JP4992274B2 - ファインブランキング加工性に優れた鋼板およびその製造方法 - Google Patents

ファインブランキング加工性に優れた鋼板およびその製造方法 Download PDF

Info

Publication number
JP4992274B2
JP4992274B2 JP2006100793A JP2006100793A JP4992274B2 JP 4992274 B2 JP4992274 B2 JP 4992274B2 JP 2006100793 A JP2006100793 A JP 2006100793A JP 2006100793 A JP2006100793 A JP 2006100793A JP 4992274 B2 JP4992274 B2 JP 4992274B2
Authority
JP
Japan
Prior art keywords
less
ferrite
carbide
steel sheet
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006100793A
Other languages
English (en)
Other versions
JP2007270324A (ja
Inventor
毅 横田
展之 中村
房亮 仮屋
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006100793A priority Critical patent/JP4992274B2/ja
Publication of JP2007270324A publication Critical patent/JP2007270324A/ja
Application granted granted Critical
Publication of JP4992274B2 publication Critical patent/JP4992274B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車部品等の用途に好適な鋼板に係り、とくに精密打抜き加工(以下、ファインブランキング加工、あるいはFB加工ともいう)を施される使途に好適な、ファインブランキング加工性およびファインブランキング加工後の成形加工性に優れた鋼板に関する。
複雑な機械部品を製造するうえでは、寸法精度の向上、製造工程の短縮等の観点から、ファインブランキング加工が、切削加工に比べて極めて有利な加工方法であることが知られている。
通常の打抜き加工では、工具間のクリアランスは、被打抜き材である金属板の板厚の5〜10%程度であるが、ファインブランキング加工は、通常の打抜き加工とは異なり、工具間のクリアランスをほぼゼロ(実際は、被打抜き材である金属板の板厚の2%以下程度)と極めて小さく設定すると共に、さらに工具切刃付近の材料に圧縮応力を作用させて打抜く加工方法である。そして、ファインブランキング加工は、
(1)工具切刃からの亀裂発生を抑制して、通常の打抜き加工で見られる破断面がほぼゼロとなり、加工面(打抜き端面)がほぼ100%剪断面の、平滑な加工面が得られる、
(2)寸法精度がよい、
(3)複雑な形状を1工程で打抜ける、
などの特徴を有している。しかし、ファインブランキング加工においては、材料(金属板)の受ける加工度は極めて厳しいものとなる。また、ファインブランキング加工では、工具間のクリアランスをほぼゼロとして行うため、金型への負荷が過大となり、金型寿命が短くなるという問題がある。
このため、ファインブランキング加工を適用される材料には、優れたファインブランキング加工性を具備するとともに、金型寿命の低下を防止することが要求されてきた。
このような要望に対し、例えば、特許文献1には、C:0.15〜0.90重量%、Si:0.4重量%以下、Mn:0.3〜1.0重量%を含有する組成と、球状化率80%以上、平均粒径0.4〜1.0μmの炭化物がフェライトマトリックスに分散した組織を有し、切欠き引張伸びが20%以上である、精密打抜き加工性に優れた高炭素鋼板が提案されている。特許文献1に記載された技術によれば、精密打抜き性が改善され、さらに金型寿命も改善されるとしている。しかし、特許文献1に記載された高炭素鋼板は、ファインブランキング加工後の成形加工性が劣るという問題があった。
また、特許文献2には、C:0.08〜0.19%、Si、Mn、Alを適正量含有し、Cr:0.05〜0.80%、B:0.0005〜0.005%を含有する鋼片に、適正な熱間圧延を施して鋼板とした、精密打抜き用鋼板が提案されている。特許文献2に記載された鋼板は、降伏強度が低く、かつ衝撃値が高くファインブランキング加工性に優れ、低歪域n値が高く複合成形加工性に優れ、さらに短時間急速加熱焼入性にも優れた鋼板であるとされる。しかし、特許文献2には、ファインブランキング加工性についての具体的な評価は示されていない。また、特許文献2に記載された鋼板は、ファインブランキング加工後の成形加工性が劣るという問題があった。
また、特許文献3には、C:0.15〜0.45%を含み、Si、Mn、P、S、Al、N含有量を適正範囲に調整した組成を有し、さらに、パーライト+セメンタイト分率が10%以下、かつフェライト粒の平均粒径が10〜20μmである組織を有する、転造加工やファインブランキング加工における成形性に優れた高炭素鋼板が提案されている。特許文献3に記載された高炭素鋼板では、ファインブランキング加工性に優れ、さらにファインブランキング加工における金型寿命も改善されるとしている。しかし、特許文献3に記載された高炭素鋼板は、ファインブランキング加工後の成形加工性が劣るという問題があった。
さらに、特許文献1、特許文献2、特許文献3に記載された鋼板は、いずれも、最近の厳しい加工条件のファインブランキング加工においては、満足できる十分なファインブランキング加工性を具備しているとはいえず、また金型寿命も十分に改善されているわけではないうえ、ファインブランキング加工後の成形加工性が劣るという問題が残されていた。
当初、ファインブランキング加工は、ギア部品などでも、ファインブランキング加工後に加工を施されない部品に適用されてきた。しかし、最近では、自動車部品(リクライニング部品など)へのファインブランキング加工の適用が拡大される傾向にあり、ファインブランキング加工後に伸びフランジ加工や張出し加工などを必要とする部品への適用が検討されている。このため、自動車部品として、ファインブランキング加工性に優れるうえ、ファインブランキング加工後の、伸びフランジ加工や張出し加工などの成形加工性にも優れた鋼板が熱望されている。特に、リングギアといった用途に関しては、非常に優れる伸びフランジ性が要求されている。
伸びフランジ加工性を改善する技術としては、これまで数多くの提案がなされている。例えば、特許文献4には、C:0.20〜0.33%を含み、Si、Mn、P、S、sol.Al、N含有量を適正範囲に調整し、さらにCr:0.15〜0.7%を含有する組成を有し、パーライトを含んでいてよいフェライト・ベイナイト混合組織を有する、伸びフランジ性にすぐれる耐摩耗用熱延鋼板が提案されている。特許文献4に記載された熱延鋼板では、上記した組織とすることにより、穴拡げ率が高くなり、伸びフランジ性が向上するとしている。また、特許文献5には、C:0.2〜0.7%を含有する組成を有し、炭化物平均粒径が0.1μm以上1.2μm未満、炭化物を含まないフェライト粒の体積率が15%以下である組織を有する伸びフランジ性に優れた高炭素鋼板が提案されている。特許文献5に記載された高炭素鋼板では、打抜き時の端面におけるボイドの発生を抑制し、穴拡げ加工におけるクラックの成長を遅くすることができ、伸びフランジ性が向上するとしている。
また、特許文献6には、C:0.2%以上を含む組成を有し、フェライトおよび炭化物を主体とし、炭化物粒径が0.2μm以下、フェライト粒径が0.5〜1μmである組織を有する打抜き性と焼入れ性に優れた高炭素鋼板が提案されている。これにより、バリ高さと金型寿命とで決定される打抜き性と、焼入れ性がともに向上するとしている。
特開2000-265240号公報 特開昭59-76861号公報 特開2001-140037号公報 特開平9-49065号公報 特開2001-214234号公報 特開平9-316595号公報
しかしながら、特許文献4、特許文献5に記載された技術はいずれも、従来の打抜き加工を施すことを前提にしたものであり、クリアランスがほぼゼロとなるファインブランキング加工の適用を考慮したものではない。したがって、厳しいファインブランキング加工後に、同様の伸びフランジ性を確保することは難しく、たとえ確保できても金型寿命が短くなるという問題がある。
また、特許文献6に記載された技術では、フェライト粒径を0.5〜1μmの範囲にする必要があり、このようなフェライト粒径を有する鋼板を安定して工業的に製造することは困難であり、製品歩留の低下に繋がるという問題があった。
本発明は、上記した従来技術の問題に鑑みて成されたものであり、ファインブランキング加工性に優れ、さらにファインブランキング加工後の成形加工性にも優れた鋼板、特にファインブランキング加工後の伸びフランジ性に非常に優れた鋼板、およびその製造方法を提供することを目的とする。
本発明者らは、上記した目的を達成するために、ファインブランキング加工性(以下、FB加工性と略す)およびFB加工後の加工性に及ぼす金属組織の影響、とくにフェライト、炭化物の形態および分布状態の影響について鋭意研究した。その結果、FB加工性および金型寿命は、フェライト粒内に存在する炭化物、フェライト粒径およびフェライトコロニー径と密接な関係にあることを見出した。そして、所定範囲の組成を有する鋼素材に、熱間圧延の仕上圧延条件およびその後の冷却を適正条件として、ほぼ100%のパーライト組織を有する熱延鋼板とし、さらに適正条件の熱延板焼鈍を施して、金属組織を、平均フェライト粒径が10μm以下、さらに隣接するフェライト粒の方位差が20度未満のフェライトコロニーの平均径が20μm未満とし、炭化物の球状化率が80%以上、かつフェライト粒界に存在する炭化物の面積が全炭化物面積に対する比率で60%以上となるように、フェライト粒内の炭化物量を制限した、フェライト+球状化セメンタイト(球状炭化物)組織とすることにより、FB加工性および金型寿命が顕著に向上し、さらに、FB加工後の伸びフランジ性(穴広げ性)等が顕著に向上することを新たに見出した。
FB加工では、クリアランスゼロ、圧縮応力状態で材料が加工される。そのため、材料には、大きな変形を受けたのちに、亀裂が発生する。大きな変形中に、多数の亀裂が発生すると、FB加工性は大幅に低下することになる。亀裂の発生防止には、炭化物の球状化や炭化物粒径の微細化が重要であるといわれている。しかし、FB加工においては、たとえ100%球状化した微細炭化物であっても、それらがフェライト粒内に存在する場合には、微小亀裂の発生は避けられず、そのため、FB加工後さらに伸びフランジ加工が施される場合には、FB加工時に発生した微小亀裂同士が連結して伸びフランジ性の低下をもたらすことになると本発明者らは考えた。また、金型寿命に関しても、フェライト粒内に炭化物が多数存在すると、工具切刃の摩耗が促進され、金型寿命が低下することになると本発明者らは推察した。また、FB加工後の成形加工性、特に伸びフランジ加工を良好とするためには、隣接するフェライト粒間の方位差が20度未満の粒が集合した領域であるフェライトコロニー径を小さくすることが伸びフランジ加工時の亀裂の進展を抑制する点で有効であり、また、フェライトコロニー径を小さくすることにより、FB加工時の変形単位も小さくすることとなり、破断面を生じにくくする上でも有利であると本発明者らは考えた。
まず、本発明の基礎となった実験結果について説明する。
質量%で、0.34%C−0.2%Si−0.8%Mnを含有する高炭素鋼スラブ(S35C相当)に、1150℃に加熱後、5パスの粗圧延、7パスの仕上圧延からなる熱間圧延を施し、板厚4.3mmの熱延鋼板とした。なお、熱間圧延の仕上圧延においては、Ar変態点〜850℃の温度範囲における累積圧下率(総圧下率)を15〜20%の範囲で変化し、仕上圧延終了温度をAr変態点以上の温度である800〜820℃とした。仕上圧延後に、平均冷却速度:60℃/sで、冷却停止温度を500〜650℃の範囲の温度とする冷却を施し、巻取り温度:550℃で巻き取った。ついでこれら熱延鋼板に酸洗を施した後、熱延板焼鈍としてバッチ焼鈍(720℃×40h)を行った。
得られた熱延鋼板について、金属組織を観察した。
得られた鋼板から試験片を採取し、該試験片の圧延方向に平行な断面を研磨し、ナイタール腐食したのち、板厚1/4位置について、走査型電子顕微鏡(SEM)で金属組織を観察し、フェライト粒径、および炭化物の球状化率を測定した。
組織観察の各視野(倍率:1000倍、視野:30個所)で画像解析装置を用いて、各フェライト粒についてその面積を測定し、得られた面積から円相当径を求め、おのおのの粒径とした。得られた各フェライト粒径を算術平均し、その値を、その鋼板の平均フェライト粒径とした。
また、組織観察の各視野(倍率:3000倍、視野:30個所)で画像解析装置を用いて、各炭化物の最大長さaと最小長さbを求め、その比a/bを計算し、a/bが3以下の炭化物粒数を、測定した全炭化物個数に対する割合(%)で表示し、炭化物の球状化率(%)とした。
また、組織観察の各視野で、フェライト粒界上に存在する炭化物およびフェライト粒内に存在する炭化物を識別し、画像解析装置を用いて、単位面積あたりに存在する炭化物について、フェライト粒界上に存在する炭化物の占有面積Son、およびフェライト粒内に存在する炭化物の占有面積Sinを測定し、次式
Sgb(%)={Son/(Son+Sin)}×100
で定義されるフェライト粒界炭化物量(Sgb)を算出した。 なお、炭化物粒の面積測定は各30視野(倍率:3000倍)とした。
また、組織観察用の試験片を用いて、フェライトコロニー径を測定した。EBSD(E1ectron Backscattering Diffraction Pattern)法により、各フェライト粒の結晶方位を測定し、隣接する測定点間の方位差が20度以上の場合を粒界と認識させ、方位差20度以上の結晶粒界を画像処理により描かせたのち、方位差20度以上の結晶粒界で囲まれた各フェライトコロニーの面積を測定し、得られた面積から円相当径を求め、各フェライトコロニーの粒径とした。得られた各フェライトコロニーの粒径を算術平均した平均値を、各鋼板のフェライトコロニーの平均径とした。
また、伸びフランジ性を以下に述べる穴広げ性で評価した。
得られた熱延鋼板から、穴広げ用試験片(大きさ:t×130×130mm)を採取した。採取した穴広げ用試験片の中央に、直径10mm(do)の打抜き穴をFB加工により形成した。なお、試験片はクリアランスに対する板厚偏差の影響を除くため、予め両面を等量ずつ研削し、板厚を4.0±0.010mmとし、FB加工は工具間のクリアランスを0.060mmとした。そして、円筒平底ポンチ(50mmφ、5R)にて該穴広げ用試験片を押し上げ、打抜き穴の縁に板厚を貫通するクラックが発生した時点での穴径(d)を測定し、FB加工後の穴広げ率λf(%)を求め、FB加工後の穴広げ性を評価した。なお、穴広げ率λf(%)は次式
λf(%)={(d−d0)/d0}×100
で定義される値とした。
得られた結果を、フェライトの平均粒径:8μmおよび15μmの場合について、FB加工後の穴広げ率λfとフェライト粒界炭化物量Sgbとの関係で、図1に示す。なお、フェライトコロニーの平均径は7〜18μm程度であった。また、FB加工後の穴広げ率λfとフェライトコロニーの平均径との関係を図2に示す。
図1から、FB加工後の穴広げ率λfは、フェライト粒界炭化物量Sgbが60%を超えて多くなると、急激に向上することが分かる。さらにその傾向はフェライト粒径が15μmの場合に比べてフェライト粒径が8μmの場合の方が顕著である。
また、図2からFB加工後の穴広げ率λfは、フェライトコロニーの平均径を20μm以下とすることにより、大きく向上することがわかった。
本発明は、上記した知見に基づき、さらに研究を重ねて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.1〜0.5%、Si:0.5%以下、Mn:0.2〜1.5%、P:0.03%以下、S:0.02%以下を含み、残部Feおよび不可避的不純物からなる組成と、フェライトおよび炭化物を主体とする組織とを有し、前記フェライトの平均粒径が1〜10μm、隣接するフェライト粒の方位差が20度未満の粒が集合した領域であるフェライトコロニーの平均径が20μm未満で、板厚1/4位置について倍率:3000倍、視野数:30箇所の組織を走査型電子顕微鏡で観察し、各炭化物の最大長さaと最小長さbを求め、比a/bを計算し、a/bが3以下の炭化物粒数を、測定した全炭化物個数に対する割合(%)で表示した前記炭化物の球状化率が80%以上、かつ前記炭化物のうち、フェライトの結晶粒界に存在する炭化物の量である、次(1)式
Sgb(%)={Son/(Son+Sin)}×100 ……(1)
(ここで、Son:単位面積あたりに存在する炭化物のうち、フェライト粒界上に存在する炭化物の総占有面積、Sin:単位面積あたりに存在する炭化物のうち、フェライト粒内に存在する炭化物の総占有面積)
で定義されるフェライト粒界炭化物量Sgbが60%以上であることを特徴とするファインブランキング加工性およびファインブランキング加工後の成形加工性に優れた鋼板。
(2)(1)において、前記フェライトの結晶粒界に存在する炭化物が、平均粒径で5μm以下であることを特徴とする鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする鋼板。
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする鋼板。
(5)鋼素材に、該鋼素材を加熱し圧延を施し熱延板とする熱間圧延と、該熱延板にバッチ焼鈍を施す熱延板焼鈍と、を順次施す鋼板の製造方法において、前記鋼素材を、質量%で、C:0.1〜0.5%、Si:0.5%以下、Mn:0.2〜1.5%、P:0.03%以下、S:0.02%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延を、仕上圧延におけるAr変態点〜850℃の温度域における累積圧下率を10%以上25%以下、仕上圧延の終了温度をAr変態点以上とし、該仕上圧延の終了後に、50℃/s以上の平均冷却速度で冷却し、500〜700℃の範囲の温度で該冷却を停止し、450〜700℃の巻取り温度で巻取る処理とすることを特徴とするファインブランキング加工性およびファインブランキング加工後の成形加工性に優れた鋼板の製造方法。
(6)(5)において、前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする鋼板の製造方法。
(7)(5)または(6)において、前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする鋼板の製造方法。
(8)(5)ないし(7)のいずれかにおいて、前記熱延板焼鈍を、焼鈍温度:600〜750℃とする処理とすることを特徴とする鋼板の製造方法。
本発明によれば、FB加工性に優れ、しかもFB加工後の成形加工性にも優れた鋼板、特に伸びフランジ性に非常に優れた鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、FB加工性に優れた鋼板となり、FB加工後の端面処理を行う必要がなくなり、製造工期の短縮が可能で生産性が向上するとともに、製造コストの削減が可能となるという効果もある。
まず、本発明鋼板の組成限定理由について説明する。なお、組成における質量%はとくに断わらないかぎり、単に%と記す。
C:0.1〜0.5%
Cは、熱延焼鈍後および焼入れ後の硬さに影響する元素であり、本発明では0.1%以上の含有を必要とする。Cが0.1%未満では、自動車用部品として要求される硬さを得ることができなくなる。一方、0.5%を超える多量の含有は、鋼板が硬質化するため、工業的に十分な金型寿命が確保できなくなる。このため、Cは0.1〜0.5%の範囲に限定した。
Si:0.5%以下
Siは、脱酸剤として作用するとともに、固溶強化により強度(硬さ)を増加させる元素であるが、0.5%を超えて多量に含有するとフェライト相が硬質化し、FB加工性を低下させる。また0.5%を超えてSiを含有すると、熱延段階で赤スケールと呼ばれる表面欠陥を生じる。このため、Siは0.5%以下に限定した。なお、好ましくは0.35%以下である。
Mn:0.2〜1.5%
Mnは、固溶強化により鋼の強度を増加するとともに、焼入れ性向上に有効に作用する元素である。このような効果を得るためには、0.2%以上含有することが望ましいが、1.5%を超えて過剰に含有すると、固溶強化が強くなりすぎてフェライトが硬質化し、FB加工性が低下する。このため、Mnは0.2〜1.5%の範囲に限定した。なお、好ましくは、0.6〜0.9%である。
P:0.03%以下
Pは、粒界等に偏析し加工性を低下させるため、本発明では極力低減することが望ましいが、0.03%までは許容できる。このようなことから、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
S:0.02%以下
Sは、鋼中ではMnSなどの硫化物を形成して介在物として存在し、FB加工性を低下させる元素であり、極力低減することが望ましいが、0.02%までは許容できる。このようなことから、Sは0.02%以下に限定した。なお、好ましくは0.01%以下である。
上記した成分が基本組成であるが、本発明では上記した基本組成に加えて、Al、および/または、Cr、Mo、Ni、TiおよびBのうちから選ばれた1種または2種以上を含有できる。
Al:0.1%以下
Alは、脱酸剤として作用するとともに、Nと結合してAlNを形成し、オーステナイト粒の粗大化防止に寄与する元素である。Bとともに含有する場合には、Nを固定し、BがBNとなり焼入れ性向上に有効なB量の低減を防止する効果も有する。このような効果は0.02%以上の含有で顕著となるが、0.1%を超える含有は、鋼の清浄度を低下させる。このため、含有する場合には、Alは0.1%以下に限定することが好ましい。なお、不可避的不純物としてのAlは0.01%以下である。
Cr、Mo、Ni、Ti、Bはいずれも、焼入れ性の向上、あるいはさらに焼戻軟化抵抗の向上に寄与する元素であり、必要に応じて選択して含有できる。
Cr:3.5%以下
Crは、焼入れ性の向上に有効な元素であり、このような効果を得るためは0.1%以上含有することが好ましいが、3.5%を超える含有は、FB加工性が低下するとともに、焼戻軟化抵抗の過度の増大を招く。このため、Crは含有する場合には3.5%以下に限定することが好ましい。なお、より好ましくは0.2〜1.5%である。
Mo:0.7%以下
Moは、焼入れ性の向上に有効に作用する元素であり、このような効果を得るためには0.05%以上含有することが好ましいが、0.7%を超える含有は鋼の硬質化を招き、FB加工性が低下する。このため、Moは含有する場合には0.7%以下に限定することが好ましい。なお、より好ましくは0.1〜0.3%である。
Ni:3.5%以下、
Niは、焼入れ性を向上させる元素であり、このような効果を得るためには0.1%以上含有することが好ましいが、3.5%を超える含有は鋼の硬質化を招き、FB加工性が低下する。このため、Niは含有する場合には3.5%以下に限定することが好ましい。なお、より好ましくは0.1〜2.0%である。
Ti:0.01〜0.1%
Tiは、Nと結合しTiNを形成しやすく、焼入れ時のオーステナイト粒の粗大化防止に有効に作用する元素である。また、Bとともに含有する場合にはBNを形成するNを低減するため、焼入れ性向上に必要なBの添加量を少なくすることができるという効果も有する。このような効果を得るためには0.01%以上の含有を必要とする。一方、0.1%を超える含有は、TiCなどの析出によりフェライトが析出強化されて硬質化し、金型寿命の低下を招く。このため、含有する場合には、Tiは0.01〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.015〜0.08%である。
B:0.0005〜0.005%
Bは、オーステナイト粒界に偏析し、微量で焼入れ性を改善させる元素であり、特にTiと複合添加した場合に効果的である。焼入れ性改善のためには、0.0005%以上の含有を必要とする。一方、0.005%を超えて含有しても、その効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、含有する場合には、Bは0.0005〜0.005%の範囲に限定することが好ましい。なお、より好ましくは0.0008〜0.004%である。
上記した成分以外の残部はFeおよび不可避的不純物である。なお、不可避的不純物としては、例えば、N:0.01%以下、O:0.01%以下、Cu:0.1%以下が許容できる。
次に、本発明鋼板の組織限定理由について説明する。
本発明鋼板は、フェライトおよび炭化物を主体とする組織を有する。フェライトおよび炭化物を主体とする組織とは、フェライトと炭化物とで体積率で95%以上となる組織をいうものとする。すなわち、本発明鋼板は、ほぼフェライトおよび炭化物からなるものであるが、その他の組織として、体積率で5%程度までは許容することができる。
本発明では、フェライトの粒径は、平均結晶粒径で1〜10μmとする。フェライトの平均結晶粒径が1μm未満では、鋼板が著しく硬化するとともに、フェライト粒内の炭化物量が増加し、FB加工性、金型寿命、さらにはFB加工後の穴拡げ性等の成形加工性が低下する。一方、10μmを超えると、軟質化して金型寿命が向上するものの、打抜き面における破断面の出現が多くなりFB加工性が低下する。また、フェライトの平均粒径が10μmを超えると、図1に示すようにFB加工後の良好な穴広げ性を確保することが困難になる。このため、フェライトの平均結晶粒径は1〜10μmの範囲に限定した。なお、好ましくは3〜8μmである。
さらに、本発明鋼板では、隣接するフェライト粒間の方位差が20度未満の粒が集合した領域であるフェライトコロニーの平均径を20μm未満に限定する。フェライトコロニー径の限定は、FB加工後の伸びフランジ性の向上に非常に重要な役割を果たす。
隣接するフェライト粒の方位差が20度未満の粒が集合した領域であるフェライトコロニーの平均径が20μm未満の場合、FB加工性が向上するのに加えて、図2に示すように、FB加工後の穴広げ性(λf)が格段に向上する。このため、本発明では、フェライトコロニーの平均径を20μm未満に限定した。なお、好ましくは15μm以下である。
なお、フェライトコロニーの平均径は、次のようにして求めるものとする。鋼板の各フェライト粒の結晶方位を、EBSD(E1ectron Backscattering Diffraction Pattern)法により測定し、隣接する測定点間の方位差が20度以上の場合を粒界と認識させ、方位差20度以上の結晶粒界を画像処理により描かせたのち、方位差20度以上の結晶粒界で囲まれた各フェライトコロニーの面積を測定し、得られた面積から円相当径を求め、各フェライトコロニーの粒径とする。そして、得られた各フェライトコロニーの粒径を算術平均した平均値を、各鋼板のフェライトコロニーの平均径とするものとする。
また、本発明鋼板では、板厚1/4位置について倍率:3000倍、視野数:30箇所の組織を走査型電子顕微鏡で観察し、各炭化物の最大長さaと最小長さbを求め、比a/bを計算し、a/bが3以下の炭化物粒数を、測定した全炭化物個数に対する割合(%)で表示した炭化物の球状化率を80%以上とする。球状化率が80%未満では、硬質化するうえ、変形能が小さくFB加工性が低下する。球状化率が80%未満では、打抜き端面における破断面の出現が多くなり、Rz ave が10μmを超えて大きくなり、FB加工性が急激に低下する。このため、本発明では、十分なFB加工性を確保するために、炭化物の球状化率を80%以上に限定した。なお、球状化率を大きくするためには長時間の焼鈍が必要になるため、好ましくは80〜85%である。
また、本発明鋼板では、フェライト粒界炭化物量Sgbを60%以上とする。フェライト粒界炭化物量Sgbは、全炭化物の占有面積に対する、フェライト結晶粒界上に存在する炭化物の占有面積の比率であり、次(1)式
Sgb(%)={Son/(Son+Sin)}×100 ……(1)
(ここで、Son:単位面積あたりに存在する炭化物のうち、フェライト結晶粒界上に存在する炭化物の総占有面積、Sin:単位面積あたりに存在する炭化物のうち、フェライト粒内に存在する炭化物の総占有面積)
で定義される値である。フェライト粒界炭化物量Sgbが60%未満では、フェライト粒内に存在する炭化物量が多くなり、FB加工性が低下するともに、図1に示すように、FB加工後の穴広げ性が急激に低下する。これは、微細で球状化された炭化物でもフェライト粒内に存在すると、FB加工時に炭化物の周りに微細な亀裂が発生し、それらの連結によりFB加工性が低下し、FB加工時に炭化物の周りに微細な亀裂が発生し残存することにより、その後の成形加工でそれらが連結し、成形加工性が低下すると考えられる。また、フェライト粒内に炭化物が存在するとフェライト粒自身が硬質化し、金型寿命の低下を招く。このため、本発明では、フェライト粒界炭化物量Sgbを60%以上に限定した。なお、好ましくは70%以上である。
また、本発明鋼板では、フェライトの結晶粒界上に存在する炭化物は、平均粒径で5μm以下とすることが好ましい。というのは、フェライト粒界炭化物量Sgbが60%以上である場合は、フェライト粒界上に存在する炭化物は、その粒径が小さいほどFB加工性の向上、さらには金型寿命の向上に寄与することが大きいことを新たに見出したことによる。また、炭化物粒径は小さいほど、高周波焼入れにおける短時間加熱に際しても、炭化物をオーステナイト中に容易に固溶させることができ、所望の焼入れ硬さを確保することが容易になる。このようなことから、フェライトの結晶粒界上に存在する炭化物の平均粒径は5μm以下とすることが好ましい。なお、特にFB加工性の観点から、より好ましくは2μm以下である。
つぎに、本発明鋼板の好ましい製造方法について説明する。
上記した組成を有する溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で鋼素材(スラブ)とすることが好ましい。
ついで、得られた鋼素材には、鋼素材を加熱し圧延して熱延板とする熱間圧延を施す。
熱間圧延は、仕上圧延におけるAr変態点〜850℃の温度域の累積圧下率を10%以上25%以下、仕上圧延の終了温度をAr変態点以上とし、該仕上圧延の終了後に、50℃/s以上の平均冷却速度で冷却し、500〜700℃の範囲の温度で該冷却を停止し、450〜700℃の巻取り温度で巻取る処理とすることが好ましい。
本発明における熱間圧延では、仕上圧延の終了温度と、その後の冷却条件を調整することを一つの特徴とする。これにより、ほぼ100%のパーライト組織を有する熱延鋼板が得られる。またさらに、本発明における熱間圧延では、仕上圧延におけるAr変態点〜850℃の温度域の累積圧下率を10%以上25%以下とすることをも特徴とする。これにより、フェライトコロニー径が20μm未満と小さくすることができる熱延鋼板組織が得られる。
仕上圧延におけるAr変態点〜850℃の温度域の累積圧下率:10%以上25%以下
熱間圧延の仕上圧延において、圧下率を大きくすることにより、オーステナイト粒径が小さくなり、それに伴って変態後のパーライトコロニーが小さくなる。パーライトは、熱延板焼鈍により、ポリゴナルフェライトと球状セメンタイトに変化する。この熱延板焼鈍により生成するフェライトは、詳細に解析すると、見かけ上、粒界で区分されていても、その粒界の多くは、隣接するフェライト粒間の方位差が20度未満の粒界であることが多く、隣接するフェライト粒間の方位差が20度未満の粒が集合した領域を形成することになる。この隣接するフェライト粒間の方位差が20度未満の粒が集合した領域は、フェライトコロニーと称する。フェライトコロニーは、熱延板焼鈍前のパーライトコロニーに対応するが、結晶方位差が小さく、FB加工時およびFB加工後の成形加工時に一つの変形単位となりやすい。
フェライトコロニーの平均径を20μm未満とし、変形単位を小さくしてFB加工性およびFB加工後の成形加工性を顕著に向上させるためには、熱間圧延の仕上圧延において、Ar変態点〜850℃の温度域における累積圧下率を10%以上25%以下とすることが好ましい。また、Ar変態点〜850℃は歪が蓄積されやすい温度域であるため、この温度域での累積圧下率が、焼鈍後のフェライトコロニーの形成に大きく影響する。10%未満ではフェライトコロニーの平均径が20μmを越え、一方、25%を超えると粗大なフェライト粒が生成しやすくなる。なお、より好ましくは15%以上25%以下である。
仕上圧延の圧延終了温度: Ar変態点以上
仕上圧延の圧延終了温度は、Ar変態点以上とすることが好ましい。仕上圧延の終了温度がAr変態点未満では、圧延負荷の増大が著しくなり、圧延機への過大な負荷が問題となる。一方、仕上圧延の圧延終了温度が850℃を超えて高くなると、Ar変態点〜850℃の温度域の累積圧下率を10%以上25%以下とすることができなくなり、FB加工性が低下する。このため、仕上圧延の圧延終了温度は、Ar変態点以上とすることが好ましく、より好ましくは850℃以下である。
仕上圧延終了後の平均冷却速度:50℃/s以上
仕上圧延終了後、50℃/s以上の平均冷却速度で冷却する。なお、該平均冷却速度は仕上圧延の終了温度から該冷却(強制冷却)の停止温度までの平均冷却速度とする。平均冷却速度が50℃/s未満では、冷却中に炭化物を含まないフェライトを生じ、冷却後の組織がフェライト+パーライトの不均一な組織となり、ほぼ100%のパーライトからなる均一な組織を確保できなくなる。熱延板組織がフェライト+パーライトの不均一な組織では、その後の熱延板焼鈍をいかに工夫しても、粒内に存在する炭化物が多くなり、粒界に存在する炭化物量が減少する。このため、FB加工性が低下する。このようなことから、仕上圧延終了後の平均冷却速度を50℃/s以上に限定することが好ましい。なお、ベイナイトの生成を防止するために、120℃/s以下とすることがより好ましい。
冷却停止温度:500〜700℃
上記冷却(強制冷却)を停止する温度は500〜700℃とすることが好ましい。冷却停止温度が500℃未満では、硬質なベイナイトやマルテンサイトを生じて熱延板焼鈍が長時間となるという問題や、巻取時に割れを生じるなど操業上の問題を生じる。一方、冷却停止温度が700℃を超えて高温となると、フェライト変態ノーズが700℃近傍であるため、冷却停止後の放冷中にフェライトを生じ、ほぼ100%のパーライトからなる均一な組織を確保できなくなる。このようなことから、冷却の停止温度は、500〜700℃の範囲内の温度に限定することが好ましい。なお、より好ましくは500〜650℃、さらに好ましくは500〜600℃である。
冷却を停止したのち、熱延板は直ちにコイル状に巻取られる。巻取り温度は450〜700℃とすることが好ましく、またより好ましくは450〜600℃である。
巻取り温度が450℃未満では、巻取り時に鋼板に割れが発生し、操業上問題となる。一方、巻取り温度が700℃を超えると、巻取り中にフェライトが生成するという問題がある。
このようにして得た熱延板(熱延鋼板)は、酸洗またはショットブラストなどにより表面の酸化スケールを除去後、熱延板焼鈍を施される。ほぼ100%のパーライト組織を有する熱延板に適正な熱延板焼鈍を施すことにより、炭化物の球状化が促進されるとともに、フェライトの粒成長が抑制され、炭化物の多くをフェライト結晶粒界上に存在させることができるようになる。
なお、熱延板焼鈍では、焼鈍温度を600〜750℃の範囲の温度とすることが好ましい。焼鈍温度が、600℃未満では、十分な炭化物の球状化が達成できなくなる。一方、750℃を超えて高温となると、冷却中にパーライトが再生し、ファインブランキング加工性、その他の加工性が低下する。なお、熱延板焼鈍の保持時間はとくに限定する必要はないが、炭化物を十分球状化するためには8h以上とすることが好ましい。また、80hを超えるとフェライト粒が過度に粗大化する恐れがあるため、80h以下とすることが好ましい。
表1に示す組成の鋼素材(スラブ)に、表2に示す条件の熱間圧延および熱延板焼鈍を施し、熱延鋼板(板厚:4.3mm)とした。なお、熱間圧延の仕上圧延においては、Ar変態点〜850℃の温度域の累積圧下率を変化させた。また、熱膨張試験機によりAr変態点を求め、表1に示す。
得られた熱延鋼板について、酸洗後、組織、FB加工性、FB加工後の穴広げ性を調査した。調査方法はつぎのとおりである。
(1)組織
得られた鋼板から組織観察用試験片を採取した。そして、試験片の圧延方向に平行な断面を研磨し、ナイタール腐食したのち、板厚1/4位置について、走査型電子顕微鏡(SEM)(倍率;フェライト:1000倍、炭化物:3000倍)で金属組織を観察(視野数:30個所)し、画像解析装置を用いて、フェライトおよび炭化物の体積率、フェライト粒径、炭化物の球状化率、フェライト粒界炭化物量、およびフェライト粒界上の炭化物の平均粒径を測定した。
フェライトおよび炭化物の体積率は、SEM(倍率:3000倍)で金属組織を観察(視野数:30個所)し、フェライトの面積と炭化物の面積を合算した面積を、全視野面積で除して面積率を求め、これをフェライトおよび炭化物の体積率として判断した。
フェライト粒径は、各フェライト粒についてその面積を測定し、得られた面積から円相当径を算出し、おのおのの粒径とした。得られた各フェライト粒径を算術平均し、その値を、その鋼板のフェライトの平均粒径とした。
炭化物の球状化率は、金属組織観察(倍率:3000倍)の各視野(視野数:30個所)で画像解析装置を用いて、各炭化物の最大長さaと最小長さbを求め、その比a/bを計算し、a/bが3以下の炭化物粒数を、測定した全炭化物個数に対する割合(%)で表示し、炭化物の球状化率(%)とした。
フェライト粒界炭化物量Sgbは、金属組織観察(倍率:3000倍)の各視野(視野数:30個所)で、フェライト粒界上に存在する炭化物およびフェライト粒内に存在する炭化物を識別し、画像解析装置を用いて、単位面積あたりの、フェライト粒界上に存在する炭化物の占有面積Son、およびフェライト粒内に存在する炭化物の占有面積Sinを測定し、次(1)式
Sgb(%)={Son/(Son+Sin)}×100 ……(1)
を用いて算出した。
また、フェライト粒界上の各炭化物について、炭化物の外周上の2点と炭化物の相当楕円(炭化物と同面積、かつ一次および二次モーメントが等しい楕円)の重心を通る径を2°きざみに測定して円相当径を求め、これを各々の炭化物粒径とし、得られた炭化物粒径を平均した値をフェライト粒界上の炭化物の平均粒径とした。
また、上記した各鋼板の組織観察用試験片を用いて、フェライトコロニー径を測定した。各試験片について、各フェライト粒の結晶方位を、EBSD(E1ectron Backscattering Diffraction Pattern)法により測定し、隣接する測定点間の方位差が20度以上の場合を粒界と認識させ、方位差20度以上の結晶粒界を画像処理により描かせたのち、方位差20度以上の結晶粒界で囲まれた領域、すなわちフェライト粒間の方位差が20度未満の粒の集合する領域であるフェライトコロニーの面積を測定し、得られた面積から円相当径を求め、各フェライトコロニーの粒径とした。そして、得られた各フェライトコロニーの粒径を算術平均した平均値を、各鋼板のフェライトコロニーの平均径とした。
(2)FB加工性
得られた鋼板から試験板(大きさ:100×80mm)を採取し、FBテストを実施した。FBテストは、110t油圧プレス機を用いて、試験片から、大きさ:60mm×40mm(コーナー部半径R:10mm)のサンプルを、工具間のクリアランス:0.060mm(板厚の1.5%)、加工力:8.5ton、潤滑:有りの条件で打抜いた。打抜かれたサンプルの端面(打抜き面)について、表面粗さ(十点平均粗さRz)を測定して、FB加工性を評価した。なお、試験片は、クリアランスに対する板厚偏差の影響を除くため、予め両面を等量ずつ研削し、板厚を4.0±0.010mmとした。
表面粗さの測定は、R部を除く4つの端面とし、各端面(板厚面)で、図3に示すように、パンチ側表面0.5mmから板厚方向に3.9mmまでの範囲でかつ表面に平行に(X方向)10mmの領域を、触針式表面粗度計で板厚方向(t方向)に100μmピッチで35回走査し、JIS B 0601-1994に準拠して、各走査線における表面粗さRzを測定した。さらに、測定面の表面粗さRzは、各々の走査線のRzを合計して、その平均値とした。上記と同様の方法で4つの端面を測定して、次式
Rz ave=(Rz 1+ Rz 2+ Rz 3+ Rz 4)/4
(ここで、Rz 1,Rz 2,Rz 3,Rz 4:各面のRz)
で定義される平均表面粗さ:Rz ave(μm)を算出した。
一般に、打抜き端面における破断面の出現が10%以下の場合を「FB加工性に優れる」とするが、本発明では、平均表面粗さ:Rz aveが10μm以下と、小さくなるほどFB加工性に優れるとした。
なお上記と異なる板厚の試験片の表面粗さを測定する場合は、上記と同様にパンチ側表面0.5mmから板厚方向に、(板厚(mm)−0.1mm)程度の範囲でかつ表面に平行に10mmの領域を板厚方向に繰り返し100μmピッチで走査して各面のRzを求め、各面のRzからRz aveを求めればよい。
また、使用した工具(金型)の寿命を評価した。FB加工における打抜き回数が30000回に達した時点でのサンプル端面(打抜き面)の表面粗さ(十点平均粗さRz)を測定し、金型寿命を評価した。なお、表面粗さの測定方法は上記した方法と同じとしRz aveを求めた。サンプル端面の平均表面粗さ(Rz ave)が10μm以下を○、10μm超え×として評価した。なお、初回の打抜き時にRz aveが10μmを超えたものについては、金型寿命の評価は行わなかった。
(3)FB加工後の穴広げ性
得られた熱延鋼板から、穴広げ用試験片(大きさ:t×130×130mm)を採取した。採取した穴広げ用試験片の中央に、直径10mm(do)の打抜き穴をFB加工により形成した。なお、クリアランスに対する板厚偏差の影響を除くため、予め両面を等量ずつ研削し、板厚を4.0±0.010mmとし、FB加工は工具間のクリアランスを0.060mmとした。そして、円筒平底ポンチ(50mmφ、5R)にて該穴広げ用試験片を押し上げ、打抜き穴の縁に板厚を貫通するクラックが発生した時点での穴径(d)を測定し、FB加工後の穴広げ率λf(%)を求め、FB加工後の穴広げ性を評価した。なお、穴広げ率λf(%)は次式
λf(%)={(d−d0)/d0}×100
で定義される値とした。
得られた結果を表3に併記する。なお、鋼板No.7は巻取時割れが発生したため、熱延板焼鈍以降の処理は行わなかった。
Figure 0004992274
Figure 0004992274
Figure 0004992274
本発明例はいずれも、打抜き面の平均表面粗さRz aveが10μm以下であり、FB加工性に優れ、また、打抜き回数:30000回時の打ち抜き面表面も滑らか(評価:○)であり、金型寿命の低下も認められない。また、本発明例は、FB加工後の穴広げ性にも優れている。なお、前記した方法でフェライトおよび炭化物の体積率を確認したが、いずれもフェライトと炭化物との合計で体積率95%以上となっており、フェライトおよび炭化物を主体とする組織になっていることを確認した。一方、本発明の範囲を外れる比較例は、打抜き面の平均表面粗さRz aveが10μmを超えて粗くなりFB加工性が低下し、また、金型寿命の低下も認められ、穴広げ性が低下している。とくに、仕上圧延におけるAr変態点〜850℃の温度域の累積圧下率が本発明の範囲を低く外れる、あるいは仕上げ圧延後の冷却速度が遅くなる比較例(鋼板No.5、No.6、No.7)では、フェライトコロニー径が本発明の範囲を外れて大きくなり、打抜き面の平均表面粗さRz ave が10μmを超えて粗くなり、FB加工性が低下する傾向を示し、特にFB加工後の穴広げ性が大幅に低下する。
FB加工後の穴広げ率λfとフェライト粒界炭化物量との関係を示すグラフである。 フェライトコロニーの平均径とFB加工後の穴広げ率λfの関係を示すグラフである。 FB加工性(打抜き面の表面粗さ)とフェライトコロニーの平均径との関係を示すグラフである。

Claims (8)

  1. 質量%で、
    C:0.1〜0.5%、 Si:0.5%以下、
    Mn:0.2〜1.5%、 P:0.03%以下、
    S:0.02%以下
    を含み、残部Feおよび不可避的不純物からなる組成と、フェライトおよび炭化物を主体とする組織とを有し、前記フェライトの平均粒径が1〜10μm、隣接するフェライト粒の方位差が20度未満の粒が集合した領域であるフェライトコロニーの平均径が20μm未満で、板厚1/4位置について倍率:3000倍、視野数:30箇所の組織を走査型電子顕微鏡で観察し、各炭化物の最大長さaと最小長さbを求め、比a/bを計算し、a/bが3以下の炭化物粒数を、測定した全炭化物個数に対する割合(%)で表示した前記炭化物の球状化率が80%以上、かつ前記炭化物のうち、フェライトの結晶粒界に存在する炭化物の量である、下記(1)式で定義されるフェライト粒界炭化物量Sgbが60%以上であることを特徴とするファインブランキング加工性およびファインブランキング加工後の成形加工性に優れた鋼板。

    Sgb(%)={Son/(Son+Sin)}×100 ……(1)
    ここで、Son:単位面積あたりに存在する炭化物のうち、フェライト粒界上に存在する炭化物の総占有面積、
    Sin:単位面積あたりに存在する炭化物のうち、フェライト粒内に存在する炭化物の総占有面積
  2. 前記フェライトの結晶粒界に存在する炭化物が、平均粒径で5μm以下であることを特徴とする請求項1に記載の鋼板。
  3. 前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする請求項1または2に記載の鋼板。
  4. 前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の鋼板。
  5. 鋼素材に、該鋼素材を加熱し圧延を施し熱延板とする熱間圧延と、該熱延板にバッチ焼鈍を施す熱延板焼鈍と、を順次施す鋼板の製造方法において、
    前記鋼素材を、質量%で、
    C:0.1〜0.5%、 Si:0.5%以下、
    Mn:0.2〜1.5%、 P:0.03%以下、
    S:0.02%以下
    を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
    前記熱間圧延を、仕上圧延におけるAr変態点〜850℃の温度域における累積圧下率を10%以上25%以下、仕上圧延の終了温度をAr変態点以上とし、該仕上圧延の終了後に、50℃/s以上の平均冷却速度で冷却し、500〜700℃の範囲の温度で該冷却を停止し、450〜700℃の巻取り温度で巻取る処理とすることを特徴とするファインブランキング加工性およびファインブランキング加工後の成形加工性に優れた鋼板の製造方法。
  6. 前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする請求項5に記載の鋼板の製造方法。
  7. 前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項5または6に記載の鋼板の製造方法。
  8. 前記熱延板焼鈍を、焼鈍温度:600〜750℃とする処理とすることを特徴とする請求項5ないし7のいずれかに記載の鋼板の製造方法。
JP2006100793A 2006-03-31 2006-03-31 ファインブランキング加工性に優れた鋼板およびその製造方法 Active JP4992274B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006100793A JP4992274B2 (ja) 2006-03-31 2006-03-31 ファインブランキング加工性に優れた鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100793A JP4992274B2 (ja) 2006-03-31 2006-03-31 ファインブランキング加工性に優れた鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2007270324A JP2007270324A (ja) 2007-10-18
JP4992274B2 true JP4992274B2 (ja) 2012-08-08

Family

ID=38673419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100793A Active JP4992274B2 (ja) 2006-03-31 2006-03-31 ファインブランキング加工性に優れた鋼板およびその製造方法

Country Status (1)

Country Link
JP (1) JP4992274B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458649B2 (ja) * 2009-04-28 2014-04-02 Jfeスチール株式会社 高炭素熱延鋼板およびその製造方法
MX345568B (es) * 2010-02-26 2017-01-30 Nippon Steel & Sumitomo Metal Corp * Material de acero tratado termicamente, metodo para producir el mismo, y material de acero base para el mismo.
KR101322634B1 (ko) 2012-05-15 2013-10-29 한국생산기술연구원 보론강을 이용한 차량용 접시형 스프링의 제조방법
JP6515332B2 (ja) * 2015-05-26 2019-05-22 日本製鉄株式会社 被切削性及び焼入れ焼戻し後の耐摩耗特性に優れる低炭素鋼板及びその製造方法
JP6519012B2 (ja) * 2015-05-26 2019-05-29 日本製鉄株式会社 冷間成形性と熱処理後靭性に優れた低炭素鋼板及び製造方法
JP6160783B2 (ja) * 2015-05-26 2017-07-12 新日鐵住金株式会社 鋼板及びその製造方法
MX2017015266A (es) * 2015-06-17 2018-02-19 Nippon Steel & Sumitomo Metal Corp Lamina de acero y metodo de produccion.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465057B2 (ja) * 1999-03-16 2010-05-19 日新製鋼株式会社 精密打抜き用高炭素鋼板
JP4001116B2 (ja) * 2004-02-06 2007-10-31 Jfeスチール株式会社 精密打ち抜き加工性および耐赤スケール疵性に優れる高張力熱延鋼板

Also Published As

Publication number Publication date
JP2007270324A (ja) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5076347B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
KR101023633B1 (ko) 파인 블랭킹 가공성이 우수한 강판 및 그 제조 방법
JP2007270331A (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP2007270329A (ja) ファインブランキング加工性に優れた鋼板の製造方法
WO2016152163A1 (ja) 冷延鋼板およびその製造方法
JP5040475B2 (ja) 加工性に優れ、かつ熱処理後の強度靭性に優れた厚肉熱延鋼板およびその製造方法
KR101965520B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
JP4992274B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
KR101965521B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
KR20150023726A (ko) 냉간 가공성, 피삭성 및 퀀칭성이 우수한 고탄소 강관 및 그 제조 방법
JP4992275B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP5194454B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP5070824B2 (ja) 打抜き加工後の平坦度および端面性状に優れた冷延鋼板およびその製造方法
JP4992277B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP4905031B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP4992276B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP5125081B2 (ja) 打抜き加工後の平坦度に優れた冷延鋼板およびその製造方法
JP4319948B2 (ja) 伸びフランジ性の優れた高炭素冷延鋼板
CN111742076B (zh) 高碳冷轧钢板及其制造方法
JP5050386B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP5020689B2 (ja) 切削性に優れた機械構造用鋼管
JP4276504B2 (ja) 伸びフランジ性の優れた高炭素熱延鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250