H-SiCあるいは6H-SiC基板1上に順次、熱CVD法により5μm、1016cm-3のn型ドリフト層2、1μm、1017cm-3のp型ベース層3、0.5μm、1019cm-3のn型ソース層4をエピタキシャル成長させる。その基板をソース層4、ベース層3を部分的に完全に除去できる深さまで反応性イオンエッチング法により70°以上で、この場合垂直にエッチングして、2.1μmの深さとなるようにトレンチ11を形成する。その後、30nm程度のゲート酸化膜6を形成する。さらにゲートトレンチ部をすべて覆うようにボロンをドーピングしたポリSiを堆積してゲート電極7とする。さらにこのポリSi電極の表面のみを酸化して酸化膜を形成する。その後、反応性イオンエッチングにより、選択的にn型ソース層4の一部をp型ベース層3が露出するまで除去する。その後この露出されたpベース層3に金属電極8aを形成する。その後nソースコンタクト用の金属を形成してソース電極8とし、裏面の酸化膜を除去してドレイン電極9を形成する。 In the process cross-sectional view of the manufacturing process of FIG. 1, an n-type 4H-SiC or 6H-SiC substrate 1 having a (1-100) plane as a main surface is sequentially deposited by thermal CVD to 5 μm and 10 16 cm −3 n. -type drift layer 2,1μm, 10 17 cm -3 of p-type base layer 3,0.5Myuemu, a 10 19 cm n-type source layer 4 -3 is epitaxially grown. The substrate 11 is etched to 70 ° or more by reactive ion etching to a depth at which the source layer 4 and the base layer 3 can be completely removed . In this case , the trench 11 is etched to a depth of 2.1 μm. Form. Thereafter, a gate oxide film 6 having a thickness of about 30 nm is formed. Further, poly-Si doped with boron is deposited so as to cover the entire gate trench, thereby forming the gate electrode 7. Further, only the surface of the poly-Si electrode is oxidized to form an oxide film. Thereafter, a part of the n-type source layer 4 is selectively removed by reactive ion etching until the p-type base layer 3 is exposed. Thereafter, a metal electrode 8 a is formed on the exposed p base layer 3. Thereafter, a metal for n source contact is formed to form the source electrode 8, and the oxide film on the back surface is removed to form the drain electrode 9.

図10は半導体基板14の面方位とトレンチ11の面方位を示すための構造図であり、(a)は平面図,(b)は(a)のA−A線の主表面の断面図、(c)はA−A線の主裏面の断面図である。この場合、<0001>方向から見たときのトレンチ11外周の長方形の長辺が[-2110]に平行であり、かつトレンチ外周の長方形の長辺を含む面が(0001)面に対して成す角ができるだけ54.7°に近づくように54.7°±10°にエッチングする。そうすると、4H-SiC{03-38}面あるいは6H-SiC{01-14}面に近い面を露出させることができる。このように斜めの角度でエッチングするためには、エッチングマスクをテーパ状にすることと、ガス圧横方向エッチングを促進することが効果的である。主表面は面方位に対して成す角が5°以内の面で、トレンチ11は面方位に対して成す角が10°以内の面である。 10A and 10B are structural views for showing the plane orientation of the semiconductor substrate 14 and the plane orientation of the trench 11, wherein FIG. 10A is a plan view, and FIG. 10B is a cross-sectional view of the main surface taken along line AA in FIG. (C) is sectional drawing of the main back surface of an AA line. In this case, the long side of the outer periphery of the trench 11 when viewed from the <0001> direction is parallel to [-2110], and the surface including the long side of the outer periphery of the trench forms the (0001) plane. Etch to 54.7 ° ± 10 ° so that the angle is as close to 54.7 ° as possible. Then, a surface close to the 4H-SiC {03-38} plane or the 6H-SiC {01-14} plane can be exposed. To etch Thus at an oblique angle, the method comprising an etching mask in a tapered shape, it is effective to promote the lateral etching in the gas pressure. The main surface is a surface whose angle with respect to the plane orientation is within 5 °, and the trench 11 is a surface whose angle with respect to the plane orientation is within 10 °.

MOSFET,IGBTが用いられるインバータ装置等の電力変換装置ばかりでなく、温度等の使用環境が厳しい自動車用電装品のスイッチング素子として適用できる。   It can be applied not only to power conversion devices such as inverter devices using MOSFETs and IGBTs, but also to switching elements for automotive electrical components with severe usage environments such as temperature.

UMOSFETの作製工程を示す工程断面図Cross-sectional process diagram showing UMOSFET fabrication process 4H(03-38)面あるいは6H(01-14)面をトレンチ側壁とした場合の構造図Structure diagram when 4H (03-38) or 6H (01-14) surface is used as a trench sidewall (1-100)面をトレンチ側壁とした場合の構造図Structure diagram when (1-100) plane is trench side wall 2つの異なる4H-SiC(03-38)面あるいは6H-Si(01-14)面によりトレンチ側壁を構成した場合の構造図Structural diagram when trench sidewall is composed of two different 4H-SiC (03-38) or 6H-Si (01-14) surfaces 一対の4H-SiC(03-38)面あるいは6H-Si(01-14)面と一対の(1-100)面から構成されるトレンチ側壁を構成した場合の構造図Structure diagram when a trench side wall composed of a pair of 4H-SiC (03-38) or 6H-Si (01-14) and a pair of (1-100) is configured 二対の4H-SiC(03-38)面あるいは6H-Si(01-14)面と一対の(1-100)面から構成されるトレンチ側壁を構成した場合の構造図Structure diagram of trench side wall composed of two pairs of 4H-SiC (03-38) plane or 6H-Si (01-14) plane and a pair of (1-100) planes 4H-SiC(03-38)面あるいは6H-Si(01-14)面を主表面とし、(11-20)面をトレンチ側壁とした場合の構造図Structure diagram with 4H-SiC (03-38) or 6H-Si (01-14) as the main surface and (11-20) as the trench sidewall {1-100}面を主表面とし、主表面と成す角が60°である異なる{1-100}面を露出させた場合の構造図Structure diagram when {1-100} plane is the main surface and different {1-100} planes with an angle of 60 ° with the main surface are exposed {1-100}面を主表面とし、主表面と成す角が35.3°である4H-SiC{03-38}面あるいは6H-SiC{01-14}面を露出させた場合の構造図Structural drawing when the 4H-SiC {03-38} or 6H-SiC {01-14} surface with the {1-100} surface as the main surface and the angle with the main surface being 35.3 ° is exposed {0001}面あるいは{000-1}面を主表面とし、主表面と成す角が54.7°である4H-SiC{03-38}面あるいは6H-SiC{01-14}面を露出させた場合の構造図When exposing the 4H-SiC {03-38} or 6H-SiC {01-14} surface with the {0001} or {000-1} surface as the main surface and an angle of 54.7 ° with the main surface Structure diagram of 従来のSiC縦型DIMOSFETを示す部分断面図Partial sectional view showing a conventional SiC vertical DIMOSFET 従来のSiC縦型UMOSFETを示す部分断面図Partial sectional view showing a conventional SiC vertical UMOSFET 六方晶炭化珪素のユニットセルの構造と結晶面を示す説明図Explanatory drawing showing the structure and crystal plane of hexagonal silicon carbide unit cell

1 炭化珪素基板
2 N型ドリフト層
3 ベース領域
4 ソース領域
5 チャネル領域
6 ゲート酸化膜
7 ゲート電極
8 ソース電極
9 ドレイン電極
10 層間絶縁膜
11 トレンチ
14 半導体基板
DESCRIPTION OF SYMBOLS 1 Silicon carbide substrate 2 N-type drift layer 3 Base region 4 Source region 5 Channel region 6 Gate oxide film 7 Gate electrode 8 Source electrode 9 Drain electrode 10 Interlayer insulating film 11 Trench 14 Semiconductor substrate

Claims (1)

(1-100)面と成す角が5°以内の面を主表面とする第1の伝導型である炭化珪素半導体基板上に基板と同じ構造をもち第1の伝導型であるドリフト層を有するウェハ上に第2の伝導型であるベース層、第1の伝導型であるソース層を順次形成し、ソース層およびベース層を貫通しドリフト層に達するトレンチと、該トレンチ内に絶縁層とゲート電極を有するMOS構造であって、トレンチの側壁が[0001]と平行あるいは成す角が10°以下であり、かつ{1-100}面と側壁の成す角が60°±10°であるようなトレンチ側壁であることを特徴とする炭化珪素半導体素子。 On the silicon carbide semiconductor substrate, which is the first conductivity type, whose main surface is an angle formed with the (1-100) plane within 5 °, the first conductivity type drift layer has the same structure as the substrate. A base layer which is the second conductivity type and a source layer which is the first conductivity type are sequentially formed on the wafer, a trench which penetrates the source layer and the base layer and reaches the drift layer, and an insulating layer and a gate in the trench MOS structure with electrodes, where the trench sidewalls are parallel or formed with [0001] or less than 10 °, and the angle between the {1-100} surface and sidewalls is 60 ° ± 10 ° A silicon carbide semiconductor element characterized by being a trench side wall.
JP2004160514A 2004-05-31 2004-05-31 Silicon carbide semiconductor element Expired - Lifetime JP5017768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160514A JP5017768B2 (en) 2004-05-31 2004-05-31 Silicon carbide semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160514A JP5017768B2 (en) 2004-05-31 2004-05-31 Silicon carbide semiconductor element

Publications (2)

Publication Number Publication Date
JP2005340685A JP2005340685A (en) 2005-12-08
JP5017768B2 true JP5017768B2 (en) 2012-09-05

Family

ID=35493869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160514A Expired - Lifetime JP5017768B2 (en) 2004-05-31 2004-05-31 Silicon carbide semiconductor element

Country Status (1)

Country Link
JP (1) JP5017768B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5017855B2 (en) * 2005-12-14 2012-09-05 富士電機株式会社 Manufacturing method of semiconductor device
JP5017865B2 (en) * 2006-01-17 2012-09-05 富士電機株式会社 Semiconductor device
JP4957005B2 (en) * 2006-01-31 2012-06-20 富士電機株式会社 Method for manufacturing silicon carbide semiconductor element
JP5167593B2 (en) * 2006-03-23 2013-03-21 富士電機株式会社 Semiconductor device
JP5261907B2 (en) * 2006-09-19 2013-08-14 富士電機株式会社 Trench gate type silicon carbide semiconductor device
WO2008062729A1 (en) 2006-11-21 2008-05-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and process for producing the same
JP5564781B2 (en) * 2008-07-07 2014-08-06 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP5298691B2 (en) * 2008-07-31 2013-09-25 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP5569871B2 (en) * 2008-11-13 2014-08-13 日新電機株式会社 MOSFET and manufacturing method thereof
JP5531436B2 (en) * 2008-12-01 2014-06-25 富士電機株式会社 Method for manufacturing silicon carbide semiconductor element
CA2777675A1 (en) * 2010-01-19 2011-07-28 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing thereof
JPWO2011092808A1 (en) * 2010-01-27 2013-05-30 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
DE112011102528T5 (en) * 2010-07-29 2013-06-27 Sumitomo Electric Industries, Ltd. A silicon carbide substrate, semiconductor device and method of manufacturing the same
JP5707770B2 (en) * 2010-08-03 2015-04-30 住友電気工業株式会社 Semiconductor device and manufacturing method thereof
JP2012038771A (en) * 2010-08-03 2012-02-23 Sumitomo Electric Ind Ltd Semiconductor device and manufacturing method thereof
EP2602823B1 (en) * 2010-08-03 2020-03-11 Sumitomo Electric Industries, Ltd. Process for producing a mosfet or an igbt
JP5668576B2 (en) 2011-04-01 2015-02-12 住友電気工業株式会社 Silicon carbide semiconductor device
WO2013031172A1 (en) * 2011-08-26 2013-03-07 国立大学法人奈良先端科学技術大学院大学 SiC SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREOF
JP5699878B2 (en) * 2011-09-14 2015-04-15 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP2013062397A (en) * 2011-09-14 2013-04-04 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method
JP2013069964A (en) * 2011-09-26 2013-04-18 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device
JP5742627B2 (en) 2011-09-26 2015-07-01 住友電気工業株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5742657B2 (en) * 2011-10-20 2015-07-01 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP5764046B2 (en) 2011-11-21 2015-08-12 住友電気工業株式会社 Method for manufacturing silicon carbide semiconductor device
JP5751146B2 (en) * 2011-11-24 2015-07-22 住友電気工業株式会社 Semiconductor device and manufacturing method thereof
JP5870672B2 (en) * 2011-12-19 2016-03-01 住友電気工業株式会社 Semiconductor device
JP2013131512A (en) * 2011-12-20 2013-07-04 Sumitomo Electric Ind Ltd Semiconductor device and method of manufacturing the same
JP2013145770A (en) * 2012-01-13 2013-07-25 Sumitomo Electric Ind Ltd Semiconductor device and manufacturing method of the same
JP6119100B2 (en) * 2012-02-01 2017-04-26 住友電気工業株式会社 Silicon carbide semiconductor device
JP2013165197A (en) * 2012-02-13 2013-08-22 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and silicon carbide semiconductor device manufacturing method
JP6065198B2 (en) * 2012-02-21 2017-01-25 ローム株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5920010B2 (en) * 2012-05-18 2016-05-18 住友電気工業株式会社 Semiconductor device
JP2014007310A (en) * 2012-06-26 2014-01-16 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP5811977B2 (en) * 2012-09-18 2015-11-11 株式会社デンソー Silicon carbide semiconductor device
JP6146146B2 (en) * 2013-06-07 2017-06-14 住友電気工業株式会社 Silicon carbide semiconductor device and manufacturing method thereof
CN103928345B (en) * 2014-04-21 2016-09-07 西安电子科技大学 Ion implanting forms the UMOSFET preparation method of N-type heavy doping drift layer table top
JP6100233B2 (en) * 2014-12-26 2017-03-22 株式会社東芝 Semiconductor device
CN107681001B (en) * 2017-07-24 2020-04-07 中国电子科技集团公司第五十五研究所 Silicon carbide switch device and manufacturing method thereof
CN108400164B (en) * 2018-04-23 2021-01-22 广东美的制冷设备有限公司 Heterojunction silicon carbide insulated gate transistor and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910573B2 (en) * 1993-09-10 1999-06-23 株式会社日立製作所 Field effect transistor and method of manufacturing the same
JPH09172187A (en) * 1995-12-19 1997-06-30 Hitachi Ltd Junction type field-effect semiconductor device and its manufacture
JP4304783B2 (en) * 1999-09-06 2009-07-29 住友電気工業株式会社 SiC single crystal and growth method thereof
JP3451247B2 (en) * 2001-02-07 2003-09-29 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP4470333B2 (en) * 2001-03-05 2010-06-02 住友電気工業株式会社 Method for forming oxide film in SiC semiconductor and SiC semiconductor device
JP4843854B2 (en) * 2001-03-05 2011-12-21 住友電気工業株式会社 MOS device
JP4581270B2 (en) * 2001-03-05 2010-11-17 住友電気工業株式会社 SiC semiconductor ion-implanted layer and method of manufacturing the same

Also Published As

Publication number Publication date
JP2005340685A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP5017768B2 (en) Silicon carbide semiconductor element
US7790557B2 (en) Method of manufacturing silicon carbide semiconductor device
US10347735B2 (en) Semiconductor device with lifetime killers and method of manufacturing the same
JP5613995B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP5907940B2 (en) Semiconductor element
JP3385938B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP4872217B2 (en) Method for manufacturing silicon carbide semiconductor element
JP4956904B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US9117740B2 (en) SiC semiconductor element
US20150108501A1 (en) Semiconductor device
JP4957005B2 (en) Method for manufacturing silicon carbide semiconductor element
JPH09260650A (en) Silicon carbide trench fet and manufacture thereof
JP4929621B2 (en) MOS gate type silicon carbide semiconductor device
JP7367341B2 (en) Semiconductor device and semiconductor device manufacturing method
JP5630552B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP6550869B2 (en) Semiconductor device
Wada et al. Fast switching 4H-SiC V-groove trench MOSFETs with buried P+ structure
JP5402220B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP4691989B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6439606B2 (en) Silicon carbide semiconductor device
Saitoh et al. 4H-SiC V-groove trench MOSFETs with the buried p+ regions
JP6481511B2 (en) Silicon carbide semiconductor device
Mikamura et al. 4H-SiC V-groove trench MOSFETs with low specific on-state resistance and high reliability
US20230253458A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2012099834A (en) Method of manufacturing mos gate type silicon carbide semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5017768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250