JP2013205201A - 電流センサ及び電流センサパッケージ - Google Patents

電流センサ及び電流センサパッケージ Download PDF

Info

Publication number
JP2013205201A
JP2013205201A JP2012074042A JP2012074042A JP2013205201A JP 2013205201 A JP2013205201 A JP 2013205201A JP 2012074042 A JP2012074042 A JP 2012074042A JP 2012074042 A JP2012074042 A JP 2012074042A JP 2013205201 A JP2013205201 A JP 2013205201A
Authority
JP
Japan
Prior art keywords
current
current sensor
flow
element formation
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012074042A
Other languages
English (en)
Inventor
Takahiro Taoka
隆洋 田岡
Kenji Ichinohe
健司 一戸
Yosuke Ide
洋介 井出
Tatsuya Kogure
竜矢 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Green Devices Co Ltd
Original Assignee
Alps Green Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Green Devices Co Ltd filed Critical Alps Green Devices Co Ltd
Priority to JP2012074042A priority Critical patent/JP2013205201A/ja
Publication of JP2013205201A publication Critical patent/JP2013205201A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】外部磁界の影響をより小さくして精度良く被測定電流を測定できる電流センサ及び電流センサパッケージを提供すること。
【解決手段】本発明の電流センサは、導電性材料で構成され、間隔を持って設けられた2つの素子形成領域(A,A)を有する電流路基板(11)と、2つの素子形成領域(A,A)上にそれぞれ成膜された磁気抵抗効果多層膜(12a〜12d)と、を具備し、2つの素子形成領域(A,A)に通流する被測定電流の向きが反対向きであり、磁気抵抗効果多層膜(12a〜12d)における感度軸の向きは、素子形成領域(A,A)を通流する被測定電流の向きに対してそれぞれ直交する向きであることを特徴とする。
【選択図】図1

Description

本発明は、電流の大きさを測定する電流センサ及び電流センサパッケージに関し、特に、外部磁場の影響をより小さくできる電流センサ及び電流センサパッケージに関する。
従来より、電流を測定するためのデバイスとして磁電変換素子を用いた電流センサが開発されている。この電流センサは、被測定電流が電流路を通流することにより生じる誘導磁界を検出することにより被測定電流を測定する。このため、このタイプの電流センサは、外部磁界により影響を受けて正確に被測定電流を測定できないことが考えられる。
このような問題を解決するために、感度軸を互いに平行にした状態で一対の磁電変換素子を電流路に設け、一対の磁電変換素子の出力の差動をとることにより、外部磁界を除去する方法が提案されている(特許文献1)。この特許文献1に記載の電流センサは、基板上において、基板に直交する電流線を挟んで対向する位置に一対の磁電変換素子を配置している。この一対の磁電変換素子は、感度軸方向が同一方向に向けられている。この電流センサにおいては、一対の磁電変換素子から互いに逆相の出力信号が出力されるため、差動演算により出力信号は加算処理されて出力感度が向上される。また、一対の磁電変換素子の出力信号以外のノイズ成分は同相であるため、差動演算により除去される。
特開2002−243766号公報
しかしながら、上記した特許文献1に記載の電流センサにおいては、一対の磁電変換素子はそれぞれセンサチップであり、図8に示すように一対の磁電変換素子801,802が並設されると、ミリオーダーの間隔Dを生じることとなる。このような配置状態で図8に示すように外部磁界源803が存在すると、外部磁界源803から一方の磁電変換素子801との間の距離Dと外部磁界源803から他方の磁電変換素子802との間の距離Dとに差が生じてしまう。このように外部磁界源803から磁電変換素子までの距離がそれぞれ異なると、一対の磁電変換素子801,802が受ける外部磁界がそれぞれ異なってしまい、一対の磁電変換素子801,802の出力の差動演算を行っても外部磁界を十分に除去できないという問題がある。
本発明はかかる点に鑑みてなされたものであり、外部磁界の影響をより小さくして精度良く被測定電流を測定できる電流センサ及び電流センサパッケージを提供することを目的とする。
本発明の電流センサは、半導体材料で構成され、間隔を持って設けられた2つの素子形成領域を有する電流路基板と、前記2つの素子形成領域上にそれぞれ成膜された磁気抵抗効果多層膜と、を具備し、前記2つの素子形成領域に通流する被測定電流の向きが反対向きであり、前記磁気抵抗効果多層膜における感度軸の向きは、前記素子形成領域を通流する被測定電流の向きに対してそれぞれ直交する向きであることを特徴とする。
この構成によれば、半導体材料で構成された電流路基板上に直接磁気抵抗効果多層膜を形成する。このため、電流路基板をシリコン基板のような半導体基板とすることにより、電流路基板上にウエハレベルで磁気抵抗効果多層膜を直接パターニングして形成することができる。したがって、導体板を機械的な曲げ加工でU字形状に形成した電流路の上にチップ状の磁気抵抗効果素子を接合した電流センサよりも全体として小型であり、これに伴って、相対的に磁気抵抗効果多層膜間の間隔を小さくすることができる。このため、差動演算するための出力元である一対の磁気抵抗効果多層膜から外部磁界源までのそれぞれの距離を同じ距離に近づけることができる。そのため、一対の磁気抵抗効果多層膜からの出力の差動演算により外部磁界の影響をできるだけ小さくすることができる。その結果、精度良く被測定電流を測定することができる。また、このように半導体材料で構成された電流路基板上に磁気抵抗効果多層膜を形成してなる電流センサは、チップ状の磁気抵抗効果素子を実装した電流センサよりも、被測定電流が発生させる誘導磁界に対して磁気抵抗効果膜の感度軸を高精度に合わせることができる。
本発明の電流センサにおいては、前記電流路基板は、前記素子形成領域をそれぞれ有する第1及び第2の通流部と、前記第1及び第2の通流部を繋ぐ第3の通流部とで構成されていることが好ましい。
本発明の電流センサにおいては、前記電流路基板は、前記素子形成領域をそれぞれ有する一対の通流基板で構成されていることが好ましい。
本発明の電流センサにおいては、前記電流路基板の素子形成領域は、半導体プロセスにおけるダイシング又はエッチングにより間隔を持って設けられたことが好ましい。
本発明の電流センサにおいては、前記磁気抵抗効果多層膜は、前記2つの素子形成領域上にそれぞれ絶縁層を介して成膜されたことが好ましい。
本発明の電流センサにおいては、前記絶縁層は60nm〜120nmであることが好ましい。
本発明の電流センサパッケージは、被測定電流が通流する一対の第1のリード部及び前記被測定電流が通流しない第2のリード部を有するリードフレームと、前記一対の第1のリード部上に導電性接続部材を介して前記第1及び第2の通流部がそれぞれ実装されていると共に、前記第2のリード部上に絶縁性接続部材を介して前記第3の通流部が実装された上記電流センサと、前記リードフレーム及び前記電流センサを封止する封止材と、を具備することを特徴とする。
本発明の電流センサパッケージは、被測定電流が通流する二対のリード部を有するリードフレームと、一方の対のリード部上に導電性接続部材を介して前記一対の通流基板の一方の通流基板の両端部がそれぞれ実装されていると共に、他方の対のリード部上に導電性接続部材を介して前記一対の通流基板の他方の通流基板の両端部がそれぞれ実装された上記電流センサと、前記リードフレーム及び前記電流センサを封止する封止材と、を具備することを特徴とする。
本発明の電流センサによれば、外部磁界の影響をより小さくして精度良く被測定電流を測定できる。
本発明の実施の形態1に係る電流センサを示す図である。 図1のII−II線に沿う断面図である。 本発明の実施の形態1に係る電流センサの磁気抵抗効果多層膜を説明するための図である。 絶縁耐電圧と絶縁層厚との間の関係を示す図である。 本発明の実施の形態1に係る電流センサを実装した電流センサパッケージを説明するための図である。 本発明の実施の形態2に係る電流センサを示す図である。 本発明の実施の形態2に係る電流センサを実装した電流センサパッケージを説明するための図である。 従来の電流センサの課題を説明する図である。
以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
本発明の電流センサは、半導体材料で構成され、間隔を持って設けられた2つの素子形成領域を有する電流路基板と、2つの素子形成領域上にそれぞれ成膜された磁気抵抗効果多層膜と、を備える。本発明において、電流路基板は、素子形成領域をそれぞれ有する第1及び第2の通流部と、第1及び第2の通流部を繋ぐ第3の通流部とで構成されている形態と、素子形成領域をそれぞれ有する一対の通流基板で構成されている形態とがある。
(実施の形態1)
本実施の形態においては、電流路基板が、素子形成領域をそれぞれ有する第1及び第2の通流部と、第1及び第2の通流部を繋ぐ第3の通流部とで構成されている形態について説明する。
図1は、本発明の実施の形態1に係る電流センサを示す図である。
本実施の形態に係る電流センサ1は、半導体材料で構成された電流路基板上に磁電変換素子である磁気抵抗効果多層膜を形成してなり、電流路基板に被測定電流を通流するものである。ここでは、電流路基板としてシリコン基板11を用いる。なお、電流路基板を構成する半導体材料としては、シリコンに限定されない。
シリコン基板11は、被測定電流を通流する第1〜第3の通流部11a〜11cで構成されている。これらの第1〜第3の通流部11a〜11cは一体で構成されており、特に境界はないものとする。第1の通流部11a及び第2の通流部11bは、それぞれ一方向(図1において紙面上下方向)に延びており、間隔Dを持って設けられている(スリットSが形成されている)。この間隔Dは、少なくとも第1の通流部11aと第2の流通部11bとの間の絶縁距離に相当する。第3の通流部11cは、第1の通流部11aと第2の通流部11bとを繋ぐように位置する。したがって、このシリコン基板11は、平面視においてU字形状を有している。ここでは、被測定電流が第1の通流部11aを図1の下側から上側に向けて通流し、第3の通流部11cを図1の左側から右側に向かって通流し、第2の通流部11bを図1の上側から下側に向けて通流する。このため、第1の通流部11aにおける被測定電流による誘導磁界の方向は図1の左側から右側に向かう方向であり、第2の通流部11bにおける被測定電流による誘導磁界の方向は図1の右側から左側に向かう方向である。なお、被測定電流の通流方向については特に限定されない。
第1の通流部11a及び第2の通流部11bの間の間隔Dはミクロンオーダーである。このミクロンオーダーの間隔Dを第1の通流部11a及び第2の通流部11bの間に設けるためには、例えば、半導体プロセスにおけるダイシング又はエッチングを用いる。すなわち、シリコン基板11にミクロンオーダーの刃幅を持つダイシング装置でハーフダイシングするか、シリコン基板11をRIE(反応性イオンエッチング)などでエッチングしてスリットSを設ける。このようにウエハレベルでスリットSを形成することができるので、非常に狭い(ミクロンオーダーの)間隔Dを設けることができる。このため、一対の磁気抵抗効果多層膜から外部磁界源までのそれぞれの距離を同じ距離に近づけることができる。その結果、一対の磁気抵抗効果多層膜からの出力の差動演算により外部磁界の影響をできるだけ小さくすることができ、精度良く被測定電流を測定することができる。なお、スリットSの長さTについては、後述する素子形成領域間に間隔Dを設けるスリットSが形成されれば特に制限はない。
第1の通流部11aは素子形成領域Aを有する。また、第2の通流部11bは素子形成領域Aを有する。したがって、シリコン基板11は、間隔Dを持って設けられた2つの素子形成領域A,Aを有する。上述したように、被測定電流が第1の通流部11aを図1の下側から上側に向けて通流し、第2の通流部11bを図1の上側から下側に向けて通流するので、被測定電流は素子形成領域Aを下側から上側に向けて通流し、素子形成領域Aを図1の上側から下側に向けて通流する。すなわち、2つの素子形成領域に通流する被測定電流の向きが反対向きである。
図1に示すように、シリコン基板11が平面視においてU字形状を有しており、被測定電流が第1の通流部11aを通流する方向と被測定電流が第2の通流部11bを通流する方向とが反対になる場合においては、第1の通流部11aと第3の通流部11bとの間の角部、及び第2の通流部11bと第3の通流部11bとの間の角部Bで、発生磁場が被測定電流の通流方向に対して傾く。このように被測定電流の通流方向に対して傾いた発生磁場は電流センサの出力のリニアリティを悪化させる原因となる。このため、上記素子形成領域A,Aは、できるだけ前記角部から離れた位置に設けることが望ましい。図1においては、素子形成領域A,Aは、第1の通流部11a及び第2の通流部11bにおける第3の通流部11cとは反対側の端側に設けている。電流センサの出力のリニアリティの悪化を防止することができる。
第1の通流部11aの素子形成領域Aには、磁気抵抗効果多層膜12a,12bが絶縁層を介して成膜されている。磁気抵抗効果多層膜12aは、感度軸の向きが誘導磁界の方向と逆方向になるように形成され、磁気抵抗効果多層膜12bは、感度軸の向きが誘導磁界の方向と同じ方向になるように形成されている。したがって、磁気抵抗効果多層膜12a,12bにおける感度軸の向きは、素子形成領域Aを通流する被測定電流の向き(図1において下側から上側に向かう方向)に対してそれぞれ直交する向きである。
また、素子形成領域Aにおいて、電極パッド13a,13b,13cが絶縁層を介して形成されている。ここでは、電極パッド13aが電源Vddに接続される電極パッドであり、電極パッド13bが出力OUTを取り出す電極パッドであり、電極パッド13cがグランドに接続される電極パッドである。これにより、磁気抵抗効果多層膜12a,12bでハーフブリッジ回路が構成される。また、素子形成領域Aにおいて、磁気抵抗効果多層膜12a,12bと電極パッド13a,13b,13cとの間を電気的に接続する配線14が絶縁層を介して形成されている。さらに、素子形成領域Aにおいて、磁気抵抗効果多層膜12a,12bの感度軸の方向と直交する方向(矢印HB)に磁界が加わるように、ハードバイアス層15が絶縁層を介して形成されている。
第2の通流部11bの素子形成領域Aには、磁気抵抗効果多層膜12c,12dが絶縁層を介して成膜されている。磁気抵抗効果多層膜12cは、感度軸の向きが誘導磁界の方向と同じ方向になるように形成され、磁気抵抗効果多層膜12dは、感度軸が誘導磁界の方向と逆方向になるように形成されている。したがって、磁気抵抗効果多層膜12c,12dにおける感度軸の向きは、素子形成領域Aを通流する被測定電流の向き(図1において上側から下側に向かう方向)に対してそれぞれ直交する向きである。
また、素子形成領域Aにおいて、電極パッド13d,13e,13fが絶縁層を介して形成されている。ここでは、電極パッド13dが電源Vddに接続される電極パッドであり、電極パッド13eが出力OUTを取り出す電極パッドであり、電極パッド13fがグランドに接続される電極パッドである。これにより、磁気抵抗効果多層膜12c,12dでハーフブリッジ回路が構成される。また、素子形成領域Aにおいて、磁気抵抗効果多層膜12c,12dと電極パッド13d,13e,13fとの間を電気的に接続する配線14が絶縁層を介して形成されている。さらに、素子形成領域Aにおいて、磁気抵抗効果多層膜12c,12dの感度軸の方向と直交する方向(矢印HB)に磁界が加わるように、ハードバイアス層15が絶縁層を介して形成されている。
図2は、図1のII−II線に沿う断面図である。図2から分かるように、第1の通流部11aの磁気抵抗効果多層膜12b及び第2の通流部11bの磁気抵抗効果多層膜12dは、シリコン基板上に絶縁層16を介して成膜されている。また、第1の通流部11aの電極パッド13c及び配線14並びに第2の通流部11bの電極パッド13f及び配線14は、シリコン基板上に絶縁層16を介して形成されている。
図3は、図2に示す磁気抵抗効果多層膜12dのX部の拡大図であり、膜構成の一例を示している。図3に示すように、磁気抵抗効果多層膜12dは、電流路基板であるシリコン基板11上に絶縁層16を介して成膜されている。この磁気抵抗効果多層膜12dは、シリコン基板11上にシリコン酸化膜などの絶縁層16を形成した後に、磁化固定層121、非磁性層122、磁化自由層123及び酸化防止層124を順次成膜し、磁化固定層121、非磁性層122、磁化自由層123及び酸化防止層124をパターニングすることにより形成する。
磁気抵抗効果多層膜12dは、GMR素子やTMR素子に含まれる磁化固定層121、非磁性層122及び磁化自由層123の積層構造を少なくとも含む多層膜であり、磁化固定層121、非磁性層122、磁化自由層123及び酸化防止層124以外の層、例えば、反強磁性層、保護層などを含んでも良い。磁化固定層121は、例えば、Co75Fe25などで構成される層と、Ruで構成される層と、Co40Fe4020などで構成される層とを積層して構成される。非磁性層122は、2つの強磁性層である磁化固定層121と磁化自由層123とを隔てる中間層である。非磁性層122は、例えば、MgOなどで構成される。磁化自由層123は、磁化方向が変化する磁性層である。磁化自由層123は、例えば、Co40Fe4020などで構成される。また、酸化防止層124の材料としては、Taなどを用いることができる。なお、磁気抵抗効果多層膜の層構成や材料などについては特に制限はない。
本発明に係る電流センサは、例えば電子部品の回路に流れるミリアンペアオーダーの微小な電流を測定することに適している。このような微小な電流を測定する場合には、絶縁耐電圧を低く設定することが可能である。図4は、10mAの電流を流したときのシリコン酸化膜の絶縁層の厚さと絶縁耐電圧との間の関係を示す図である。このようにミリアンペアオーダーの微小な電流を流すのであれば、必要とされる絶縁耐電圧は100V〜200V程度が必要と考えることができるので、絶縁層の厚さとしては60nm〜120nm程度の厚さで良いと考えられる。
次に、上記構成を有する電流センサ1を実装した電流センサパッケージについて説明する。図5は、本発明の実施の形態1に係る電流センサを実装した電流センサパッケージを説明するための図である。
図5に示す電流センサパッケージは、リードフレーム21と、リードフレーム21上に実装された電流センサ1と、リードフレーム21及び電流センサ1を封止する封止材25と、から主に構成されている。
リードフレーム21は、複数のリード部、ここでは11個のリード部21a〜21kを含む。図5に示す構成においては、リード部21a,21b,21gが電流センサ1の第1の通流部11aのハーフブリッジ回路と電気的に接続されている。すなわち、リード部21aは第1の通流部11aのハーフブリッジ回路の出力OUTの電極パッド13bとワイヤ23でワイヤボンディングされ、リード部21bは第1の通流部11aのハーフブリッジ回路の電源Vddの電極パッド13aとワイヤ23でワイヤボンディングされ、リード部21gは第1の通流部11aのハーフブリッジ回路のグランドの電極パッド13cとワイヤ23でワイヤボンディングされている。
また、図5に示す構成においては、リード部21d,21e,21jが電流センサ1の第2の通流部11bのハーフブリッジ回路と電気的に接続されている。すなわち、リード部21dは第2の通流部11bのハーフブリッジ回路の電源Vddの電極パッド13dとワイヤ23でワイヤボンディングされ、リード部21eは第2の通流部11bのハーフブリッジ回路の出力OUTの電極パッド13eとワイヤ23でワイヤボンディングされ、リード部21jは第2の通流部11bのハーフブリッジ回路のグランドの電極パッド13fとワイヤ23でワイヤボンディングされている。
リード部21c,21h,21iは、電流センサ1を搭載するリード部であり、リード部21h上に導電性接続部材である導電ペースト24aを介して第1の通流部11aが配置され、リード部21i上に導電性接続部材である導電ペースト24aを介して第2の通流部11bが配置され、リード部21c上に絶縁性接続部材である絶縁ペースト24bを介して第3の通流部11cが配置される。このようにして、一対のリード部21h,21i上に導電ペースト24aを介して第1及び第2の通流部11a,11bがそれぞれ実装されていると共に、リード部21c上に絶縁ペースト24bを介して第3の通流部11cが実装される。一対のリード部21h,21iは、一対の導体部22a,22bとそれぞれ電気的に接続され、導体部22aからリード部21hに被測定電流が通流し、電流センサ1を経てリード部22bから導体部22bに被測定電流が通流する。この構成において、リード部21c上に絶縁ペースト24bを介して第3の通流部11cが配置されることにより、被測定電流を、第1の通流部11aで一方向に(図5において下側から上側に向かって)通流させ、第3の通流部11cで折り返して通流させ、第2の通流部11bで前記一方向とは反対の方向に(図5において上側から下側に向かって)通流させることができる。
リード部21hは、被測定電流を一方向に(図5において下側から上側に向かって)通流する導体部22aと電気的に接続されており、リード部21iは、被測定電流を一方向に(図5において上側から下側に向かって)通流する導体部22bと電気的に接続されている。すなわち、リード部21h,21iは、被測定電流が通流する一対のリード部であり、リード部21cは、被測定電流が通流しないリード部である。
封止材25は、リードフレーム21のリード部21a〜21kの先端部分、すなわち他の基板の実装領域に実装される部分以外の部分及び電流センサ1を封止する。封止材25の材料としては、通常封止材として使用されている材料を用いることができる。
上記構成を有する電流センサパッケージでパッケージ内に通流される電流を測定する場合、被測定電流が導体部22aからリード部21hを通り、導電ペースト24aを介して電流センサ1の第1の通流部11aを通流する。その後、被測定電流は、第3の通流部11cを通って通流方向を変えて第2の通流部11bを通流する。そして、被測定電流は、導電ペースト24aを介してリード部21iを通り、導体部22bに通流する。このようにして電流センサ1を通流した被測定電流は、第1の通流部11a側のハーフブリッジ回路の出力OUTと第2の通流部11b側のハーフブリッジ回路の出力OUTとの間で差動演算されることにより測定される。
このような電流センサパッケージの外側に外部磁界源が存在した場合においては、電流センサ1の第1の通流部11aの素子形成領域Aと第2の通流部11bの素子形成領域Aとの間がミクロンオーダーの間隔であるので、外部磁界源から素子形成領域Aまでの距離と外部磁界源から素子形成領域Aまでの距離とがほぼ等しくなる。このため、一対の磁気抵抗効果多層膜からの出力の差動演算により外部磁界の影響をできるだけ小さくすることができ、精度良く被測定電流を測定することができる。また、この構成によれば、導体板を機械的な曲げ加工でU字形状に形成した電流路の上にチップ状の磁気抵抗効果素子を接合した電流センサよりも全体として小型になる。また、このように半導体材料で構成された電流路基板上に磁気抵抗効果多層膜を形成してなる電流センサは、チップ状の磁気抵抗効果素子を実装した電流センサよりも、被測定電流が発生させる誘導磁界に対して磁気抵抗効果膜の感度軸を高精度に合わせることができる。
(実施の形態2)
本実施の形態においては、電流路基板が、素子形成領域をそれぞれ有する一対の通流基板で構成されている形態について説明する。
図6は、本発明の実施の形態2に係る電流センサを示す図である。
本実施の形態に係る電流センサ2は、半導体材料で構成された電流路基板上に絶縁層を介して磁電変換素子である磁気抵抗効果多層膜を形成してなり、電流路基板に被測定電流を通流するものである。ここでは、電流路基板としてシリコン基板11を用いる。なお、電流路基板を構成する材料としては、シリコンに限定されない。
シリコン基板11は、被測定電流を通流する第1及び第2の通流基板11d,11eで構成されている。第1及び第2の通流基板11d,11eは別体で構成されている。第1の通流基板11d及び第2の通流基板11eは、それぞれ一方向(図1において紙面上下方向)に延びており、間隔Dを持って設けられている。ここでは、被測定電流が第1の通流基板11dを図6の下側から上側に向けて通流し、第2の通流基板11eを図6の上側から下側に向けて通流する。このため、第1の通流基板11dにおける被測定電流による誘導磁界の方向は図6の左側から右側に向かう方向であり、第2の通流基板11eにおける被測定電流による誘導磁界の方向は図6の右側から左側に向かう方向である。なお、被測定電流の通流方向については特に限定されない。
第1の通流基板11d及び第2の通流基板11eの間の間隔Dはミクロンオーダーである。このミクロンオーダーの間隔Dを第1の通流基板11d及び第2の通流基板11eの間に設けるためには、例えば、半導体プロセスにおけるダイシング又はエッチングを用いる。すなわち、シリコン基板11にミクロンオーダーの刃幅を持つダイシング装置でダイシングするか、シリコン基板11をRIE(反応性イオンエッチング)などでエッチングする。このようにウエハレベルでスリットSを形成することができるので、非常に狭い(ミクロンオーダーの)間隔Dを設けることができる。このため、一対の磁気抵抗効果多層膜から外部磁界源までのそれぞれの距離を同じ距離に近づけることができる。その結果、一対の磁気抵抗効果多層膜からの出力の差動演算により外部磁界の影響をできるだけ小さくすることができ、精度良く被測定電流を測定することができる。
第1の通流基板11dは素子形成領域Aを有する。また、第2の通流基板11eは素子形成領域Aを有する。素子形成領域A1,の構成については、第1の通流基板11dに第2の通流基板11eと電気的に接続するための導電パッド13gを設け、第2の通流基板11eに第1の通流基板11dと電気的に接続するための導電パッド13hを設けた以外は図1と同じであるので、図6において図1と同じ符号を付してその詳細な説明は省略する。
次に、上記構成を有する電流センサ2を実装した電流センサパッケージについて説明する。図7は、本発明の実施の形態2に係る電流センサを実装した電流センサパッケージを説明するための図である。
図7に示す電流センサパッケージは、リードフレーム31と、リードフレーム31上に実装された電流センサ2と、リードフレーム31及び電流センサ2を封止する封止材35と、から主に構成されている。
リードフレーム31は、複数のリード部、ここでは8個のリード部31a〜31hを含む。図7に示す構成においては、リード部31a,31e,31hが電流センサ2の第1の通流基板11dのハーフブリッジ回路と電気的に接続されている。すなわち、リード部31aは第1の通流基板11dのハーフブリッジ回路の電源Vddの電極パッド13aとワイヤ33でワイヤボンディングされ、リード部31eは第1の通流基板11dのハーフブリッジ回路の出力OUTの電極パッド13bとワイヤ33でワイヤボンディングされている。また、リード部31hは第2の通流基板11eのハーフブリッジ回路のグランドの電極パッド13fとワイヤ33でワイヤボンディングされており、第2の通流基板11eの電極パッド13hと第1の通流基板11dのハーフブリッジ回路のグランドの電極パッド13cとワイヤ33でワイヤボンディングされている。
また、図7に示す構成においては、リード部31a,31d,31hが電流センサ2の第2の通流基板11eのハーフブリッジ回路と電気的に接続されている。すなわち、リード部31dは第2の通流基板11eのハーフブリッジ回路の出力OUTの電極パッド13eとワイヤ33でワイヤボンディングされ、リード部31hは第2の通流基板11eのハーフブリッジ回路のグランドの電極パッド13fとワイヤ33でワイヤボンディングされている。また、リード部31aは第1の通流基板11dのハーフブリッジ回路の電源Vddの電極パッド13aとワイヤ33でワイヤボンディングされており、第1の通流基板11dの電極パッド13gと第2の通流基板11eの電源Vddの電極パッド13dとワイヤ33でワイヤボンディングされている。
リード部31b,31f,31c,31gは、被測定電流が通流する二対のリード部であり、電流センサ2を搭載するリード部である。ここでは、リード部31b,31f上に導電性接続部材である導電ペースト34を介して第1の通流基板11dが配置され、リード部31c,31g上に導電性接続部材である導電ペースト34を介して第2の通流基板11eが配置される。このようにして、一方の対のリード部31b,31f上に導電ペースト34を介して第1の通流基板11dの両端部が実装されていると共に、一方の対のリード部31c,31g上に導電ペースト34を介して第2の通流基板11eの両端部が実装される。リード部31fは、導体部32aと電気的に接続されており、リード部31b,31cは、被測定電流の通流方向を変えて折り返す折り返し部321を有する平面視でU字形状を有する導体部32bと電気的に接続され、リード部31gは、導体部32cと電気的に接続されている。すなわち、第1の通流基板11d側の一対のリード部31b,31fはそれぞれ導体部32b,32aと電気的に接続されており、第2の通流基板11e側の一対のリード部31c,31gはそれぞれ導体部32b,32cと電気的に接続されている。これにより、導体部32aからリード部31fに被測定電流が通流し、電流センサ2の第1の通流基板11dを経てリード部31bから導体部32bに被測定電流が通流する。そして、導体部32bにおいて被測定電流の通流方向が変わり、導体部32bからリード部31cに被測定電流が通流し、リード部31cから電流センサ2の第2の通流基板11eを経てリード部31gから導体部32cに被測定電流が通流する。これにより、被測定電流を、第1の通流基板11dで一方向に(図7において下側から上側に向かって)通流させ、第2の通流基板11eで前記一方向とは反対の方向に(図7において上側から下側に向かって)通流させることができる。
封止材35は、リードフレーム31のリード部31a〜31hの先端部分、すなわち他の基板の実装領域に実装される部分以外の部分及び電流センサ2を封止する。封止材35の材料としては、通常封止材として使用されている材料を用いることができる。
上記構成を有する電流センサパッケージでパッケージ内に通流される電流を測定する場合、被測定電流が導体部32aからリード部31fを通り、導電ペースト34を介して電流センサ2の第1の通流基板11dを通流する。その後、被測定電流は、第1の通流基板11dから導電ペースト34を介してリード部31bを通り、導体部32bに通流する。そして、被測定電流は、導体部32bにおいて通流方向が逆方向に変えられて、リード部31cを通り、導電ペースト34を介して電流センサ2の第2の通流基板11eを通流する。その後、被測定電流は、第2の通流基板11eから導電ペースト34を介してリード部31gを通り、導体部32cに通流する。そして、このようにして電流センサ2を通流した被測定電流は、第2の通流基板11d側のハーフブリッジ回路の出力OUTと第2の通流基板11e側のハーフブリッジ回路の出力OUTとの間で差動演算されることにより測定される。
このような電流センサパッケージの外側に外部磁界源が存在した場合においては、電流センサ2の第1の通流基板11dの素子形成領域Aと第2の通流基板11eの素子形成領域Aとの間がミクロンオーダーの間隔であるので、外部磁界源から素子形成領域Aまでの距離と外部磁界源から素子形成領域Aまでの距離とがほぼ等しくなる。このため、一対の磁気抵抗効果多層膜からの出力の差動演算により外部磁界の影響をできるだけ小さくすることができ、精度良く被測定電流を測定することができる。また、この構成によれば、導体板を機械的な曲げ加工でU字形状に形成した電流路の上にチップ状の磁気抵抗効果素子を接合した電流センサよりも全体として小型になる。また、このように半導体材料で構成された電流路基板上に磁気抵抗効果多層膜を形成してなる電流センサは、チップ状の磁気抵抗効果素子を実装した電流センサよりも、被測定電流が発生させる誘導磁界に対して磁気抵抗効果膜の感度軸を高精度に合わせることができる。
また、本実施の形態においては、実施の形態1とは異なり、電流センサに被測定電流の通流方向を変えて逆向きにする折り返し部分(第3の通流部)が存在しない。すなわち、電流センサにおいて、発生磁場が被測定電流の通流方向に対して傾く領域が存在しない。このため、電流センサの出力のリニアリティの悪化を防止することができる。
本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態における各素子の接続関係、大きさなどは適宜変更して実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。
本発明は、電子部品の回路に通流する微小電流を測定する電流センサに適用することが可能である。
1,2 電流センサ
11a 第1の通流部
11b 第2の通流部
11c 第3の通流部
11d 第1の通流基板
11e 第2の通流基板
12a〜12d 磁気抵抗効果多層膜
13a〜13h 電極パッド
14 配線
15 ハードバイアス層
16 絶縁層
21,31 リードフレーム
22a,22b,32a〜32c 導体部
23,33 ワイヤ
24a,24b,34 導電ペースト
24b 絶縁ペースト
25,35 封止材

Claims (8)

  1. 半導体材料で構成され、間隔を持って設けられた2つの素子形成領域を有する電流路基板と、前記2つの素子形成領域上にそれぞれ成膜された磁気抵抗効果多層膜と、を具備し、前記2つの素子形成領域に通流する被測定電流の向きが反対向きであり、前記磁気抵抗効果多層膜における感度軸の向きは、前記素子形成領域を通流する被測定電流の向きに対してそれぞれ直交する向きであることを特徴とする電流センサ。
  2. 前記電流路基板は、前記素子形成領域をそれぞれ有する第1及び第2の通流部と、前記第1及び第2の通流部を繋ぐ第3の通流部とで構成されていることを特徴とする請求項1記載の電流センサ。
  3. 前記電流路基板は、前記素子形成領域をそれぞれ有する一対の通流基板で構成されていることを特徴とする請求項1記載の電流センサ。
  4. 前記電流路基板の素子形成領域は、半導体プロセスにおけるダイシング又はエッチングにより間隔を持って設けられたことを特徴とする請求項1から請求項3のいずれかに記載の電流センサ。
  5. 前記磁気抵抗効果多層膜は、前記2つの素子形成領域上にそれぞれ絶縁層を介して成膜されたことを特徴とする請求項1から請求項4のいずれかに記載の電流センサ。
  6. 前記絶縁層は60nm〜120nmであることを特徴とする請求項5記載の電流センサ。
  7. 被測定電流が通流する一対の第1のリード部及び前記被測定電流が通流しない第2のリード部を有するリードフレームと、前記一対の第1のリード部上に導電性接続部材を介して前記第1及び第2の通流部がそれぞれ実装されていると共に、前記第2のリード部上に絶縁性接続部材を介して前記第3の通流部が実装された請求項2記載の電流センサと、前記リードフレーム及び前記電流センサを封止する封止材と、を具備することを特徴とする電流センサパッケージ。
  8. 被測定電流が通流する二対のリード部を有するリードフレームと、一方の対のリード部上に導電性接続部材を介して前記一対の通流基板の一方の通流基板の両端部がそれぞれ実装されていると共に、他方の対のリード部上に導電性接続部材を介して前記一対の通流基板の他方の通流基板の両端部がそれぞれ実装された請求項3記載の電流センサと、前記リードフレーム及び前記電流センサを封止する封止材と、を具備することを特徴とする電流センサパッケージ。
JP2012074042A 2012-03-28 2012-03-28 電流センサ及び電流センサパッケージ Withdrawn JP2013205201A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074042A JP2013205201A (ja) 2012-03-28 2012-03-28 電流センサ及び電流センサパッケージ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074042A JP2013205201A (ja) 2012-03-28 2012-03-28 電流センサ及び電流センサパッケージ

Publications (1)

Publication Number Publication Date
JP2013205201A true JP2013205201A (ja) 2013-10-07

Family

ID=49524427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074042A Withdrawn JP2013205201A (ja) 2012-03-28 2012-03-28 電流センサ及び電流センサパッケージ

Country Status (1)

Country Link
JP (1) JP2013205201A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116047A (ja) * 2016-12-07 2018-07-26 旭化成エレクトロニクス株式会社 電流センサ
WO2018146964A1 (ja) * 2017-02-10 2018-08-16 アルプス電気株式会社 電流センサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116047A (ja) * 2016-12-07 2018-07-26 旭化成エレクトロニクス株式会社 電流センサ
JP7049102B2 (ja) 2016-12-07 2022-04-06 旭化成エレクトロニクス株式会社 電流センサ
WO2018146964A1 (ja) * 2017-02-10 2018-08-16 アルプス電気株式会社 電流センサ
JPWO2018146964A1 (ja) * 2017-02-10 2019-07-04 アルプスアルパイン株式会社 電流センサ

Similar Documents

Publication Publication Date Title
JP4930627B2 (ja) 磁気センサ
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
JP5482736B2 (ja) 電流センサ
KR101267246B1 (ko) 플럭스 게이트 센서 및 이것을 사용한 전자 방위계
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
US8451003B2 (en) Magnetic sensor having magneto-resistive elements on a substrate
JP5888402B2 (ja) 磁気センサ素子
JP6427588B2 (ja) 磁気センサ
JP2011064653A (ja) 磁気センサおよびその製造方法
JP4853807B2 (ja) 電流検知デバイス
JP6267613B2 (ja) 磁気センサおよびその磁気センサを備えた電流センサ
JP5284024B2 (ja) 磁気センサ
JP6228663B2 (ja) 電流検知装置
WO2012172946A1 (ja) 電流センサ
JP2012255796A (ja) 磁気センサおよびその製造方法
JP5413866B2 (ja) 磁気検出素子を備えた電流センサ
JP2012150007A (ja) 電力計測装置
JP2013205201A (ja) 電流センサ及び電流センサパッケージ
JP2002328140A (ja) 電流センサ
JP2012052912A (ja) 電流センサ
JP5458319B2 (ja) 電流センサ
JP5265689B2 (ja) 磁気結合型アイソレータ
JP2004325352A (ja) 電流センサ
JP2010056260A (ja) 磁気スイッチ、および磁界検出方法
JP5432082B2 (ja) 電流検知器を備えた半導体装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150919