JP4976238B2 - 冷却装置の圧縮機制御方法 - Google Patents

冷却装置の圧縮機制御方法 Download PDF

Info

Publication number
JP4976238B2
JP4976238B2 JP2007227473A JP2007227473A JP4976238B2 JP 4976238 B2 JP4976238 B2 JP 4976238B2 JP 2007227473 A JP2007227473 A JP 2007227473A JP 2007227473 A JP2007227473 A JP 2007227473A JP 4976238 B2 JP4976238 B2 JP 4976238B2
Authority
JP
Japan
Prior art keywords
temperature
compressor
control
cooling device
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007227473A
Other languages
English (en)
Other versions
JP2009058196A (ja
Inventor
健二 小林
英晃 藤原
真喜 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2007227473A priority Critical patent/JP4976238B2/ja
Publication of JP2009058196A publication Critical patent/JP2009058196A/ja
Application granted granted Critical
Publication of JP4976238B2 publication Critical patent/JP4976238B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、冷媒を循環させる冷凍サイクルを用いた冷却装置における圧縮機を制御する冷却装置の圧縮機制御方法に関する。
一般に、レーザ加工機では、ワークの材質,板厚,加工速度及び加工面粗度等によってレーザ側の負荷が大きく変動する。したがって、レーザ加工機に冷却液を供給(循環)する冷却装置では、このような負荷変動に対しても十分に追従できる冷却性能が要求されるとともに、特に、加工精度に大きく影響するミラー等の光学部品に対する熱的安定性を確保し、加工品質の低下を回避する上からも、温度変動の少ない高度で精密な冷却精度が要求される。
従来、このような用途に使用される冷却装置としては、特許文献1に開示される冷却装置が知られている。この冷却装置は、レーザ加工機等の被冷却物から戻された冷却液を貯留する冷却液タンクと、この冷却液タンクの供給口から流出する冷却液を送出する送液ポンプと、この送液ポンプから吐出する冷却液を熱交換により冷却して被冷却物に供給する冷却器(熱交換器)を備えるとともに、冷却器から流出した冷却液の温度を温度センサにより検出し、検出した温度に基づいて冷却器の冷却温度を制御する制御系、より具体的には、温度センサにより検出した温度に基づいて、冷却器に冷媒を循環させる冷凍サイクルにおける圧縮機の回転周波数(回転数)をインバータ制御する制御機能を有する制御系を備えて構成したものである。
特開2003−329355号
ところで、上述した従来の冷却装置、特にその圧縮機制御方法においては、次のような解決すべき課題が存在した。
第一に、この種の冷却装置は、運転中に周囲温度が高くなった場合や被冷却物から戻された冷却液の温度(液温)が上昇して負荷が大きくなった場合、圧縮機がオーバーロードする虞れがあるため、通常、周囲温度及び液温を監視(検出)して圧縮機の運転可能最高回転数を制限する制御を行っている。しかし、圧縮機のオーバーロードは、直接的には冷媒圧力に関係するため、周囲温度及び液温の監視によっては、例えば、回転数に余裕があるにも拘わらず無用な制限を行ったり、本来制限の必要な回転数であるにも拘わらず制限が行われないなど、的確な制御を行うことができず、圧縮機の動作効率及び耐久性を低下させる原因となる。
第二に、冷却装置の運転中に、設定された周囲温度条件よりも更に周囲温度が高くなるなどにより凝縮器の放熱効率が低下した場合、通常、圧縮機の運転可能最高回転数が制限されていても、圧縮機の運転を停止してその保護(安全)を図っている。即ち、冷媒圧力の上限を検出する高圧圧力スイッチを設けることにより圧縮機の運転を停止する制御を行っている。しかし、運転の停止は、液温に対する制御精度に影響を及ぼすなど、周囲温度が高い環境下での安定した動作を確保できない。
本発明は、このような背景技術に存在する課題を解決した冷却装置の圧縮機制御方法の提供を目的とするものである。
本発明に係る冷却装置の圧縮機制御方法は、上述した課題を解決するため、少なくとも、インバータ制御される圧縮機2,凝縮器3,膨張弁4及び熱交換器5を接続して冷媒を循環させる冷凍サイクルCcを用いた冷却装置1における圧縮機2を制御するに際し、予め圧縮機2の運転中における凝縮器3から吐出する冷媒の温度(凝縮冷媒温度Tc)に対する一又は二以上の異なる上限側温度監視値Tu1,Tu2及び一又は二以上の異なる下限側温度監視値Td1を設定し、圧縮機2の運転中に、凝縮冷媒温度Tcを検出するとともに、当該凝縮冷媒温度Tcが上限側温度監視値Tu1,Tu2になったこと及び凝縮冷媒温度Tcの上昇率ΔTcが予め設定した上昇率監視値Du以上であることを条件に、圧縮機2に対する運転可能最高回転数Rmaxを単位回転数Rucだけ順次段階的に減少させ、他方、下限側温度監視値Td1になったこと及び圧縮機2を制御するインバータユニット7のインバータ放熱器温度Tiが予め設定した温度設定値Tis以下であることを条件に、運転可能最高回転数Rmaxを単位回転数Rdcだけ順次段階的に増加させる制御を、前回行った運転可能最高回転数Rmaxを増加又は減少させる制御から所定のインターバル時間Δtiが経過していることを条件に行うことを特徴とする。
この場合、発明の好適な態様により、上昇率ΔTcには、所定のサンプリング間隔Δtxにより順次検出した凝縮冷媒温度における現在の検出値(Tc)とこの検出値の直前における複数の検出値(Tc…)の平均値Tcaの偏差を用いることができる。また、運転可能最高回転数Rmaxを単位回転数Rdcだけ増加させる制御には、少なくとも、下限側温度監視値Td1になったこと,圧縮機2から吐出する冷媒の温度(吐出冷媒温度To)が予め設定した温度設定値Tos以下であること及び圧縮機2を制御するインバータユニット7のインバータ放熱器温度Tiが予め設定した温度設定値Tis以下であることを条件に行う制御を含ませることができる。さらに、予め凝縮冷媒温度Tcに対する始動時温度監視値Tccを設定し、圧縮機2を始動する際に、凝縮冷媒温度Tcを検出するとともに、圧縮機2の始動開始時点tsから、一又は二以上の異なる監視時間Δta,Δtbが経過した時点における凝縮冷媒温度Tcが始動時温度監視値Tcc以下であることを条件に、運転可能最高回転数Rmaxを予め設定した初期回転数Rsから順次段階的に増加させる制御を行うことができる。なお、圧縮機2の始動には、運転終了に基づく停止からの始動又は運転中の制御に基づく停止からの始動を含ませることができる。
このような手法による本発明に係る冷却装置1の圧縮機制御方法によれば、次のような顕著な効果を奏する。
(1) 圧縮機2の運転中に、凝縮冷媒温度Tcを検出するとともに、当該凝縮冷媒温度Tcが少なくとも各上限側温度監視値Tu1,Tu2になったなら圧縮機2に対する運転可能最高回転数Rmaxを単位回転数Rucだけ順次段階的に減少させ、かつ少なくとも各下限側温度監視値Td1になったなら運転可能最高回転数Rmaxを単位回転数Rdcだけ順次段階的に増加させる制御を行うため、圧縮機2のオーバーロードを回避できる的確(最適)な運転可能最高回転数Rmaxを設定することができ、もって、圧縮機2の動作効率向上及び耐久性向上に寄与できる。
(2) 周囲温度の高い環境下であっても冷媒圧力に対する制限(制御)を的確に行うことができるため、上限高圧による高圧圧力スイッチのONを可及的に回避できる。この結果、冷却温度に対する高い制御精度を維持できるとともに、周囲温度が高い環境下での安定した動作を確保できる。
(3) 上限側温度監視値Tu1になったこと及び凝縮冷媒温度Tcの上昇率ΔTcが上昇率監視値Du以上であることを条件に、運転可能最高回転数Rmaxを単位回転数Rucだけ減少させる制御を行うため、正規の上限側温度監視値Tu2よりも低い温度である上限側温度監視値Tu1であっても正規の上限側温度監視値Tu2に達する可能性が高いことから、正規の上限側温度監視値Tu2になる手前の時点でも単位回転数Rucだけ減少させる制御を行うことができ、より確実で信頼性の高い制御を行うことができる。
(4) 運転可能最高回転数Rmaxを単位回転数Rucだけ減少させる制御は、前回行った運転可能最高回転数Rmaxを減少又は増加させる制御から所定のインターバル時間Δtiが経過していることを条件に行うため、運転可能最高回転数Rmaxを減少させる次の制御を安定に行うことができる。
(5) 運転可能最高回転数Rmaxを単位回転数Rdcだけ増加させる制御は、前回行った運転可能最高回転数Rmaxを増加又は減少させる制御から所定のインターバル時間Δtiが経過していることを条件に行うため、運転可能最高回転数Rmaxを増加させる次の制御を安定に行うことができる。
(6) 好適な態様により、運転可能最高回転数Rmaxを単位回転数Rdcだけ増加させる制御として、少なくとも、下限側温度監視値Td1になったこと,吐出冷媒温度Toが温度設定値Tos以下であること及び圧縮機2を制御するインバータユニット7のインバータ放熱器温度Tiが温度設定値Tis以下であることを条件に行う制御を含ませれば、下限側温度監視値Td1のみで判断する場合に比べて、より確実で信頼性の高い制御を行うことができる。
(7) 好適な態様により、予め凝縮冷媒温度Tcに対する始動時温度監視値Tccを設定し、圧縮機2を始動する際に、凝縮冷媒温度Tcを検出するとともに、圧縮機2の始動開始時点tsから、一又は二以上の異なる監視時間Δta,Δtbが経過した時点における凝縮冷媒温度Tcが始動時温度監視値Tcc以下であることを条件に、運転可能最高回転数Rmaxを予め設定した初期回転数Rsから順次段階的に増加させる制御を行えば、始動時における圧縮機2に対する潤滑オイルの供給を確保し、潤滑オイルが冷媒に混入するのを防止できることに加え、周囲温度が高い環境下であっても、凝縮冷媒温度Tcが急上昇し、運転可能最高回転数Rmaxを過度に下げることにより冷却能力を低下させてしまう不具合を回避できる。
次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。
まず、本実施形態に係る圧縮機制御方法を実施できる冷却装置1の構成について、図4及び図5を参照して説明する。
図4は、冷却装置1の全体構成を示す。冷却装置1は、熱交換器(冷却器)5を備え、この熱交換器5の一次側5fに冷凍サイクルCcを接続するとともに、熱交換器5の二次側5sに冷却液回路Cmを接続する。
図5に冷却液回路Cmの具体例を示す。冷却液回路Cmは、冷却液(冷却水,冷却溶液等)Wを貯留する冷却液タンク11を備え、この冷却液タンク11は、冷却液供給ライン12s及び冷却液戻りライン12rを介してレーザ加工機等の被冷却物H(図4)に接続する。そして、冷却液供給ライン12sの中途には、冷却液タンク11に貯留する冷却液Wを被冷却物Hに供給するための送液ポンプ13を接続するとともに、この送液ポンプ13に対して熱交換器5の二次側5sを直列に接続する。なお、冷却液タンク11は、上端開口を覆うタンクカバー11cを備える。また、冷却液供給ライン12sには、冷却液Wの圧力を検出する液圧計15及び冷却液Wの温度(液温)Twを検出する液温センサ16を付設するとともに、冷却液タンク11には、給液口17,ドレンライン18,フロートスイッチ19,液面計20,ストレーナ21等をそれぞれ付設する。
一方、冷凍サイクルCcは、主要機能部として、圧縮機2,凝縮器3,膨張弁(電子膨張弁)4を備えており、この電子膨張弁4の冷媒流出側を熱交換器5の一次側5fの一端口(冷媒流入口)に接続するとともに、熱交換器5の一次側5fの他端口(冷媒流出口)は冷媒ストレーナ31を介して圧縮機2の冷媒流入側に接続する。これにより、矢印Fc方向に冷媒が循環する冷凍サイクルCc(冷媒回路)が構成される。このような冷凍サイクルCcの基本的な機能は公知の冷凍サイクルと同じである。また、冷凍サイクルCcには、圧縮機2から吐出する冷媒の温度、即ち、吐出冷媒温度Toを検出する吐出冷媒温度センサ33,凝縮器3から吐出する冷媒の温度、即ち、凝縮冷媒温度Tcを検出する凝縮冷媒温度センサ34,冷却器5の入口側の冷媒温度を検出する冷却器入口温度センサ35等の各種センサ類を付設するとともに、凝縮器3には、この凝縮器3を空冷する凝縮器ファン36を付設する。矢印Ffが凝縮器ファン36による送風方向を示している。さらに、圧縮機2の駆動には電動モータ41を使用し、この電動モータ41はインバータユニット7に接続する。例示の電動モータ41は、120°通電方式により作動するセンサレスブラシレスDCモータであり、スター結線された三つの巻線(界磁コイル)を備えている。インバータユニット7は、インバータ回路7i及び直流電源回路7sを備え、インバータ回路7iの出力部を電動モータ41に接続するとともに、直流電源回路7sの交流入力部は三相交流電源に接続する。
そして、各センサ33,34,35,凝縮器ファン36,インバータ回路7i、さらに、電子膨張弁4及び液温センサ16は、それぞれ制御部(コントローラ)51に接続する。制御部51は、制御系の主要部を構成し、冷凍サイクルCcを含む冷却装置1の全体の制御を司る機能を有する。また、インバータ回路7iには、当該インバータ回路7iに備える放熱器の温度、即ち、インバータ放熱器温度Tiを検出する放熱器温度センサ43を付設するとともに、インバータ回路7iと直流電源回路7s間には、直流電源回路7sからインバータ回路7iに流入するインバータ入力電流Iiの大きさを検出する電流検出器44を付設し、放熱器温度センサ43及び電流検出器44も制御部51に接続する。制御部51は、操作パネル等を用いた操作部及び液晶表示パネル等を用いた表示部が付属するとともに、CPU及びメモリ等を内蔵したコンピュータ機能を備え、予め格納した制御プログラムにより各種処理及び制御(シーケンス制御)を実行する。
次に、冷却装置1の動作を含む本実施形態に係る圧縮機制御方法について、各図を参照して説明する。
まず、冷却装置1の基本的な動作について説明する。今、冷却装置1は、通常の運転により正常動作が行われているものとする。この場合、冷却液回路Cmでは、送液ポンプ13の作動により、冷却液タンク11に貯留する冷却液Wが、冷却液供給ライン12sを介して被冷却物Hに供給されるとともに、被冷却物Hを熱交換により冷却した冷却液Wは、冷却液戻りライン12rを介して冷却液タンク11に戻される。この際、冷却液供給ライン12sを流れる冷却液Wは、冷却器(熱交換器)5により冷却される。即ち、冷却器5に流入した冷却液Wは、冷凍サイクルCcにおける冷却された冷媒との熱交換により冷却される。冷凍サイクルCcでは、圧縮機2の運転により冷媒が矢印Fc方向に循環し、冷凍サイクルCcによる冷媒冷却が行われる。なお、図5中、矢印Fw…は冷却液Wが流れる方向を示す。
そして、被冷却物Hに供給される冷却液Wの液温Twは、液温センサ16により検出され、制御部51に付与される。これにより、制御部51はインバータ回路7iに制御指令を付与し、電動モータ41の回転数(回転速度)を可変することにより、液温Twが設定した目標温度となるようにフィートバック制御する。この際、インバータ回路7iの入力部には、直流電源回路7sから直流電圧が付与され、インバータ回路7iは、内部のスイッチング素子により直流電圧をスイッチングする公知のインバータ制御を行う。
次に、本実施形態に係る圧縮機制御方法について、図1〜図3に示すフローチャート、及び図7(図6)に示すタイムチャートを参照して説明する。
本実施形態に係る圧縮機制御方法は、圧縮機2(電動モータ41)を保護するため、圧縮機2の回転数を制限する運転可能最高回転数Rmaxを設定するための制御方法であり、全体の処理手順を図1にフローチャートにより示す。
まず、不図示の運転スイッチのONにより圧縮機2の運転が開始するとともに、凝縮冷媒温度センサ34から検出される凝縮冷媒温度Tcが制御部51に取込まれる(ステップS1)。この際、凝縮冷媒温度Tcに係わるデータは、図6に示すように、所定のサンプリング周期Δtx〔s〕(例示は、1〔s〕)により取込まれ、運転開始から初期始動モードによる処理(制御)が行われる(ステップS2)。この初期始動モードによる処理手順を、図2に示すフローチャートを参照して説明する。
初期始動モードでは、予め、凝縮冷媒温度Tcに対する始動時温度監視値Tcc、二つの異なる監視時間Δta,Δtb、及び運転可能最高回転数Rmaxを段階的に増加させるための回転数Rs,Ra,Rbをそれぞれ設定する。例示の場合、始動時温度監視値Tccは52〔℃〕、監視時間Δtaは120〔s〕、監視時間Δtbは270〔s〕、回転数(初期回転数)Rsは1800〔rpm〕、回転数(第一回転数)Raは2700〔rpm〕、回転数(最高回転数)Rbは3000〔rpm〕である。
初期始動モードでは、運転開始により、制御部51は圧縮機2に対する運転可能最高回転数Rmaxを初期回転数Rsに設定する(ステップS21)。図7中、運転開始時点をtsで示す。また、制御部51は運転開始から監視時間Δtaを計時し、監視時間Δtaを経過したなら、凝縮冷媒温度Tcが始動時温度監視値Tcc以下である否か、即ち、Tc≦Tccの条件を満たすか否かを判断する(ステップS22,S23)。そして、Tc≦Tccの条件を満たしていれば、運転可能最高回転数Rmaxを初期回転数Rsから第一回転数Raに増加させる制御(処理)を行う(ステップS24)。しかし、監視時間Δtaが経過しても、Tc≦Tccの条件を満たしていなければ、運転可能最高回転数Rmaxを初期回転数Rsに維持する(ステップS25)。Tc≦Tccの条件を満たすか否かの判断は、以後、継続して行い、Tc≦Tccの条件を満たした時点で第一回転数Raに増加させる処理を行う。この監視時間Δtaに基づく制御が第1ステップとなる。
さらに、制御部51が計時を継続し、運転開始時点tsから監視時間Δtbが経過したなら、第一回転数Raが設定されているか否かを判断する(ステップS26,S27)。この際、第一回転数Raが設定されていれば、運転可能最高回転数Rmaxを第一回転数Raから更に最高回転数Rbに増加させる制御(処理)を行う(ステップS28)。しかし、監視時間Δtbが経過した時点でも初期回転数Rsのままであれば、運転可能最高回転数Rmaxを初期回転数Rsに維持する(ステップS25)。監視時間Δtaの経過後における監視時間Δtbに基づく制御が第2ステップとなる。図7中、実線で示す運転可能最高回転数Rmaxに係わる変化データQpが、凝縮冷媒温度Tcが始動時温度監視値Tcc以下の場合を示すとともに、仮想線で示す運転可能最高回転数Rmaxに係わる変化データQoが、凝縮冷媒温度Tcが始動時温度監視値Tccを越えている場合を示す。また、図7中、監視時間Δtaの経過時点をtc1で示すとともに、監視時間Δtbの経過時点をtc2で示す。
ところで、このような初期始動モードによる制御を行う理由は次のとおりである。即ち、通常、圧縮機2を始動する際には、始動時における圧縮機2に対する潤滑オイルの供給を確保し、潤滑オイルが冷媒に混入するのを防止するため、運転可能最高回転数Rmaxを初期回転数Rsから段階的に増加させることにより実際の回転数を制限している。しかし、本実施形態による圧縮機制御方法では、基本的に凝縮冷媒温度Tcに基づいて運転可能最高回転数Rmaxを設定するため、周囲温度が高く、凝縮冷媒温度Tcが急上昇したような場合、運転可能最高回転数Rmaxを過度に下げてしまう不具合を生じる。そこで、初期始動モードによる制御を行うことにより冷却能力の低下を防止している。なお、初期始動モードは第1ステップ及び第2ステップを経て終了する(ステップS3,S4)。
よって、このような初期始動モードによる制御を行えば、予め凝縮冷媒温度Tcに対する始動時温度監視値Tccを設定し、圧縮機2を始動する際に、凝縮冷媒温度Tcを検出するとともに、圧縮機2の始動開始時点tsから、監視時間Δta,Δtbの経過時点tc1,tc2における凝縮冷媒温度Tcが始動時温度監視値Tcc以下であることを条件に、運転可能最高回転数Rmaxを設定した初期回転数Rsから順次段階的に増加させるため、始動時における圧縮機2に対する潤滑オイルの供給を確保し、潤滑オイルが冷媒に混入するのを防止できることに加え、周囲温度が高い環境下であっても、凝縮冷媒温度Tcが急上昇し、運転可能最高回転数Rmaxを過度に下げることにより冷却能力を低下させてしまう不具合を回避できる利点がある。
他方、初期始動モードの第1ステップが終了したなら、初期始動モードと並行して通常運転モードにより凝縮冷媒温度Tcに基づく圧縮機2に対する制御が行われる(ステップS3,S5)。この通常運転モードによる処理手順ついて、図3に示すフローチャートを参照して説明する。
通常運転モードでは、予め、二つの異なる上限側温度監視値Tu1,Tu2、一つの下限側温度監視値Td1、吐出冷媒温度Toに対する温度設定値Tos、インバータ放熱器温度Tiに対する温度設定値Tis、圧縮機2に対する運転可能最高回転数Rmaxを段階的に減少させるための単位回転数Ruc、運転可能最高回転数Rmaxを段階的に増加させるための単位回転数Rdcをそれぞれ設定する。例示の場合、上限側温度監視値Tu1は52〔℃〕、上限側温度監視値Tu2は53〔℃〕、下限側温度監視値Td1は50〔℃〕、温度設定値Tosは95〔℃〕、温度設定値Tisは80〔℃〕、単位回転数Rucは240〔rpm〕、単位回転数Rdcは90〔rpm〕である。
通常運転モードでは、制御部51は圧縮機2に対する運転可能最高回転数Rmaxを凝縮冷媒温度Tcに基づき段階的に可変設定する。この際、運転可能最高回転数Rmaxを減少又は増加させる制御(処理)は、前回行った減少又は増加させる制御(処理)から所定のインターバル時間Δti(例示は、60〔s〕)が経過していることを条件に行う(ステップS31)。これにより、運転可能最高回転数Rmaxを減少させる次の制御を安定に行うことができる。
まず、凝縮冷媒温度Tcが下限側温度監視値Td1以下まで低下した場合、即ち、Tc≦Td1の条件を満たす場合を想定する(ステップS32)。この場合、この条件に加え、制御部51は、吐出冷媒温度センサ33から得る吐出冷媒温度Toが温度設定値Tos以下(To≦Tos)であること(ステップS33),放熱器温度センサ43から得るインバータ放熱器温度Tiが温度設定値Tis以下(Ti≦Tis)であること(ステップS34),及び圧縮機2の回路数が運転可能最高回転数Rmaxになっていること(ステップS35)の全てを満たすことを条件に、現在の運転可能最高回転数Rmaxを単位回転数Rdcだけ増加させる制御(処理)を行う(ステップS36)。図7中、tc4が、Tc≦Td1の条件を満たした時点を示す。このように、運転可能最高回転数Rmaxを増加させる制御として、少なくとも、下限側温度監視値Td1になったこと,吐出冷媒温度Toが温度設定値Tos以下であること及びインバータ放熱器温度Tiが温度設定値Tis以下であることを条件に行う制御を含ませれば、下限側温度監視値Td1のみで判断する場合に比べて、より確実で信頼性の高い制御を行うことができる。
一方、凝縮冷媒温度Tcが上限側温度監視値Tu1以上の場合、即ち、Tc≧Tu1の条件を満たす場合を想定する(ステップS37)。この場合、この条件に加え、制御部51は、凝縮冷媒温度Tcの上昇率ΔTcが上昇率監視値Du以上(ΔTc≧Du)であること(ステップ38)の双方を満たすことを条件に、現在の運転可能最高回転数Rmaxを単位回転数Rucだけ減少させる制御(処理)を行う(ステップS39)。上昇率ΔTcは、図6に示すように、現在の凝縮冷媒温度Tcが、例えば、サンプリング時点t7の凝縮冷媒温度Tcの場合、直前5回のサンプリング時点t2〜t6における凝縮冷媒温度Tc…の平均値Tcaとの偏差を上昇率ΔTcとして用いる。上限側温度監視値Tu1は、正規の上限側温度監視値Tu2よりも低い温度に設定するが、上昇率ΔTcが大きければ、正規の上限側温度監視値Tu2に達する可能性が高いと判断できることから、上限側温度監視値Tu1と上昇率監視値Duを併用した制御を行う。このような制御により、正規の上限側温度監視値Tu2になる手前の時点でも単位回転数Rucだけ減少させることができるため、より確実で信頼性の高い制御を行うことができる。
また、凝縮冷媒温度Tcが上限側温度監視値Tu2以上の場合、即ち、Tu2<Tcの条件を満たす場合を想定する(ステップS40)。この場合も、現在の運転可能最高回転数Rmaxを単位回転数Rucだけ減少させる制御(処理)を行う(ステップS39)。上限側温度監視値Tu2は、凝縮冷媒温度Tcのみで判断する、いわば正規の上限側温度監視値となる。図7中、tc3が、Tc≧Tu1の条件及びΔTc≧Duの条件、又はTu2<Tcの条件を満たした時点を示す。
よって、このような本実施形態に係る圧縮機制御方法によれば、圧縮機2の運転中に、凝縮冷媒温度Tcを検出するとともに、当該凝縮冷媒温度Tcが少なくとも各上限側温度監視値Tu1,Tu2になったなら圧縮機2に対する運転可能最高回転数Rmaxを単位回転数Rucだけ順次段階的に減少させ、かつ少なくとも各下限側温度監視値Td1になったなら運転可能最高回転数Rmaxを単位回転数Rdcだけ順次段階的に増加させる制御を行うため、圧縮機2のオーバーロードを回避できる的確(最適)な運転可能最高回転数Rmaxを設定することができ、もって、圧縮機2の動作効率向上及び耐久性向上に寄与できる。また、周囲温度の高い環境下であっても冷媒圧力に対する制限(制御)を的確に行うことができるため、上限高圧による高圧圧力スイッチのONを可及的に回避できる。この結果、冷却温度に対する高い制御精度を維持できるとともに、周囲温度が高い環境下での安定した動作を確保できる。
他方、通常運転モードによる運転中に圧縮機2の停止条件が発生した場合には圧縮機2が停止する(ステップS6,S7)。この場合、圧縮機2の停止条件が運転スイッチをOFFにした運転終了によるものであれば、冷却装置1の運転は終了する(ステップS8)。その他の停止条件としては、温度制御上の停止条件に基づく停止をはじめ、凝縮冷媒温度Tcが上限温度Tcu以上になったとき,又は凝縮冷媒温度Tcの上昇率ΔTcが予め設定した上昇率監視値ΔTct以上であること,さらに、インバータ回路7iへの入力電流値が設定した上限電流値を越えたこと、等がある。これらの停止条件により停止した場合には、停止条件の発生が解除されることにより運転が再開される。そして、再開時には、圧縮機2が始動するとともに、中断始動モードによる処理が行われる(ステップS9,S10)。この中断始動モードは、前述した初期始動モードと同じであるが、必要により一部の設定値を異ならせている。したがって、中断始動モードには、図2に示すフローチャートをそのまま適用することができる。このように、圧縮機2の始動には、運転終了に基づく停止からの始動又は運転中の制御に基づく停止からの始動が含まれる。
以上、最良の実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,手法,数量,数値等において、本発明の要旨を逸脱しない範囲で任意に、変更,追加,削除することができる。例えば、二つの上限側温度監視値Tu1,Tu2を設定した場合を示したが、一つ又は三つ以上の上限側温度監視値を設定してもよいし、一つの下限側温度監視値Td1を設定した場合を示したが、二つ以上の下限側温度監視値を設定してもよい。同様に、二つの監視時間Δta,Δtbを設定した場合を示したが、一つ又は三つ以上の監視時間を設定してもよい。また、単位回転数Rucの大きさは同一であってもよいし、温度領域等によって異ならせてもよい。同様に単位回転数Rdcの大きさも同一であってもよいし、温度領域等によって異ならせてもよい。さらに、電動モータ41は直流モータを例示したが交流モータであってもよく、その種類は問わないとともに、インバータ回路7i(インバータユニット7)も同様の機能を有する各種タイプにより構成できる。なお、冷却装置1として図4(図5)に示すタイプを例示したが、本発明に係る圧縮機制御方法は、例示以外の各種タイプの冷却装置に対しても同様に利用することができる。
本発明の最良の実施形態に係る圧縮機制御方法の全体の処理手順を示すフローチャート、 同圧縮機制御方法における初期始動モード(中断始動モード)による処理手順を示すフローチャート、 同圧縮機制御方法における通常運転モードによる処理手順を示すフローチャート、 同圧縮機制御方法を実施する冷却装置の全体構成図、 同冷却装置における冷却液回路の構成図、 同圧縮機制御方法で用いる凝縮冷媒温度の取込み及び上昇率を説明するためのタイムチャート、 同圧縮機制御方法により制御される運転可能最高回転数の変化データを示すタイムチャート、
符号の説明
1:冷却装置,2:圧縮機,3:凝縮器,4:膨張弁,5:熱交換器,7:インバータユニット,Cc:冷凍サイクル,Tc:凝縮冷媒温度,Tu1:上限側温度監視値,Tu2:上限側温度監視値,Td1:下限側温度監視値,To:吐出冷媒温度,Tos:温度設定値,Ti:インバータ放熱器温度,Tis:温度設定値,Tcc:始動時温度監視値,Rmax:運転可能最高回転数,Ruc:単位回転数,Rdc:単位回転数,Rs:初期回転数,ΔTc:凝縮冷媒温度の上昇率,Du:上昇率監視値,ts:始動開始時点,Δti:インターバル時間,Δta:監視時間,Δtb:監視時間,Δtx:サンプリング間隔,Tca:平均値

Claims (5)

  1. 少なくとも、インバータ制御される圧縮機,凝縮器,膨張弁及び熱交換器を接続して冷媒を循環させる冷凍サイクルを用いた冷却装置における前記圧縮機を制御する冷却装置の圧縮機制御方法において、予め前記圧縮機の運転中における前記凝縮器から吐出する冷媒の温度(凝縮冷媒温度)に対する一又は二以上の異なる上限側温度監視値及び一又は二以上の異なる下限側温度監視値を設定し、前記圧縮機の運転中に、前記凝縮冷媒温度を検出するとともに、当該凝縮冷媒温度が前記上限側温度監視値になったこと及び前記凝縮冷媒温度の上昇率が予め設定した上昇率監視値以上であることを条件に、前記圧縮機に対する運転可能最高回転数を単位回転数だけ順次段階的に減少させ、他方、前記下限側温度監視値になったこと及び前記圧縮機を制御するインバータユニットのインバータ放熱器温度が予め設定した温度設定値以下であることを条件に、前記運転可能最高回転数を単位回転数だけ順次段階的に増加させる制御を、前回行った前記運転可能最高回転数を増加又は減少させる制御から所定のインターバル時間が経過していることを条件に行うことを特徴とする冷却装置の圧縮機制御方法。
  2. 前記上昇率には、所定のサンプリング間隔により順次検出した凝縮冷媒温度における現在の検出値とこの検出値の直前における複数の検出値の平均値の偏差を用いることを特徴とする請求項1記載の冷却装置の圧縮機制御方法。
  3. 前記運転可能最高回転数を単位回転数だけ増加させる制御には、少なくとも、前記下限側温度監視値になったこと,前記圧縮機から吐出する冷媒の温度(吐出冷媒温度)が予め設定した温度設定値以下であること及び前記圧縮機を制御するインバータユニットのインバータ放熱器温度が予め設定した温度設定値以下であることを条件に行う制御を含むことを特徴とする請求項1記載の冷却装置の圧縮機制御方法。
  4. 予め前記凝縮冷媒温度に対する始動時温度監視値を設定し、前記圧縮機を始動する際に、前記凝縮冷媒温度を検出するとともに、前記圧縮機の始動開始時点から、一又は二以上の異なる監視時間が経過した時点における前記凝縮冷媒温度が前記始動時温度監視値以下であることを条件に、前記運転可能最高回転数を予め設定した初期回転数から順次段階的に増加させる制御を行うことを特徴とする請求項1記載の冷却装置の圧縮機制御方法。
  5. 前記圧縮機の始動には、運転終了に基づく停止からの始動又は運転中の制御に基づく停止からの始動を含むことを特徴とする請求項4記載の冷却装置の圧縮機制御方法。
JP2007227473A 2007-09-03 2007-09-03 冷却装置の圧縮機制御方法 Active JP4976238B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227473A JP4976238B2 (ja) 2007-09-03 2007-09-03 冷却装置の圧縮機制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227473A JP4976238B2 (ja) 2007-09-03 2007-09-03 冷却装置の圧縮機制御方法

Publications (2)

Publication Number Publication Date
JP2009058196A JP2009058196A (ja) 2009-03-19
JP4976238B2 true JP4976238B2 (ja) 2012-07-18

Family

ID=40554089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227473A Active JP4976238B2 (ja) 2007-09-03 2007-09-03 冷却装置の圧縮機制御方法

Country Status (1)

Country Link
JP (1) JP4976238B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203541A (ja) * 2014-04-15 2015-11-16 サンポット株式会社 ヒートポンプシステム
CN111457544B (zh) * 2020-04-20 2021-10-15 宁波奥克斯电气股份有限公司 一种空调运行方法及空调器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842020B2 (ja) * 1992-03-09 1998-12-24 ダイキン工業株式会社 空気調和装置の運転制御装置
JP3097323B2 (ja) * 1992-06-26 2000-10-10 ダイキン工業株式会社 空気調和装置の運転制御装置

Also Published As

Publication number Publication date
JP2009058196A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5626918B2 (ja) 補助ヒータ制御装置及び加熱流体利用システム及び補助ヒータ制御方法
JP5445766B2 (ja) 冷却装置及びその制御方法
US20060225876A1 (en) Constant temperature controller
CN112018471B (zh) 电池包液冷的控制方法及装置
JP2007333370A (ja) 空気調和機及びその制御方法
JP2009058199A (ja) 冷却装置
JP5816422B2 (ja) 冷凍装置の排熱利用システム
CN105890246A (zh) 用于冷却工作流体的适应性温度控制系统
CN100445561C (zh) 冷冻装置用螺杆压缩机
JP4976238B2 (ja) 冷却装置の圧縮機制御方法
JP4535933B2 (ja) 空気調和装置
JP3597053B2 (ja) 空気調和機
JP4970199B2 (ja) 冷却装置の制御方法
JP4976239B2 (ja) 冷却装置の圧縮機保護方法
JP2007024013A (ja) 内燃機関の冷却装置
JP4976240B2 (ja) 冷却装置の圧縮機始動方法
JP2003222394A (ja) ヒートポンプ式給湯機
JP2005248730A (ja) 電動圧縮機
JP2010145035A (ja) 冷却装置
JP5455338B2 (ja) 冷却塔及び熱源機システム
JP3912035B2 (ja) ヒートポンプ給湯機
JP2007225226A (ja) 冷却装置の制御方法
JP4678310B2 (ja) 冷却液循環装置
JP5478403B2 (ja) ヒートポンプ給湯装置
JP2006207893A (ja) 冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

R150 Certificate of patent or registration of utility model

Ref document number: 4976238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250