JP5003931B2 - 熱回収装置、並びに、コージェネレーションシステム - Google Patents

熱回収装置、並びに、コージェネレーションシステム Download PDF

Info

Publication number
JP5003931B2
JP5003931B2 JP2006131575A JP2006131575A JP5003931B2 JP 5003931 B2 JP5003931 B2 JP 5003931B2 JP 2006131575 A JP2006131575 A JP 2006131575A JP 2006131575 A JP2006131575 A JP 2006131575A JP 5003931 B2 JP5003931 B2 JP 5003931B2
Authority
JP
Japan
Prior art keywords
storage tank
heat
valve
flow path
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006131575A
Other languages
English (en)
Other versions
JP2007303719A (ja
Inventor
向生 渡邉
英典 本岡
秀和 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2006131575A priority Critical patent/JP5003931B2/ja
Publication of JP2007303719A publication Critical patent/JP2007303719A/ja
Application granted granted Critical
Publication of JP5003931B2 publication Critical patent/JP5003931B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、熱回収装置、並びに、当該熱回収装置を備えたコージェネレーションシステムに関するものである。
従来より、下記特許文献1に開示されているように、燃料電池等の発電装置において発生した排熱が持つ熱エネルギーを湯水等の液体を介して回収し、貯留タンクに貯留可能なコージェネレーションシステムがある。かかる構成のコージェネレーションシステムは、発電装置を冷却することにより加熱された液体を有効利用できるため、エネルギー効率が高い。
特開2001−325982号公報
特許文献1に開示されたコージェネレーションシステムは、燃料電池が発生する熱によって水を昇温し、できた湯をタンクに貯留するものである。特許文献1に開示された発明では、湯を貯留する貯留タンクは、大気開放型のタンクである。
また特許文献1に開示されたコージェネレーションシステムでは、燃料電池側の熱交換器に湯水を供給する流路にラジエターが設けられている。
即ち燃料電池を発熱源とするコージェネレーションシステムでは、燃料電池が発生する排熱によって水を加熱し、加熱された水を貯留タンクに貯留するが、貯留タンクに高温の湯が満たされた状態となってしまうと排熱の行き場が無くなり、燃料電池を運転することができなくなってしまう。
一方、排熱を有効利用できず、燃料電池が発生する電気だけを利用する場合であってもエネルギー効率が高い場合があり、排熱を有効利用できない場合であっても燃料電池を運転したいという要求がある。
そこでかかる場合にも発電装置を作動させることができるように、燃料電池側に供給する湯水を冷却する流路にラジエターが設けられているのである。
ところで、冬季にコージェネレーションシステムの運転を停止する場合には、凍結による破損を防止するために、システム内に残留する水を排水する必要がある。
しかしながら、上記した様なコージェネレーションシステムはラジエター部分の水を排出することが困難であるという問題がある。
即ちラジエターは、細い管によって流路が構成されており、さらに流路が入り組んでいる。そのため単に排水栓を開放しただけでは内部の水を排出しきることができない。
一方、ラジエターを構成する細管は、熱交換効率を上げるために肉厚の薄い管が採用されている。そのためラジエターは他の構成部材に比べて機械的強度が低く、内部に水が残留し、これが凍結して膨張すると、高い確率で壊れてしまう。
そこで本発明は、従来技術の上記した問題点に注目し、放熱装置内の液体を円滑に排出することができる熱回収装置、並びに、当該熱回収装置を備えたコージェネレーションシステムの提供を目的とした。
本発明者らは上記した課題を解決するために検討を重ね、貯留タンクの排出圧を利用して放熱装置内の液体を排出することを考えた。
即ち特許文献1に開示されたコージェネレーションシステムでは、貯留タンクは大気開放型のタンクが採用されていたが、これに代わって密閉型のタンクを使用し、貯留タンク内の負圧によって放熱装置内の液体を吸い出すことを考えた。
図18は、第一試作の熱回収装置の作動原理図である。なお第一試作の熱回収装置は、後記する様に期待した効果を発揮しなかった。
第一試作の熱回収装置100は、密閉型の貯留タンク10を備え、貯留タンク10を含む環状の熱エネルギー回収流路20に、弁101、ラジエター(放熱装置)29、循環 ポンプ25、熱交換器6が設けられている。より具体的には、貯留タンク10の下部に設けられた底部接続部12が弁101を介してラジエター29に接続され、さらにラジエター(放熱装置)29の排出口が循環ポンプ25及び熱交換器6を介して貯留タンク10の上部に設けられた頂部接続部11に接続されている。
なお、熱交換器6は、燃料電池(熱発生源)5が排出する熱を熱エネルギー回収流路20を流れる液体に移動するものである。
また図18に示す熱回収装置は、液体を温度層に分けて貯留タンク10に貯留することを意図している。
第一試作の熱回収装置100では、貯留タンク10の底部接続部12に排出弁82が設けられている。また弁101とラジエター29との間を分岐し、当該分岐流路83に空気導入弁85が設けられている。
第一試作の熱回収装置100では、ラジエター29内の液体を排出する際には、弁101を閉じて貯留タンク10の下部とラジエター29との間の流路を遮断し、空気導入弁85と排出弁82を開く。
発明者らの予測では、貯留タンク10の液体が排出され、貯留タンク10内が負圧状態となり、ラジエター29内の液体が、矢印の方向に吸い上げられ貯留タンク10に回収され、さらに排出弁82から排出されると考えた。
しかしながら、第一試作の熱回収装置100は、期待した効果を発揮せず、ラジエター29内に液体が残ってしまうものであった。
この原因は、第一試作の熱回収装置100では、負圧となる貯留タンク10とラジエター29との間に、熱交換器6と循環ポンプ25が介在されるためであり、ラジエター29と貯留タンク10との間の圧力損失が大きいためであると予想された。
また上記した特許文献1に開示されたコージェネレーションシステムは、ラジエター29内の液体を排出することが困難であるという問題点の他に、運転初期に発電効率が低いという問題があった。また運転初期に加熱された循環水は、貯留するのに適さないという問題があった。
即ち燃料電池が定常運転している際には相当の発熱があり、燃料電池を効率的に運転するためにはこの発熱を奪って燃料電池を冷却する必要がある。しかしながら運転初期の段階では、機器全体の温度が低いため、通常温度の冷却水を熱交換器に通すと燃料電池が過冷却状態となり、動作が不安定となる。
また液体を温度層に分けて貯留タンクに貯留する場合、低温の液体が貯留タンクに戻ると適切な層構成を乱す。そのため液体を温度層に分けて貯留タンクに貯留する場合、低温の液体が貯留タンクに戻ることは好ましくない。
そこで本発明者らは、貯留タンク10を迂回するバイパス流路を設け、運転初期の段階では、貯留タンク10をバイパスし、循環ポンプ・熱交換器・バイパス流路・ラジエターで構成される環状流路に液体を循環させることとした。
そして本発明者らは、前述した貯留タンク内の負圧によって放熱装置内の液体を排出するという基本思想を、バイパス流路を備えた熱回収装置に適用すれば優れた相乗効果が発現されることに気がついた。
即ち放熱装置内の液体をバイパス流路側から吸引して貯留タンク内に回収する構成を思いついた。
上記した着想に基づいて完成された請求項1に記載の発明は、熱発生源が発生する熱を熱交換器を介して液体に移動させ、当該液体を貯留タンクに貯留する熱回収装置であって、前記熱交換器に至る液体の温度を低下させる放熱装置を備えた熱回収装置において、貯留タンクの下部側と前記熱交換器と貯留タンクの上部側とが順に環状に配管結合された熱エネルギー回収流路と、少なくとも貯留タンクを迂回するバイパス流路と、熱エネルギー回収流路及び/又はバイパス流路に設けられた電気的に開閉される弁又は弁群と、放熱装置の熱交換器側から空気を導入させる空気導入弁と、貯留タンクの下部と連通する排出弁と、電気的に開閉される弁又は弁群を制御する制御装置を有し、制御装置は運転モードとして暖機運転モードと、熱回収モードと、排出モードを備え、暖機運転モードにおいては、電気的に開閉される弁又は弁群を開閉制御して液体を主として熱交換器とバイパス流路を通過する環状流路に流し、熱回収モードにおいては、電気的に開閉される弁又は弁群を開閉制御して液体を主として熱交換器と貯留タンクを通過する環状流路に流し、排出モードにおいては電気的に開閉される弁又は弁群を開閉制御して放熱装置からバイパス流路を経由して貯留タンクの上部側を通過する一連のルートを開くと共に熱エネルギー回収流路の、バイパス流路及びバイパス流路・貯留タンク間に連通する他の流路を閉鎖し、空気導入弁と排出弁を開くことで、空気導入弁から空気を導入し、前記空気は、放熱装置に導入され、放熱装置内の液体は、バイパス流路を通って貯留タンクの上部側に至り、貯留タンク内の液体が排出弁から外部に排出されるものであることを特徴とする熱回収装置である。
本発明の熱回収装置は、運転モードとして3種のモードを持つ。
そして暖機運転モードの場合は、主として熱交換器とバイパス流路を通過する環状流路に水等の液体が流される。なお「主として」とは、必ずしも全ての液体がバイパス流路を通過しなくてもよいことを明記したものである。例えば液体を分流して一部をバイパス流路に流し、残りを貯留タンクを通る流路に流してもよい。また暖機運転モードの場合は、液体を冷却する必要はないから、液体は、必ずしも放熱装置を通過する必要はない。もちろん暖機運転モードの際に液体が放熱装置を通過するものであってもよい。
また熱回収モードにおいては、液体を主として熱交換器と貯留タンクを通過する環状流路に流す。熱回収モードの場合においても、液体を冷却する必要はないから、液体は、必ずしも放熱装置を通過する必要はない。
そして排出モードにおいては電気的に開閉される弁又は弁群を制御して放熱装置とバイパス流路と貯留タンクの上部側を通過する一連のルートを開くと共にバイパス流路及びバイパス流路・貯留タンク間に連通する他の流路を閉鎖する。
この状態で空気導入弁と排出弁を開く。その結果、貯留タンク内の液体が排出弁から排出され、貯留タンクからバイパス流路及び放熱装置に至る間が負圧となる。そのため空気導入弁から空気が導入される。ここで空気導入弁は、放熱装置の熱交換器側から空気を導入するから、放熱装置内の液体は、空気導入弁から導入される大気圧に押され、バイパス流路を経て貯留タンクに回収される。そして排出弁から外部に排出される。
請求項2に記載の発明は、熱発生源が発生する熱を熱交換器を介して液体に移動させ、当該液体を貯留タンクに貯留する熱回収装置であって、前記熱交換器に至る液体の温度を低下させる放熱装置を備えた熱回収装置において、貯留タンクの下部側と前記熱交換器と貯留タンクの上部側とが順に環状に配管結合された熱エネルギー回収流路と、少なくとも貯留タンクを迂回するバイパス流路と、熱エネルギー回収流路及び/又はバイパス流路に設けられた電気的に開閉される弁又は弁群と、放熱装置の熱交換器側から空気を導入させる空気導入弁と、貯留タンクの下部と連通する排出弁と、貯留タンクに連通する流路の圧力を検知する圧力検知手段と、電気的に開閉される弁又は弁群を開閉制御する制御装置を有し、制御装置は運転モードとして排出モードを備え、圧力検知手段が負圧を検知した事を条件として排出モードとなり、電気的に開閉される弁又は弁群を開閉制御して放熱装置からバイパス流路を経由して貯留タンクの上部側を通過する一連のルートを開くと共に熱エネルギー回収流路の、バイパス流路及びバイパス流路・貯留タンク間に連通する他の流路を閉鎖し、空気導入弁と排出弁を開くことで、空気導入弁から空気を導入し、前記空気は、放熱装置に導入され、放熱装置内の液体は、バイパス流路を通って貯留タンクの上部側に至り、貯留タンク内の液体が排出弁から外部に排出されるものであることを特徴とする熱回収装置である。
本発明の熱回収装置では、貯留タンクに連通する流路の圧力を検知する圧力検知手段を備える。そして圧力検知手段が負圧を検知した事を条件として排出モードとなる。ここで圧力検知手段が負圧を検知する場合とは、排出弁が開放された場合である。即ち排出弁が開放されると、貯留タンク内の液体が排出され、貯留タンクが負圧状態となる。
本発明の熱回収装置では、圧力検知手段が負圧を検知した事を条件として排出モードとなり、放熱装置・バイパス流路・貯留タンクの上部側を通過する一連のルートを開くと共にバイパス流路及びバイパス流路・貯留タンク間に連通する他の流路が閉鎖される。
そして空気導入弁が開かれると空気導入弁から空気が導入され、放熱装置内の液体は、空気導入弁から導入される大気圧に押され、バイパス流路を経て貯留タンクに回収される。そして排出弁から外部に排出される。
請求項3に記載の発明は、貯留タンクの下部側と放熱装置とを接続するか、あるいはバイパス流路と放熱装置とを接続するかを選択的に切り替える流路切替弁を備えたことを特徴とする請求項1又は2に記載の熱回収装置である。
本発明は、「弁又は弁群」の一例を示すものである。本発明の熱回収装置では、貯留タンクの下部側と放熱装置とを接続するか、あるいはバイパス流路と放熱装置とを接続するかを選択的に切り替える流路切替弁を備えているので、流路の切り替えを円滑に行うことができる。
請求項4に記載の発明は、空気導入弁と熱交換器との間の経路を遮断する閉止弁を備え、排出モードの際には前記閉止弁が自動的に遮断されることを特徴とする請求項1乃至3のいずれかに記載の熱回収装置である。
本発明の熱回収装置では、空気導入弁と熱交換器との間の経路を遮断する閉止弁を備え、排出モードの際には前記閉止弁が自動的に遮断される。その結果、空気導入弁から供給される空気はその全量が放熱装置側に流れ、放熱装置内の液体をバイパス流路側に押す。そのため放熱装置内の液体が効率よく貯留タンク側に回収される。
請求項5に記載の発明は、放熱装置が貯留タンクの下方に配置されていることを特徴とする請求項1乃至4のいずれかに記載の熱回収装置である。
本発明は、放熱装置の位置を特定したものである。
放熱装置を設けた設計の熱回収装置では、放熱装置の設置環境によって放熱装置の冷却能力にバラツキが発生する。そのため、放熱装置が安定した冷却能力を発揮するためには、放熱装置は、熱回収装置の設置場所等が異なっても、配置環境のバラツキが少ない位置に設置されることが望ましい。
本発明の熱回収装置は、放熱装置が貯留タンクの下方に配されている。そのため熱回収装置の設置場所や設置条件等によらず、放熱装置の設置環境が殆ど変動しない。従って、本発明の熱回収装置は、放熱装置の冷却能力が安定している。
また、請求項6に記載の発明は、放熱装置は、放熱用熱交換器と当該放熱用熱交換器に対して送風可能な送風機とを備えており、前記送風機は、放熱用熱交換器と貯留タンクとの間にあって前記貯留タンクを放熱装置側に投影して形成される投影領域内に設置され、且つ送風方向が貯留タンク側に向くように設置されており、さらに熱回収装置の設置面と放熱装置との間に気体が流通可能な空間が形成されていることを特徴とする請求項5に記載の熱回収装置である。
本発明の熱回収装置が備える放熱装置は、送風機を備えた構成とされている。そのため、本発明の熱回収装置は、風雨にさらされる場所に設置されたとしても、送風機に雨水等が直接かからないような構造であることが望ましい。本発明の熱回収装置では、貯留タンクの下方に放熱装置を配すると共に、貯留タンクを放熱装置側に投影して形成される投影領域内に送風機を配した構成とされているため、熱回収装置の上方から雨水等が侵入してきても送風機に降りかかるのを防止することができる。
また本発明の熱回収装置では、送風機は、送風方向が貯留タンク側に向くように設置されている。
かかる構成によれば、放熱装置において放熱することによって発生した暖かい空気を貯留タンク側に向けて送風することができる。そのため、上記した構成によれば、放熱装置において発生した暖かい空気によって貯留タンクを保温することができる。従って、本発明の熱回収装置は、放熱装置において発生した熱エネルギーを貯留タンクの保温に転用することができ、放熱に伴う熱回収装置のエネルギー効率の低下を抑制することができる。 また本発明の熱回収装置は、熱回収装置では、設置面と放熱装置との間に気体が流通可能な空間が形成されている。
そのため貯留タンクの下方に放熱装置を配した場合であっても、空気の流れを確保することができる。従って、上記した構成によれば、放熱装置において液体を十分放熱させることができる。
請求項7に記載の発明は、請求項1乃至6のいずれかに記載の熱回収装置を備え、熱発生源が燃料電池であることを特徴とするコージェネレーションシステムである。
本発明によれば、暖機運転を短時間で終了することができ、且つ放熱装置内の液体の排出を円滑に行うことができる熱回収装置、並びに、当該熱回収装置を備えたコージェネレーションシステムを提供することができる。
以下、本発明の実施形態について説明する。
実施形態の説明は、先に本発明の基本構成と基本的な動作について簡単に説明し、続いてより実用的な構成例について説明することとする。
図1は、本発明の第一実施形態のコージェネレーションシステム及び熱回収装置の作動原理図である。
図1に示す熱回収装置86は、バイパス流路23を備えている点で図18に示す第一試作の熱回収装置100と異なる。
重複する構成を含めて再度説明すると、熱回収装置86は、密閉型の貯留タンク10を備え、貯留タンク10を含む環状の熱エネルギー回収流路20に、加熱側三方弁28、ラジエター(放熱装置)29、循環ポンプ25、熱交換器6が設けられている。即ち貯留タンク10の下部に設けられた底部接続部12が加熱側三方弁28を介してラジエター29に接続され、さらにラジエター(放熱装置)29の排出口が循環ポンプ25及び熱交換器6を介して貯留タンク10の上部に設けられた頂部接続部11に接続されている。
また熱回収装置86は、貯留タンク10に対して並列的にバイパス流路23が設けられている。バイパス流路23は、「ラジエター29と貯留タンク10の下部間」と「熱交換器6と貯留タンク10の上部間」とを繋ぐ流路である。
バイパス流路23の、「ラジエター29と貯留タンク10の下部間」との分岐部には前記した加熱側三方弁28がある。加熱側三方弁28は自動弁である。
加熱側三方弁28を構成する3つのポートのうちの2つは熱エネルギー回収流路20の貯留タンク10の下部からラジエター29に至る流路に接続されており、残りのポートにはバイパス流路23を構成する配管が接続されている。即ち、バイパス流路23は、加熱側三方弁28を介して熱エネルギー回収流路20の加熱往き側流路21に接続されている。
また熱エネルギー回収流路20には他に2個の電磁弁88,89が設けられている。一つは、ラジエター29の熱交換器6側であって、ラジエター29と循環ポンプ25との間に設けられた往き側回路遮断用電磁弁88である。もう一つは、熱交換器6とバイパス流路23の分岐点90との間に設けられた戻り側回路遮断用電磁弁89である。即ち戻り側回路遮断用電磁弁89は、熱交換器6と貯留タンク10の上部の間に設けられたバイパス流路23の分岐点90と、熱交換器6との間に介在されている。
本実施形態では、熱エネルギー回収流路20に2個の電磁弁88,89を設けたが、往き側回路遮断用電磁弁88については、電磁弁に代わって手動弁を採用してもよい。
熱回収装置86についても貯留タンク10の底部接続部12に排出弁82が設けられている。
一方、空気導入弁85の位置は、前記した第一試作とは異なり、ラジエター29の熱交換器6側に設けられている。
即ちラジエター29と往き側回路遮断用電磁弁88との間を分岐し、当該分岐流路83に空気導入弁85が設けられている。
本実施形態では、排出弁82と空気導入弁85は手動弁であるが、電磁弁等の自動弁であってもよい。
図中、92は給水口であり、貯留タンク10の底部接続部12に接続されている。また給水口92には上水源の配管(水道配管等)が接続されている(図示せず)。一方、図1のAエリアには、負荷側の配管系統が設けられている(図示せず)。即ち貯留タンク10の頂部接続部11には負荷側電磁弁93が設けられている。
そして負荷側電磁弁93を開くと、給水口92に接続された上水の圧力に押されて貯留タンク10内の湯が頂部接続部11から排出され、負荷側電磁弁93から排出される。負荷側電磁弁93から排出された湯は、図示しない給湯回路等に供給され、所望の用途に供される。
本実施形態の熱回収装置86は、制御装置60を備え、各電磁弁88,89,93及び加熱側三方弁28が制御装置60によって開閉制御される。
また本実施形態では、制御装置60は動作モードとして暖機運転モードと、熱回収モード及び排出モードを備える。なお、排出モード以外の場合は、排出弁82と空気導入弁85は手動で閉じられている。
図2は、図1に示すコージェネレーションシステムが暖機運転モードで動作する際の作動状態を示す作動原理図である。
暖機運転モードは、燃料電池の運転初期の段階で実行される運転モードであり、貯留タンク10を迂回した流路に液体を流す運転モードである。
即ち暖機運転モードにおいては、循環ポンプ25、熱交換器6、分岐点90、バイパス流路23、ラジエター29によって構成される環状流路に液体を流す。即ち往き側回路遮断用電磁弁88及び戻り側回路遮断用電磁弁89を開き、加熱側三方弁28は、バイパス流路23とラジエター29が連通する状態とする。
この状態で循環ポンプ25を起動し、バイパス流路23を経由した流路に液体を流し、当該液体を燃料電池側の熱交換器6に流通させる。
熱交換器6を流れる液体は、直前に熱交換器6を出た液体であるから、過度に低温ではない。そのため燃料電池の各部が過度に吸熱されず、早期に暖機運転を終了させることができる。また循環する湯水は早期に昇温する。
図3は、図1に示すコージェネレーションシステムが熱回収モードで動作する際の作動状態を示す作動原理図である。
熱回収モードは、暖機運転に続く運転モードである。熱回収モードは、定常的な運転モードであると言える。
熱回収モードでは、バイパス流路23を閉止し、貯留タンク10を経由する流路に液体を流す。即ち往き側回路遮断用電磁弁88及び戻り側回路遮断用電磁弁89を開き、加熱側三方弁28は、貯留タンク10の底部接続部12とラジエター29が連通する状態とする。
この状態で循環ポンプ25を起動し、熱交換器6で昇温された液体を貯留タンク10の上部からタンク内に導入する。
また貯留タンク10の底部接続部12から低温の液体(水)が押し出され、ラジエター29を経て熱交換器6に至る。
以上説明した暖機運転モード及び熱回収モードは、日常的な運転の際に使用される運転モードであるが、以下に説明する排出モードは、冬季に運転を停止する際等に実施される運転モードであり、機器内の液体を排出する際に限って実行されるものである。
図4は、図1に示すコージェネレーションシステムが排出モードで動作する際の作動状態を示す作動原理図である。
排出モードにおいては制御装置60の指令によって、ラジエター29からバイパス流路23を経由して貯留タンク10の頂部接続部11に至る一連のルートが開かれると共に、バイパス流路23や貯留タンク10間に連通する他の流路が閉鎖される。
本実施形態に即して説明すると、加熱側三方弁28を、バイパス流路23とラジエター29間が連通し、貯留タンク10との間が遮断される状態とし、ラジエター29からバイパス流路23を経由して貯留タンク10の頂部接続部11に至る一連のルートを開く。
一方、貯留タンク10やバイパス流路23に繋がる他の流路に設けられた弁を閉じる。即ち戻り側回路遮断用電磁弁89を閉じ、熱交換器6側からバイパス流路23や貯留タンク10に繋がるルートを遮断する。また負荷側電磁弁93を閉じ図示しない給湯回路等からバイパス流路23や貯留タンク10に繋がるルートを遮断する。
なお貯留タンク10の底部接続部12とバイパス流路23との間は、前記した加熱側三方弁28によって閉鎖されている。
排出モードにおいては、往き側回路遮断用電磁弁88についても閉塞され、ラジエター29と循環ポンプ25間が閉じられる。
そしてこの状態で、排出弁82と空気導入弁85とを手動開放する。
その結果、貯留タンク10内の液体が排出弁82から排出され、貯留タンク10からバイパス流路23及びラジエター29に至る間が負圧となる。一方、貯留タンク10からバイパス流路23は、ラジエター29とのみ連通し、他の機器や配管からの空気や液体の導入は無い。そのためラジエター29を経由してのみ貯留タンク10側に空気が導入されることとなる。
また空気導入弁85は、ラジエター29の熱交換器6側(循環ポンプ25側)にあり、且つラジエター29の熱交換器6側(循環ポンプ25側)の電磁弁88は閉鎖されているから、空気導入弁85から系内に導入された空気は、その全量がラジエター29に導入される。その結果、ラジエター29内の液体(水)は、空気導入弁85から供給される大気圧に押され、バイパス流路23側に流れる。この水は、バイパス流路23を経て貯留タンク10に流れ込み、最終的に排出弁82から外部に排出される。
本実施形態では、ラジエター29の排水をバイパス流路23を介して行う。バイパス流路23は、弁や循環ポンプ等の流路抵抗となる部材が少ないので、ラジエター29から貯留タンク10に至る排水流路は流路抵抗が低い。
そのためラジエター29内の水は円滑に排出される。
排出モードは、日常的に使用する運転モードではないので、排出モードで運転する場合には、何らかの手動操作によって動作モードを切り替えることとなる。例えばリモコンの所定のスイッチを押すことによって排出モードに切り替えることとなる。
しかしながら、何らかの状態を検知して自動的に排出モードに切り替えてもよい。
例えば貯留タンク10の圧力が急激に低下した場合や、貯留タンク10の水位が急激に低下した場合に自動的に排出モードに切り替える。
図5は、本発明の第二実施形態のコージェネレーションシステム及び熱回収装置の作動原理図である。
本実施形態の熱回収装置95は、貯留タンク10の圧力を検知する圧力検知部材96を持つ。他の構成は先の実施形態と同一であるので同一の番号を付すことによって重複した説明を省略する。
本実施形態の熱回収装置95は、貯留タンク10の圧力を検知する圧力検知部材96を持ち、常時貯留タンク10内の圧力を検知している。
そして貯留タンク10の圧力が低下すると、排出モードに切り替わり、制御装置60の指令によって、ラジエター29からバイパス流路23を経由して貯留タンク10の頂部接続部11に至る一連のルートが開かれると共に、バイパス流路23やバイパス流路・貯留タンク間に連通する他の流路が閉鎖される。
貯留タンク10の水位を監視する場合も同様であり、貯留タンク10の水位が急激に低下すると、排出モードに切り替わり、制御装置60の指令によって、ラジエター29からバイパス流路23を経由して貯留タンク10の頂部接続部11に至る一連のルートが開かれると共に、バイパス流路23やバイパス流路・貯留タンク間に連通する他の流路が閉鎖される。
貯留タンク10の圧力が急激に低下する場合や、水位が急激に低下する場合は、実質的に排出弁82を開いた場合に限られるから、貯留タンク10の圧力や水位を監視することによって排出弁82の開閉を検知することができる。
また上記した実施形態では、バイパス流路23と貯留タンク10とを切り替えるために三方弁28を使用したが、二方弁の組み合わせによっても同様の作用を発揮させることができる。
さらに弁の位置についても変形例が考えられる。例えば図6に示すようにバイパス流路23に電磁弁97を設け、さらに分岐点90と、頂部接続部11との間にもう一つの電磁弁98を設けても同様の作用が期待できる。
図6は、本発明の第三実施形態のコージェネレーションシステム及び熱回収装置の作動原理図である。
また先の実施形態では、ラジエター29を熱エネルギー回収流路20に直列に挿入したが、燃料電池が定常的に運転され、熱交換器6に流入する湯水の温度が高温でない場合には、熱エネルギー回収流路20を循環する湯水を冷却する必要はなく、ラジエター29を通過させる必要はない。そのためラジエター29を熱エネルギー回収流路20の本流に対して並列的に配し、切り替え弁等によってラジエター29を通過する流路とラジエター29をバイパスする流路とを切り替えてもよい。図6に示すコージェネレーションシステム及び熱回収装置94では、ラジエター29を迂回するバイパス流路78を設け、三方弁99によってラジエター29を通過する流路と、バイパス流路78とを切り替える。
次に、本発明を応用したより実用的な設計のコージェネレーションシステムについて説明する。
図7は、本発明の第四実施形態の熱回収装置の作動原理図である。
図7において、1は本実施形態のコージェネレーションシステムである。コージェネレーションシステム1は、大別して発電装置2と熱回収装置3とを組み合わせて構成されており、これらによってコージェネレーション系Sが構成されている。
発電装置2は、燃料電池5と、燃料電池5を冷却し、発電の際に発生した排熱を回収するための熱交換器6とを備えている。即ち、発電装置2は、発電手段としての機能と、湯水(液体)を加熱するための熱発生源としての機能とを兼ね備えている。発電装置2は、コージェネレーション系Sの外部に設けられた電力負荷Eに対して電力を供給するための電力供給手段として機能する。
一方、熱回収装置3は、湯水を貯留するための貯留タンク10を中心として構成されており、貯留タンク10の頂部に設けられた頂部接続部11、並びに、底部に設けられた底部接続部12に対して加熱系統H(熱エネルギー回収系統)、給湯系統Mおよび給水系統Cを構成する配管を接続した構成とされている。また加熱系統Hの一部に暖房系統Dが構成されている。
貯留タンク10は、高さ方向、即ち内部に貯留される湯水の水位上昇方向に複数(本実施形態では4つ)の温度センサ13a〜13dを取り付けた構成とされている。温度センサ13a〜13dは、それぞれ貯留タンク10内の湯水の温度を検知するための温度検知手段として機能すると共に、貯留タンク10内に所定温度あるいは温度範囲の湯水の残留量を検知するための残量検知手段としての役割も果たす。
さらに具体的には、本実施形態のコージェネレーションシステム1では、貯留タンク10の底部から取り出された湯水が加熱系統Hを通過する間に加熱され、貯留タンク10の頂部側にゆっくりと戻される構成とされている。ここで、一般的にタンク内に液体を貯留する場合、その液体の温度差が所定の閾値(湯水では約10℃程度)以上であると、液体が温度毎に層状に分かれる。そのため、加熱系統Hを通過して加熱された湯水が貯留タンク10内の湯水の温度に対して前記閾温度以上高温に加熱され、貯留タンク10内の湯水を掻き乱さない程度にゆっくりと戻されると、貯留タンク10内に貯留されている湯水が温度毎に層状に分かれる。従って、貯留タンク10に設置された温度センサ13a〜13dの検知温度を調べることにより、貯留タンク10内に所望の温度範囲に加熱された湯水がどれだけ貯留されているかを検知することができる。
加熱系統Hは、熱エネルギー回収流路20により構成される系統であり、貯留タンク10の底部から取り出された湯水を加熱して貯留タンク10の頂部側に戻すものである。さらに具体的に説明すると、加熱系統Hは、熱エネルギー回収流路20により主要部が構成される系統である。熱エネルギー回収流路20は、貯留タンク10の底部接続部12と燃料電池5内の熱交換器6とを繋ぐ加熱往き側流路21と、頂部接続部11と熱交換器6とを繋ぐ加熱戻り側流路22とを有する。また、熱エネルギー回収流路20は、加熱往き側流路21および加熱戻り側流路22の中間部分において貯留タンク10をバイパスするバイパス流路23を有する。
さらに加熱系統Hの一部に並列流路7があり、その一方に暖房用熱交換器8が設けられている。
加熱往き側流路21は、貯留タンク10の底部側から排出される湯水を燃料電池5の熱交換器6に供給する流路であり、中途に湯水を循環させるための循環ポンプ25と、湯水の温度を検知するための温度センサ26と、往き側回路遮断用手動弁45と、ラジエター29とを有する。ラジエター29は、加熱往き側流路21を流れる湯水の放熱を促進し、温度を低下させるものである。ラジエター29は、放熱器29aと送風機29bとを備えたものであり、後述するように貯留タンク10の下方に配置されている。
往き側回路遮断用手動弁45は、ラジエター29と循環ポンプ25との間に設けられており、両者の流路を開閉するものである。
加熱往き側流路21は、上記したラジエター29よりも湯水の流れ方向上流側に加熱側三方弁28が設けられている。加熱側三方弁28を構成する3つのポートのうちの2つは加熱往き側流路21を構成する配管に接続されており、残りのポートにはバイパス流路23を構成する配管が接続されている。即ち、バイパス流路23は、加熱側三方弁28を介して加熱往き側流路21に接続されている。
加熱戻り側流路22は、熱交換器6を通過した湯水を貯留タンク10の頂部側に戻す流路である。加熱戻り側流路22の中途には、並列流路7があり、並列流路7と貯留タンク10の間にバイパス流路23が接続されている。
並列流路7は、熱交換器6の下流側を分岐したものであり、一方の流路に暖房用熱交換器8が設けられている。他方の流路は、暖房用熱交換器8をバイパスするものである。
並列流路7のバイパス流路23の合流点には暖房切り替え用三方弁9が設けられている。暖房切り替え用三方弁9は、並列流路7の一方を選択して流路を開くものであり、暖房用熱交換器8が設けられた流路を開くことによって暖房運転を可能とし、暖房用熱交換器8が設けられていない側の流路を開くことによって暖房運転を停止することができる。
また更に本実施形態で採用する暖房切り替え用三方弁9は、並列流路7の双方と、バイパス流路23との流通を閉鎖することもできる。
給湯系統Mは、貯留タンク10の頂部接続部11に接続された給湯流路30と、この給湯流路30の中途に設けられた給湯装置31とによって主要部が構成される系統である。給湯流路30は、貯留タンク10から給湯装置31を経てカラン34に至る一連の流路を形成している。給湯流路30は、貯留タンク10から給湯装置31に至る流路の中途に貯留タンク10側に向けて湯水が逆流するのを阻止すべく、逆止弁52を有する。また、逆止弁52よりも下流側には、流量調整弁15が設けられている。
そして流量調整弁15の下流側にもう一つの流量調整弁16を介して後述する給水系統Cの給湯用給水流路51が接続されている。
また給湯用給水流路51との接続部32よりも更に下流側には、入口側温度センサ33が設けられている。
給湯用給水流路51との接続部32からさらに下流側には、給湯用給水流路51の本流部53から分岐された支流部55が接続されている。
入口側温度センサ33は、後述する給湯用給水流路51の支流部55と給湯流路30との接続部分よりも下流側であって、給湯装置31よりも上流側の位置に設置されている。そのため、入口側温度センサ33は、貯留タンク10から排出された湯水と、給湯用給水流路51の本流部53や支流部55を介して供給される湯水とが混合された後の湯水の温度を検知できる。給湯流路30は、給湯装置31よりも下流側の部位に、給湯用給水流路51から分岐された給湯バイパス流路35が接続されている。
給湯バイパス流路35は、コージェネレーション系Sの外部から供給される水を直接的に給湯装置31の下流側に送り込む、即ち給湯流路30をショートカットするための流路であり、中途にバイパス弁36を有する。また、給湯流路30は、給湯装置31よりも下流側に比例弁37、出口側温度センサ38と流水検知センサ40とを有する。
なお給湯バイパス流路35には、給湯流路30側から給水源側に向けて湯水が逆流するのを防止するための逆止弁17が設けられている。
給湯装置31は、従来公知の給湯器と同様にガスや灯油等の燃料を燃焼するためのバーナー41と熱交換器43とを内蔵しており、燃料の燃焼により発生した熱エネルギーを利用して湯水を加熱するものである。給湯装置31は、燃料電池5よりも湯水の加熱能力が高い。給湯装置31は、貯留タンク10から排出される湯水の温度が低い等のような特別な場合に限って燃焼動作を行い、給湯流路30内を流れる湯水を加熱するものであり、補助的な熱源として機能する。給湯装置31は、流水検知センサ40により通水が検知されることを作動条件の一つとしている。
給水系統Cは、給水口46からコージェネレーション系Sの外部から湯水を供給するためのものであり、貯留タンク10に対して湯水を供給するための貯留用給水流路50と、給湯用給水流路51と、前記した給湯バイパス流路35を備えている。貯留用給水流路50は、貯留タンク10の底部側に設けられた底部接続部12に接続された配管により構成されている。これにより、コージェネレーションシステム1は、外部から供給される低温の湯水を貯留タンク10の底部側から導入可能な構成とされている。
なお給水口46の下流側には減圧弁18が設けられており、給水口46から供給された水は所定の圧力に減圧されてコージェネレーション系Sに導入される。
また給水系統Cには安全弁19が設けられており、コージェネレーション系S内の水圧が過度に上昇することが防止されている。
給湯用給水流路51の中途には、給湯流路30に合流する湯水の温度を検知するための入水温度センサ56と、給湯流路30側から給水源側に向けて湯水が逆流するのを防止するための逆止弁57とが設けられている。給湯用給水流路51は、逆止弁57よりも下流側において本流部53から支流部55が分岐された構成とされている。支流部55は、接続部32よりも給湯流路30の湯水の流れ方向下流側の位置に接続された流路であり、中途に支流弁58が設けられた構成とされている。支流弁58は、非通電時に開いた状態となる弁であり、停電状態になって流量調整弁16を開くことができなくなった際に、貯留タンク10内の湯水がそのまま排出され、いわゆる高温出湯が起こるのを防止するために設けられたものである。
次に排水用機器について説明する。
本実施形態では、排水用機器は、排出弁82と、空気導入弁85とによって構成されている。
即ち本実施形態の熱回収装置1では、貯留タンク10の底部接続部12に排出弁82が設けられている。またラジエター29と往き側回路遮断用手動弁45との間を分岐し、当該分岐流路83に空気導入弁85が設けられている。
コージェネレーションシステム1は、制御装置60によって動作が制御されている。制御装置60は、従来公知のコージェネレーションシステムが備えているものと同様に例えばCPUや所定の制御プログラムが内蔵されたメモリなどを備えた構成とされている。制御装置60は、コージェネレーション系Sの各部に設けられたセンサ類の検知信号や、メモリに記憶されているデータ等に基づいてコージェネレーション系Sの各部に設けられた弁や燃料電池5、給湯装置31等の動作を制御し、コージェネレーションシステム1の総合エネルギー効率の最適化を図る構成とされている。
続いて、コージェネレーションシステム1を構成する熱回収装置3の装置構造について、ラジエター29の構成および設置構造を中心に説明する。熱回収装置3は、図8に示すように略直方体であり、各構成部材を大別して3つの領域に配置した構造となっている。さらに具体的には、熱回収装置3は、熱源設置領域P1、タンク配置領域P2および配管等設置領域P3とに大別される各領域に、各構成部材を配置した構造となっている。
熱源設置領域P1は、図8に示すように熱回収装置3の正面上方側に設けられた領域であり、上記した給湯装置31が設置されている。タンク配置領域P2は、熱回収装置3の背面側に設けられた領域であり、貯留タンク10や、ラジエター29が配置されている。配管等設置領域P3は、熱源設置領域P1の下方に設けられた空間である。熱源設置領域P1やタンク配置領域P2に設置されたものを除く機器類や配管は、配管等設置領域P3に収容されている。
本実施形態の熱回収装置3は、タンク配置領域P2に設置されている貯留タンク10やラジエター29の設置構造に特徴を有する。さらに具体的に説明すると、図9〜図11に示すように、タンク配置領域P2には、貯留タンク10とラジエター29とが配置されている。ラジエター29は、熱回収装置3の底面(設置面)と貯留タンク10の底面との間に配されている。
ラジエター29は、放熱器29aと送風機29bとによって構成されている。放熱器29aは、図12に示すように、いわゆるフィンアンドチューブ型の熱交換器によって構成されている。さらに具体的には、放熱器29aは、天面側と底面側との間で風が通過可能な本体箱64の内部に多数のフィン65を所定の間隔で並べ、これを横切るように受熱管66を取り付けて構成されたものである。放熱器29aは、受熱管66に繋がる接続部67,68を有し、これに加熱往き側流路21を構成する配管が接続される。即ち、放熱器29aは、加熱往き側流路21の中途に接続されている。放熱器29aは、フィン65に取り付けられた受熱管66内を流れる湯水とフィン65の間を通過する空気とを熱交換させ、これにより受熱管66内を流れる湯水を冷却することができる。
放熱器29aの天面側には、図8〜図12に示すように、2台の送風機29b,29bが取り付けられている。また、図12(a)に示すように、放熱器29aの天面側は、送風機29b,29bの取り付け位置以外の部分が閉塞板80によって閉塞されている。即ち、放熱器29aの天面側に形成された開口部分は、図12(a)にハッチングで示す部分に形成された開口29cだけである。一方、放熱器29aの底面側は、図12(b)のように本体箱64の開口64a、即ち空気の導入口となる部分全体が通風可能なように開いている。そのため、放熱器29aは、開口29c,29cをあわせた開口領域の大きさが、導入口となる開口64aの領域よりも小さい。
ラジエター29は、送風機29b,29b側、即ち放熱器29aの天面側が貯留タンク10の底面と対向するように設置される。送風機29b,29bは、図10にハッチングで示すように、このようにラジエター29を設置して貯留タンク10をラジエター29側に投影して形成される領域X内に存在するように設置される。即ち、送風機29b,29bは、共に貯留タンク10の頂部側から観察した際に、貯留タンク10に隠れる位置に設置される。そのため、熱回収装置3の天面側から雨等が侵入してきても、雨等は送風機29b,29bに直接降りかからない。
ラジエター29は、図9〜図11に示すように、接続部67,68が熱回収装置3の背面側に向く姿勢とされ、タンク配置領域P2の底面側に設けられた底上げ部材70の上に配置されている。そのため、熱回収装置3をメンテナンス時に開放可能な扉やパネルを背面側に設けた構成としておけば、扉やパネル等の開放側に存在する接続部67,68と、これに繋がる配管との接続を解くだけで、ラジエター29を取り外してメンテナンスや交換を行うことができる。なお、熱回収装置3は、扉やパネル等が必ずしも背面側に設けられている必要はなく、側面等に設けられていたとしてもよい。かかる構成とする場合についても、接続部67,68がこの扉やパネル等の開放側に向くようにラジエター29を配置することにより、ラジエター29を容易に取り外してメンテナンスや交換を行うことができる。
底上げ部材70は、図10に示すように脚部71と座面部72とを有する。底上げ部材70は、脚部71を下方に向けて設置することにより、座面部72の下方に空気が出入り可能な空間(空気通路73)を形成することができる。座面部72は、中央に放熱器29aの本体箱64の底面に形成された開口にあわせて形成された通風部75を有する。通風部75は、網状部材76が張られており、網状部材76を通じて空気通路73と連通している。
放熱器29aは、本体箱64の底面に設けられた開口64aと底上げ部材70に設けられた通風部75とを位置合わせして設置される。そのため、放熱器29aは、熱回収装置3の底面や設置面から浮いた状態で設置されている。これにより、放熱器29aに対して空気が流れる空間を確保することができると共に、ラジエター29が熱回収装置3の設置面に溜まった雨水等で濡れるのを防止することができる。
送風機29b,29bは、放熱器29aの天面側に一体化されている。送風機29b,29bは、図11(b)に示すように、貯留タンク10の底部に設けられた底部接続部12が干渉しないように間隔yの空間39を隔てて設置されている。これにより、ラジエター29と貯留タンク10との間に設けるべき間隔が最小限に抑制されている。
送風機29b,29bは、図10や図11に矢印で示すように、それぞれ放熱器29a側から空気を吸い、貯留タンク10側に向けて排出できるように設置されている。そのため、ラジエター29において、放熱器29aの底面側に形成された開口64aは、ラジエター29に空気を取り込むための導入口として機能し、放熱器29aの天面側に取り付けられた2つの送風機29b,29bの開口29c,29cがラジエター29から空気を排出するための排出口として機能する。
ラジエター29は、送風機29b,29bを作動させると、底上げ部材70によって形成された空気通路73から空気が吸い上げられ、本体箱64の底面側(図9〜11において下側)の開口64aから放熱器29aに流入し、接続部67,68のいずれか一方から受熱管66に流入した湯水と熱交換する。これにより、受熱管66内を流れる湯水が冷却されると共に、放熱器29aに流入した空気が加熱されて暖まる。放熱器29aにおいて冷却された湯水は、前記接続部67,68の他方側から排出され、燃料電池5側に送り込まれる。一方、放熱器29aにおいて暖められた空気は、本体箱64の天面側に吸い上げられて集まり、送風機29b,29bから貯留タンク10の底面に向けて排出される。
貯留タンク10の底面側に排出された空気は、図11に矢印で示すように貯留タンク10の底面や周面に沿って貯留タンク10の頂部側に流れる。そのため、ラジエター29の送風機29b,29bを作動させると、放熱器29aにおいて受熱管66内を流れる湯水と熱交換して暖まった空気によって貯留タンク10が包まれたような状態になる。そのため、送風機29bを作動させると、放熱器29aにおいて暖められた空気によって貯留タンク10における放熱を阻止することができる。
続いて、本実施形態のコージェネレーションシステム1の動作について、図面を参照しながら詳細に説明する。コージェネレーションシステム1は、暖機運転モード、熱回収モード、給湯モード及び排出モードを含む動作モード群から動作モードを選択して動作することができる。なお暖機運転モード、熱回収モードは自動的に切り替わる構成としてもよい。
コージェネレーションシステム1は、熱回収モードと給湯モードとを単独で実施することも、組み合わせて実施することも可能である。以下、コージェネレーションシステム1の動作について、各動作モード毎に説明する。
なお、排出モード以外の場合は、排出弁82と空気導入弁85は閉じられている。さらに排出モード以外の場合は、往き側回路遮断用手動弁45が開放されている。
(暖機運転モード)
暖機運転モードは、前記した様にコージェネレーションシステム1の運転初期の段階で実行される運転モードであり、貯留タンク10を迂回した流路に湯水を循環させる運転モードである。
コージェネレーションシステム1が暖機運転モードで動作する場合、制御装置60は、熱エネルギー回収流路20の加熱側三方弁28を動作させて加熱往き側流路21の上流側(貯留タンク10側)を閉じ、バイパス流路23と加熱往き側流路21の下流側(発電装置2側)を導通させる。
これにより、熱交換器6、バイパス流路23、ラジエター29、循環ポンプ25によって構成される図13にハッチングで示すような湯水の循環系統が形成される。
上記した循環系統が形成された状態で循環ポンプ25を作動させると、図13に矢印で示すように、熱交換器6を出た湯水がそのまま熱交換器6に戻り、循環する湯水が早期に昇温する。
(熱回収モード)
熱回収モードは、循環ポンプ25を作動させて熱エネルギー回収流路20内に水流を発生させ、燃料電池5の動作に伴って発生する排熱(熱エネルギー)を回収して湯水を加熱し、この湯水を貯留タンク10に貯留する動作モードである。コージェネレーションシステム1が熱回収モードで動作する場合、制御装置60は、熱エネルギー回収流路20の加熱側三方弁28をバイパス流路23に対して閉じ、加熱往き側流路21の上流側(貯留タンク10側)および下流側(発電装置2側)に開いた状態に調整する。これにより、加熱往き側流路21、加熱戻り側流路22、熱交換器6および貯留タンク10により、図14にハッチングで示すような湯水の循環系統が形成される。
上記した循環系統が形成された状態で循環ポンプ25を作動させると、図14に矢印で示すように、貯留タンク10の底部側に貯留されている低温の湯水が、底部接続部12から吸い出され、燃料電池5に供給される。これにより、燃料電池5側に低温の湯水が供給されて燃料電池5が冷却されると共に、燃料電池5の作動に伴って発生した熱エネルギーが、燃料電池5内に設けられた熱交換器6において熱エネルギー回収流路20内を流れる湯水に吸収され、湯水が加熱される。燃料電池5を通過することにより加熱された湯水は、加熱戻り側流路22を介して頂部接続部11から貯留タンク10内に戻される。これにより、貯留タンク10内の湯水が徐々に加熱される。
(給湯モード)
給湯モードは、上記した熱回収モードによって貯留タンク10内に貯留された高温の湯水を利用して給湯を行う動作モードである。コージェネレーションシステム1が給湯モードで動作する場合、制御装置60は、給湯流路30の二つの流量調整弁15、16の開度を調節すると共に、熱エネルギー回収流路20の加熱側三方弁28を閉止した状態とする。また、この時、制御装置60は、支流弁58に通電し、支流弁58を閉じた状態にする。
この状態で給水系統Cを介して外部から低温の湯水を導入すると、図15にハッチングや矢印で示すように、外部の給水源から供給された低温の湯水の一部が貯留用給水流路50を介して底部接続部12から貯留タンク10内に流入する。これにより、貯留タンク10の頂部側に貯留されている高温の湯水が、頂部接続部11を介して貯留タンク10から排出される。ここで、給湯モードでは加熱側三方弁28が閉止されているため、貯留タンク10から排出された湯水は給湯流路30に流れ込む。
一方、外部の給水源から供給された低温の湯水の残部は、給湯用給水流路51の本流部53を介して給湯流路30に導入される。給湯用給水流路51を介して導入された湯水は、給湯流路30内において貯留タンク10から排出された湯水と混合される。
制御装置60は、給湯流路30と給湯用給水流路51との接続部位よりも湯水の流れ方向下流側に設置された入口側温度センサ33により検知される給湯流路30内を流れる湯水の温度を確認する。ここで、入口側温度センサ33によって検知される湯水の温度が、カラン34から排出すべき湯水の温度(給湯設定温度)と同等である場合、制御装置60は、給湯装置31を起動させない。これにより、湯水は給湯装置31を素通りし、そのままカラン34から排出される。
一方、入口側温度センサ33によって検知される湯水の温度がカラン34から排出すべき温度よりも低い場合、制御装置60は、給湯装置31を起動して湯水を加熱する。また、制御装置60は、必要に応じて給湯バイパス流路35のバイパス弁36を開き、給湯装置31から排出される湯水の温度調整等を行う。
(排出モード)
次に排出モードにおける動作について説明する。機器内の水を排水する場合には、予め往き側回路遮断用手動弁45を閉じる。そして排出モードに切り替えた後に、排出弁82と空気導入弁85とを開く。
コージェネレーションシステム1が排出モードで動作する場合、制御装置60は、ラジエター29からバイパス流路23を経由して貯留タンク10の頂部接続部11に至る一連のルートを開き、バイパス流路23やバイパス流路・貯留タンク間に連通する他の流路を閉鎖する。
本実施形態に即して説明すると、加熱側三方弁28を、バイパス流路23とラジエター29間が連通し、貯留タンク10との間が遮断される状態とし、ラジエター29からバイパス流路23を経由して貯留タンク10の頂部接続部11に至る一連のルートを開く。
一方、貯留タンク10やバイパス流路23に繋がる他の流路に設けられた弁を閉じる。即ち並列流路7の末端に設けられた暖房切り替え用三方弁9を全閉状態とし、並列流路7の双方と、バイパス流路23との流通を閉鎖する。
その結果、熱交換器6側からバイパス流路23や貯留タンク10に繋がるルートが遮断される。また給湯系統Mの流量調整弁15を全閉状態とし、給湯系統Mとバイパス流路23や貯留タンク10を繋ぐルートを遮断する。
また貯留タンク10の底部接続部12とバイパス流路23との間は、前記した加熱側三方弁28によって閉鎖されている。
排出モードを実行するのに先立って前記した様に往き側回路遮断用手動弁45が閉じられているので、ラジエター29と循環ポンプ25間も閉じられる。
この状態で排出弁82と空気導入弁85とを手動開放すると、図16にハッチングや矢印で示すように、ラジエター29内の水が吸引され、貯留タンク10に回収される。
即ちこの状態で排出弁82と空気導入弁85とを手動開放すると、貯留タンク10内の液体が排出弁82から排出され、貯留タンク10からバイパス流路23及びラジエター29に至る間が負圧となる。一方、貯留タンク10からバイパス流路23は、ラジエター29とのみ連通し、他の機器や配管からの空気や液体の導入は無い。そのためラジエター29を経由してのみ貯留タンク10側に空気が導入されることとなる。
また空気導入弁85は、ラジエター29の熱交換器6側(循環ポンプ25側)にあり、且つラジエター29と熱交換器6側(循環ポンプ25側)の往き側回路遮断用手動弁45は閉鎖されているから、空気導入弁85から系内に導入された空気は、その全量がラジエター29に導入される。その結果、ラジエター29内の液体は、空気導入弁85から供給される大気圧に押され、バイパス流路23側に流れる。この液体は、バイパス流路23を経て貯留タンク10に流れ込み、最終的に排出弁82から外部に排出される。
また本実施形態の様な配管系統を有するコージェネレーションシステムでも、何らかの状態を検知して自動的に排出モードに切り替える構成を採用することができる。
例えば貯留タンク10の圧力が急激に低下した場合や、貯留タンク10の水位が急激に低下した場合に自動的に排出モードに切り替える。
図17は、本発明の第五実施形態の熱回収装置の作動原理図である。
本実施形態の熱回収装置61は、貯留タンク10の圧力を検知する圧力検知部材96を持つ。他の構成は先の実施形態と同一であるので同一の番号を付すことによって重複した説明を省略する。
本実施形態の熱回収装置61は、貯留タンク10の圧力を検知する圧力検知部材96を持ち、常時貯留タンク10内の圧力を検知している。
そして貯留タンク10の圧力が低下すると、排出モードに切り替わり、制御装置60の指令によって、ラジエター29からバイパス流路23を経由して貯留タンク10の頂部接続部11に至る一連のルートが開かれると共に、バイパス流路23や貯留タンク間に連通する他の流路が閉鎖される。
圧力検知部材96は、単に排出モードの切り替え用に設けてもよいが、他の用途にも兼用することができる。例えば圧力検知部材96の圧力変動によって配管系統の異常を検知する構成を採用することができる。
例えば本実施形態の熱回収装置61では、加熱系統Hの一部に暖房系統Dを持ち、暖房系統Dに暖房用熱交換器8が設けられている。
本実施形態の熱回収装置61では、暖房用熱交換器8が破損すると加熱系統Hの圧力が変動する。そこで圧力検知部材96で加熱系統Hの圧力変動を監視し、加熱系統Hに所定の圧力変動が生じると、暖房用熱交換器8が破損したものと予想し、所定の警報等を発する構成とすることができる。
本実施形態のコージェネレーションシステム1において、制御装置60は、燃料電池5が作動(発電)する際に発生する熱エネルギーを有効利用すべく、燃料電池5の動作にあわせて熱回収装置3を上記した熱回収モードで動作させて熱エネルギーを湯水を介して貯留タンク10に貯留させる。しかし、貯留タンク10が熱エネルギーの貯留限界に達している場合、即ち貯留タンク10が所定温度以上に加熱された高温の湯水で満杯である場合は、循環ポンプ25を作動させて湯水を循環させても、燃料電池5において発生した熱エネルギー(排熱)を回収できないばかりか、燃料電池5を作動に適した温度条件下で作動させることができなくなる。
一方、貯留タンク10が熱エネルギーの貯留限界にあることを条件として燃料電池5を停止させることとすると、コージェネレーションシステム1のエネルギー効率が低下したり、電気エネルギーの使用上の不都合が発生する場合がある。さらに詳細に説明すると、燃料電池5は、発電を一旦停止させると、次に発電を開始させるために所定の作動温度まで昇温させるのに熱エネルギーを必要とする。また、燃料電池5は、所定の作動温度に到達するまで発電できない。そのため、エネルギー効率等を考慮すると、燃料電池5は、起動時に所定の作動温度まで昇温させるのに要するエネルギー等を勘案して停止させることが望ましい。従って、貯留タンク10が熱エネルギーの貯留限界にある場合、制御装置60は、ラジエター29を作動させる。これにより、熱エネルギー回収流路20を流れる湯水が冷却され、燃料電池5の作動を継続させることができる。
また、ラジエター29を作動させると、ラジエター29における熱交換により暖められた空気が貯留タンク10に吹き付けられ、貯留タンク10の底面や外周面に沿って頂部側に流れる。これにより、貯留タンク10は、暖められた空気によって包まれた状態になる。そのため、ラジエター29を作動させることにより、貯留タンク10における放熱を阻止することができる。
ここで、貯留タンク10が熱エネルギーの貯留限界に達している場合、貯留タンク10内には所定温度以上に加熱された湯水が大量に存在している。また、本実施形態の熱回収装置3では、貯留タンク10の頂部側から高温の湯水が貯留されると共に、貯留タンク10の頂部側から湯水を取り出して給湯に使用する構成とされている。従って、貯留タンク10内の湯水の保温効率や、貯留タンク10内の湯水の使用形態を勘案すると、熱回収装置3は、貯留タンク10の頂部側まで保温可能な構成であることが望ましい。
本実施形態の熱回収装置3は、かかる知見に基づき、送風機29bを作動させることによって貯留タンク10の底部側から頂部側に向けて空気流を発生させることができる構成とされている。さらに、ラジエター29は、放熱器29aの本体箱64の天面側が送風機29b,29bの取り付け位置以外の部位を閉塞板80で閉塞した構成とされているため、送風機29bから吹き出される空気の勢いが強い。そのため、熱回収装置3は、送風機29b,29bを作動させることにより、貯留タンク10の底面側から天面側にわたって暖められた空気で覆い、保温することができる。
貯留タンク10が熱エネルギーの貯留限界に達している場合は、貯留タンク10内は所定温度以上に加熱された湯水でほぼ満杯状態になっているが、貯留タンク10の底部側に貯留されている高温の湯水が使用されるまでには相当の期間を要するものと考えられる。貯留タンク10の底部側に溜まっている湯水が放熱して冷めると、その分だけ熱エネルギー効率が低下することとなる。本実施形態の熱回収装置3では、貯留タンク10の底部側からラジエター29における放熱により暖められた空気が吹き付けられるため、貯留タンク10の底部側が優先的に保温される。従って、本実施形態の熱回収装置3では、貯留タンク10の底部側まで高温の湯水が貯留されている場合であっても、この湯水を十分保温することができる。
上記したコージェネレーションシステム1は、加熱された湯水をカラン34から排出する給湯動作を行うものであったが、本発明はこれに限定されるものではなく、例えば給湯流路30を介して排出される湯水を風呂への落とし込みに使用したり、暖房端末等の負荷端末に供給する構成としたり、給湯流路30に加えて別途風呂への落とし込み用の落とし込み流路や負荷端末に湯水等の液体を送る流路を設けた構成としてもよい。
コージェネレーションシステム1は、本発明を具体化した一例にすぎず、上記した実施形態に限定されるものではない。さらに具体的には、コージェネレーションシステム1では、発電装置2は燃料電池5により発電するものであったが、発電装置2にはガスエンジン等を利用した発電装置を採用できる。また、給湯装置31は、ガスや灯油を燃焼して湯水を加熱するものであったが、電気エネルギーを利用した温水器等、公知の湯水加熱装置を採用することができる。
本発明の第一実施形態のコージェネレーションシステム及び熱回収装置の作動原理図である。 図1に示すコージェネレーションシステムが暖機運転モードで動作する際の作動状態を示す作動原理図である。 図1に示すコージェネレーションシステムが熱回収モードで動作する際の作動状態を示す作動原理図である。 図1に示すコージェネレーションシステムが排出モードで動作する際の作動状態を示す作動原理図である。 本発明の第二実施形態のコージェネレーションシステム及び熱回収装置の作動原理図である。 本発明の第三実施形態のコージェネレーションシステム及び熱回収装置の作動原理図である。 本発明の第四実施形態であるコージェネレーションシステムおよび熱回収装置の作動原理図である。 本発明の一実施形態である熱回収装置を正面側から観察した状態を示す斜視図である。 本発明の一実施形態である熱回収装置を背面側から観察した状態を示す斜視図である。 本発明の一実施形態である熱回収装置を構成する貯留タンクとラジエターとの組み立て構造を示す分解斜視図である。 (a)は本発明の一実施形態である熱回収装置の背面図であり、(b)は(a)に示す熱回収装置のタンク配置領域内の構造を示す側面図である。 (a)は本発明の一実施形態である熱回収装置において採用されているラジエターの天面図であり、(b)は底面図である。 図7に示すコージェネレーションシステムが暖機運転モードで動作する際の作動状態を示す作動原理図である。 図7に示すコージェネレーションシステムが熱回収モードで動作する際の作動状態を示す作動原理図である。 図7に示すコージェネレーションシステムが給湯モードで動作する際の作動状態を示す作動原理図である。 図7に示すコージェネレーションシステムが排出モードで動作する際の作動状態を示す作動原理図である。 本発明の第五実施形態のコージェネレーションシステム及び熱回収装置の作動原理図である。 第一試作の熱回収装置の作動原理図である。
1 コージェネレーションシステム
2 発電装置
3,61,86,94,95 熱回収装置
5 燃料電池(熱発生源)
10 貯留タンク
20 熱エネルギー回収流路
23 バイパス流路
25 循環ポンプ
28 加熱側三方弁
29 ラジエター(放熱装置)
29a 放熱器
29b 送風機
39 空間
60 制御装置
64a 開口(導入口)
70 底上げ部材
73 空気通路
82 排出弁
83 当該分岐流路
85 空気導入弁
96 圧力検知部材
S コージェネレーション系
H 加熱系統(熱エネルギー回収系統)

Claims (7)

  1. 熱発生源が発生する熱を熱交換器を介して液体に移動させ、当該液体を貯留タンクに貯留する熱回収装置であって、前記熱交換器に至る液体の温度を低下させる放熱装置を備えた熱回収装置において、貯留タンクの下部側と前記熱交換器と貯留タンクの上部側とが順に環状に配管結合された熱エネルギー回収流路と、少なくとも貯留タンクを迂回するバイパス流路と、熱エネルギー回収流路及び/又はバイパス流路に設けられた電気的に開閉される弁又は弁群と、放熱装置の熱交換器側から空気を導入させる空気導入弁と、貯留タンクの下部と連通する排出弁と、電気的に開閉される弁又は弁群を制御する制御装置を有し、制御装置は運転モードとして暖機運転モードと、熱回収モードと、排出モードを備え、
    暖機運転モードにおいては、電気的に開閉される弁又は弁群を開閉制御して液体を主として熱交換器とバイパス流路を通過する環状流路に流し、
    熱回収モードにおいては、電気的に開閉される弁又は弁群を開閉制御して液体を主として熱交換器と貯留タンクを通過する環状流路に流し、
    排出モードにおいては電気的に開閉される弁又は弁群を開閉制御して放熱装置からバイパス流路を経由して貯留タンクの上部側を通過する一連のルートを開くと共に熱エネルギー回収流路の、バイパス流路及びバイパス流路・貯留タンク間に連通する他の流路を閉鎖し、
    空気導入弁と排出弁を開くことで、空気導入弁から空気を導入し、前記空気は、放熱装置に導入され、
    放熱装置内の液体は、バイパス流路を通って貯留タンクの上部側に至り、貯留タンク内の液体が排出弁から外部に排出されるものであることを特徴とする熱回収装置。
  2. 熱発生源が発生する熱を熱交換器を介して液体に移動させ、当該液体を貯留タンクに貯留する熱回収装置であって、前記熱交換器に至る液体の温度を低下させる放熱装置を備えた熱回収装置において、貯留タンクの下部側と前記熱交換器と貯留タンクの上部側とが順に環状に配管結合された熱エネルギー回収流路と、少なくとも貯留タンクを迂回するバイパス流路と、熱エネルギー回収流路及び/又はバイパス流路に設けられた電気的に開閉される弁又は弁群と、放熱装置の熱交換器側から空気を導入させる空気導入弁と、貯留タンクの下部と連通する排出弁と、貯留タンクに連通する流路の圧力を検知する圧力検知手段と、電気的に開閉される弁又は弁群を開閉制御する制御装置を有し、制御装置は運転モードとして排出モードを備え、圧力検知手段が負圧を検知した事を条件として排出モードとなり、電気的に開閉される弁又は弁群を開閉制御して放熱装置からバイパス流路を経由して貯留タンクの上部側を通過する一連のルートを開くと共に熱エネルギー回収流路の、バイパス流路及びバイパス流路・貯留タンク間に連通する他の流路を閉鎖し、
    空気導入弁と排出弁を開くことで、空気導入弁から空気を導入し、前記空気は、放熱装置に導入され、
    放熱装置内の液体は、バイパス流路を通って貯留タンクの上部側に至り、貯留タンク内の液体が排出弁から外部に排出されるものであることを特徴とする熱回収装置。
  3. 貯留タンクの下部側と放熱装置とを接続するか、あるいはバイパス流路と放熱装置とを接続するかを選択的に切り替える流路切替弁を備えたことを特徴とする請求項1又は2に記載の熱回収装置。
  4. 空気導入弁と熱交換器との間の経路を遮断する閉止弁を備え、排出モードの際には前記閉止弁が自動的に遮断されることを特徴とする請求項1乃至3のいずれかに記載の熱回収装置。
  5. 放熱装置が貯留タンクの下方に配置されていることを特徴とする請求項1乃至4のいずれかに記載の熱回収装置。
  6. 放熱装置は、放熱用熱交換器と当該放熱用熱交換器に対して送風可能な送風機とを備えており、前記送風機は、放熱用熱交換器と貯留タンクとの間であって前記貯留タンクを放熱装置側に投影して形成される投影領域内に設置され、且つ送風方向が貯留タンク側に向くように設置されており、さらに熱回収装置の設置面と放熱装置との間に気体が流通可能な空間が形成されていることを特徴とする請求項5に記載の熱回収装置。
  7. 請求項1乃至6のいずれかに記載の熱回収装置を備え、熱発生源が燃料電池であることを特徴とするコージェネレーションシステム。
JP2006131575A 2006-05-10 2006-05-10 熱回収装置、並びに、コージェネレーションシステム Expired - Fee Related JP5003931B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131575A JP5003931B2 (ja) 2006-05-10 2006-05-10 熱回収装置、並びに、コージェネレーションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131575A JP5003931B2 (ja) 2006-05-10 2006-05-10 熱回収装置、並びに、コージェネレーションシステム

Publications (2)

Publication Number Publication Date
JP2007303719A JP2007303719A (ja) 2007-11-22
JP5003931B2 true JP5003931B2 (ja) 2012-08-22

Family

ID=38837803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131575A Expired - Fee Related JP5003931B2 (ja) 2006-05-10 2006-05-10 熱回収装置、並びに、コージェネレーションシステム

Country Status (1)

Country Link
JP (1) JP5003931B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461077B (en) * 2008-06-19 2010-07-14 Zenex Technologies Ltd Heating system
JP4650577B2 (ja) * 2009-03-24 2011-03-16 パナソニック株式会社 燃料電池コージェネレーションシステム
JP5880078B2 (ja) * 2012-01-26 2016-03-08 株式会社ノーリツ 貯湯式給湯システム
JP5896231B2 (ja) * 2012-05-30 2016-03-30 株式会社ノーリツ コージェネレーションシステムおよび貯湯タンクユニット
CN109099599A (zh) * 2018-07-21 2018-12-28 重庆康乃宝科技有限公司 一种太阳能热水器
JP7129877B2 (ja) * 2018-10-15 2022-09-02 東京エレクトロン株式会社 温度制御システム及び温度制御方法
JP7325176B2 (ja) * 2018-10-25 2023-08-14 ダイニチ工業株式会社 燃料電池装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513168B2 (ja) * 2000-05-15 2010-07-28 トヨタ自動車株式会社 燃料電池装置と給湯装置のコンバインシステム
JP4405717B2 (ja) * 2002-09-13 2010-01-27 リンナイ株式会社 コージェネレーションシステム

Also Published As

Publication number Publication date
JP2007303719A (ja) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4678501B2 (ja) 熱回収装置、並びに、コージェネレーションシステム
JP5003931B2 (ja) 熱回収装置、並びに、コージェネレーションシステム
US8459248B2 (en) Solar fluid heating and cooling system
JP2005061711A (ja) 排熱回収給湯装置
JP6655898B2 (ja) 排熱回収装置及び熱供給システム及び排熱回収装置の運転方法
JP2007132612A (ja) コージェネレーションシステム及びその制御方法並びにプログラム
JP2010151429A (ja) 貯湯給湯システム
JP4938268B2 (ja) 熱回収装置、並びに、コージェネレーションシステム
JP3931162B2 (ja) 給湯暖房機
JP5069490B2 (ja) 大気開放型蓄熱装置
JP4933983B2 (ja) 蓄熱放熱システム
JP2001194012A (ja) 太陽熱利用給湯兼暖房装置
JP5793431B2 (ja) 暖房装置
JP4854399B2 (ja) 冷水製造システム
JP4833707B2 (ja) 排熱回収装置
JP5480679B2 (ja) エンジン冷却装置
JP5901920B2 (ja) 太陽熱利用システム
KR100990034B1 (ko) 대기상태를 가지는 드레인 다운식 밀폐형 태양열 시스템의 제어방법
JP2004271102A (ja) ヒートポンプ式給湯器
JP2003056910A (ja) 熱回収装置およびコージェネレーションシステム
JP6570908B2 (ja) 給湯システム
KR100989994B1 (ko) 드레인 다운식 밀폐형 태양열 시스템 및 그 제어방법
JP4408770B2 (ja) 貯湯式排熱回収システム
JP5224115B2 (ja) 温水装置
JP2010151428A (ja) 貯湯給湯システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees