JP4992868B2 - 電力制御システム - Google Patents

電力制御システム Download PDF

Info

Publication number
JP4992868B2
JP4992868B2 JP2008222629A JP2008222629A JP4992868B2 JP 4992868 B2 JP4992868 B2 JP 4992868B2 JP 2008222629 A JP2008222629 A JP 2008222629A JP 2008222629 A JP2008222629 A JP 2008222629A JP 4992868 B2 JP4992868 B2 JP 4992868B2
Authority
JP
Japan
Prior art keywords
current value
current
value
control
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008222629A
Other languages
English (en)
Other versions
JP2010057342A (ja
Inventor
典丈 光谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008222629A priority Critical patent/JP4992868B2/ja
Publication of JP2010057342A publication Critical patent/JP2010057342A/ja
Application granted granted Critical
Publication of JP4992868B2 publication Critical patent/JP4992868B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電源側から駆動系側に電力を供給したり、駆動系側において回生された電力を電源側に供給して電源を充電したりする電力制御システムに関する。
従来から、電源側から駆動系側に電力を供給したり、駆動系側において回生された電力を電源側に供給したりする制御を行う電力制御システムが知られている(例えば、下記特許文献1,2)。こうした電力制御システムは、例えば、ハイブリッド車両に搭載され、バッテリとモータとの間での電力の送受を制御する。かかる電力制御システムは、電圧値を昇降する電圧変換器や、当該電圧変換器等の駆動を制御する制御手段などを有している。また、電圧変換器には、当該電圧変換器に流れる電流を検出する電流センサが設けられており、制御部は、当該電流センサでの検出電流値と目標電流値との比較などに基づいて電圧変換器に設けられたスイッチング素子のスイッチング制御を行う。
特開2004−88866号公報 特開2003−209969号公報
ここで、この電流センサに故障が発生した場合には、当然ながら、正確な電流制御を行うことが出来なくなる。そこで、従来から、この電流センサの異常を検出する技術がいくつか提案されている。しかし、従来の電流センサの異常検出技術の多くは、電流センサの故障の有無を検知するものであったり、電流センサの故障に起因して生じるフィードバック制御の制御破綻を検知するものであったりした。かかるセンサ故障や制御破綻を検出するのでは、各種部品の保護が十分にできないという問題があった。また、この従来の技術では、電流センサが明確に故障したり制御破綻が生じたりしない限り、制御破綻しないレベルの特性ズレが発生していてもセンサ異常としては検知されず、そのまま制御が続行される。しかし、この場合、特性ズレが生じているため、エネルギーマネジメントに狂いが生じ、部品劣化を促進するという問題がある。かかる問題を解決するために、一つの電圧変換器に特性が同じ電流センサを複数設けることも提案されている。かかる構成によれば、一つの電流センサで異常が生じても他のセンサで電流検知できるため、よりロバスト性の高いシステムを得ることができる。また、二つの電流センサの検出値を比較することで異常を早期発見できる。しかし、かかる方式では、複数のセンサを設ける必要があり、コストの増加という問題を招く。
そこで、本発明では、電流センサの異常をより適切に検知でき得る電力制御システムを提供することを目的とする。
本発明の電力制御システムは、それぞれが直流電源および当該直流電源に接続された電圧変換器を有し、互いに並列に接続された複数の電源ユニットと、前記複数の電源ユニットにおける前記電圧変換器の駆動を制御する制御手段であって、少なくとも1以上の電圧変換器に対して、目標電流値と実測電流値との差分に基づく制御である電流フィードバック制御を行う制御手段と、を備え、前記電源ユニットは、前記電圧変換器に流れる電流値を検出して第一検出電流値として出力する第一電流センサと、前記直流電源と電圧変換器との間に流れる電流値を検出して第二検出電流値として出力する第二電流センサと、を備え、前記制御手段は、一つの電源ユニットについて、前記電圧変換器における目標電流値を一定に保った状態で、前記第一検出電流値に基づいて前記第一電流センサの良否を判定する本判定を実行する、ことを特徴とする。
好適な態様では、前記制御手段は、前記一つの電源ユニットに対して本判定を実行した場合、前記目標電流値を一定にすることに伴い生じる当該一つの電源ユニットからの出力電力の過不足分を、他の電源ユニットで補填するべく当該他の電源ユニットの駆動を制御する。
他の好適な態様では、前記制御手段は、前記本判定に先立って、前記目標値を固定することなく、前記第一電流センサの良否を判定する仮判定を実行し、当該仮判定により第一電流センサが不良と判断された場合に前記本判定を実行する。この場合、前記制御手段は、前記本判定および仮判定のいずれにおいても、第一検出電流値および第二検出電流値の差分量が予め規定された閾値未満の場合に前記第一電流センサを不良と判断し、前記本判定で用いられる閾値は、前記仮判定で用いられる閾値より小さいことが望ましい。
他の好適な態様では、前記制御手段は、本判定において第一電流センサを不良と判定した場合、第一検出電流値に代えて第二検出電流値を、電圧変換器における実測電流値として前記電流フィードバック制御を実行する。この場合、前記制御手段は、前記第二検出電流値を実測電流値として前記電流フィードバック制御を実行する場合、第一電流センサと第二電流センサとの特性の違いに応じて、第一検出電流値を実測電流値として前記電流フィードバック制御を実行する場合とは異なる制御条件に変更することが望ましい。具体的には、前記制御手段は、前記第二検出電流値を実測電流値として前記電流フィードバック制御を実行する場合、第一検出電流値を実測電流値として前記電流フィードバック制御を実行する場合に比して、目標電流値の上下限値の絶対値、および、増加側フィードバックゲインの少なくとも一つを低減することが望ましい。
本発明によれば、第一検出電流値に基づいて第一電流センサの良否を判定する本判定を、目標電流値を一定に保った状態で実行する。そのため、電圧変換器に流れる電流値の変動を低減でき、良否判定の精度を向上させることができる。そして、結果として、電流センサの異常をより適切に検知できる。
以下、本発明の実施形態について図面を参照して説明する。図1は、本発明の実施形態である電力制御システム12の概略構成図である。また、図2は、電力制御システム12の一部拡大図である。この電力制御システム12は、例えば、ハイブリッド自動車や電機自動車などに搭載されるシステムであり、二つの電動機ユニット50に電力を供給したり、電動機ユニット50で発電された電力により充電されたりするシステムである。電力制御システム12は、並列に接続された二つの電源ユニット14と、当該電源ユニット14を制御する制御部16(図1では図示省略)と、に大別される。制御部16は、上位制御装置からの要求に従って、総要求パワーを算出し、当該パワーが得られるべく、電源ユニット14の駆動を制御する。この電源ユニット14の駆動制御に際しては、当該電源ユニット14に設けられたコンバータ22に流れる電流値を第一電流センサSLで検出し、この検出された電流値をフィードバックさせる電流フィードバック制御を行なっている。したがって、適正な制御を行うためには、電流値(フィードバック量)が正確に検出されることが必要となる。本実施形態では、この電流値の検出に関して、より詳細な判定を行い、電流値が適切に検出できない場合には、代替的な制御を行うようになっている。以下、この電力制御システム12について詳説する。
はじめに、当該電力制御システム12に接続されている電動機ユニット50について簡単に説明する。電動機ユニット50は、電動機52およびインバータ54からなる回路ユニットである。電動機52は、交流電圧が供給されることにより、車両の駆動輪を駆動するためのトルクを発生させる駆動モータとして機能する。また、この電動機52は、回生制動時には、車両の制動力により駆動して発電するジェネレータとしても機能する。この電動機52で発電された電力(交流電圧)は、インバータ54により直流電圧に変換されたうえで電源ユニット14に出力される。電源ユニット14に設けられたバッテリ20は、この直流電圧が供給されることにより充電される。また、電動機52を駆動モータとして機能させる場合、インバータ54は、電源ユニット14から供給される直流電圧を交流電圧に変換したうえで、当該交流電圧を電動機52に供給する。この交流電圧の供給を受けて、電動機52は、モータとして機能し、車両の駆動輪を駆動させるためのトルクを発生する。
次に、本発明の実施形態である電力制御システム12について説明する。既述したとおり、電力制御システム12は、並列に接続された二つの電源ユニット14と、当該電源ユニット14を制御する制御部16と、に大別される。二つの電源ユニット14は、並列に接続されている。制御部16は、この二つの電源ユニット14からの出力合計が、総要求パワーになるように駆動制御している。換言すれば、制御部16は、一方の電源ユニット14で不足する分の電力が、他方の電源ユニット14から出力されるように、当該二つの電源ユニット14の駆動を制御している。
この二つの電源ユニット14は、いずれも、ほぼ同じ構成となっている。すなわち、各電源ユニット14は、バッテリ20を備えている。このバッテリ20と電動機ユニット50との間には、電圧を昇降させるコンバータ22が接続されている。また、バッテリ20とコンバータ22の間およびコンバータ22とインバータ54の間には、供給された電圧を平滑化する第一コンデンサC1および第二コンデンサC2が設けられている。バッテリ20は、充放電可能な二次電池であり、例えば、ニッケル水素またはリチウムイオンなどからなる。
コンバータ22は、供給された電圧を、適宜、昇降する電圧変換器である。このコンバータ22は、複数のダイオードD1,D2、複数のトランジスタT1,T2、および、リアクトルLなどから構成される。リアクトルLの一端はバッテリ20の電源ラインに接続される。また、当該リアクトルLの他端は、トランジスタT1とトランジスタT2との中間点、換言すれば、トランジスタT1のエミッタとトランジスタT2のコレクタとの間に接続される。トランジスタT1,T2は、電源ラインとアースラインとの間に直列に接続される。すなわち、トランジスタT1のコレクタは電源ラインに接続され、トランジスタT2のエミッタはアースラインに接続される。また、各トランジスタT1,T2のコレクタ−エミッタ間には、エミッタ側からコレクタ側に電流を流すダイオードD1,D2がそれぞれ配されている。そして、スイッチング素子として機能するトランジスタT1,T2を、適宜、適当なデューティー比で駆動することで、直流電圧の昇降が行われる。
リアクトルLと二つのトランジスタT1,T2の中間点との間には、第一電流センサSLが設けられている。この第一電流センサSLは、コンバータ22に流れる電流値を検出し、第一検出電流値ILとしてMG−ECU34(モータ・ジェネレータ−エレクトロニック・コントロール・ユニット)に出力するセンサである。この第一電流センサSLには、断線短絡検出回路が設けられており、結線異常を自己検出できるようになっている。MG−ECU34は、当該第一電流センサSLの良否を判定するとともに、当該判定結果に応じて電源ユニット14を駆動制御するが、これについては後に詳説する。
また、バッテリ20とコンバータ22との間には、第二電流センサSBが設けられている。この第二電流センサSBは、バッテリ20近傍での電流値を検出し、第二検出電流値IBとして電池ECU32に出力するセンサである。この第二電流センサSBにも、断線短絡検出回路が設けられており、結線異常を自己検出できるようになっている。電池ECU32は、この第二電流センサSBで得られた第二検出電流値IBに基づいて、SOC(State of Charge)変動推定などを実行する。また、電池ECU32は、必要に応じて、この第二検出電流値IBをMG−ECU34に送信する。MG−ECU34は、この第二検出電流値IBを利用して第一電流センサSLの良否判定を行ったり、電源ユニット14のフィードバック制御を実行したりするが、これについても後に詳説する。なお、この第二検出電流値IBおよび第一検出電流値ILは、原則として、ほぼ同じ値になる。ただし、第二検出電流値IBは、電池ECU32を介してMG−ECU34に送信されている。そのため、図3(a)に図示するように、MG−ECU34で、収集される第二検出電流値IBは、第一検出電流値ILに対して、通信時間相当のディレイが存在している。また、第一検出電流値ILおよび第二検出電流値IBは、いずれも、図3(b)に図示するように、ノイズ等に起因する高周波成分が混在しており、そのままでは取り扱いが困難な値となっている。そのため、通常、制御部16は、移動平均などの公知の技術により、得られた検出電流値IL,IBから高周波成分の除去を行っている。また、本実施形態では、第一電流センサSLの良否判定のために第一検出電流値ILと第二検出電流値IBとの差分量を演算するが、この演算の際には、予め、ディレイ分だけ第二検出電流値を補正しておく。
制御部16は、二つの電源ユニット14の駆動を制御する部位で、PM−ECU30(パワー・マネジメント−エレクトロニック・コントロール・ユニット)や、電池ECU32、MG−ECU34などから構成される。電池ECU32は、バッテリ20の駆動を制御するECUで、既述したとおり、第二検出電流値IBに基づいてSOC(State of Charge)変動推定を実行したり、第二検出電流値IBをMG−ECU34に送信したりする。
PM−ECU30は、上位制御装置からの要求に基づいて、総要求パワーなどを算出し、MG−ECU34に出力する。MG−ECU34は、PM−ECU30から入力された総要求パワーや、第一電流センサSLから入力される第一検出電流値ILなどに基づいて、コンバータ22のスイッチング素子の駆動を制御、すなわち、コンバータ22のアームデューティー比を制御する。より具体的には、MG−ECU34は、総要求パワーに基づいて、コンバータ22に流れる電流の目標値(目標電流値IP)を算出する。そして、コンバータ22に流れる電流値が目標電流値IPになるように、第一検出電流値ILをフィードバックさせつつアームデューティー比を制御する電流フィードバック制御を実行する。本実施形態では、原則的には、PID制御としており、制御量(デューティ)=K(IL(t)−IP(t))+l・Σ(IL(t)−IP(t))+m・d(IL(t)−IP(t))で表わされる。ここで、Kは比例ゲイン、lは積分ゲイン、mは微分ゲインである。
また、MG−ECU34は、第一電流センサSLや第二電流センサSBの良否も判定する。そして、その判定結果に応じて、コンバータ22の駆動制御の内容を、適宜、変更するが、これについても後に詳説する。
なお、フィードバック制御を実行するためには、フィードバックゲインの値や、目標電流値IPの上下限値、目標電流値IPと総要求パワー(総電流要求)との相関関係などを制御条件として予め規定しておく必要がある。本実施形態では、予め、標準制御条件、判定用制御条件、代替制御条件という三種類の制御条件をMG−ECU34のメモリ(図示せず)に記憶している。標準制御条件は、第一電流センサSLが正常な場合に用いられる制御条件である。判定用制御条件は、第一電流センサSLの良否判定(本判定)を行う際に用いられる制御条件である。この判定用制御条件は、標準制御条件と比べると、目標電流値IPと総要求パワー(総電流要求)との相関関係を示す電流プロファイルが大きく異なっている。これについて、図4、図5を参照して説明する。
図4、図5は、それぞれ、標準制御条件および判定用制御条件における電流プロファイルの一例を示す図である。この図4、図5において横軸は、総電流要求を、縦軸は目標電流値IPを示している。図4から明らかなとおり、標準制御条件(すなわち第一電流センサSL正常時)において、目標電流値IPは、総電流要求に応じて、連続的に変化するようになっている。一方、図5に図示するとおり、判定用制御条件(すなわち第一電流センサSLの本判定時)においては、目標電流値IPは、総電流要求に応じて、段階的に変化するようになっている。換言すれば、判定用制御条件においては、総電流要求が多少変動しても、目標電流値IPは変動しないようになっている。そして、かかる電流プロファイルを用いることにより、より高精度でのセンサ良否判定が行えるが、これについては後に詳説する。
代替制御条件は、第一電流センサSLに異常があり、第二電流センサSBを代替的に使用する場合に用いられる制御条件である。すなわち、後に詳説するように、本実施形態では、第一電流センサSLに異常が生じた場合には、第一検出電流値ILに代えて、第二電流センサSBで得られる第二検出電流値IBをフィードバックさせる制御を行う。代替制御条件は、この第二検出電流値IBをフィードバックさせる制御の際に用いられる制御条件である。この代替制御条件は、標準制御条件と比べると、目標電流値IPの上下限値(ガード上下限値)、および、フィードバックゲインの値が大きく異なっている。
すなわち、通常、目標電流値は、図4に図示したような電流プロファイルに基づいて算出されるが、過剰な電流の出力を防止するために、予め、その上下限値がガード上限値Gmaxおよびガード下限値Gminとして規定されている。代替制御条件においては、このガード上限値Gmaxおよびガード下限値Gminの絶対値が、標準制御条件に比して小さくなっている。図6は、この様子を示すイメージ図である。図6において、横軸は総電流要求を、縦軸は目標電流値IPを示している。また、実線は代替制御条件における電流プロファイルを、破線は標準制御条件における電流プロファイルをそれぞれ示している。この図6から明らかなとおり、標準制御条件に比べて、代替制御条件におけるガード上限値およびガード下限値の絶対値は、小さくなっている。換言すれば、標準制御条件に比べて代替制御条件では、目標電流値IPの許容範囲が狭くなっている。
また、代替制御条件では、標準制御条件に比して、増加側のフィードバックゲインの値を小さくしている。すなわち、通常、PID制御では、積分時間であるK/lが小さいほど、また、微分時間であるm/Kの値が大きいほど、応答性が高くなるが、その一方でオーバーシュートや発散が生じやすくなることが知られている。代替制御条件においては、標準制御条件に比して、このK/lを大きく、m/Kを小さくしている。かかる値とすることで、応答性は低下するものの、発散などに起因する制御破綻を効果的に防止することができる。
次に、この電力制御システム12での電力供給制御の流れについて図7、図8を参照して説明する。図7は、電力供給制御の流れを示すフローチャートであり、図8は、ステップS14の詳細な流れを示すフローチャートである。
電力供給を実行する場合、まずは、標準制御条件に従って、電流フィードバック制御を実行する(S10)。これにより、電源ユニット14には、電力が供給され、電流が流れることになる。第一電流センサSLおよび第二電流センサSBは、この電流の値を検出し、第一検出電流値ILおよび第二検出電流値IBとしてMG−ECU34および電池ECU32に出力する。なお、既述したとおり、第一電流センサSLおよび第二電流センサSBには、断線短絡検出回路が設けられており、結線異常により、電流値が検出できなかった場合には、検出電流値に代えて、エラー信号がMG−ECU34および電池ECU32に出力される。
フィードバック制御が開始されれば、続いて、MG−ECU34は、電池ECU32を介して入力された第二電流センサSBでの検出電流値に基づいて当該第二電流センサSBの良否判定を行う(S12)。この良否判定は、次の基準で行われる。まず、第二電流センサSBからエラー信号が出力されている場合には、第二電流センサSBに異常が生じていると判断する。また、第二電流センサSBは、その出力レンジの上下限値が予め規定されているが、第二検出電流値IBとして、この出力レンジ上限値または出力レンジ下限値が一定時間継続して出力されている場合にも、何らかの異常が発生していると判断する。第二電流センサSBに異常が生じていると判断した場合、バッテリ20のSOC変動推定や、後述する第一電流センサSLの良否判定などを適正に行うことはできない。よって、この場合には、バッテリ20の電力を用いることなく車両走行を行うバッテリレス走行に移行する(S32)。
一方、第二電流センサSBが正常であると判断されれば、MG−ECU34は、続いて、第一電流センサSLの仮判定を実行する(S14)。仮判定は、第一電流センサSLの良否を一時的、補助的に判定するもので、図8に示すような手順で行われる。図8は、第一電流センサSLの仮判定の流れを示すフローチャートである。第一電流センサSLを仮判定する場合は、まず、第一電流センサSLからエラー信号が出力されているか否かを判定する(S40)。すなわち、第二電流センサSBと同様に、第一電流センサSLにも断線短絡検出回路が設けられており、結線異常が生じている場合にはエラー信号が出力される。MG−ECU34は、第一電流センサSLからエラー信号が出力されている場合は、第一電流センサSLを仮異常と判断する(S50)。また、エラー信号が出力されていなくても、第一検出電流値ILとして、予め規定された出力レンジの上限値または下限値が一定時間継続して出力された場合も第一電流センサSLを仮異常と判断する(S42、S50)。
エラー信号が出力されず、また、上下限値が継続して出力されない場合には、続いて、MG−ECU34は、第一検出電流値ILおよび第二検出電流値IBを一定期間継続して収集する。そして、収集した第一検出電流値ILおよび第二検出電流値IBの差分量を算出し、当該差分量が予め規定された第一閾値αを超えるか否かを判断する(S44)。差分量が第一閾値α以下の場合は、第一電流センサSLを正常と判断する。一方、差分量が第一閾値αを超える場合には、第一電流センサSLを仮異状と判断する(S50)。
なお、既述したとおり、第二検出電流値IBは、電池ECU32を経由してMG−ECU34に入力される関係上、通信時間相当のディレイが存在する。したがって、MG−ECU34は、このディレイ分だけ第二検出電流値IBを補正してから、上述の差分量を算出する。また、通常、第一検出電流値ILおよび第二検出電流値IBは、いずれも、高周波成分が混入しているため、上記差分量を算出する際には、予め、両検出電流値IL,IBの移動平均値をとったり、ローパスフィルタを通過させたりして、高周波成分を除去しておく。
また、第一閾値αの値は、経験に基づいて予め規定しておく。ここで、この仮判定の段階においては、図4に図示した電流プロファイル、すなわち、総電流要求に連動して目標電流値IPが連続的に変動するプロファイルを用いてフィードバック制御が行われている。かかる標準電流プロファイルを用いた場合、電源ユニット14の回路中に流れる電流値は、総電流要求、ひいては、モータの要求トルクに連動して頻繁に変動することになり、上述の差分量算出において誤差が生じやすくなる。第一閾値αは、こうした誤差の発生も考慮して、比較的、大きめの値に設定しておくことが望ましい。
仮判定の結果、第一電流センサSLが仮異常であった場合は(S16でYes)、次に、本判定を行う。本判定は、第一電流センサSLの良否を、より正確に判定するステップである。ここで、より正確に判定するとは、結線異常のような明らかな異常だけでなく、制御破綻は招かないまでも、エネルギーマネジメントに狂いを及ぼす程度のセンサの特性変化の有無も判定することを意味している。
この本判定では、目標電流値IPを固定した状態で、第一検出電流値ILおよび第二検出電流値IBを比較する。すなわち、本判定を開始する場合、MG−ECU34は、標準制御条件に代えて判定用制御条件を用いてフィードバック制御を実行する(S22)。判定用制御条件は、既述したとおり、図5に図示するような電流プロファイルに基づいて目標電流値IPを算出する。
この電流プロファイルは、総電流要求に対して目標電流値IPが段階的に変化するようになっている。換言すれば、総電流要求が大幅に変化しない限り、目標電流値IPは変動しないことになる。MG−ECU34は、この電流プロファイルが規定された判定用制御条件に従ってフィードバック制御を実行しつつ、両検出電流値IL,IBを収集する。
ここで、このとき、予め規定された一定時間の間に、総電流要求が大幅してしまい、目標電流値IPが一定値で固定されなかった場合には、後述する本判定を行うことはできない。したがって、この場合には、本判定の実行を断念し、ステップS34に進み、フィードフォワード制御に切り替える(S24,S34)。すなわち、第一電流センサSLが仮異状と判定された後、本判定が実行できなかった場合には、第一電流センサSLが正常である可能性は非常に低く、第一検出電流値ILの信頼性は低いといえる。かかる場合には、第一検出電流値ILをフィードバックさせるフィードバック制御は断念し、フィードフォワード制御に移行する。
一方、一定時間の間、目標電流値IPを一定値に保ちつつ、両検出電流値IL,IBを収集することができた場合には、ステップS26に進み、本判定を実行する。本判定は、目標電流値IPを一定にした状態で得られる第一検出電流値ILおよび第二検出電流値IBの差分量を算出し、当該差分量と第二閾値βとを比較する。比較の結果、差分量が第二閾値β以下の場合には、第一電流センサSLは正常と判断する。一方、差分量が第二閾値β超過の場合には、第一電流センサSLは、何らかの異状が発生している本異常であると判断する。
ここで、この本判定では、仮判定の場合と同様に、高周波成分が除去され、かつ、通信ディレイ分の補正が施された検出電流値IL,IBを用いる。また、第二閾値βの値は、経験に基づいて予め規定されるが、この第二閾値βは、第一閾値α以下であることが望ましい。これは、次の理由による。本判定では、第一電流センサSLの良否をより正確、換言すれば、多少のセンサ特性変化も検出することを目的としている。そのため、この本判定では、仮判定よりもシビアな条件で行うことが望ましく、許容でき得る差分量(すなわち第二閾値β)は、仮判定における許容差分量(第一閾値α)よりも小さいことが望ましい。また、本判定では、目標電流値IPを固定している。そのため、得られる検出電流値は、値変動が小さく、差分量算出に当たって誤差が出にくくなっている。かかる誤差の影響が小さい本判定で用いる閾値(第二閾値β)は、誤差の影響が大きい仮判定で用いる閾値(第一閾値α)よりも小さいことが望ましい。
とろこで、この本判定を行う場合には、既述したとおり、判定用制御条件に基づいて制御を実行する。判定用制御条件は、目標電流値IPを一定に保つには適しているが、総電流要求に適した電力を供給するには適していない。すなわち、判定用制御条件に基づけば、目標電流値IPは、段階的にしか変化しない。そのため、目標電流値IPが連続的に変化する標準制御条件を用いた場合に比して、電源ユニット14から出力される電力が過不足しやすい。そこで、本実施形態では、本判定は、二つある電源ユニット14のうち一方の電源ユニット14についてのみ行い、当該一方の電源ユニット14で過不足する電力を残りの他方の電源ユニット14から出力するようにしている。これにより、二つの電源ユニット14から出力される電力の合計が過不足しにくくなり、電動機52をより適切に駆動することができる。なお、二つの電源ユニット14のいずれについても電流フィードバック制御を行う必要はなく、少なくとも一方の電源ユニットが電流フィードバック制御であれば、他方の電源ユニットは、他の制御方式、例えば、電圧値などに基づく制御方式などで駆動制御されてもよい。
第一電流センサSLの本判定の結果が正常の場合には、ステップS20へと進む。すなわち、この場合、第一電流センサSLで検出された第一検出電流値ILは信頼性が高いと言えるため、当該第一検出電流値ILを用いてフィードバック制御を実行する。この制御には、標準制御条件を用いる。
一方、第一電流センサSLが本異常と判定された場合にはステップS30へと進む。この場合、第一電流センサSLには何かの異常があり、第一検出電流値ILは信頼性に乏しいと言える。したがって、この場合は、第一検出電流値ILを第二検出電流値IBに置き換えたうえで、代替制御条件に従ってフィードバック制御を実行する(S30)。ここで、これまで何度も言及したとおり、第二検出電流値IBは、電池ECU32を経由してMG−ECU34に送信される関係上、第二検出電流値IBは第一検出電流値ILに比してディレイ量が大きい。そのため、第二検出電流値IBを用いてフィードバック制御を行った場合、このディレイ(応答遅れ)の影響により、制御の過剰補正や出力値の発散、ひいては、制御破綻を招く恐れがある。そのため、ディレイに起因する制御破綻を防止するために、第二検出電流値IBを第一検出電流値ILとして代用する場合には、正常時とは異なる制御条件、すなわち、代替制御条件を用いる。
代替制御条件では、既述したとおり、標準制御条件に比して、目標電流値IPの上下限値の絶対値を小さくしている。また、フィードバックゲインの値を、標準制御条件に比して、応答性が低くなる値にしている。そのため、かかる代替制御条件を用いることで、発散の可能性を低下させることができ、ディレイを含んだ第二検出電流値IBを用いても、安全な制御が可能となる。
以上の説明から明らかなとおり、本実施形態によれば、目標電流値IPを固定した状態、換言すれば、負荷変動の少ない状態で、二つの電流センサSL,SBの検出電流値IL,IBを収集し、比較している。その結果、より詳細に第一電流センサSLの異常を判定することができる。また、第一電流センサSLに異常が生じた場合には、第一検出電流値ILに代えて第二検出電流値IBを用いてフィードバック制御するが、このとき、センサ正常時に比して、目標電流値IPの上下限値の絶対値を小さくし、また、フィードバックゲインを応答性の低くなる値に変更している。これにより、制御破綻を効果的に防止することができ、より安全な制御が可能となる。
なお、上述した制御フローは一例であり、少なくとも、目標電流値IP固定状態で両検出電流値IL,IBを比較する工程が含まれるであれば、適宜、変更されてもよい。また、上述の説明で例示した制御条件も一例であり、適宜、変更されてもよい。例えば、上述の説明では、本判定の際に用いる電流プロファイルを図5に図示した一種類だけとしているが、予め本判定用の電流プロファイルを複数種類用意しておき、本判定実行時の状況に応じて使用する電流プロファイルを切り替えてもよい。例えば、図9において実線で図示するような第一判定用電流プロファイルP1および破線で図示するような第二判定用電流プロファイルP2を予め用意しておく。そして、第一検出電流値ILが第二検出電流値IBより大きい(IL−IB>α)場合には第一電流プロファイルP1を、第一検出電流値ILが第二検出電流値IBより小さい(IB−IL>α)場合には第二電流プロファイルP2を、用いるようにしてもよい。また、上述の説明では、第一電流センサが本異常であった場合には、目標電流値IPの上下限値の絶対値およびフィードバックゲインのみを標準制御条件から変更しているが、当然、他のパラメータ、例えば、電流プロファイルなども標準制御条件から変更させてもよい。
本発明の実施形態である電力制御システムの概略構成図である。 電力制御システムの一部拡大図である。 (a)は第二検出電流値に含まれるディレイのイメージ図であり、(b)は(a)におけるA部拡大図である。 標準制御条件における電流プロファイルの一例を示す図である。 判定用制御条件における電流プロファイルの一例を示す図である。 標準制御条件および代替制御条件それぞれの電流プロファイルの比較を示す図である。 電力制御の流れを示すフローチャートである。 仮判定の詳細な流れを示すフローチャートである。 判定用制御条件における電流プロファイルの他の例を示す図である。
符号の説明
12 電力制御システム、14 電源ユニット、16 制御部、20 バッテリ、22 コンバータ、50 電動機ユニット、52 電動機、54 インバータ、30 PM−ECU、32 電池ECU、34 MG−ECU、SL,SB 電流センサ。

Claims (7)

  1. それぞれが直流電源および当該直流電源に接続された電圧変換器を有し、互いに並列に接続された複数の電源ユニットと、
    前記複数の電源ユニットにおける前記電圧変換器の駆動を制御する制御手段であって、少なくとも1以上の電圧変換器に対して、目標電流値と実測電流値との差分に基づく制御である電流フィードバック制御を行う制御手段と、
    を備え、
    前記電源ユニットは、
    前記電圧変換器に流れる電流値を検出して第一検出電流値として出力する第一電流センサと、
    前記直流電源と電圧変換器との間に流れる電流値を検出して第二検出電流値として出力する第二電流センサと、を備え、
    前記制御手段は、一つの電源ユニットについて、前記電圧変換器における目標電流値を一定に保った状態で、前記第一検出電流値に基づいて前記第一電流センサの良否を判定する本判定を実行する、
    ことを特徴とする電力制御システム。
  2. 請求項1に記載の電力制御システムであって、
    前記制御手段は、前記一つの電源ユニットに対して本判定を実行した場合、前記目標電流値を一定にすることに伴い生じる当該一つの電源ユニットからの出力電力の過不足分を、他の電源ユニットで補填するべく当該他の電源ユニットの駆動を制御する、
    ことを特徴とする電力制御システム。
  3. 請求項1または2に記載の電力制御システムであって、
    前記制御手段は、前記本判定に先立って、前記目標値を固定することなく、前記第一電流センサの良否を判定する仮判定を実行し、当該仮判定により第一電流センサが不良と判断された場合に前記本判定を実行することを特徴とする電力制御システム。
  4. 請求項3に記載の電力制御システムであって、
    前記制御手段は、前記本判定および仮判定のいずれにおいても、第一検出電流値および第二検出電流値の差分量が予め規定された閾値未満の場合に前記第一電流センサを不良と判断し、
    前記本判定で用いられる閾値は、前記仮判定で用いられる閾値より小さい、
    ことを特徴とする電力制御システム。
  5. 請求項1から4のいずれか1項に記載の電力制御システムであって、
    前記制御手段は、本判定において第一電流センサを不良と判定した場合、第一検出電流値に代えて第二検出電流値を、電圧変換器における実測電流値として前記電流フィードバック制御を実行することを特徴とする電力制御システム。
  6. 請求項5に記載の電力制御システムであって、
    前記制御手段は、前記第二検出電流値を実測電流値として前記電流フィードバック制御を実行する場合、第一電流センサと第二電流センサとの特性の違いに応じて、第一検出電流値を実測電流値として前記電流フィードバック制御を実行する場合とは異なる制御条件に変更することを特徴とする電力制御システム。
  7. 請求項6に記載の電力制御システムであって、
    前記制御手段は、前記第二検出電流値を実測電流値として前記電流フィードバック制御を実行する場合、第一検出電流値を実測電流値として前記電流フィードバック制御を実行する場合に比して、目標電流値の上下限値の絶対値、および、増加側フィードバックゲインの少なくとも一つを低減することを特徴とする電力制御システム。
JP2008222629A 2008-08-29 2008-08-29 電力制御システム Active JP4992868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222629A JP4992868B2 (ja) 2008-08-29 2008-08-29 電力制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222629A JP4992868B2 (ja) 2008-08-29 2008-08-29 電力制御システム

Publications (2)

Publication Number Publication Date
JP2010057342A JP2010057342A (ja) 2010-03-11
JP4992868B2 true JP4992868B2 (ja) 2012-08-08

Family

ID=42072669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222629A Active JP4992868B2 (ja) 2008-08-29 2008-08-29 電力制御システム

Country Status (1)

Country Link
JP (1) JP4992868B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780107B2 (ja) * 2011-10-19 2015-09-16 トヨタ自動車株式会社 蓄電システム及び電流センサ異常を検出する方法
JP5691993B2 (ja) * 2011-10-19 2015-04-01 トヨタ自動車株式会社 蓄電システム及び電流センサ異常を検出する方法
JP5675561B2 (ja) * 2011-11-15 2015-02-25 トヨタ自動車株式会社 電気自動車
KR101500146B1 (ko) * 2013-09-23 2015-03-06 현대자동차주식회사 양방향 컨버터 구동 제어 방법
JP6451609B2 (ja) * 2015-12-02 2019-01-16 トヨタ自動車株式会社 電流センサの異常検出装置
JP5973106B1 (ja) 2016-04-06 2016-08-23 本田技研工業株式会社 電源装置、該電源装置を有する輸送機器、電流値を検出するセンサの状態を判定する判定方法、および該状態を判定するためのプログラム
JP6753343B2 (ja) * 2017-03-16 2020-09-09 株式会社デンソー 電流センサの異常診断装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608396B2 (en) * 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
JP4784566B2 (ja) * 2006-07-12 2011-10-05 日産自動車株式会社 二次電池の入出力電力制御装置及び入出力電力制御方法
JP5102483B2 (ja) * 2006-11-29 2012-12-19 プライムアースEvエナジー株式会社 異常検出装置、異常検出方法、及び異常検出プログラム

Also Published As

Publication number Publication date
JP2010057342A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4992868B2 (ja) 電力制御システム
US7432719B2 (en) Abnormality monitoring apparatus in load drive circuit
US9438116B2 (en) Control unit for a boost converter device
US20080144237A1 (en) Thermal Protection Apparatus and Method for Hybrid Vehicles
JP5803247B2 (ja) 電動システム
JP5136394B2 (ja) 車両の電源装置
WO2015194198A1 (ja) 車両用制御装置
JP5534518B2 (ja) 充電器の異常検出装置
US9397572B2 (en) Control apparatus for DC-DC converter
KR101679924B1 (ko) 컨버터 제어 장치 및 컨버터 제어 방법
JP5478190B2 (ja) Dcdcコンバータシステム
JP2011076778A (ja) 電池監視装置
WO2006033163A1 (ja) 負荷駆動回路における異常監視装置および異常監視方法
CN109546919B (zh) 电流传感器的诊断装置
JP5780107B2 (ja) 蓄電システム及び電流センサ異常を検出する方法
JP6187180B2 (ja) 電力変換システム
JP5794121B2 (ja) 燃料電池システム
US20180162440A1 (en) Power-source voltage diagnostic device of electric power steering apparatus
JP2007300774A (ja) 燃料電池車両の制御装置
JP5071322B2 (ja) 電力制御システム
JP5780126B2 (ja) 燃料電池システム
JP2010098798A (ja) 電力制御システム
WO2021059336A1 (ja) 昇圧コンバータ装置
JP2009195091A (ja) 電力装置およびこれを備える駆動装置,車両並びに電力装置の制御方法
JP6747181B2 (ja) 電源装置および自動車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4992868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250