JP4999498B2 - 磁気式エンコーダ装置 - Google Patents

磁気式エンコーダ装置 Download PDF

Info

Publication number
JP4999498B2
JP4999498B2 JP2007054830A JP2007054830A JP4999498B2 JP 4999498 B2 JP4999498 B2 JP 4999498B2 JP 2007054830 A JP2007054830 A JP 2007054830A JP 2007054830 A JP2007054830 A JP 2007054830A JP 4999498 B2 JP4999498 B2 JP 4999498B2
Authority
JP
Japan
Prior art keywords
magnetic
phase
magnetoresistive pattern
pattern
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007054830A
Other languages
English (en)
Other versions
JP2007271608A (ja
Inventor
直之 野口
克也 森山
輝彦 王滝
英吉 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2007054830A priority Critical patent/JP4999498B2/ja
Publication of JP2007271608A publication Critical patent/JP2007271608A/ja
Application granted granted Critical
Publication of JP4999498B2 publication Critical patent/JP4999498B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、磁気センサ装置を用いた磁気式エンコーダ装置に関するものである。
磁気式エンコーダ装置は、例えば、図15に示すように、磁気抵抗素子をセンサ面に備えた磁気センサ装置1001と、磁気センサ装置1001に対して相対移動する永久磁石を備えた磁気スケール1009とを有し、この磁気スケール1009では、磁気センサ装置1001との相対移動方向に沿ってN極とS極が交互に並ぶトラックが形成されている。また、磁気センサ装置1001の側には、2枚の剛性基板のうちの一方の剛性基板1010aに、A相の磁気抵抗パターンの+a相の磁気抵抗パターン1025(+a)と、B相の磁気抵抗パターンの+b相の磁気抵抗パターン1025(+b)を形成する一方、他方の剛性基板1010bに、A相の磁気抵抗パターンの−a相の磁気抵抗パターン1025(−a)と、B相の磁気抵抗パターンの−b相の磁気抵抗パターン1025(−b)を形成し、これら2枚の剛性基板1010a、1010bを対向配置させている。ここで、A相の磁気抵抗パターンとB相の磁気抵抗パターンとは、90°の位相差をもって磁気スケール1009の移動検出を行う。これに対して、+a相の磁気抵抗パターン1025(+a)と−a相の磁気抵抗パターン1025(−a)とは、180°の位相差をもって磁気スケール1009の移動検出を行うので、それらの差動出力から磁気スケール1009の移動検出を行うことができる。また、+b相の磁気抵抗パターン1025(+b)と−b相の磁気抵抗パターン1025(−b)とは、180°の位相差をもって磁気スケール1009の移動検出を行うので、それらの差動出力から磁気スケール1009の移動検出を行うことができる(例えば、特許文献1参照)。
特開2005−249774号公報
しかしながら、図15に示すように、2枚の剛性基板1010a、1010bを対向配
置させて磁気センサ装置1001を構成すると、2枚の剛性基板1010a、1010b
の各々に形成した磁気抵抗パターンの感度差が原因で、隙間寸法が変動した際に、オフセ
ットが変動し、内挿精度が低下するという問題点がある。
また、磁気式エンコーダ装置は、一般に、一定方向の磁界の強弱により位置検出するタイプと、飽和感度領域(一般的に、例えば、抵抗値変化量kが、磁界強度Hと近似的に「k∝H2」の式で表すことができる領域以外の領域をいう)以上の磁界強度で回転磁界(磁界のベクトルの回転)の方向を検出するタイプとがある、これらの検出方法のうち、回転磁界の方向を検出する際の原理は、強磁性金属からなる磁気抵抗パターンに通電した状態で、抵抗値が飽和する磁界強度を印加したとき、磁界と電流方向がなす角度θと、磁気抵抗パターンの抵抗値Rとの間には、下式
R=R0−k×sin2θ
0:無磁界中での抵抗値
k:抵抗値変化量(飽和感度領域以上のときは定数)
で示す関係があることを利用する。すなわち、角度θが変化すると抵抗値Rが変化するので、磁気スケール1009と磁気センサ装置1001との相対移動速度や移動方向を検出することがきる。また、磁界の強弱を検出する方式では、S/N比を改善することを目的に磁気スケール1009と磁気センサ装置1001との隙間寸法を狭くすると波形歪が大きくなる。これに対して、回転磁界を検出する方式、すなわち、磁気スケール1009と磁気センサ装置1001の相対的な移動に伴い、磁界のベクトルの回転角を検出する方式では、磁気スケール1009と磁気センサ装置1001との隙間寸法を狭くしても正弦波成分を安定して得ることができる。
しかしながら、回転磁界を検出する方式では、大きな磁界強度が求められるが、図15
に示すように、2枚の剛性基板1010a、1010bを対向配置させた構成では、磁気
抵抗パターンと磁気スケール1009との間に剛性基板1010bが介在するので、磁気
抵抗パターンと磁気スケール1009との隙間寸法を狭くできないという問題点がある。
以上の問題点に鑑みて、本発明の課題は、磁気センサ装置と磁気スケールとの隙間寸法
が変化しても、高い検出精度を得ることのできる磁気式エンコーダ装置を提供することにある。
また、本発明の課題は、回転磁界の方向の検出に適した磁気式エンコーダ装置を提供することにある。
上記課題を解決するために、本発明は、磁気センサ装置と、該磁気センサ装置に対する相対移動方向に沿ってN極とS極が交互に並ぶトラックを備えた磁気スケールと、を有する磁気式エンコーダ装置であって、前記磁気センサ装置は、互いに90°の位相差を有するA相の磁気抵抗パターンとB相の磁気抵抗パターンとを有するとともに、前記A相の磁気抵抗パターンおよび前記B相の磁気抵抗パターンの前記磁気スケールと対向する各パターン面によって構成されたセンサ面が前記トラックと面対向して、前記磁気スケールにおいて面内方向の向きが変化する回転磁界の方向を検出し、前記A相の磁気抵抗パターンは、180°の位相差をもって前記磁気スケールの移動検出を行う+a相の磁気抵抗パターンと−a相の磁気抵抗パターンとを備え、前記B相の磁気抵抗パターンは、180°の位相差をもって前記磁気スケールの移動検出を行う+b相の磁気抵抗パターンと−b相の磁気抵抗パターンとを備え、前記+a相の磁気抵抗パターン、前記−a相の磁気抵抗パターン、+b相の磁気抵抗パターン、および前記−b相の磁気抵抗パターンは、1枚の基板の同一の面上に、前記+a相の磁気抵抗パターンと前記−a相の磁気抵抗パターンとが対角に位置し、前記+b相の磁気抵抗パターンと前記−b相の磁気抵抗パターンとが対角に位置するように形成されていることを特徴とする。
本発明では、前記+a相の磁気抵抗パターンと前記−a相の磁気抵抗パターンとが対角
に位置し、前記+b相の磁気抵抗パターンと前記−b相の磁気抵抗パターンとが対角に位
置するように形成されているため、4相の磁気抵抗パターンを同一面内で引き回すことが
でき、A相を構成する磁気抵抗パターン、およびB相を構成する磁気抵抗パターンの全て
を1枚の基板の同一の面上に形成することができる。このため、いずれの磁気抵抗パター
ンも同等の感度を有しているので、センサ面と磁気スケールとの隙間寸法が変動した場合
でも、オフセットが変動せず、高い内挿精度を得ることができる。それ故、組み付け時に
センサ面が磁気スケールに対して傾いた場合でも、内挿精度への影響を抑えることができ
る。また、磁気抵抗パターンの引き回しが容易であるため、高周波キャンセル用のパター
ンを多数、配置できる。
本発明において、前記+a相の磁気抵抗パターンおよび前記−a相の磁気抵抗パターン
のうちの一方の磁気抵抗パターンと、前記+b相の磁気抵抗パターンおよび前記−b相の
磁気抵抗パターンのうちの一方の磁気抵抗パターンとは、当該一方の磁気抵抗パターンの
形成領域の間に形成された第1の共通端子に接続し、前記+a相の磁気抵抗パターンおよ
び前記−a相の磁気抵抗パターンのうちの他方の磁気抵抗パターンと、前記+b相の磁気
抵抗パターンおよび前記−b相の磁気抵抗パターンのうちの他方の磁気抵抗パターンとは
、当該他方の磁気抵抗パターンの形成領域の間に形成された第2の共通端子に接続してい
ることが好ましい。このように構成すると、基板上において異なる相の磁気抵抗パターン
同士を近接できるので、検出精度を向上することができる。
本発明に係る磁気式エンコーダ装置は、飽和感度領域以上の磁界強度で回転磁界の方向を検出するタイプ、または、飽和感度領域以外の領域の磁界強度で回転磁界の方向を検出するタイプとして構成することが可能である。
本発明において、前記センサ面は、前記トラックの幅方向において、前記センサ面の両端部分が対向する前記トラックの幅方向の両端の縁部分を超える大きさに形成されていることが好ましい。さらに、前記磁気センサ装置は、前記センサ面が前記トラックの幅方向の縁部分に面対向し、当該縁部分で面内方向の向きが変化する回転磁界の方向を検出可能であることが好ましい。本願出願人は、磁気スケール表面の磁界を調査、検討したところ、N極とS極が交互に並ぶトラックの幅方向の縁部分では、面内方向の向きが変化する回転磁界が形成されているという新たな知見を得た。本発明は、かかる新たな知見に基づいて成されたものであり、トラックの幅方向の縁部分で面内方向の向きが変化する回転磁界が形成されているのであれば、磁気センサ装置のセンサ面をトラックの幅方向の縁部分付近に面対向させても、回転磁界の方向を検出でき、磁気式エンコーダ装置を構成することができる。また、磁気センサ装置のセンサ面を磁気スケールに面対向させれば、磁気スケールに対してセンサ面を垂直に向けた場合と違って、磁気スケールから離れた位置で磁界が飽和感度領域に達しないということを回避できるので、検出精度を向上することができる。さらに、本発明では、A相を構成する磁気抵抗パターン、およびB相を構成する磁気抵抗パターンの全てが1枚の基板の同一の面上に形成されているため、基板において磁気抵抗パターンが形成される側の面を磁気スケールの側に向ければ、磁気抵抗パターンと磁気スケールとの隙間寸法を狭くできる。それ故、回転磁界を検出可能な磁界内に磁気抵抗パターンを配置できる。
本発明において、前記磁気スケールでは、前記トラックが幅方向で複数、並列し、前記複数のトラックでは、隣接するトラック間でN極およびS極の位置が前記相対移動方向でずれている構成を採用することができる。例えば、前記複数のトラックでは、隣接するトラック間でN極およびS極の位置が前記相対移動方向で1磁極分、ずれている構成を採用することができる。隣接するトラック間でN極およびS極の位置が前記相対移動方向でずれていれば、トラックの幅方向における縁部分のうち、トラックの境界部分では、強度の大きな回転磁界が発生する。従って、かかるトラックの境界部分に対して磁気センサのセンサ面を面対向させれば、磁気式エンコーダ装置の感度を向上することができる。
本発明において、前記磁気スケールは、前記トラックが幅方向で3列以上、並列し、前記センサ面は、幅方向において3列以上のトラックと対向し、かつ、前記センサ面の両端部分が対向するトラック間では前記相対移動方向におけるN極およびS極の位置が一致していることが好ましい。このように構成すると、磁気センサ装置と磁気スケールとの幅方向における相対位置がずれても、検出感度が変化しないという利点がある。
本発明において、前記複数のトラックでは、隣接するトラック間でN極およびS極が直接、接していることが好ましい。すなわち、隣接するトラック間でN極およびS極の間に例えば、磁極が存在しない無着磁部分や非磁性部分が介在していないので、隣接するトラック同士の境界部分で、より強度の大きな回転磁界を発生させることができる。
本発明に係る磁気式エンコーダ装置は、リニアエンコーダまたはロータリエンコーダの
いずれのエンコーダをも構成することができる。
本発明では、前記+a相の磁気抵抗パターンと前記−a相の磁気抵抗パターンとが対角
に位置し、前記+b相の磁気抵抗パターンと前記−b相の磁気抵抗パターンとが対角に位
置するように形成されているため、4相の磁気抵抗パターンを同一面内で引き回すことが
でき、A相を構成する磁気抵抗パターン、およびB相を構成する磁気抵抗パターンの全て
を1枚の基板の同一の面上に形成することができる。このため、いずれの磁気抵抗パター
ンも同等の感度を有しているので、センサ面と磁気スケールとの隙間寸法が変動した場合
でも、オフセットが変動せず、高い内挿精度を得ることができる。それ故、組み付け時に
センサ面が磁気スケールに対して傾いた場合でも、内挿精度への影響を抑えることができ
る。また、磁気抵抗パターンの引き回しが容易であるため、高周波キャンセル用のパター
ンを多数、配置できる。
図面を参照して、本発明を実施するための最良の形態を説明する。
(全体構成)
図1は、本発明を適用した磁気式エンコーダ装置の説明図である。図2(a)、(b)
、(c)は、本発明を適用した磁気センサ装置の要部の構成を示す概略断面図、その概略
斜視図、および概略平面図である。
図1に示すように、本形態における磁気センサ装置1は、磁気式リニアエンコーダ装置
100(磁気式エンコーダ装置)に用いられ、磁気センサ装置1の底面に対しては、可動
部材(図示せず)に固定された磁気スケール9が対向している。磁気スケール9には、後
述するように、長手方向(磁気センサ装置1と磁気スケール9との相対移動方向)に沿っ
てN極とS極とが交互に配列されたトラックが形成されており、磁気センサ装置1は、磁
気スケール9の表面に形成された回転磁界の方向を検出することにより、可動部材および
磁気スケール9が磁気スケール9の長手方向に移動した際の移動位置を検出する。磁気セ
ンサ装置1は、略直方体形状のアルミニウムダイカスト品からなるホルダ6と、このホル
ダ6の開口を覆う矩形のカバー68と、ホルダ6から延びたケーブル7とを備えている。
ホルダ6にはその側面にケーブル挿通穴69が形成されており、このケーブル挿通穴69
からケーブル7が引き出されている。
図2(a)、(b)、(c)に示すように、ホルダ6には、磁気スケール9と対向する
底面に、段差を介してホルダ6の底面から突出した平坦面からなる基準面60が形成され
ている。この基準面60には開口部65が形成されており、開口部65に対して、シリコ
ン基板やセラミックグレース基板などの剛性基板10上に形成された磁気抵抗素子25が
配置され、センサ面250が構成されている。
ここで、磁気抵抗素子25は、磁気スケール9の面内方向で向きが変化する回転磁界を検出する磁気抵抗パターンとして、互いに90°の位相差を有するA相の磁気抵抗パターン25(A)とB相の磁気抵抗パターン25(B)とを有しており、A相の磁気抵抗パターン25(A)とB相の磁気抵抗パターン25(B)の下端面(磁気スケール9と対向する各パターン面)によってセンサ面250が構成されている。なお、図面には、A相の磁気抵抗パターンにはSINを付し、B相の磁気抵抗パターンには、COSを付してある。
また、A相の磁気抵抗パターン25(A)は、180°の位相差をもって磁気スケール
9の移動検出を行う+a相の磁気抵抗パターン25(+a)と−a相の磁気抵抗パターン
25(−a)とを備えており、図面には、+a相の磁気抵抗パターン25(+a)にはS
IN+と付し、−a相の磁気抵抗パターン25(−a)には、SIN−を付してある。同
様に、B相の磁気抵抗パターン25(B)は、180°の位相差をもって磁気スケール9
の移動検出を行う+b相の磁気抵抗パターン25(+b)と−b相の磁気抵抗パターン2
5(−b)とを備えており、図面には、+b相の磁気抵抗パターン25(+b)にはCO
S+と付し、−b相の磁気抵抗パターン25(−b)には、COS−を付してある。
本形態では、+a相の磁気抵抗パターン25(+a)、−a相の磁気抵抗パターン25
(−a)、+b相の磁気抵抗パターン25(+b)、および−b相の磁気抵抗パターン2
5(−b)は、1枚の剛性基板10の同一の面上(主面上)に形成されている。また、磁
気抵抗パターン25(+a)、25(−a)、25(+b)、25(−b)は、剛性基板
10で格子状に配置されており、+a相の磁気抵抗パターン25(+a)と−a相の磁気
抵抗パターン25(−a)とは対角位置に形成され、+b相の磁気抵抗パターン25(+
b)と−b相の磁気抵抗パターン25(−b)とは対角位置に形成されている。
また、磁気スケール9では、移動方向に沿ってN極とS極が交互に並ぶトラック91が
形成されており、本形態では、3列のトラック91(91A、91B、91C)が幅方向
で並列している。ここで、隣接するトラック91A、91B、91C間では、N極および
S極の位置が移動方向で1磁極分、ずれている。このため、両側のトラック91A、91
91C間では、N極およびS極の位置が移動方向で一致している。さらに、隣接するトラック91Aとトラック91Bの境界部分912、およびトラック91Bとトラック91Cの境界部分912は、例えば、磁極が存在しない無着磁部分や非磁性部分を介在させることなく、隣接する当該境界部分912のN極およびS極が直接、接するように形成されていることが好ましいが、磁気センサ装置1が検出できるような強度の大きな回転磁界を発生させることができれば、隣接するトラック91Aとトラック91Bの境界部分912、およびトラック91Bとトラック91Cの境界部分912に磁極が存在しない無着磁部分や非磁性部分を介在させてあっても良い。
このように構成した磁気式エンコーダ装置1において、磁気スケール9の磁界の面内方
向の向きをマトリクス状の微小領域毎に磁場解析したところ、図3(a)、(b)、(c
)に矢印で示すように、トラック91A、91B、91Cの幅方向の縁部分911では、
円Lで囲んだ領域のように、面内方向の向きが変化する回転磁界が形成され、特に、トラ
ック91A、91B、91Cの境界部分912では、円L2で囲んだ領域のように、強度
の大きな回転磁界が発生している。さらに、本形態では、隣接するトラック91Aとトラック91Bの境界部分912、およびトラック91Bとトラック91Cの境界部分912は、当該境界部分912のN極およびS極が直接、接するように形成されているので、トラック91A、91B、91Cの境界部分912では、より強度の大きな回転磁界が発生している。
従って、本形態では、図2(c)に示すように、トラック91A、91B、91Cの境界部分912に対して磁気センサ装置1のセンサ面250を面対向させている。また、センサ面250は、磁気スケール9の幅方向の中央に位置しているため、センサ面250の幅方向における一方の端部251は、3つのトラック91A、91B、91Cのうち、トラック91Aの幅方向の中央に位置し、他方の端部252は、トラック91Cの幅方向の中央に位置している。従って、+a相の磁気抵抗パターン25(+a)が形成されている領域、および+b相の磁気抵抗パターン25(+b)が形成されている領域は、トラック91A、91Bの境界部分912に対向し、−a相の磁気抵抗パターン25(−a)が形成されている領域、および−b相の磁気抵抗パターン25(−b)が形成されている領域は、トラック91B、91Cの境界部分912に対向している。トラック91Bは、+a相の磁気抵抗パターン25(+a)および+b相の磁気抵抗パターン25(+b)が形成されている領域と、−a相の磁気抵抗パターン25(−a)および−b相の磁気抵抗パターン25(−b)が形成されている領域のそれぞれの領域が対向するトラック、すなわち、兼用する共通のトラック91Bとして磁気スケール9の中央に形成されている。
(磁気抵抗パターンの構成)
本形態の磁気センサ装置1において、剛性基板10の主面では、磁気抵抗パターン25
(+a)、25(−a)、25(+b)、25(−b)が図4に示すように形成されてお
り、これらの磁気抵抗パターン25(+a)、25(−a)、25(+b)、25(−b
)は、図5(a)、(b)に示すブリッジ回路を構成している。
図4に示すように、磁気抵抗パターン25(+a)、25(−a)、25(+b)、2
5(−b)は、剛性基板10の長手方向における中央領域に形成され、剛性基板10の一
方側端部11は第1の端子部21とされ、他方側端部12は第2の端子部22とされてい
る。
ここで、+a相の磁気抵抗パターン25(+a)と−a相の磁気抵抗パターン25(−
a)とは対角位置に形成され、+b相の磁気抵抗パターン25(+b)と−b相の磁気抵
抗パターン25(−b)とは対角位置に形成されている。
また、図4および図5(a)に示すように、+a相の磁気抵抗パターン25(+a)お
よび−a相の磁気抵抗パターン25(−a)は、一方端が電源端子212(Vcc)、2
22(Vcc)に接続され、他方端は、第1の共通端子および第2の共通端子としてのグ
ランド端子213(GND)、223(GND)に接続されている。また、+a相の磁気
抵抗パターン25(+a)の中点位置には、出力SIN+に対する端子211(+a)が
接続し、−a相の磁気抵抗パターン25(−a)の中点位置には、出力SIN−に対する
端子221(−a)が接続している。従って、出力SIN+および出力SIN−を減算器
に入力すれば、差動出力を得ることができ、この差動出力から、磁気スケール9の移動速
度を検出することができる。
同様に、図4および図5(b)に示すように、+b相の磁気抵抗パターン25(+b)
および−b相の磁気抵抗パターン25(−b)は、一方端が電源端子224(Vcc)、
214(Vcc)に接続されている。また、−b相の磁気抵抗パターン25(−b)の他
方端は、+a相の磁気抵抗パターン25(+a)と同様、第1の共通端子としてのグラン
ド端子213(GND)に接続し、+b相の磁気抵抗パターン25(+b)の他方端は、
−a相の磁気抵抗パターン25(−a)と同様、第2の共通端子としてのグランド端子2
23(GND)に接続している。さらに、+b相の磁気抵抗パターン25(+b)の中点
位置には、出力COS+に対する端子225(+b)が接続し、−b相の磁気抵抗パター
ン25(−b)の中点位置には、出力COS−に対する端子215(−b)が接続してい
る。従って、出力SIN+および出力SIN−を減算器に入力すれば、差動出力を得るこ
とができ、この差動出力から、磁気スケール9の移動速度を検出することができる。
なお、第1の端子部21には、上記の端子の他にダミーの端子が形成されている。第2の端子部22にも、上記の端子の他に、ダミーの端子が形成されている。また、剛性基板10の長手方向における中央領域には、上記の磁気抵抗パターンと隣接する領域に、原点位置を検出するためのZ相の磁気抵抗パターン25(Z)が形成され、第2の端子部22には、Z相の磁気抵抗パターン25(Z)に対する電源端子226(Vcc)、グランド端子227(GND)、出力端子228(Z)、229(Z)も形成されている。
ここで、磁気抵抗パターン25(+a)、25(−a)、25(+b)、25(−b)は、剛性基板10の主面に半導体プロセスにより形成された強磁性体NiFe等の磁性体膜からなり、ホイートストン・ブリッジなどを構成している。各端子は、磁気抵抗パターン25(+a)、25(−a)、25(+b)、25(−b)と同時形成された導電膜などからなる。
このように構成した磁気抵抗パターン25(+a)、25(−a)、25(+b)、2
5(−b)は、図4に示すように、移動方向の所定位置に細幅部分を備えており、例えば
、磁気抵抗パターン25(−a)を例に図5(c)に示すように、4つの抵抗Ra〜Rd
として見なすことができる。これらの4つの抵抗Ra〜Rdは、図5(d)に示す位相変
化に対応して抵抗値が変化する。従って、抵抗Ra、Rbは、同一の位相で、かつ、検出
する磁極が逆である。また、抵抗Rc、Rdは、同一の位相で、かつ、検出する磁極が逆
である。また、抵抗Ra、Rbと、抵抗Rc、Rdとは、180°の位相差をもって抵抗
値が変化し、差動出力を得ることができる。
(ホルダ上での剛性基板周辺の構造)
本形態では、剛性基板10をホルダ6内に配置して磁気センサ装置1を構成するにあた
って、図6および図7に示す構造が採用されている。
図6(a)、(b)、(c)は、図1に示す磁気センサ装置の底面図、要部の縦断面図
、および磁気抵抗素子の周辺を拡大して示す断面図である。図7(a)、(b)、(c)
はそれぞれ、本発明を適用した磁気センサ装置において、剛性基板に可撓性基板が接続さ
れている様子を示す平面図、その縦断面図、および剛性基板に樹脂保護層を形成した状態
を示す断面図である。
図6(a)、(b)、(c)および図7(a)、(b)において、本形態の磁気センサ
装置1では、剛性基板10に対しては、その一方側端部11に第1の可撓性基板31が接
続され、この第1の可撓性基板31においてベースフィルム36上に形成された導電パタ
ーン37(信号線)の端部は第1の端子部21で各端子にハンダ接合、合金接合、異方性
導電膜などを用いた接合などの方法で接続されている。また、剛性基板10において、そ
の他方側端部12には第2の可撓性基板32が接続され、この第2の可撓性基板32にお
いてベースフィルム36上に形成された導電パターン37(信号線)の端部は第2の端子
部22の各端子にハンダ接合、合金接合、異方性導電膜などを用いた接合などの方法で接
続されている。ここで、第1の可撓性基板31および第2の可撓性基板32においてベー
スフィルム36上に形成された導電パターン37のうち、第1の端子部21および第2の
端子部22の各端子に接合される部分にはSn−Cu系のメッキなどが施されている。
本形態において、第1の可撓性基板31と第2の可撓性基板32は、図7(a)に示す
ように、1枚の可撓性基板30の一部により構成されている。すなわち、可撓性基板30
は、図1に示すケーブル7との接続が行われる矩形部33と、この矩形部33の下端縁か
ら左右両側に延びた一対のコの字形状の延設部分34、35とを備えており、一対の延設
部分34、35のうち、一方の延設部分34によって第1の可撓性基板31が構成され、
他方の延設部分35によって第2の可撓性基板32が構成されている。このため、第1の
可撓性基板31と第2の可撓性基板32との間では、ベースフィルム36の厚さおよび導
電パターン37の厚さが同一である。また、可撓性基板30は左右対称であり、第1の可
撓性基板31と第2の可撓性基板32は同一の平面形状を有している。
なお、可撓性基板30において、一対の延設部分34、35の幅方向に位置する両端縁
には、半円形の小さな切り欠き39が複数、形成されており、かかる切り欠き39が形成
されている部分を谷折部分(一点鎖線で示す)および山折部分(二点鎖線で示す)として
折り曲げた状態で、可撓性基板30および剛性基板10は、図6(b)、(c)および図
7(b)、(c)に示すように、剛性基板10の主面を外側(下向き)にしてホルダ6の
底面に配置される。
このように構成した磁気センサ装置1において、磁気抵抗素子25は、図6(c)に示
すように、例えば、表面が絶縁樹脂層40、導電性粘着材層81、非磁性の金属層82、
および樹脂保護層83で覆われ、かつ、金属層82は、導電性粘着材層81を介してホル
ダ6に接着固定されている。従って、金属層82は、導電性粘着材層81を介してホルダ
6に電気的に接続され、かかる金属層82は、磁気抵抗素子25の表面を覆う電波シール
ド用導電層として機能する。ここで、樹脂保護層83、金属層82、および導電性粘着材
層81は、アルミニウム箔や銅箔などからなる金属層82の両面に樹脂保護層83および
導電性粘着材層81が各々、積層されたフィルム80を、導電性粘着材層81を介してホ
ルダ6に接着固定したものである。また、樹脂保護層83、金属層82、および導電性粘
着材層81は、PETなどのフィルム基材からなる樹脂保護層83の表面に、アルミニウ
ム膜や銅膜などからなる金属層82、および導電性粘着材層81を積層したフィルム80
を、導電性粘着材層81を介してホルダ6に接着固定したものである。導電性粘着材層8
1としては、各種粘着材にカーボン粒子、アルミニウム粒子、銀粒子、銅粒子などを分散
させたものである。かかるフィルム80の厚さは約50μmであり、極めて薄い。それ故
、磁気抵抗素子25と磁気スケール9とのギャップを300μm以下にまで狭めることが
できる。なお、樹脂保護層83は、可動部材などと接触した際に金属層82を保護すると
いう観点からすればあった方がよいが、金属層82を構成する金属の種類や使用形態によ
っては樹脂保護層83を省略してもよい。
磁気抵抗素子25は、図14に示すような磁気抵抗曲線(MR特性)を有し、印加する磁束密度に応じて磁気抵抗変化率が変化する。本形態における磁気抵抗素子25の磁気抵抗変化率(MR比)R0は−2.5%である。そこで、磁気スケール9(永久磁石)が発生する回転磁界により、磁気抵抗素子25の磁気抵抗変化率Rが−0.5%(=R0×0.2)から−2.5%となった時、これを出力信号として用いる。すなわち、磁気センサ装置1は、磁気抵抗素子25において、無磁界中での抵抗値からの最大抵抗変化率に対して20%以上の抵抗変化を示す領域(図14に矢印Xで示す領域)の磁界を検出し、出力する。従って、本形態では、回転磁界検出方式を採用するといっても、飽和感度領域に限らず、磁気抵抗素子の磁気抵抗曲線において無磁界中での抵抗値からの最大抵抗変化率に対して抵抗変化率が20%以上の裾野部分に相当する飽和感度領域および準飽和感度領域の磁界を利用する。なお、本形態において、「準飽和感度領域」とは、磁気抵抗素子の磁気抵抗曲線において無磁界中での抵抗値からの最大抵抗変化率に対して抵抗変化率が20%以上で、かつ、飽和感度領域に至るまでの磁界の領域を示す。
このような構成の磁気センサ装置1の製造方法を、図6(a)、(b)、(c)および
図7(a)、(b)、(c)を参照して説明しながら、本形態の磁気センサ装置1の構成
をさらに詳述する。
本形態では、まず、半導体プロセスにより剛性基板10の主面に対して磁気抵抗素子2
5、第1の端子部21、および第2の端子部22を形成した後、剛性基板10の一方側端
部11に第1の可撓性基板31を接続し、剛性基板10の他方側端部12に第2の可撓性
基板32を接続する。
次に、剛性基板10の主面と第1の可撓性基板31との間、および剛性基板10の主面
と第2の可撓性基板32との間には、可撓性基板30において導電パターンが形成されて
いない部分、および剛性基板10において端子が形成されていない部分に起因して隙間3
8a、38bが発生しているので、かかる隙間38a、38bに対しては、エポキシ樹脂
などの封止樹脂41を充填する。なお、剛性基板10に対して第1の可撓性基板31およ
び第2の可撓性基板32の接合に異方性導電膜を用いた場合には、その樹脂部分で隙間を
埋めることができるので、隙間に対する樹脂の充填を別途、行う必要はない。
次に、可撓性基板30を図7(a)に一点鎖線で示す谷折部分、および二点鎖線で示す
山折部分に沿って折り曲げた後、図7(b)に示すように、剛性基板10の主面を外側(
下向き)にして、可撓性基板30および剛性基板10をホルダ6内の底部に配置する。そ
の際、第1の可撓性基板31および第2の可撓性基板32において、剛性基板10と接続
されている部分のベースフィルム36の裏面側361をホルダ6の基準面60と一致する
ように、ホルダ6内に剛性基板10、第1の可撓性基板31および第2の可撓性基板32
を固定する。
次に、図7(c)に示すように、剛性基板10の主面において、第1の可撓性基板31
と第2の可撓性基板32とによって挟まれた領域にエポキシ樹脂などの樹脂を充填した後
、硬化させ、図7(a)に右上がりの点線で示すように、磁気抵抗素子25を覆う絶縁樹
脂層40を形成する。その際、ホルダ6の開口部65において、第1の可撓性基板31お
よび第2の可撓性基板32と開口部65との間の隙間にも樹脂を充填してもよい。以上の
工程により、磁気センサ装置1において、ホルダ6への剛性基板10の固定が完了する。
次に、図6(c)に示すように、樹脂保護層83、金属層82、および導電性粘着材層
81がこの順に形成されたフィルム80を、導電性粘着材層81を基準面60に向けて貼
る。
このようにして本形態では、磁気抵抗素子25の表面を絶縁樹脂層40、導電性粘着材
層81、金属層82、および樹脂保護層83で覆い、かつ、金属層82は、導電性粘着材
層81を介してホルダ6に接着固定する。従って、金属層82は、導電性粘着材層81を
介してホルダ6に電気的に接続される。以上の工程により、磁気センサ装置1において、
金属層82からなる電波シールド用導電層によって磁気抵抗素子25の表面を覆うことが
できる。
(本形態の主な効果)
以上説明したように、本形態の磁気センサ装置1では、+a相の磁気抵抗パターン25(+a)と−a相の磁気抵抗パターン25(−a)とが対角に位置し、+b相の磁気抵抗パターン25(+b)と−b相の磁気抵抗パターン(−b)とが対角に位置しているため、4相の磁気抵抗パターン225(+a)、225(−a)、225(+b)、225(−b)を同一面内で引き回すことができ、A相を構成する磁気抵抗パターン25(+a)、25(−a)、およびB相を構成する磁気抵抗パターン25(+b)、25(−b)の全てを1枚の剛性基板10の同一の面上に形成することができる。このため、いずれの磁気抵抗パターン25(+a)、25(−a)、25(+b)、25(−b)も同等の感度をもって構成できるので、センサ面250と磁気スケール9との隙間寸法が変動した場合でも、オフセットが変動せず、高い内挿精度を得ることができる。それ故、組み付け時にA相の磁気抵抗パターン25(A)とB相の磁気抵抗パターン25(B)の下端面(磁気スケール9と対向する各パターン面)からなるセンサ面250が磁気スケール9に対して傾いた場合でも、内挿精度への影響を抑えることができる。また、磁気抵抗パターン225(+a)、225(−a)、225(+b)、225(−b)の引き回しが容易であるため、高周波キャンセル用のパターンを多数、配置できる。
また、本形態の磁気抵抗素子25は、+a相の磁気抵抗パターン25(+a)と−a相の磁気抵抗パターン25(−a)とを対角に位置させ、+b相の磁気抵抗パターン25(+b)と−b相の磁気抵抗パターン(−b)とを対角に位置させて、A相を構成する磁気抵抗パターン25(+a)、25(−a)、およびB相を構成する磁気抵抗パターン25(+b)、25(−b)の全てを1枚の剛性基板10の同一の面上に形成することができるため、従来のように、例えば、+a相の磁気抵抗パターン、−a相の磁気抵抗パターン、+b相の磁気抵抗パターン、−b相の磁気抵抗パターンの各磁気抵抗パターンを同一方向に、かつ、直線状に並べて形成した磁気抵抗素子を2組、用いるとともに、この2組を磁気抵抗素子を並列した状態で使用する磁気センサ装置と比べても、同程度の高い検出精度を得ることができるとともに、磁気センサ装置1における磁気抵抗素子25を搭載するスペースの省スペース化を図ることができ、ひいては磁気センサ装置1の小型化も図ることができる。
また、−b相の磁気抵抗パターン25(−b)の他方端は、+a相の磁気抵抗パターン
25(+a)と同様、第1の共通端子としてのグランド端子213(GND)に接続し、
+b相の磁気抵抗パターン25(+b)の他方端は、−a相の磁気抵抗パターン25(−
a)と同様、第2の共通端子としてのグランド端子223(GND)に接続しているため
、剛性基板10上において異なる相の磁気抵抗パターン同士を近接できるので、検出精度
を向上することができる。
また、本形態では、A相を構成する磁気抵抗パターン25(+a)、25(−a)、お
よびB相を構成する磁気抵抗パターン25(+b)、25(−b)の全てを1枚の剛性基
板10の同一の面上に形成したため、剛性基板10において磁気抵抗パターン225(+
a)、225(−a)、225(+b)、225(−b)が形成されている側の面を磁気
スケール9の側に向ければ、磁気抵抗パターン225(+a)、225(−a)、225
(+b)、225(−b)と磁気スケール9との隙間寸法を狭くできる。それ故、磁気式
リニアエンコーダ装置100において、磁気スケール9の隣接するトラック91A、91
B、91C同士の境界部分912に形成されている回転磁界を磁気センサ装置1で検出で
き、その結果に基づいて、磁気スケール9との相対移動速度や相対移動距離を検出するこ
とができる。それ際、磁気センサ装置1からは、波形品位の高い正弦波を得ることができ
、かつ、外乱磁界に強いなど、回転磁界検出型の特徴を最大限発揮することができる。し
かも、飽和感度領域を利用するので、磁気抵抗素子25の製造ばらつきの影響を受けるこ
となく、高い検出感度を得ることができる。
また、本形態の磁気スケール9は、隣接するトラック91Aとトラック91Bの境界部分912、およびトラック91Bとトラック91Cの境界部分912は、例えば、磁極が存在しない無着磁部分や非磁性部分を介在させることなく、隣接する当該境界部分912のN極およびS極が直接、接するように形成されている。さらに、隣接するトラック91Aとトラック91Bの境界部分912、およびトラック91Bとトラック91Cの境界部分912は、当該境界部分912のN極およびS極が直接、接するように形成されているので、トラック91A、91B、91Cの境界部分912では、より強度の大きな回転磁界を発生させることができる。
また、さらに、トラック91Bは、+a相の磁気抵抗パターン25(+a)および+b相の磁気抵抗パターン25(+b)が形成されている領域と、−a相の磁気抵抗パターン25(−a)および−b相の磁気抵抗パターン25(−b)が形成されている領域のそれぞれの領域が対向するトラック、すなわち、兼用する共通のトラック91Bとして磁気スケール9の中央に形成されているので、磁気スケール9の小型化を図ることができる。また、トラックへN極とS極の着磁回数も減らすことができるので、磁気スケール9の製造を安価、かつ、簡易に行うことができる。
また、本形態では、磁気センサ装置1のセンサ面250をトラック91A、91B、9
1Cの境界部分912に面対向させて回転磁界を検出しているので、磁気スケール9に対
してセンサ面250を垂直に向けた場合と違って、磁気スケール9から離れた位置で磁界
が飽和感度領域に達しないということを回避できる。それ故、磁気式エンコーダ装置1の
検出精度を向上することができる。
なお、本形態では、センサ面250の幅方向における端部251、252が各々、トラ
ック91A、91Cの幅方向の中央に位置している構成であったが、センサ面250の幅
寸法が磁気スケール9の幅寸法よりも広く、センサ面250の端部251、252が磁気
スケール9の幅方向外側にはみ出している構成を採用してもよい。
[変形例]
上記実施の形態では、トラック数が3列であったが、図8に示すように、2列のトラック91(91A、91B)を有する場合であっても、磁気スケール9の磁界の面内方向の向きをマトリクス状の微小領域毎に磁場解析したところ、図9(a)、(b)、(c)に矢印で示すように、トラック91A、91Bの幅方向の縁部分911では、円Lで囲んだ領域のように、面内方向の向きが変化する回転磁界が形成され、特に、トラック91A、91Bの境界部分912では、円L2で囲んだ領域のように、強度の大きな回転磁界が発生している。さらに、本形態では、隣接するトラック91Aとトラック91Bの境界部分912は、当該境界部分912のN極およびS極が直接、接するように形成されているので、トラック91Aと91Bの境界部分912では、より強度の大きな回転磁界が発生している。従って、トラック数が2列の磁気スケール9を用いた磁気式エンコーダ装置に本発明を適用してもよい。また、隣接するトラック91Aとトラック91Bの境界部分912は、例えば、磁極が存在しない無着磁部分や非磁性部分を介在させることなく、隣接する当該境界部分912のN極およびS極が直接、接するように形成されている。
さらに、図10に示すように、トラック数が1列であっても、磁気スケール9の磁界の
面内方向の向きをマトリクス状の微小領域毎に磁場解析したところ、図11(a)、(b
)、(c)に矢印で示すように、トラック91の幅方向の縁部分911では、円Lで囲ん
だ領域のように、面内方向の向きが変化する回転磁界が形成されている。従って、トラッ
ク数が1列の磁気スケール9を用いた磁気式エンコーダ装置に本発明を適用してもよい。
さらに、図12に示すように、センサ面250が5列のトラック91A、91B、91C、91D、91Eと対向し、かつ、センサ面250の両端部分が対向するトラック91A、91E間では移動方向におけるN極およびS極の位置が一致している構成を採用してもよい。また、隣接するトラック91Aとトラック91Bの境界部分、トラック91Bとトラック91Cの境界部分、トラック91Cとトラック91Dの境界部分、トラック91Dとトラック91Eの各境界部分を、当該境界部分のN極およびS極が直接、接するように形成することで、トラック91A、91B、91C、91D、91Eの各境界部分では、より強度の大きな回転磁界を発生させることができる。また、トラック91A、91B、91C、91D、91Eの各境界部分では、例えば、磁極が存在しない無着磁部分や非磁性部分を介在させることなく、隣接する当該境界部分のN極およびS極が直接、接するように形成されていることが好ましく、このように構成することで、より強度の大きな回転磁界を発生させることが可能となる。
[その他の磁気式エンコーダ装置の構成]
上記形態はいずれも、磁気式エンコーダ装置をリニアエンコーダとして構成した例であ
ったが、図13(a)、(b)に示すように、ロータリエンコーダを構成してもよい。こ
の場合、図13(a)に示すように、回転体の端面において、周方向にトラック91が延
びるように磁気スケール9を構成し、このように構成したトラック91に対して、磁気セ
ンサ装置1のセンサ面250を対向させればよい。また、図13(b)に示すように、回
転体の外周面において、周方向にトラック91が延びるように磁気スケール9を構成し、
このように構成したトラック91に対して、磁気センサ装置1のセンサ面250を対向さ
せてもよい。
また、上記形態では、本発明に係る磁気センサ装置1を、飽和感度領域以上の磁界強度で回転磁界の方向を検出する磁気式エンコーダ装置に用いたが、一定方向の磁界の強弱により位置検出するタイプの磁気式エンコーダ装置に用いてもよい。また、飽和感度領域以外の領域の磁界強度で回転磁界の方向を検出するタイプとしても構成することが可能である。
本発明を適用した磁気式エンコーダ装置の説明図である。 (a)、(b)、(c)は、本発明を適用した磁気センサ装置の要部の構成を示す概略断面図、その概略斜視図、および概略平面図である。 (a)、(b)、(c)は、本発明を適用した磁気式エンコーダ装置の磁気スケールに形成されている磁界の向きを平面的にみたときの説明図、斜めにみたときの説明図、および側方からみたときの説明図である。 本発明を適用した磁気式エンコーダ装置の磁気センサ装置に形成した磁気抵抗パターンの説明図である。 図4に示す磁気抵抗パターンの電気的な構成を示す説明図である。 (a)、(b)、(c)は、図1に示す磁気センサ装置の底面図、要部の縦断面図、および磁気抵抗素子の周辺を拡大して示す断面図である。 (a)、(b)、(c)はそれぞれ、本発明を適用した磁気センサ装置において、剛性基板に可撓性基板が接続されている様子を示す平面図、その縦断面図、および剛性基板に樹脂保護層を形成した状態を示す断面図である。 本発明を適用した別の磁気式エンコーダ装置の説明図である。 (a)、(b)、(c)は、図8に示す磁気式エンコーダ装置の磁気スケールに形成されている磁界の向きを平面的にみたときの説明図、斜めにみたときの説明図、および側方からみたときの説明図である。 本発明を適用した別の磁気式エンコーダ装置の説明図である。 (a)、(b)、(c)は、図10に示す磁気式エンコーダ装置の磁気スケールに形成されている磁界の向きを平面的にみたときの説明図、斜めにみたときの説明図、および側方からみたときの説明図である。 本発明を適用した別の磁気式エンコーダ装置の説明図である。 (a)、(b)は、本発明を適用した磁気式エンコーダ装置によってロータリエンコーダを構成したときの説明図である。 本発明を適用した磁気式エンコーダ装置が有する磁気抵抗素子のMR曲線を示すグラフである。 従来の磁気式エンコーダ装置の説明図である。
符号の説明
1 磁気センサ装置
磁気スケール
10 剛性基板
25 磁気抵抗素子
25(+a) +a相の磁気抵抗パターン
25(−a) −a相の磁気抵抗パターン
25(+b) +b相の磁気抵抗パターン
25(−b) −b相の磁気抵抗パターン
91 トラック
100 磁気式リニアエンコーダ装置(磁気式エンコーダ装置)
213(GND) グランド端子(第1の共通端子)
223(GND) グランド端子(第2の共通端子)
250 センサ面

Claims (9)

  1. 磁気センサ装置と、該磁気センサ装置に対する相対移動方向に沿ってN極とS極が交互に並ぶトラックを備えた磁気スケールと、を有する磁気式エンコーダ装置であって、
    前記磁気センサ装置は、互いに90°の位相差を有するA相の磁気抵抗パターンとB相の磁気抵抗パターンとを有するとともに、前記A相の磁気抵抗パターンおよび前記B相の磁気抵抗パターンの前記磁気スケールと対向する各パターン面によって構成されたセンサ面が前記トラックと面対向して、前記磁気スケールにおいて面内方向の向きが変化する回転磁界の方向を検出し、
    前記A相の磁気抵抗パターンは、180°の位相差をもって前記磁気スケールの移動検出を行う+a相の磁気抵抗パターンと−a相の磁気抵抗パターンとを備え、
    前記B相の磁気抵抗パターンは、180°の位相差をもって前記磁気スケールの移動検出を行う+b相の磁気抵抗パターンと−b相の磁気抵抗パターンとを備え、
    前記+a相の磁気抵抗パターン、前記−a相の磁気抵抗パターン、+b相の磁気抵抗パターン、および前記−b相の磁気抵抗パターンは、1枚の基板の同一の面上に、前記+a相の磁気抵抗パターンと前記−a相の磁気抵抗パターンとが対角に位置し、前記+b相の磁気抵抗パターンと前記−b相の磁気抵抗パターンとが対角に位置するように形成されていることを特徴とする磁気式エンコーダ装置
  2. 請求項1において、前記+a相の磁気抵抗パターンおよび前記−a相の磁気抵抗パターンのうちの一方の磁気抵抗パターンと、前記+b相の磁気抵抗パターンおよび前記−b相の磁気抵抗パターンのうちの一方の磁気抵抗パターンとは、当該一方の磁気抵抗パターンの形成領域の間に形成された第1の共通端子に接続し、
    前記+a相の磁気抵抗パターンおよび前記−a相の磁気抵抗パターンのうちの他方の磁気抵抗パターンと、前記+b相の磁気抵抗パターンおよび前記−b相の磁気抵抗パターンのうちの他方の磁気抵抗パターンとは、当該他方の磁気抵抗パターンの形成領域の間に形成された第2の共通端子に接続していることを特徴とする磁気式エンコーダ装置
  3. 請求項1または2において、前記センサ面は、前記トラックの幅方向において、前記センサ面の両端部分が対向する前記トラックの幅方向の両端の縁部分を超える大きさに形成されていることを特徴とする磁気式エンコーダ装置。
  4. 請求項1乃至3のいずれかにおいて、前記磁気センサ装置は、前記センサ面が前記トラックの幅方向の縁部分に面対向し、当該縁部分で面内方向の向きが変化する回転磁界の方向を検出可能であることを特徴とする磁気式エンコーダ装置。
  5. 請求項4において、前記磁気スケールでは、前記トラックが幅方向で複数、並列し、
    前記複数のトラックでは、隣接するトラック間でN極およびS極の位置が前記相対移動方向でずれていることを特徴とする磁気式エンコーダ装置。
  6. 請求項5において、前記複数のトラックでは、隣接するトラック間でN極およびS極の位置が前記相対移動方向で1磁極分、ずれていることを特徴とする磁気式エンコーダ装置。
  7. 請求項5または6において、前記磁気スケールは、前記トラックが幅方向で3列以上、並列し、
    前記センサ面は、幅方向において3列以上のトラックと対向し、かつ、前記センサ面の両端部分が対向するトラック間では前記相対移動方向におけるN極およびS極の位置が一致していることを特徴とする磁気式エンコーダ装置。
  8. 請求項5ないし7のいずれかにおいて、前記複数のトラックでは、隣接するトラック間でN極およびS極が直接、接していることを特徴とする磁気式エンコーダ装置。
  9. 請求項1ないし8のいずれかにおいて、リニアエンコーダまたはロータリエンコーダとして構成されていることを特徴とする磁気式エンコーダ装置。
JP2007054830A 2006-03-06 2007-03-05 磁気式エンコーダ装置 Active JP4999498B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007054830A JP4999498B2 (ja) 2006-03-06 2007-03-05 磁気式エンコーダ装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006059841 2006-03-06
JP2006059841 2006-03-06
JP2007054830A JP4999498B2 (ja) 2006-03-06 2007-03-05 磁気式エンコーダ装置

Publications (2)

Publication Number Publication Date
JP2007271608A JP2007271608A (ja) 2007-10-18
JP4999498B2 true JP4999498B2 (ja) 2012-08-15

Family

ID=38674533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007054830A Active JP4999498B2 (ja) 2006-03-06 2007-03-05 磁気式エンコーダ装置

Country Status (1)

Country Link
JP (1) JP4999498B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2320196A4 (en) 2008-07-29 2017-11-29 Alps Electric Co., Ltd. Magnetic detector
JP5226619B2 (ja) * 2009-07-06 2013-07-03 株式会社東海理化電機製作所 位置検出装置及びシフト装置
JP2011158284A (ja) * 2010-01-29 2011-08-18 Nippon Seiki Co Ltd 回転検出装置
JP2016038294A (ja) * 2014-08-07 2016-03-22 日本電産サンキョー株式会社 磁気式リニアエンコーダ
JP7213403B2 (ja) * 2018-05-30 2023-01-27 パナソニックIpマネジメント株式会社 入力装置
JP7064966B2 (ja) * 2018-06-05 2022-05-11 日本電産サンキョー株式会社 磁気式エンコーダ
JP7285691B2 (ja) * 2019-05-16 2023-06-02 ニデックインスツルメンツ株式会社 磁気センサ装置
JP7184069B2 (ja) 2020-09-18 2022-12-06 Tdk株式会社 位置検出装置、レンズモジュールおよび撮像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141514A (ja) * 1999-11-16 2001-05-25 Matsushita Electric Ind Co Ltd 磁気抵抗素子
JP2005249774A (ja) * 2004-02-02 2005-09-15 Sankyo Seiki Mfg Co Ltd 磁気センサ及びその製造方法

Also Published As

Publication number Publication date
JP2007271608A (ja) 2007-10-18

Similar Documents

Publication Publication Date Title
WO2007102465A1 (ja) 磁気センサ装置、および磁気式エンコーダ装置および磁気スケールの製造方法
JP4999498B2 (ja) 磁気式エンコーダ装置
JP5867235B2 (ja) 磁気センサ装置
CN107110892B (zh) 电流传感器
JP5906488B2 (ja) 電流センサ
JP2006300779A (ja) 回転検出装置
JP5215370B2 (ja) 磁気式位置検出装置
JP3560821B2 (ja) 巨大磁気抵抗効果素子を備えたエンコーダ
JP2016223894A (ja) 磁気センサ
JP6132085B2 (ja) 磁気検出装置
WO2015087726A1 (ja) 磁気センサ装置、磁気式エンコーダ装置、および磁気センサ
JP4881041B2 (ja) 磁気センサ装置
JP5006671B2 (ja) 磁気エンコーダ
JP5799882B2 (ja) 磁気センサ装置
JP6482023B2 (ja) 磁気センサ
JP6455314B2 (ja) 回転検出装置
CN109328307B (zh) 磁传感器以及具备该磁传感器的电流传感器
JP2005069744A (ja) 磁気検出素子
JP2002131406A (ja) 磁気検出装置
JP2007127456A (ja) 回転検出装置
JP2020178045A (ja) 磁気抵抗素子およびその製造方法
JP2013205201A (ja) 電流センサ及び電流センサパッケージ
JP2011107085A (ja) 移動体検出装置
US10094890B2 (en) Magnetic sensor
JP2001004729A (ja) 磁気ヘッド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3