JP4956904B2 - Silicon carbide semiconductor device and manufacturing method thereof - Google Patents

Silicon carbide semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4956904B2
JP4956904B2 JP2005088480A JP2005088480A JP4956904B2 JP 4956904 B2 JP4956904 B2 JP 4956904B2 JP 2005088480 A JP2005088480 A JP 2005088480A JP 2005088480 A JP2005088480 A JP 2005088480A JP 4956904 B2 JP4956904 B2 JP 4956904B2
Authority
JP
Japan
Prior art keywords
film
oxide film
trench
silicon carbide
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005088480A
Other languages
Japanese (ja)
Other versions
JP2006269924A (en
Inventor
明 斎藤
崇 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2005088480A priority Critical patent/JP4956904B2/en
Publication of JP2006269924A publication Critical patent/JP2006269924A/en
Application granted granted Critical
Publication of JP4956904B2 publication Critical patent/JP4956904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Description

半導体材料として炭化珪素を用いたMOSFET又はIGBT等の電圧駆動のMOS型電力用半導体素子、特にトレンチ型の半導体素子に関する。   The present invention relates to a voltage-driven MOS type power semiconductor device such as a MOSFET or IGBT using silicon carbide as a semiconductor material, particularly a trench type semiconductor device.

炭化珪素半導体は、バンドギャップが4H−SiCで3.25eVとSiの1.12eVに対して3倍程度大きく、電界強度がSi(0.3MV/cm)より1桁近く大きくなる(2〜4MV/cm)という特徴を持つ。電力用半導体素子においては、素子がオン状態におけるオン抵抗が、以下の式のように電界強度の3乗に逆比例して減少、また移動度の逆数に比例して減少する。RDRIFT=(4BV)/(μεECR ) ・・式(1)ここで、BVは絶縁耐圧、μはキャリアの移動度、εは半導体の誘電率、ECRは半導体の臨界電界強度である。このRDRIFTがユニポーラデバイスの最小オン抵抗であり、このオン抵抗と絶縁耐圧との関係がユニポーラリミットと呼ばれる。
従って、移動度がSiより低いことと考え合わせても、Siと比べて数100分の1にオン抵抗を低減することができ、次世代の電力用半導体素子として期待されている。現在までに、ダイオード、トランジスタ、サイリスタなど様々な構造のデバイスが試作され、その一部が実用化されている。
Silicon carbide semiconductors have a band gap of 4H-SiC, 3.25 eV and about 3 times larger than 1.12 eV of Si, and the electric field strength is nearly an order of magnitude larger than Si (0.3 MV / cm) (2 to 4 MV / cm). It has the characteristics. In a power semiconductor device, the on-resistance when the device is in an on state decreases in inverse proportion to the third power of the electric field strength and decreases in proportion to the reciprocal of mobility as shown in the following equation. R DRIFT = (4BV 2 ) / (μεE CR 3 ) ・ ・ Equation (1) where BV is the withstand voltage, μ is the carrier mobility, ε is the dielectric constant of the semiconductor, and E CR is the critical electric field strength of the semiconductor. is there. This RDRIFT is the minimum on-resistance of the unipolar device, and the relationship between this on-resistance and the withstand voltage is called a unipolar limit.
Therefore, even if it is considered that the mobility is lower than that of Si, the on-resistance can be reduced to several hundredth of that of Si, which is expected as a next-generation power semiconductor device. To date, devices with various structures such as diodes, transistors, and thyristors have been prototyped, and some of them have been put into practical use.

その中で図3にトランジスタの一形態であるトレンチゲート構造を持つUMOSFETの1セルの断面図を示す。n型低抵抗基板1上にn型ドリフト層2をエピタキシャル成長させ、さらにp型ベース領域3をエピタキシャル成長させる。その後、窒素(N)あるいは燐(P)のイオン注入によりソース領域4を形成する。その後、Reactive Ion Etching法により、トレンチ11を形成し、そのトレンチ11を覆うようにゲート酸化膜6をそしてゲート酸化膜6上にゲート電極7を形成する。このゲート電極7を層間絶縁膜10で覆った後、ベース層3とソース領域4にソース電極が接触できるように層間絶縁膜10をエッチングして窓開けし、ソース電極8を形成する。最後にドレイン電極9をウェハ裏面に形成してnチャネル型UMOSFETが完成する。
実際の動作は、予めソース電極8をアース電位にしておき、ゲート電極7に負バイアスを印加すると、N型ソース領域4とN型ドリフト層2に挟まれたチャネル領域5には正孔が誘起された蓄積状態となり、このnチャネルMOSFETでは電子を伝導キャリアとするので、電流は流れない。ドレイン電極9に正の高電圧を印加するとベース領域3とドリフト層2間の接合が逆バイアス状態になるので、空乏層がベース領域3内とドリフト層領域2内に広がり、電流を低く抑えたまま高電圧を維持しており、これがオフ状態である。この状態からゲート電極7に正バイアスを印加するとソース領域4とドリフト層2に挟まれたベース領域3の表面のチャネル領域5に電子が誘起された反転状態になり、電子がソース電極8、ソース領域4、反転したチャネル領域5、ドリフト層2、基板1、ドレイン電極9の順に流れるオン状態となる。再び、ゲート電極に負バイアスを印加するとチャネル領域5の反転が消滅し、電子の流れる経路が遮断されてオフ状態になる。
FIG. 3 shows a cross-sectional view of one cell of a UMOSFET having a trench gate structure which is one form of a transistor. An n-type drift layer 2 is epitaxially grown on the n-type low resistance substrate 1, and a p-type base region 3 is further epitaxially grown. Thereafter, the source region 4 is formed by ion implantation of nitrogen (N) or phosphorus (P). Thereafter, a trench 11 is formed by a reactive ion etching method, a gate oxide film 6 is formed so as to cover the trench 11, and a gate electrode 7 is formed on the gate oxide film 6. After the gate electrode 7 is covered with the interlayer insulating film 10, the interlayer insulating film 10 is etched to open a window so that the source electrode can come into contact with the base layer 3 and the source region 4, thereby forming the source electrode 8. Finally, the drain electrode 9 is formed on the back surface of the wafer to complete the n-channel UMOSFET.
In actual operation, when the source electrode 8 is set to the ground potential in advance and a negative bias is applied to the gate electrode 7, holes are induced in the channel region 5 sandwiched between the N-type source region 4 and the N-type drift layer 2. In this n-channel MOSFET, electrons are used as conduction carriers, so no current flows. When a positive high voltage is applied to the drain electrode 9, the junction between the base region 3 and the drift layer 2 is in a reverse bias state, so that the depletion layer extends into the base region 3 and the drift layer region 2, and the current is kept low. The high voltage is maintained and this is in the off state. When a positive bias is applied to the gate electrode 7 from this state, an inverted state is brought about in which electrons are induced in the channel region 5 on the surface of the base region 3 sandwiched between the source region 4 and the drift layer 2. The region 4, the inverted channel region 5, the drift layer 2, the substrate 1, and the drain electrode 9 are turned on in this order. When a negative bias is applied again to the gate electrode, the inversion of the channel region 5 disappears, the electron flow path is cut off, and the transistor is turned off.

このオン状態におけるオン抵抗は、上記の電流経路に沿って図示矢印13のように、ソース電極の接触抵抗、ソース領域の抵抗、チャネル領域のチャネル抵抗、ドリフト層2の厚さ方向の抵抗、基板1抵抗、そしてドレインの接触抵抗の総和となる。UMOSFETでは構造上チャネル領域5がトレンチ11の側面に形成されるため、オン状態におけるオン抵抗は、プレーナ型MOSFETで加算されるゲート酸化膜の界面近傍を電子が移動するときの蓄積抵抗と、n型ドリフト層がp型ベース層に挟まれていることによって生じるJFET抵抗とがないので、蓄積抵抗とJFET抵抗が発生しない分低減できるという長所がある。また、JFET抵抗が存在しないので、隣り合わせのp型ベース層3間の距離を小さくできるので、セルピッチを小さくできて、オン抵抗をプレーナ型MOSFETよりも小さくできるというメリットがある。   The on-resistance in this on-state is the contact resistance of the source electrode, the resistance of the source region, the channel resistance of the channel region, the resistance in the thickness direction of the drift layer 2, along the current path, as shown by the arrow 13 in FIG. 1 sum of resistance and drain contact resistance. Since the channel region 5 is structurally formed on the side surface of the trench 11 in the UMOSFET, the on-resistance in the on state is the accumulation resistance when electrons move near the interface of the gate oxide film added in the planar MOSFET, and n Since there is no JFET resistance generated when the type drift layer is sandwiched between the p-type base layers, there is an advantage that the storage resistance and the JFET resistance can be reduced. Further, since there is no JFET resistance, the distance between the adjacent p-type base layers 3 can be reduced, so that there is an advantage that the cell pitch can be reduced and the on-resistance can be made smaller than that of the planar MOSFET.

このUMOSFETは、原理的にビルトイン電圧が無いので、オン電圧をバイポーラデバイスに比べて低くできる。ユニポーラデバイスなのでオン状態時にキャリアのデバイス内での蓄積がないのでスイッチングロスが小さい。またゲート電極に正負の小さな電圧を印加してオン、オフ動作させる電圧駆動なので、駆動回路が簡単になるなどの長所がある。
以上のようなことから、特に1〜2kV程度の耐圧を持つトランジスタにおいては、オン抵抗が無視できないため、オン抵抗を微細化により低減できるUMOSFETが有望である。
しかし、実際のデバイスでは、上記で説明したように様々な抵抗成分が存在しており、これら抵抗成分は、絶縁耐圧が低くなればなるほど、ドリフト層の抵抗に対して割合が増加していくことが問題となっている。
また、MOSFETにおいては、以下の式で示されるチャネル抵抗成分が大きな割合を占めているという問題がある。RCH=L/{WCOX μ(V−V)} ・・式(2)ここで、Lはチャネル長、Wはチャネル幅、COXは酸化膜容量、μはキャリアの移動度、Vはゲート電圧、Vはゲートのしきい値電圧である。この(2)式からRCHは、電子の移動度μの影響を大きく受けることがわかる。
Since this UMOSFET has no built-in voltage in principle, the on-voltage can be made lower than that of a bipolar device. Since it is a unipolar device, there is no accumulation in the carrier device in the on state, so switching loss is small. Further, since the voltage driving is performed by applying a small positive / negative voltage to the gate electrode to perform the on / off operation, there is an advantage that the driving circuit is simplified.
For the above reasons, in particular, in a transistor having a withstand voltage of about 1 to 2 kV, the on-resistance cannot be ignored. Therefore, a UMOSFET that can reduce the on-resistance by miniaturization is promising.
However, in the actual device, there are various resistance components as described above, and the ratio of these resistance components to the resistance of the drift layer increases as the withstand voltage decreases. Is a problem.
In addition, in the MOSFET, there is a problem that a channel resistance component represented by the following formula occupies a large proportion. R CH = L / {WC OX μ n (V G -V T)} ·· formula (2) where, L is the channel length, W is the channel width, C OX is oxide capacitance, mu n is the movement of the carrier V G is the gate voltage and VT is the gate threshold voltage. From this equation (2), it is understood that R CH is greatly affected by the electron mobility μ n .

MOSFETでは炭化けい素とゲート酸化膜との界面に存在するトラップ準位に電子が捕獲されて実際に伝導に寄与する電子の数が減少したり、トラップされた電子によるクーロン散乱のため移動度がバルクの値より低下するという問題がある。以下に移動度向上の取り組みの例を順次説明する。
まず、UMOSFETが作製されるSiCの結晶構造、結晶面について説明する。図4に単位セル構造とMOS界面に主に用いられる六方晶炭化珪素の結晶面を示す。主な六方晶炭化珪素には、一対のSi-Cから成る層がc軸方向に4層周期で積層された構造になっている4H-SiCと6層周期で積層されている6H-SiCがある。4H-SiCでは図4の単位格子内に5層、6H-SiCでは7層含まれている。
図4の(a)は六角柱の上面が(0001)面、底面が(000-1)面であり、(b)は六角柱の側面が(1-100)面、(c)は(1-100)面と垂直な面の(11-20)面、(d)は上面の六角形の一辺を共有しかつ底面と成す角が54.7°である面が、4H(03-38)面あるいは6H(01-14)面と呼ばれている面である。なお、ここで、格子面の記号の説明をすると、負の指数については、結晶学上、数字に上付きのバー(−)を用いるが、電子出願の関係上、数字の前に(−)の符号を付けることとする。そして、等価な対称性を持つ面については{ }で表し、結晶内の方向を示す場合は[ ]で表し、等価な方向すべてを示す場合は〈 〉で表すこととする。
In a MOSFET, electrons are trapped at the trap level existing at the interface between silicon carbide and the gate oxide film, and the number of electrons actually contributing to conduction is reduced, or the mobility is increased due to Coulomb scattering by the trapped electrons. There is a problem that it falls below the bulk value. Examples of efforts to improve mobility will be described below sequentially.
First, the crystal structure and crystal plane of SiC from which a UMOSFET is fabricated will be described. FIG. 4 shows the crystal plane of hexagonal silicon carbide mainly used for the unit cell structure and the MOS interface. The main hexagonal silicon carbide includes 4H-SiC, which has a structure in which a pair of Si-C layers are stacked in the c-axis direction at a four-layer cycle, and 6H-SiC, which is stacked at a six-layer cycle. is there. 4H-SiC includes 5 layers in the unit cell of FIG. 4, and 6H-SiC includes 7 layers.
4 (a) shows that the top surface of the hexagonal column is the (0001) surface and the bottom surface is the (000-1) surface, (b) is the side surface of the hexagonal column is the (1-100) surface, and (c) is (1). (11-20) plane that is perpendicular to the (-100) plane, (d) is a 4H (03-38) plane or a plane that shares one side of the hexagon on the top surface and has an angle of 54.7 ° with the bottom surface. This surface is called the 6H (01-14) surface. Here, when describing the symbols on the lattice plane, for negative indices, a superscript bar (-) is used in numbers for crystallography, but (-) in front of the numbers because of electronic application. The sign of A plane having equivalent symmetry is represented by {}, when indicating a direction in the crystal by [], and when indicating all equivalent directions, it is represented by <>.

現在は、(0001)面あるいは(000-1)面が主表面である炭化珪素単結晶インゴットがバルク成長され、そのウェハを切り出し、研磨して(0001)面、(000-1)面を主表面とする炭化珪素ウェハが作製される。
非特許文献1の記載を参照すると、4H-SiCの各結晶面上にMOS界面を形成し、その時のMOSFETの移動度を調査した結果、実効移動度(effective mobility)が(0001)、(11-20)、(03-38)面でそれぞれ、3.8cm2/Vs、5.4cm2/Vs、10.6cm2/Vsと(0001)面より(11-20)面や(03-38)面上のMOSFETの移動度が高いことが報告されている。この理由として4Hあるいは6H-SiCの(0001)面はSi(111)面と、4Hあるいは6H-SiCの(11-20)面や4Hあるいは6H-SiCの(1-100)面はSi(110)面と、4H-SiC(03-38)面あるいは6H-SiC(01-14)面はSi(100)面と等価な面と説明されており、Siでも(100)面、(110)面、(111)面の順に移動度が高い。この理由として、原子の面密度が低いほど界面準位密度が下がり、その界面準位に捕獲される伝導電子が少なくなることや捕獲された電子からのクーロン散乱が少なくなることによると説明されている。
Currently, a silicon carbide single crystal ingot whose main surface is the (0001) plane or the (000-1) plane is bulk-grown, and the wafer is cut out and polished so that the (0001) plane and the (000-1) plane are the main surfaces. A silicon carbide wafer as a surface is produced.
Referring to the description of Non-Patent Document 1, as a result of forming a MOS interface on each crystal face of 4H-SiC and investigating the mobility of the MOSFET at that time, the effective mobility is (0001), (11 -20), (03-38) plane, respectively, than 3.8cm 2 /Vs,5.4cm 2 /Vs,10.6cm 2 / Vs and the (0001) plane (11-20) plane and (03-38) plane It has been reported that the mobility of MOSFETs is high. This is because the (0001) plane of 4H or 6H-SiC is the Si (111) plane, the (11-20) plane of 4H or 6H-SiC, and the (1-100) plane of 4H or 6H-SiC is Si (110). ) Surface and 4H-SiC (03-38) surface or 6H-SiC (01-14) surface are described as equivalent to Si (100) surface, and even in Si, (100) surface, (110) surface The mobility is higher in the order of (111) planes. This is explained by the fact that the lower the surface density of the atoms, the lower the interface state density, the less the conduction electrons trapped in the interface states, and the less Coulomb scattering from the trapped electrons. Yes.

このような特性をSiC-UMOSFETに利用したものとして、特許文献1においてSiC(000-1)面を主表面とし、ゲートトレンチの溝が主表面からソース、ベース層を貫通してドリフト層に貫通し、(11-20)面をトレンチ側壁とした構造や特許文献2においてSiC(000-1)面を主表面とし、ゲートトレンチの溝が主表面からソース、ベース層を貫通してドリフト層に貫通し、(1-100)面をトレンチ側壁とした構造が記載されている。
さらに特許文献3においては、(11-20)面をMOSチャネル面として用いながら、主表面を(1-100)面、(0001)面、(11-20)面とした場合の様々なケースについて記載されている。
図5は、UMOSFETの製造工程を示す断面図である。まず、n型4H-SiCあるいは6H-SiC基板1(n+)上に順次、熱CVD法により5μm、1016cm-3のn型ドリフト層2(n-)、1μm、1017cm-3のp型ベース層3(p)、0.5μm、1019cm-3のn型ソース層4(n+)をエピタキシャル成長で形成させる(図5(a))。
Assuming that these characteristics are used for SiC-UMOSFET, in Patent Document 1, the main surface is the SiC (000-1) surface, and the groove of the gate trench penetrates from the main surface to the source and base layers and penetrates to the drift layer. In addition, in the structure with the (11-20) plane as a trench sidewall and in Patent Document 2, the SiC (000-1) plane is the main surface, and the trench of the gate trench penetrates the source and base layers from the main surface to the drift layer. A structure that penetrates and has a (1-100) plane as a trench sidewall is described.
Furthermore, Patent Document 3 describes various cases in which the (11-20) plane is used as the MOS channel plane and the main surface is the (1-100) plane, (0001) plane, and (11-20) plane. Are listed.
FIG. 5 is a cross-sectional view showing the manufacturing process of the UMOSFET. First, on the n-type 4H-SiC or 6H-SiC substrate 1 (n +), 5 μm, 10 16 cm -3 n-type drift layer 2 (n-), 1 μm, 10 17 cm -3 are sequentially deposited by thermal CVD. A p-type base layer 3 (p), an n-type source layer 4 (n +) of 0.5 μm and 10 19 cm −3 is formed by epitaxial growth (FIG. 5A).

その基板1をソース層4、ベース層3が部分的に完全に除去できる深さまで反応性イオンエッチング法により垂直にエッチングして、2.1μmの深さとなるようにトレンチ11を形成する(図5(b))。
このようにトレンチ11を形成した後、30nm程度のゲート酸化膜6を形成する。ゲート酸化膜の形成としては、高温の酸素雰囲気中にトレンチ11を形成した基板1を導入し、トレンチ11の側壁を直接酸化させる。単結晶基板の表面に直接酸化によってゲート酸化膜を形成するプレーナ型の場合には、異なる面方位の面に酸化膜の形成をおこなうということがないので、酸化膜のばらつきが生じる問題はない。しかし、トレンチ側壁に直接酸化させる方法では、異なる面方位をもつトレンチ側壁で酸化速度が異なるため、形成されるゲート酸化膜の膜厚に側壁間でばらつきが生じる。このばらつきを防止するために非特許文献2に記載されているように、トレンチ11を設けた基板表面に、モノシランの熱分解により多結晶シリコン膜10をCVD法を用いて成膜する(図5(c))。多結晶シリコン膜10の成膜速度は、基板表面の温度で決まり、成長面の基板面方位に依存しない。このため、異なる面方位を持つトレンチ側壁へも均一な膜厚での成膜が可能である。次に、1000℃程度の高温の酸素雰囲気で加熱することで多結晶シリコン膜10を酸化膜12にする。さらにゲートトレンチ部をすべて覆うようにボロンをドーピングしたポリSiを堆積してゲート電極7とする。さらにこのポリSiのゲート電極7の表面のみを酸化して層間絶縁膜10としての酸化膜を形成する。その後、反応性イオンエッチングにより、選択的にn型ソース層4の一部をp型ベース層3が露出するまで除去する。その後この露出されたpベース層3に金属電極8aを形成する。その後nソースコンタクト用の金属を形成してソース電極8とし、裏面の酸化膜を除去してドレイン電極9を形成する。(図5(d))。
特開平9-199724号公報 特開平10-247732号公報 特開平7-131016号公報 ヒロシ ヤノ、タイチ ヒラオ、ツネノブ キモト、ヒロユキ マツナミ(Hiroshi Yano,Taichi Hirao,Tsunenobu kimoto,and Hiroyuki Matsunami)「エスアイオウツウ/エスアイシー インターフェース プロパティス オン バリアス サーフェス オリエンテーションス(SiO2/SiC Interface Properties on Various Surface Orientations), マテリアルス リサーチ ソサイティ シンポジウム プロシーディング(Mat. Res. Soc. Symp. Proc., Vol.742, 2003 Materials Research Society pp.219-226) ワイ.リー,ジエイ.エイ.クーパ.ジュニア,エム.エイ.カパノ(Y.Li,J.A.Cooper,Jr.,Fellow,IEEE,and M.A.Capano)「ハイ−ボルテージ(3キロボルト)ユウモスエフイテイズ イン 4エイチ−エスアイシ」(High-Voltage(3kV)UMOSFETs in 4H-SiC)(IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.49,NO.6,JUNE 2002)
The substrate 1 is vertically etched by a reactive ion etching method to a depth at which the source layer 4 and the base layer 3 can be completely removed, thereby forming a trench 11 having a depth of 2.1 μm (FIG. 5 ( b)).
After forming the trench 11 in this way, a gate oxide film 6 of about 30 nm is formed. As the formation of the gate oxide film, the substrate 1 having the trench 11 formed therein is introduced into a high-temperature oxygen atmosphere, and the sidewall of the trench 11 is directly oxidized. In the case of a planar type in which a gate oxide film is formed by direct oxidation on the surface of a single crystal substrate, an oxide film is not formed on a plane having a different plane orientation, so that there is no problem of variation in oxide film. However, in the method of directly oxidizing the trench sidewall, the oxidation rate differs between the trench sidewalls having different plane orientations, so that the thickness of the formed gate oxide film varies between the sidewalls. In order to prevent this variation, as described in Non-Patent Document 2, a polycrystalline silicon film 10 is formed on the substrate surface provided with the trench 11 by the thermal decomposition of monosilane using the CVD method (FIG. 5). (c)). The deposition rate of the polycrystalline silicon film 10 is determined by the temperature of the substrate surface and does not depend on the substrate surface orientation of the growth surface. Therefore, it is possible to form a film with a uniform film thickness on the trench sidewalls having different plane orientations. Next, the polycrystalline silicon film 10 is changed to the oxide film 12 by heating in a high-temperature oxygen atmosphere of about 1000 ° C. Further, poly-Si doped with boron is deposited so as to cover the entire gate trench, thereby forming the gate electrode 7. Further, only the surface of the poly-Si gate electrode 7 is oxidized to form an oxide film as an interlayer insulating film 10. Thereafter, a part of the n-type source layer 4 is selectively removed by reactive ion etching until the p-type base layer 3 is exposed. Thereafter, a metal electrode 8 a is formed on the exposed p base layer 3. Thereafter, a metal for n source contact is formed to form the source electrode 8, and the oxide film on the back surface is removed to form the drain electrode 9. (Figure 5 (d)).
Japanese Patent Laid-Open No. 9-19724 Japanese Patent Laid-Open No. 10-247732 Japanese Unexamined Patent Publication No. 7-11016 Hiroshi Yano, Taichi Hirao, Tsuneenobu kimoto, and Hiroyuki Matsunami “Sio Itsu / SIC Interface Properties on Various Surface Orientations” ), Materials Research Society Symposium Proc. (Mat. Res. Soc. Symp. Proc., Vol.742, 2003 Materials Research Society pp.219-226) Wy. Lee, GA. A. Cooper. Junior, M. A. Capano (Y-Li, JACooper, Jr., Fellow, IEEE, and MACapano) "High-Voltage (3kV) UMOSFETs in 4H-SiC" (IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.49, NO.6, JUNE 2002)

しかしながら、多結晶シリコンは、単結晶シリコンと異なり、多くの微小な単結晶粒で構成されている。この単結晶の粒子の結晶軸は、一種類でなくある分布をもって存在しているため、結晶粒子と結晶粒子の界面は不連続となっている。実際に多結晶シリコンの表面を高倍率の走査型電子顕微鏡あるいは原子間力顕微鏡(AFM)で観察すると、結晶粒子の界面には段差が存在しているのが観察できた。即ち、多結晶シリコン膜表面には、結晶粒子のサイズに対応した凹凸が存在している。この凹凸は、多結晶シリコン膜が酸化される過程の体積膨張によって増幅される。つまり、推測すると、シリコンが酸化シリコンになる過程では体積が約2倍に増加するため、隣り合う結晶粒子の界面には圧縮応力が働き、この圧縮応力を緩和する過程において、表面の凹凸が増幅されると考えられる。事実、50nm厚の多結晶シリコン薄膜を酸化することによって、ほぼ2倍の厚さの酸化膜を形成する実験において、酸化時間(酸素雰囲気中1000℃で酸化)1時間と2時間の表面凹凸を比較すると、2時間酸化したものは、1時間酸化したものより表面凹凸が約2倍になっているという結果が得られている。酸化膜の表面の凹凸は、酸化膜がゲート酸化膜として使用される場合に、耐圧低下をもたらすという課題がある。   However, unlike single crystal silicon, polycrystalline silicon is composed of many fine single crystal grains. Since the crystal axes of the single crystal particles exist with a certain distribution rather than one type, the interface between the crystal particles and the crystal particles is discontinuous. When the surface of the polycrystalline silicon was actually observed with a high-magnification scanning electron microscope or atomic force microscope (AFM), it was observed that a step was present at the crystal grain interface. That is, irregularities corresponding to the size of the crystal particles exist on the surface of the polycrystalline silicon film. This unevenness is amplified by volume expansion in the process of oxidizing the polycrystalline silicon film. In other words, it is estimated that the volume increases approximately twice in the process of silicon becoming silicon oxide, so that compressive stress acts on the interface between adjacent crystal grains, and surface irregularities are amplified in the process of relaxing this compressive stress. It is thought that it is done. In fact, in an experiment to form an oxide film having a thickness almost twice as large by oxidizing a polycrystalline silicon thin film having a thickness of 50 nm, the surface irregularities of the oxidation time (oxidation at 1000 ° C. in an oxygen atmosphere) for 1 hour and 2 hours were observed. In comparison, the result is that the surface unevenness of the material oxidized for 2 hours is approximately twice that of the material oxidized for 1 hour. The unevenness of the surface of the oxide film has a problem that the breakdown voltage is lowered when the oxide film is used as a gate oxide film.

このため、本発明は、炭化珪素単結晶基板上に設けられたトレンチの内面に酸化膜を形成する方法において、少なくともトレンチの内面に表面凹凸が0.3nm〜0.4nmのアモルファスシリコン膜を成膜し、該アモルファスシリコン膜を固相で多結晶シリコン膜とし、該多結晶シリコン膜を酸化して表面凹凸が3nm〜4nmの酸化膜とするとよい。
また、前記アモルファスシリコン膜がノンドープであるとよい。
また、炭化珪素単結晶基板は第一導電型の第一領域、第二導電型の第二領域及び第一導電型の第三領域からなり、前記トレンチが第二領域及び第三領域を貫通して第一領域に達するストライプ状のトレンチゲートであり、前記表面凹凸が3nm〜4nmの酸化膜がゲート酸化膜であるとよい。
Therefore, the present invention relates to a method of forming an oxide film on the inner surface of a trench provided on a silicon carbide single crystal substrate, and forming an amorphous silicon film having a surface irregularity of 0.3 nm to 0.4 nm on at least the inner surface of the trench. The amorphous silicon film may be a polycrystalline silicon film in a solid phase, and the polycrystalline silicon film may be oxidized to an oxide film having a surface unevenness of 3 nm to 4 nm.
The amorphous silicon film may be non-doped.
The silicon carbide single crystal substrate includes a first region of a first conductivity type, a second region of a second conductivity type, and a third region of a first conductivity type, and the trench penetrates the second region and the third region. It is preferable that the oxide film having a surface irregularity of 3 nm to 4 nm is a gate oxide film.

本発明によれば、トレンチ側壁の面方位によらず、表面平坦性が高く、絶縁耐圧の高いゲート酸化膜を形成することができる。
また,多結晶シリコン(原子間力顕微鏡(AFM(Atomic force Microscope))法で計測した表面凹凸数10〜200nm)を成膜した後,これを酸化して得た酸化膜の表面凹凸が多結晶シリコンの表面の凹凸数10〜200nm程度であるのに対し,本発明で得たアモルファスシリコンを用いて成膜後,これを酸化して得た酸化膜の凹凸は3〜4nm程度まで減少できることが分かった。
According to the present invention, a gate oxide film having high surface flatness and high withstand voltage can be formed regardless of the surface orientation of the trench sidewall.
In addition, the surface roughness of the oxide film obtained by depositing polycrystalline silicon (the number of surface irregularities measured by atomic force microscope (AFM) method: 10 to 200 nm) is polycrystalline. The number of irregularities on the surface of the silicon is about 10 to 200 nm, whereas the irregularity of the oxide film obtained by oxidizing the amorphous silicon obtained by the present invention can be reduced to about 3 to 4 nm. I understood.

多結晶シリコン膜を成長させる工程において、結晶粒によって構成される多結晶シリコンの替わりに、非晶質であるアモルファスシリコンを形成し、このアモルファスシリコンを熱処理した後に酸化、またはアモルファスシリコンを直接酸化することによって、多結晶シリコンの結晶粒に対応した凹凸に基づく酸化膜の表面平坦性の低下を防ぐ。   In the process of growing a polycrystalline silicon film, amorphous silicon that is amorphous is formed instead of polycrystalline silicon constituted by crystal grains, and the amorphous silicon is oxidized after heat treatment or the amorphous silicon is directly oxidized. This prevents the surface flatness of the oxide film from being lowered due to the unevenness corresponding to the polycrystalline silicon crystal grains.

図1は本発明の実施例のトレンチを有するMOSFETの製造工程の一部を示した断面図である。図5(b)のトレンチ形成までと、図5(d)の酸化膜形成後の工程は本実施例も同じであるので、説明を省略する。本実施例では、図でトレンチ形成後から酸化膜形成までについて説明する。まず、n型4H-SiCあるいは6H-SiC基板1(本実施例では表面が11-20面のn型4H-SiC)の上に順次、熱CVD法により4.9μm、1016cm-3のn型ドリフト層2、1μm、1017cm-3のp型ベース層3、0.5μm、1019cm-3のn型ソース層4をエピタキシャル成長で形成させる。その基板1をソース層4、ベース層3を部分的に完全に除去できる深さまで反応性イオンエッチング法により垂直にエッチングして、2.1μmの深さとなるようにトレンチ11を形成し、RCA洗浄を行う。ここまでは、図5と同じ工程である。
まず、トレンチ11を含む凹凸のある基板表面に、好ましくは520℃以下の成膜温度でアモルファス構造の非晶質シリコン膜14を減圧CVD法を用いて50nmの厚さで成膜する(図1(a))。成膜条件は、480℃の成膜温度、ヘリウムをキャリアガスとして20%のモノシラン(SiH)ガスを成膜ガスとし、70Pa〜100Pa(本実施例では80Pa)の成膜圧力とした。続いて1000℃以下の温度(好ましくは800℃〜1000℃)で、O2が7sccm(Oが3に対してNが5の割合)の常圧雰囲気で酸化処理し、非晶質シリコン膜14を酸化膜15に変換する(図1(b))。以降の工程は図5(d)と同様である。
FIG. 1 is a sectional view showing a part of a manufacturing process of a MOSFET having a trench according to an embodiment of the present invention. The process up to the trench formation in FIG. 5B and the process after the oxide film formation in FIG. In this embodiment, the process from the trench formation to the oxide film formation will be described with reference to the drawings. First, n-type 4H-SiC or 6H-SiC substrate 1 (in this embodiment, n-type 4H-SiC having a surface of 11-20 surfaces) is sequentially deposited by thermal CVD to 4.9 μm and n of 10 16 cm −3 . A drift layer 2, a 1 μm, p-type base layer 3 of 10 17 cm −3 , and an n-type source layer 4 of 0.5 μm, 10 19 cm −3 are formed by epitaxial growth. The substrate 1 is vertically etched by a reactive ion etching method to a depth at which the source layer 4 and the base layer 3 can be partially removed completely to form a trench 11 having a depth of 2.1 μm, and RCA cleaning is performed. Do. Up to this point, the process is the same as in FIG.
First, an amorphous silicon film 14 having an amorphous structure is formed to a thickness of 50 nm on the uneven substrate surface including the trench 11 at a film forming temperature of preferably 520 ° C. or less by using a low pressure CVD method (FIG. 1). (A)). The film formation conditions were a film formation temperature of 480 ° C., a film formation pressure of 70 Pa to 100 Pa (80 Pa in this example) using 20% monosilane (SiH 4 ) gas with helium as a carrier gas. Subsequently, the amorphous silicon film is oxidized at a temperature of 1000 ° C. or less (preferably 800 ° C. to 1000 ° C.) in an atmospheric pressure atmosphere of O 2 of 7 sccm (O 2 is a ratio of N to 5). 14 is converted into an oxide film 15 (FIG. 1B). The subsequent steps are the same as those in FIG.

図2は、別の製造工程の実施例であり、トレンチを有するMOSFETの製造工程の一部を示した断面図である。実施例1と同じく本実施例では、図でトレンチ形成後から酸化膜形成までについて説明する。
まず、トレンチ11を含む凹凸のある基板表面に、好ましくは520℃以下の成膜温度でアモルファス構造の非晶質シリコン膜14を減圧CVD法を用いて50nmの厚さで成膜する(図1(a))。成膜条件は、485℃の成膜温度、ヘリウムをキャリアガスとして20%のモノシラン(SiH)ガスを成膜ガスとし、70Pa〜100Pa(本実施例では80Pa)の成膜圧力とした。続いて800℃〜900℃の窒素雰囲気下で焼成することによって非晶質シリコン膜14を固相で多結晶化することによって多結晶シリコン膜16を形成する(図2(b))。続いて1000℃以下の温度(好ましくは900℃〜1000℃)で、O2が7sccmの常圧雰囲気で酸化処理し、多結晶シリコン膜16を酸化膜15に変換する(図2(c))。以降の工程は図5(d)と同様である。
FIG. 2 is a cross-sectional view showing a part of a manufacturing process of a MOSFET having a trench, which is an example of another manufacturing process. As in the first embodiment, in this embodiment, the process from the trench formation to the oxide film formation will be described with reference to the drawings.
First, an amorphous silicon film 14 having an amorphous structure is formed to a thickness of 50 nm on the uneven substrate surface including the trench 11 at a film forming temperature of preferably 520 ° C. or less by using a low pressure CVD method (FIG. 1). (A)). The film forming conditions were a film forming temperature of 485 ° C., a film forming pressure of 70 Pa to 100 Pa (80 Pa in this example) using 20% monosilane (SiH 4 ) gas as a carrier gas and helium as a carrier gas. Subsequently, the amorphous silicon film 14 is polycrystallized in a solid phase by baking in a nitrogen atmosphere at 800 ° C. to 900 ° C. to form a polycrystalline silicon film 16 (FIG. 2B). Subsequently, the polycrystalline silicon film 16 is converted to the oxide film 15 by oxidizing at a temperature of 1000 ° C. or lower (preferably 900 ° C. to 1000 ° C.) in an atmospheric pressure atmosphere of O 2 of 7 sccm (FIG. 2C). . The subsequent steps are the same as those in FIG.

多結晶シリコンの薄膜を酸化した場合、多結晶シリコン膜表面に存在する結晶粒に対応した凹凸が増幅され酸化膜の表面平坦性が悪化する。しかし、実施例1のように非晶質シリコン膜として成膜した場合には、結晶粒が存在しない膜であるため、非晶質シリコン膜の表面は非常に平坦な膜(AFM法で計測の結果0.3〜0.4nm程度の平坦な膜)となる。また、実施例2のように非晶質シリコン膜を800℃〜900℃の比較的低温で固相多結晶化して形成した多結晶シリコン膜も、非晶質シリコン膜と同等の平坦な表面(やはりAFM法で計測の結果0.3〜0.4nm程度の平坦な膜)を有している。
実施例1において、非晶質シリコン膜を成膜後に比較的低温の800℃〜1000℃で酸化しているが、この時、非晶質シリコン膜は表面で酸化が進む一方、表面下では固相での多結晶化が起こっている。このため、最表面以外は多結晶シリコンを酸化することになる。実施例2においては、非晶質シリコンを固相多結晶化によって多結晶シリコンに変換したのち、酸化シリコンを形成している。
When a polycrystalline silicon thin film is oxidized, irregularities corresponding to crystal grains present on the surface of the polycrystalline silicon film are amplified, and the surface flatness of the oxide film is deteriorated. However, when the film is formed as an amorphous silicon film as in Example 1, since the film does not have crystal grains, the surface of the amorphous silicon film is a very flat film (measured by the AFM method). The result is a flat film of about 0.3 to 0.4 nm. The polycrystalline silicon film formed by solid-phase polycrystallizing an amorphous silicon film at a relatively low temperature of 800 ° C. to 900 ° C. as in Example 2 is also a flat surface equivalent to the amorphous silicon film ( As a result of measurement by the AFM method, the film has a flat film of about 0.3 to 0.4 nm.
In Example 1, the amorphous silicon film is oxidized at a relatively low temperature of 800 ° C. to 1000 ° C. after the formation of the amorphous silicon film. At this time, the amorphous silicon film is oxidized on the surface, but is solid below the surface. Polycrystallization occurs in the phase. For this reason, polycrystalline silicon is oxidized except for the outermost surface. In Example 2, after converting amorphous silicon into polycrystalline silicon by solid phase polycrystallization, silicon oxide is formed.

485℃で50nmの厚さに成膜したアモルファスシリコンを900℃と1200℃で酸化したのち、表面を原子間力顕微鏡法(探針法で表面の凹凸を測定する方法)で測定した結果を示す。
まず焼成条件なしで、900℃、1時間の酸化条件で酸化膜表面の凹凸はAFMの平均粗さで1.13nmであった。同じく900℃、2時間で0.45nm、900℃5時間で0.63nm、1200℃、5分で4.5nm、1200℃、10分で9.9nm、1200℃、20分で16.1nm、1200℃、1時間で4.9nm、1200℃、2時間で17.5nmであった。酸化条件を900℃、5時間とし、焼成条件を1300℃、1時間とした場合は0.66nmであった。酸化温度が900℃と1200℃の試料を比較すると、900℃の試料の酸化膜の表面凹凸は小さく(0.66nm以下)、1200℃の試料の酸化膜の表面凹凸は大きかった(4.5nm以上)。更に一度900℃で酸化した酸化膜は、その後に1300℃、1時間で焼成しても、表面凹凸は900℃で酸化して焼成なしの試料のグループと同程度に維持されている。
Amorphous silicon deposited to a thickness of 50 nm at 485 ° C. is oxidized at 900 ° C. and 1200 ° C., and then the surface is measured by atomic force microscopy (a method for measuring surface irregularities with a probe method). .
First, the unevenness on the surface of the oxide film was 1.13 nm in terms of the average roughness of AFM under the oxidizing condition of 900 ° C. for 1 hour without firing conditions. Similarly, 900 ° C., 2 hours 0.45 nm, 900 ° C. 5 hours 0.63 nm, 1200 ° C., 5 minutes 4.5 nm, 1200 ° C., 10 minutes 9.9 nm, 1200 ° C., 20 minutes 16.1 nm, 1200 ° C., 1 hour And 17.5 nm at 1200 ° C. for 2 hours. When the oxidation condition was 900 ° C. for 5 hours and the firing condition was 1300 ° C. for 1 hour, it was 0.66 nm. Comparing the samples with an oxidation temperature of 900 ° C. and 1200 ° C., the surface unevenness of the oxide film of the 900 ° C. sample was small (0.66 nm or less), and the surface unevenness of the oxide film of the 1200 ° C. sample was large (4.5 nm or more) . Further, even if the oxide film once oxidized at 900 ° C. is fired at 1300 ° C. for 1 hour thereafter, the surface unevenness is maintained at the same level as that of the group of samples not oxidized at 900 ° C.

非晶質膜を比較的低温で固相から多結晶化して形成した多結晶シリコンの表面が、非晶質シリコン膜と同等の平坦性を持っている理由としては、次のことが考えられる。
多結晶シリコンを気相から成長させる場合、はじめにシリコン原子は、基板表面の多くのなんらかの凹凸を種(または核)としてランダムな結晶面を表面として成長する。この時多結晶粒の表面は2次元(面)であり、気中から成長面に供給されたシリコン原子は、結晶粒の成長面でマイグレーションをしながら成長をつづける。この過程で、成長を始めている結晶粒の表面が結晶成長の核であるため、多結晶シリコンの断面はコラム状の形状として成長する。一方、非晶質シリコンの固相での多結晶化では、結晶成長の核はアモルファス構造の中の粗密(密度の揺らぎなどの不安定構造)などであり、基板表面だけではなく、アモルファス相のあらゆる点から始まる。このため、同じ温度で多結晶シリコンを形成する場合には気相から形成した場合よりも固相からの方がより細かな結晶粒の多結晶シリコンが形成される。この他、500℃以下という低温で成長した非晶質シリコンの密度は、800℃で形成した多結晶シリコンよりも低いため、非晶質シリコンを固相で多結晶化した場合には、結晶粒の膨張によって粒同士のぶつかい合いが発生し、表面凹凸が増幅されるという現象は起こらない。
The reason why the surface of the polycrystalline silicon formed by polycrystallizing the amorphous film from the solid phase at a relatively low temperature has the same flatness as the amorphous silicon film is considered as follows.
When growing polycrystalline silicon from the vapor phase, silicon atoms are first grown on a random crystal plane as a seed (or nucleus) with many irregularities on the substrate surface as seeds (or nuclei). At this time, the surface of the polycrystalline grain is two-dimensional (plane), and silicon atoms supplied from the air to the growth surface continue to grow while migrating on the growth surface of the crystal grain. In this process, since the surface of the crystal grain starting to grow is the nucleus of crystal growth, the cross section of the polycrystalline silicon grows in a columnar shape. On the other hand, in the case of polycrystallization in the solid phase of amorphous silicon, the nucleus of crystal growth is the density in the amorphous structure (unstable structure such as density fluctuation), and so on. Start from every point. For this reason, when forming polycrystalline silicon at the same temperature, polycrystalline silicon with finer crystal grains is formed from the solid phase than when formed from the vapor phase. In addition, since the density of amorphous silicon grown at a low temperature of 500 ° C. or lower is lower than that of polycrystalline silicon formed at 800 ° C., when amorphous silicon is polycrystallized in a solid phase, crystal grains The phenomenon that the grains collide with each other and the surface irregularities are amplified does not occur.

従って、本発明で形成した非晶質シリコンを出発点とする酸化シリコン膜の表面は、非常に平坦な状態をしている。   Therefore, the surface of the silicon oxide film starting from the amorphous silicon formed according to the present invention is in a very flat state.

MOSFET,IGBTが用いられるインバータ装置等の電力変換装置ばかりでなく、温度等の使用環境が厳しい自動車用電装品のスイッチング素子として適用できる。   It can be applied not only to power conversion devices such as inverter devices using MOSFETs and IGBTs, but also to switching elements for automotive electrical components with severe usage environments such as temperature.

実施例1のUMOSFETの作製工程を示す工程断面図Process sectional drawing which shows the manufacturing process of UMOSFET of Example 1 実施例2のUMOSFETの作製工程を示す工程断面図Process sectional drawing which shows the manufacturing process of UMOSFET of Example 2 従来のSiC縦型UMOSFETを示す部分断面図Partial sectional view showing a conventional SiC vertical UMOSFET 六方晶炭化珪素のユニットセルの構造と結晶面を示す説明図Explanatory drawing showing the structure and crystal plane of hexagonal silicon carbide unit cell 従来のUMOSFETの作製工程を示す工程断面図Cross-sectional process diagram showing the conventional UMOSFET fabrication process

符号の説明Explanation of symbols

1 炭化珪素基板
2 n型ドリフト層
3 ベース領域
4 ソース領域
5 チャネル領域
6 ゲート酸化膜
7 ゲート電極
8 ソース電極
9 ドレイン電極
10 層間絶縁膜
11 トレンチ
12 酸化膜
14 非晶質シリコン膜
15 酸化膜
16 多結晶シリコン膜
DESCRIPTION OF SYMBOLS 1 Silicon carbide substrate 2 N-type drift layer 3 Base region 4 Source region 5 Channel region 6 Gate oxide film 7 Gate electrode 8 Source electrode 9 Drain electrode 10 Interlayer insulating film 11 Trench 12 Oxide film 14 Amorphous silicon film 15 Oxide film 16 Polycrystalline silicon film

Claims (4)

炭化珪素単結晶基板上に設けられたトレンチの内面に酸化膜を形成する方法において、少なくともトレンチの内面に表面凹凸が0.3nm〜0.4nmのアモルファスシリコン膜を成膜し、該アモルファスシリコン膜を固相で多結晶シリコン膜とし、該多結晶シリコン膜を酸化して表面凹凸が3nm〜4nmの酸化膜とすることを特徴とする炭化珪素半導体装置の製造方法。 In the method of forming an oxide film on the inner surface of a trench provided on a silicon carbide single crystal substrate, an amorphous silicon film having a surface irregularity of 0.3 nm to 0.4 nm is formed at least on the inner surface of the trench, and the amorphous silicon film is fixed. A method of manufacturing a silicon carbide semiconductor device, characterized in that a polycrystalline silicon film is formed in a phase, and the polycrystalline silicon film is oxidized to form an oxide film having surface irregularities of 3 nm to 4 nm. 前記アモルファスシリコン膜がノンドープであることを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。 The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein the amorphous silicon film is non-doped. アモルファスシリコン膜を固相で多結晶シリコン膜を形成する焼成温度が900℃以下であることを特徴とする請求項1又は2に記載の炭化珪素半導体装置の製造方法。   The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein a baking temperature for forming the amorphous silicon film in a solid phase and a polycrystalline silicon film is 900 ° C. or less. 炭化珪素単結晶基板は第一導電型の第一領域、第二導電型の第二領域及び第一導電型の第三領域からなり、前記トレンチが第二領域及び第三領域を貫通して第一領域に達するストライプ状のトレンチゲートであり、前記表面凹凸が3nm〜4nmの酸化膜がゲート酸化膜であることを特徴とする請求項1に記載の製造方法で形成した炭化珪素半導体装置。 The silicon carbide single crystal substrate includes a first conductivity type first region, a second conductivity type second region, and a first conductivity type third region, and the trench penetrates the second region and the third region. 2. The silicon carbide semiconductor device formed by the manufacturing method according to claim 1, wherein the silicon carbide semiconductor device is a stripe-shaped trench gate reaching one region, and the oxide film having a surface unevenness of 3 nm to 4 nm is a gate oxide film.
JP2005088480A 2005-03-25 2005-03-25 Silicon carbide semiconductor device and manufacturing method thereof Active JP4956904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088480A JP4956904B2 (en) 2005-03-25 2005-03-25 Silicon carbide semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088480A JP4956904B2 (en) 2005-03-25 2005-03-25 Silicon carbide semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006269924A JP2006269924A (en) 2006-10-05
JP4956904B2 true JP4956904B2 (en) 2012-06-20

Family

ID=37205528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088480A Active JP4956904B2 (en) 2005-03-25 2005-03-25 Silicon carbide semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4956904B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311406A (en) * 2007-06-14 2008-12-25 Toyota Motor Corp MANUFACTURING METHOD OF GROOVE GATE TYPE SiC SEMICONDUCTOR DEVICE
JP2009206413A (en) * 2008-02-29 2009-09-10 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device
JP2009212365A (en) * 2008-03-05 2009-09-17 Oki Semiconductor Co Ltd Production process of semiconductor device
JP5437592B2 (en) * 2008-06-02 2014-03-12 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP2011165771A (en) * 2010-02-05 2011-08-25 Fuji Electric Co Ltd Method of manufacturing semiconductor device
DE102010062448B4 (en) * 2010-12-06 2022-11-03 Robert Bosch Gmbh Process for the production of semiconductor structures from silicon carbide and silicon carbide semiconductors
WO2013035845A1 (en) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2o3 semiconductor element
CN110010670A (en) 2011-09-08 2019-07-12 株式会社田村制作所 Ga2O3It is MISFET and Ga2O3It is MESFET
JP6035763B2 (en) * 2012-02-09 2016-11-30 富士電機株式会社 Method for forming gate oxide film and method for manufacturing silicon carbide semiconductor device
JP2014207403A (en) 2013-04-16 2014-10-30 住友電気工業株式会社 Silicon carbide semiconductor device manufacturing method
JP6133939B2 (en) * 2015-07-23 2017-05-24 株式会社日立製作所 Semiconductor device and manufacturing method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193132A (en) * 1987-10-02 1989-04-12 Mitsubishi Electric Corp Manufacture of semiconductor device
JP3395522B2 (en) * 1996-05-15 2003-04-14 株式会社豊田中央研究所 Semiconductor device and manufacturing method thereof
JP3893725B2 (en) * 1998-03-25 2007-03-14 株式会社デンソー Method for manufacturing silicon carbide semiconductor device
JP2000164591A (en) * 1998-11-24 2000-06-16 Hitachi Ltd Manufacture of semiconductor device
KR100911295B1 (en) * 2001-10-24 2009-08-11 엘피다 메모리, 아이엔씨. Longitudinal misfet manufacturing method, longitudinal misfet, semiconductor storage device manufacturing method and semiconductor storage device
JP3829721B2 (en) * 2002-01-22 2006-10-04 ソニー株式会社 Disc clamping device, recording and / or reproducing device, and disc evaluation device
JP2003243653A (en) * 2002-02-19 2003-08-29 Nissan Motor Co Ltd Method for manufacturing silicon carbide semiconductor device
JP4319809B2 (en) * 2002-06-05 2009-08-26 株式会社デンソー Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2006269924A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4956904B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP5017768B2 (en) Silicon carbide semiconductor element
JP4872217B2 (en) Method for manufacturing silicon carbide semiconductor element
US7790557B2 (en) Method of manufacturing silicon carbide semiconductor device
JP5603008B2 (en) Method for forming SiCMOSFET having large inversion layer mobility
Wahab et al. A 3 kV Schottky barrier diode in 4H-SiC
EP1981076B1 (en) Method for manufacturing silicon carbide semiconductor device
US8138504B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
CN102150270B (en) MOSFET and method for manufacturing MOSFET
US20110006310A1 (en) Semiconductor device and semiconductor device manufacturing method
WO2005010974A1 (en) Field effect transistor and method for manufacturing same
JP4957005B2 (en) Method for manufacturing silicon carbide semiconductor element
JP2003234301A (en) Semiconductor substrate, semiconductor element and method for manufacturing the same
JP4929621B2 (en) MOS gate type silicon carbide semiconductor device
JP2003243653A (en) Method for manufacturing silicon carbide semiconductor device
WO2010110252A1 (en) Mosfet and method for manufacturing mosfet
JP6267706B2 (en) Semiconductor device and manufacturing method thereof
US20110062450A1 (en) Silicon carbide semiconductor device
Kutsuki et al. Experimental investigation and improvement of channel mobility in 4H-SiC trench MOSFETs
JP3944575B2 (en) Silicon carbide semiconductor device
WO2015060027A1 (en) Silicon carbide semiconductor device and method for manufacturing same
US9502552B2 (en) Silicon carbide semiconductor device
WO2014041879A1 (en) Silicon carbide semiconductor device
Mikamura et al. 4H-SiC V-groove trench MOSFETs with low specific on-state resistance and high reliability
JP7486729B2 (en) Semiconductor Device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250