JP4971672B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP4971672B2
JP4971672B2 JP2006121326A JP2006121326A JP4971672B2 JP 4971672 B2 JP4971672 B2 JP 4971672B2 JP 2006121326 A JP2006121326 A JP 2006121326A JP 2006121326 A JP2006121326 A JP 2006121326A JP 4971672 B2 JP4971672 B2 JP 4971672B2
Authority
JP
Japan
Prior art keywords
light
led element
conversion member
light emitting
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006121326A
Other languages
Japanese (ja)
Other versions
JP2007103901A (en
Inventor
健一郎 田中
隆夫 林
圭一 山崎
洋二 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006121326A priority Critical patent/JP4971672B2/en
Publication of JP2007103901A publication Critical patent/JP2007103901A/en
Application granted granted Critical
Publication of JP4971672B2 publication Critical patent/JP4971672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光装置に関するものである。   The present invention relates to a light emitting device.

従来から、発光層の材料として窒化物系化合物半導体材料を採用したLEDチップと、LEDチップを収納する凹所が一表面に形成され凹所の内底面に対向する形でLEDチップが実装された実装基板と、LEDチップから放射された光によって励起されてLEDチップの発光ピーク波長とは異なる発光ピーク波長の光(つまり、LEDチップの発光色とは異なる色の光)を放射する蛍光体を分散させた樹脂の成形品からなる平板状の波長変換部材(色変換部材)とを備え、LEDチップから放射された光と色変換部材で色変換された光との混色光が得られる発光装置が提案されている(例えば、特許文献1参照)。   Conventionally, an LED chip that employs a nitride compound semiconductor material as the material of the light emitting layer and a recess that houses the LED chip are formed on one surface, and the LED chip is mounted facing the inner bottom surface of the recess. A phosphor that emits light having a light emission peak wavelength different from the light emission peak wavelength of the LED chip (that is, light having a color different from the light emission color of the LED chip) excited by light emitted from the mounting substrate and the LED chip. A light emitting device comprising a flat wavelength conversion member (color conversion member) made of a dispersed resin molded product and capable of obtaining mixed color light from light emitted from an LED chip and light color-converted by the color conversion member Has been proposed (see, for example, Patent Document 1).

ここにおいて、上記特許文献1に記載されたLEDチップは、青色LEDチップもしくは紫外LEDチップであって、発光層から放射される光に対して透明なサファイア基板からなる結晶成長用基板の一表面側にn形半導体層と発光層とp形半導体層との積層構造を有する発光部がエピタキシャル成長技術を利用して形成されており、実装基板の凹所の内底面に発光部を対向させた形でフリップチップ実装することで、結晶成長用基板の他表面を光取り出し面としている。また、上記特許文献1に記載された発光装置では、色変換部材が実装基板の上記一表面側において凹所を閉塞する形で配設されており、LEDチップと色変換部材とが離間している。
特開2005−228996号公報
Here, the LED chip described in Patent Document 1 is a blue LED chip or an ultraviolet LED chip, and is one surface side of a crystal growth substrate made of a sapphire substrate that is transparent to light emitted from the light emitting layer. A light emitting portion having a stacked structure of an n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer is formed using an epitaxial growth technique, and the light emitting portion is opposed to the inner bottom surface of the recess of the mounting substrate. By flip-chip mounting, the other surface of the crystal growth substrate is used as a light extraction surface. Further, in the light emitting device described in Patent Document 1, the color conversion member is disposed so as to close the recess on the one surface side of the mounting substrate, and the LED chip and the color conversion member are separated from each other. Yes.
JP 2005-228996 A

ところで、LEDチップの発光層から放射される光は略等方的に放射されるが、上記特許文献1に記載された発光装置では、発光層から放射された光の一部が結晶成長用基板を通過せずに色変換部材に到達するので、結晶成長用基板を通過して色変換部材に入射する光と結晶成長用基板を通過せずに色変換部材に入射する光との光路長差が大きく、色変換部材における光入射面に入射する光の光強度が面内で均一にならず、色変換部材の場所によってLEDチップからの光と蛍光体からの光との割合がばらついて、色むらが生じていた。また、上記特許文献1に記載された発光装置では、発光層から放射され結晶成長用基板を通過する光であっても、結晶成長用基板の上記他表面から出射される光と結晶成長用基板の側面から出射される光とで光強度差および光路長差が生じ、この光強度差および光路長差も色むらの原因となっていた。   By the way, although the light emitted from the light emitting layer of the LED chip is emitted substantially isotropically, in the light emitting device described in Patent Document 1, a part of the light emitted from the light emitting layer is a crystal growth substrate. Difference between the light passing through the crystal growth substrate and entering the color conversion member and the light entering the color conversion member without passing through the crystal growth substrate. The light intensity of the light incident on the light incident surface in the color conversion member is not uniform in the surface, the ratio of the light from the LED chip and the light from the phosphor varies depending on the location of the color conversion member, Color unevenness occurred. Further, in the light emitting device described in Patent Document 1, even if the light is emitted from the light emitting layer and passes through the crystal growth substrate, the light emitted from the other surface of the crystal growth substrate and the crystal growth substrate A light intensity difference and an optical path length difference are generated between the light emitted from the side surfaces of the light source, and the light intensity difference and the optical path length difference also cause color unevenness.

本発明は上記事由に鑑みて為されたものであり、その目的は、色むらを低減できる発光装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a light-emitting device capable of reducing color unevenness.

請求項1の発明は、n形半導体層と発光層とp形半導体層との積層構造を有する発光部が支持基板上に設けられ当該支持基板が発光層から放射された光に対して不透明なLED素子と、LED素子の光取り出し面に重ねて配置されLED素子から放射された光によって励起されてLED素子の発光色とは異なる色の光を放射するシート状の色変換部材とを備えてなり、LED素子は、支持基板が導電性基板からなり、当該導電性基板が一方の電極を構成し、他方の電極が発光部に対して支持基板側とは反対側に発光部よりも小さなサイズで形成されてなり、色変換部材は、前記他方の電極の表面を露出させる露出部が形成されてなり、色変換部材における前記露出部が厚み方向に貫通する貫通孔であり、LED素子は、前記他方の電極の中央部に他の部位に比べて突出した突台部が設けられ、色変換部材が前記光取り出し面に重ねて配置された後で突台部の先端面に金属細線がボンディングされてなることを特徴とする。 According to the first aspect of the present invention, a light-emitting portion having a stacked structure of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer is provided on a support substrate, and the support substrate is opaque to light emitted from the light-emitting layer. An LED element, and a sheet-like color conversion member that is arranged on the light extraction surface of the LED element and is excited by light emitted from the LED element and emits light of a color different from the emission color of the LED element In the LED element, the support substrate is made of a conductive substrate, the conductive substrate constitutes one electrode, and the other electrode is smaller than the light emitting unit on the side opposite to the support substrate side with respect to the light emitting unit. The color conversion member is formed with an exposed portion that exposes the surface of the other electrode, and the exposed portion of the color conversion member is a through hole that penetrates in the thickness direction. Center of the other electrode Other support block which projects compared to sites are provided, and wherein a metal thin wire on the distal end surface of the support block after the color conversion member is disposed to overlap on the light extraction surface is formed by bonding To do.

この発明によれば、LED素子における支持基板が発光層から放射された光に対して不透明なので、発光層から放射された光が支持基板を通過して色変換部材へ到達するのを防止することができ、しかも、LED素子から放射された光によって励起されてLED素子の発光色とは異なる色の光を放射するシート状の色変換部材がLED素子の光取り出し面に重ねて配置されているので、色変換部材の光入射面に入射する光の光路長差を小さくすることができ、色変換部材における光入射面に入射する光の光強度が面内で略均一になるから、色むらを低減できる。また、色変換部材の平面サイズの小型化を図れるので、色変換部材の材料コストを低減でき、低コスト化を図れる。さらに、LED素子と色変換部材とで構成される光源のサイズがLED素子の平面サイズと同等になるので、例えば、LED素子と色変換部材とで構成される光源から放射される光を集光レンズで集光するようにした場合のスポット径をより小さくすることが可能となる。また、この発明によれば、LED素子は、支持基板が導電性基板からなり、当該導電性基板が一方の電極を構成し、他方の電極が発光部に対して支持基板側とは反対側に発光部よりも小さなサイズで形成されてなり、色変換部材は、前記他方の電極の表面を露出させる露出部が形成されてなるので、色変換部材をLED素子に重ねて配置した後で、他方の電極にボンディングワイヤをボンディングすることができる。また、この発明によれば、色変換部材における前記露出部が厚み方向に貫通する貫通孔であり、LED素子は、前記他方の電極の中央部に他の部位に比べて突出した突台部が設けられ、色変換部材が前記光取り出し面に重ねて配置された後で突台部の先端面に金属細線がボンディングされてなるから、前記他方の電極に電気的に接続される金属細線は前記他方の電極の中央部に設けられた突台部の先端面にボンディングされるので、色変換部材をLED素子に対して接着剤により固着する際に接着剤が前記他方の電極における金属細線の接合面まで這い上がるのを防止でき、金属細線のボンディング不良を低減することができる。 According to this invention, since the support substrate in the LED element is opaque to the light emitted from the light emitting layer, it is possible to prevent the light emitted from the light emitting layer from passing through the support substrate and reaching the color conversion member. In addition, a sheet-like color conversion member that is excited by the light emitted from the LED element and emits light of a color different from the emission color of the LED element is disposed to overlap the light extraction surface of the LED element. Therefore, the optical path length difference of the light incident on the light incident surface of the color conversion member can be reduced, and the light intensity of the light incident on the light incident surface of the color conversion member becomes substantially uniform in the surface. Can be reduced. Moreover, since the planar size of the color conversion member can be reduced, the material cost of the color conversion member can be reduced, and the cost can be reduced. Furthermore, since the size of the light source composed of the LED element and the color conversion member is equal to the planar size of the LED element, for example, the light emitted from the light source composed of the LED element and the color conversion member is collected. It is possible to further reduce the spot diameter when the light is condensed by the lens . Further, according to the present invention, in the LED element, the support substrate is made of a conductive substrate, the conductive substrate constitutes one electrode, and the other electrode is on the side opposite to the support substrate side with respect to the light emitting part. Since the color conversion member is formed with an exposed portion that exposes the surface of the other electrode, after the color conversion member is placed over the LED element, the color conversion member is formed in a size smaller than the light emitting portion. Bonding wires can be bonded to the electrodes. Further, according to the present invention, the exposed portion of the color conversion member is a through-hole penetrating in the thickness direction, and the LED element has a protruding portion that protrudes at the center of the other electrode as compared with other portions. Since the metal thin wire is bonded to the tip end surface of the projecting portion after the color conversion member is disposed on the light extraction surface, the metal thin wire electrically connected to the other electrode is Since it is bonded to the tip surface of the projecting portion provided at the center of the other electrode, when the color conversion member is fixed to the LED element with an adhesive, the adhesive joins the fine metal wires in the other electrode. Crawling up to the surface can be prevented, and bonding defects of fine metal wires can be reduced.

請求項2の発明は、請求項1の発明において、前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体を添加した透光性樹脂の成形品からなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the color conversion member is a phosphor that is excited by light emitted from the LED element and emits light having a color different from the emission color of the LED element. It consists of the molded product of the added translucent resin.

この発明によれば、前記LED素子の光取り出し面に、蛍光体を分散させた透光性樹脂を塗布する場合に比べて、蛍光体の濃度のばらつきを低減できて、色むらを低減できる。   According to this invention, as compared with the case where a light-transmitting resin in which a phosphor is dispersed is applied to the light extraction surface of the LED element, variation in the concentration of the phosphor can be reduced and color unevenness can be reduced.

請求項3の発明は、請求項1の発明において、前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体を添加したガラスの成形品からなることを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the color conversion member is a phosphor that is excited by light emitted from the LED element and emits light having a color different from the emission color of the LED element. It consists of a molded product of added glass.

この発明によれば、請求項2の発明に比べて、前記色変換部材の耐熱性および耐湿性を高めることができ、信頼性が向上する。   According to this invention, compared with the invention of Claim 2, the heat resistance and moisture resistance of the color conversion member can be increased, and the reliability is improved.

請求項4の発明は、請求項1の発明において、前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体を添加した半導体基板からなることを特徴とする。   According to a fourth aspect of the invention, in the first aspect of the invention, the color conversion member is a phosphor that is excited by light emitted from the LED element and emits light having a color different from the emission color of the LED element. It is characterized by comprising an added semiconductor substrate.

この発明によれば、請求項2の発明に比べて、前記色変換部材の耐熱性および耐湿性を高めることができ、信頼性が向上する。   According to this invention, compared with the invention of Claim 2, the heat resistance and moisture resistance of the color conversion member can be increased, and the reliability is improved.

請求項5の発明は、請求項1の発明において、前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体からなる蛍光体層を前記LED素子側の表面に被着したガラス基板からなることを特徴とする。   According to a fifth aspect of the present invention, in the first aspect, the color conversion member is excited by light emitted from the LED element, and emits light of a color different from the emission color of the LED element. It consists of the glass substrate which adhere | attached the fluorescent substance layer which adheres to the surface by the side of the said LED element.

この発明によれば、請求項2の発明に比べて、前記色変換部材の耐熱性および耐湿性を高めることができ、信頼性が向上し、また、請求項2,3の発明に比べて色むらを低減できる。   According to this invention, compared to the invention of claim 2, the heat resistance and moisture resistance of the color conversion member can be improved, the reliability is improved, and the color is improved as compared with the inventions of claims 2 and 3. Unevenness can be reduced.

請求項6の発明は、請求項1ないし請求項5の発明において、前記LED素子は、前記光取り出し面に、前記発光層から放射された光の全反射を抑制する微細凹凸構造が形成されてなることを特徴とする。   According to a sixth aspect of the present invention, in the first to fifth aspects of the invention, the LED element has a fine uneven structure for suppressing total reflection of light emitted from the light emitting layer on the light extraction surface. It is characterized by becoming.

この発明によれば、前記発光部における前記支持基板側とは反対に存在する媒質と前記発光部との屈折率差に起因した光の全反射を抑制することができ、光取り出し効率を高めることができるとともに、色むらをより低減できる。   According to the present invention, it is possible to suppress the total reflection of light caused by the difference in refractive index between the light emitting unit and the medium existing on the opposite side of the light emitting unit from the support substrate side, thereby increasing the light extraction efficiency. Color unevenness can be further reduced.

請求項7の発明は、請求項1ないし請求項6の発明において、前記色変換部材は、前記LED素子側とは反対側の光出射面に全反射抑制用の凹凸構造が形成されてなることを特徴とする。   According to a seventh aspect of the present invention, in the first to sixth aspects of the invention, the color conversion member is formed with a concavo-convex structure for suppressing total reflection on a light emitting surface opposite to the LED element side. It is characterized by.

この発明によれば、前記色変換部材の光出射面側に存在する媒質と前記色変換部材との屈折率差に起因した光の全反射を抑制することができ、光取り出し効率を高めることができるとともに、色むらをより低減できる。   According to the present invention, it is possible to suppress the total reflection of light caused by the difference in refractive index between the medium existing on the light exit surface side of the color conversion member and the color conversion member, and to increase the light extraction efficiency. In addition, color unevenness can be further reduced.

請求項8の発明は、請求項1ないし請求項7の発明において、前記LED素子は、前記他方の電極が前記発光層から放射された光に対して透明な透明電極であり、前記色変換部材は、前記露出部が厚み方向に貫通する貫通孔であり、当該貫通孔が、前記透明電極への金属細線のボンディング後に、前記色変換部材と同じ屈折率を有する材料からなる色変換部により封止されてなることを特徴とする。 The invention according to claim 8 is the color conversion member according to any one of claims 1 to 7 , wherein the LED element is a transparent electrode in which the other electrode is transparent to light emitted from the light emitting layer. Is a through-hole through which the exposed portion penetrates in the thickness direction, and the through-hole is sealed by a color conversion portion made of a material having the same refractive index as that of the color conversion member after bonding of the thin metal wire to the transparent electrode. It is characterized by being stopped.

この発明によれば、前記発光層から放射され前記他方の電極へ向かった光が前記他方の電極を通過して色変換部に入射し色変換されるので、前記他方の電極に対応する部位が局所的に暗くなるのを防止しつつ色むらを低減することができる。   According to the present invention, the light emitted from the light emitting layer and directed to the other electrode passes through the other electrode and enters the color conversion unit to be color-converted. Therefore, a portion corresponding to the other electrode is provided. Color unevenness can be reduced while preventing local darkening.

請求項9の発明は、請求項1ないし請求項8の発明において、前記導電性基板は、金属基板からなることを特徴とする。 The invention of claim 9 is the invention of claim 1 of stone according to claim 8, wherein the conductive substrate is characterized by comprising a metal substrate.

この発明によれば、前記発光層から前記導電性基板側へ放射された光を前記導電性基板である金属基板により反射することができ、光取り出し効率を高めることができる。   According to this invention, the light radiated | emitted from the said light emitting layer to the said electroconductive board | substrate side can be reflected by the metal substrate which is the said electroconductive board | substrate, and light extraction efficiency can be improved.

請求項1の発明では、色むらを低減できるという効果がある。   The invention according to claim 1 has an effect of reducing color unevenness.

(実施形態1)
本実施形態の発光装置は、図1に示すように、n形半導体層31と発光層32とp形半導体層33との積層構造を有する発光部3が矩形板状の導電性基板(本実施形態では、金属基板)2上に設けられ当該導電性基板2が発光層32から放射された光に対して不透明なLED素子1と、LED素子1の光取り出し面1aに重ねて配置されLED素子1から放射された光によって励起されてLED素子1の発光ピーク波長とは異なる発光ピーク波長の光を放射するシート状の波長変換部材5と、LED素子1および波長変換部材5により構成されるLEDユニットAが一表面側に実装された矩形板状の実装基板10とを備えている。ここにおいて、波長変換部材5は、LED素子1と略同じ平面サイズに形成されており、LED素子1の光取り出し面1aにシリコーン樹脂などの透光性材料を用いて固着されている。なお、本実施形態では、導電性基板2が支持基板を構成し、波長変換部材5が、LED素子1から放射された光によって励起されてLED素子1の発光色とは異なる色の光を放射する色変換部材を構成している。
(Embodiment 1)
As shown in FIG. 1, the light emitting device according to the present embodiment has a rectangular plate-like conductive substrate 3 (this embodiment) having a laminated structure of an n-type semiconductor layer 31, a light-emitting layer 32, and a p-type semiconductor layer 33. In the embodiment, the LED element 1 provided on the metal substrate 2 is disposed so as to overlap the LED element 1 opaque to the light emitted from the light emitting layer 32 and the light extraction surface 1a of the LED element 1. LED formed by a sheet-like wavelength conversion member 5 that is excited by light emitted from 1 and emits light having an emission peak wavelength different from the emission peak wavelength of the LED element 1, and the LED element 1 and the wavelength conversion member 5 The unit A includes a rectangular plate-shaped mounting substrate 10 mounted on one surface side. Here, the wavelength conversion member 5 is formed in substantially the same plane size as the LED element 1, and is fixed to the light extraction surface 1 a of the LED element 1 using a translucent material such as silicone resin. In the present embodiment, the conductive substrate 2 constitutes a support substrate, and the wavelength conversion member 5 is excited by the light emitted from the LED element 1 and emits light having a color different from the emission color of the LED element 1. The color conversion member is configured.

LED素子1は、発光層32の結晶材料としてInGaN系材料が採用され青色光を放射する青色LED素子であり、一方の電極(本実施形態では、アノード電極)を兼ねる導電性基板(本実施形態では、金属基板)2上に、p形GaN系材料からなるp形半導体層31とInGaN系材料からなる発光層32とn形GaN系材料からなるn形半導体層33との積層構造からなる発光部3が設けられ、発光部3の中央部上に他方の電極(本実施形態では、カソード電極)4が形成されている。要するに、上記他方の電極(以下、表面側電極と称す)4は、発光部3の平面サイズよりも小さなサイズに形成されている。ここにおいて、発光部3の平面形状は矩形状であり、表面側電極4の平面形状は円形状に形成されている。また、表面側電極4は、発光層32から放射される光に対して透明な透明電極により構成されている。なお、p形半導体層31、発光層32、n形半導体層33それぞれは、単層構造でもよいし、多層構造でもよい。 The LED element 1 is a blue LED element that employs an InGaN-based material as a crystal material of the light emitting layer 32 and emits blue light. Then, on the metal substrate 2, light emission having a stacked structure of a p-type semiconductor layer 31 made of a p-type GaN-based material, a light-emitting layer 32 made of an InGaN-based material, and an n-type semiconductor layer 33 made of an n-type GaN-based material. A portion 3 is provided, and the other electrode (a cathode electrode in this embodiment) 4 is formed on the central portion of the light emitting portion 3. In short, the other electrode (hereinafter referred to as a surface-side electrode) 4 is formed in a size smaller than the planar size of the light emitting unit 3. Here, the planar shape of the light emitting unit 3 is a rectangular shape, and the planar shape of the front surface side electrode 4 is formed in a circular shape. Further, the front-side electrode 4 is configured by a transparent electrode that is transparent to the light emitted from the light emitting layer 32. Each of the p-type semiconductor layer 31, the light emitting layer 32, and the n-type semiconductor layer 33 may have a single layer structure or a multilayer structure.

導電性基板2を構成する金属基板の材料としては、例えば、Ag,Cu,Au,Al,W,Rh,Moなどの導電性および熱伝導性に優れた金属材料を採用すればよく、導電性基板2は、金属基板と当該金属基板上に形成された金属薄膜(例えば、In薄膜、Sn薄膜など)とで構成してもよい。また、導電性基板2は、例えば、Si,GaN,SiC,ZnOなどの半導体材料からなる半導体基板と、当該半導体基板上に形成された金属薄膜(例えば、In薄膜、Sn薄膜など)とで構成してもよい。また、カソード電極4は、透明電極により構成されており、当該透明電極の材料としては、例えば、ITO,SnO,TiO,ZnO,In−ZnO系材料などを採用すればよい。 As a material of the metal substrate constituting the conductive substrate 2, for example, a metal material having excellent conductivity and thermal conductivity such as Ag, Cu, Au, Al, W, Rh, Mo may be adopted. The substrate 2 may be composed of a metal substrate and a metal thin film (for example, an In thin film or a Sn thin film) formed on the metal substrate. The conductive substrate 2 includes a semiconductor substrate made of a semiconductor material such as Si, GaN, SiC, or ZnO, and a metal thin film (for example, an In thin film or an Sn thin film) formed on the semiconductor substrate. May be. The cathode electrode 4 is composed of a transparent electrode, as the material of the transparent electrode, for example, ITO, SnO 2, TiO 2 , ZnO, may be employed as an In 2 O 3 -ZnO based material.

LED素子1は、結晶成長用基板(例えば、サファイア基板、SiC基板など)の一表面側に、GaN系材料からなるバッファ層、n形半導体層33、発光層32、p形半導体層31をエピタキシャル成長法(例えば、MOVPE法など)によって順次成長させることで、結晶成長用基板の上記一表面側にn形半導体層33と発光層32とp形半導体層31との積層構造を有する発光部3を形成し、その後、発光部3と金属基板2とを接合し、続いて、発光部3から結晶成長用基板を除去し、さらにその後、発光部3上に表面側電極4を形成すればよい。ここにおいて、発光部3から結晶成長用基板を除去するにあたっては、レーザ光を結晶成長用基板の他表面側から結晶成長用基板を通してバッファ層へ照射することでバッファ層を熱分解して結晶成長用基板を剥離し(なお、剥離時の基板温度は例えば30℃〜100℃の温度範囲で適宜設定すればよい)、その後、n形半導体層33の表面に残存しているGaの塊を酸系の薬品によりエッチング除去すればよい。   In the LED element 1, a buffer layer made of a GaN-based material, an n-type semiconductor layer 33, a light emitting layer 32, and a p-type semiconductor layer 31 are epitaxially grown on one surface side of a crystal growth substrate (for example, sapphire substrate, SiC substrate, etc.). The light emitting unit 3 having a stacked structure of the n-type semiconductor layer 33, the light-emitting layer 32, and the p-type semiconductor layer 31 on the one surface side of the crystal growth substrate is sequentially grown by a method (for example, MOVPE method or the like). After that, the light emitting unit 3 and the metal substrate 2 are joined, then the crystal growth substrate is removed from the light emitting unit 3, and then the surface side electrode 4 is formed on the light emitting unit 3. Here, when removing the crystal growth substrate from the light emitting section 3, the buffer layer is thermally decomposed by irradiating the buffer layer with laser light from the other surface side of the crystal growth substrate through the crystal growth substrate. (The substrate temperature at the time of peeling may be set as appropriate within a temperature range of 30 ° C. to 100 ° C., for example), and then the Ga lump remaining on the surface of the n-type semiconductor layer 33 is acidified. Etching and removal may be performed with a chemical of the system.

なお、本実施形態では、発光部3の成長時に、n形半導体層33、発光層32、p形半導体層31の順で成長させているが、p形半導体層31、発光層32、n形半導体層33の順で成長させるようにしてもよく、この場合には、支持基板を構成する導電性基板2がカソード電極を兼ね、表面側電極4がアノード電極を構成することとなる。また、発光層3の結晶材料は、InGaN系材料に限らず、例えば、AlInGaN系材料,AlInN系材料,AlGaN系材料などを採用してもよく、3族元素の組成比を適宜設定したり、あるいは、Si,Ge,S,Seなどのn形不純物やZn,Mgなどのp形不純物を適宜ドーピングすることによって、発光色を所望の色に設定することが可能である。   In the present embodiment, the n-type semiconductor layer 33, the light-emitting layer 32, and the p-type semiconductor layer 31 are grown in this order when the light-emitting portion 3 is grown, but the p-type semiconductor layer 31, the light-emitting layer 32, and the n-type semiconductor layer 31 are grown. The semiconductor layers 33 may be grown in this order. In this case, the conductive substrate 2 constituting the support substrate also serves as the cathode electrode, and the surface-side electrode 4 constitutes the anode electrode. Further, the crystal material of the light emitting layer 3 is not limited to the InGaN-based material, and for example, an AlInGaN-based material, an AlInN-based material, an AlGaN-based material, or the like may be adopted, and the composition ratio of the group 3 element may be set as appropriate. Alternatively, the emission color can be set to a desired color by appropriately doping an n-type impurity such as Si, Ge, S, or Se or a p-type impurity such as Zn or Mg.

また、上述の実装基板10は、矩形板状の金属板11上の絶縁層12上にLED素子1への給電用の導体パターン13,14が形成されており、LED素子1の一方の電極を兼ねる導電性基板2が一方の導体パターン13と接合されて電気的に接続され、LED素子1の表面側電極4が金属細線(例えば、金細線、アルミニウム細線など)からなるボンディングワイヤ7を介して他方の導体パターン14と電気的に接続されている。ここにおいて、LED素子1と導電性基板2とは、例えば、AuSn,SnAgCuなどの鉛フリー半田などを用いて接合すればよい。なお、本実施形態では、金属板11の材料としてCuを採用しているが、金属板11の材料は熱伝導率の比較的高い金属材料であればよく、Cuに限らず、Alなどを採用してもよい。   Further, the mounting substrate 10 described above has conductor patterns 13 and 14 for feeding power to the LED element 1 formed on the insulating layer 12 on the rectangular metal plate 11, and one electrode of the LED element 1 is formed on the mounting layer 10. The conductive substrate 2 also serving as one conductor pattern 13 is joined and electrically connected, and the surface side electrode 4 of the LED element 1 is connected via a bonding wire 7 made of a metal fine wire (for example, a gold fine wire, an aluminum fine wire, etc.). It is electrically connected to the other conductor pattern 14. Here, the LED element 1 and the conductive substrate 2 may be joined using, for example, lead-free solder such as AuSn or SnAgCu. In this embodiment, Cu is used as the material of the metal plate 11. However, the material of the metal plate 11 may be a metal material having a relatively high thermal conductivity, and is not limited to Cu, and Al or the like is used. May be.

波長変換部材5は、LED素子1から放射された光によって励起されてLED素子1の発光色とは異なる色の光を放射する蛍光体(本実施形態では、ブロードな黄色系の光を放射する黄色蛍光体)を添加した透光性材料(例えば、シリコーン樹脂のような透光性樹脂)の成形品により構成してあり、厚みが略一定となっている。このような波長変換部材5を採用することで、LED素子1の光取り出し面1aに、蛍光体を分散させた透光性樹脂を塗布する場合に比べて、蛍光体の濃度のばらつきを低減できて、色むらを低減できる。ここにおいて、波長変換部材5の材料として用いる透光性材料は、シリコーン樹脂に限らず、例えば、アクリル樹脂やエポキシ樹脂などの他の透光性樹脂でもよいし、ガラスなどを採用してもよく、ガラスを採用した場合には、透光性樹脂を採用している場合に比べて、波長変換部材5の耐熱性および耐湿性を高めることができ、信頼性が向上する。また、波長変換部材5は、蛍光体を添加した半導体基板(例えば、GaN基板、SiC基板、ZnO基板などのLED素子1から放射される光に対して透明な半導体基板)でもよく、この場合にも耐熱性および耐湿性を高めることができ、信頼性が向上する。なお、黄色蛍光体としては、例えば、BaSiOなどのアルカリ土類珪酸塩系の蛍光体、YAl12などのアルミネート系の蛍光体、CaBOClなどのファロボレート系の蛍光体などを採用すればよい。 The wavelength conversion member 5 is a phosphor that emits light of a color different from the emission color of the LED element 1 when excited by the light emitted from the LED element 1 (in this embodiment, it emits broad yellow light). It is composed of a molded product of a translucent material (for example, translucent resin such as silicone resin) to which a yellow phosphor is added, and the thickness is substantially constant. By adopting such a wavelength conversion member 5, it is possible to reduce the variation in the concentration of the phosphor as compared with the case where a light-transmitting resin in which the phosphor is dispersed is applied to the light extraction surface 1a of the LED element 1. Color unevenness can be reduced. Here, the translucent material used as the material of the wavelength conversion member 5 is not limited to the silicone resin, and may be other translucent resin such as an acrylic resin or an epoxy resin, or may employ glass or the like. When glass is employed, the heat resistance and moisture resistance of the wavelength conversion member 5 can be increased and reliability is improved as compared with the case where a translucent resin is employed. Further, the wavelength conversion member 5 may be a semiconductor substrate to which a phosphor is added (for example, a semiconductor substrate transparent to light emitted from the LED element 1 such as a GaN substrate, a SiC substrate, a ZnO substrate). Also, heat resistance and moisture resistance can be improved, and reliability is improved. Examples of yellow phosphors include alkaline earth silicate phosphors such as Ba 2 SiO 4, aluminate phosphors such as Y 3 Al 5 O 12, and Faro such as Ca 2 BO 3 Cl 2. A borate phosphor may be used.

上述のLED素子1と波長変換部材5とで構成されるLEDユニットAは、LED素子1から放射された青色光と黄色蛍光体から放射された光とが波長変換部材5の光出射面を通して放射されることとなり、白色光を得ることができる。なお、LED素子1の発光色と蛍光体の発光色との組み合わせは特に限定するものではなく、例えば、波長変換部材5に用いる蛍光体は、黄色蛍光体に限らず、例えば、赤色蛍光体と緑色蛍光体とを併用すれば演色性の高い白色光を得ることができる。また、LED素子1として、紫外光を放射するLED素子を採用して、蛍光体として、赤色蛍光体と緑色蛍光体と青色蛍光体とを併用するようにしても白色光を得ることができる。   In the LED unit A composed of the LED element 1 and the wavelength conversion member 5 described above, the blue light emitted from the LED element 1 and the light emitted from the yellow phosphor are emitted through the light exit surface of the wavelength conversion member 5. As a result, white light can be obtained. In addition, the combination of the emission color of the LED element 1 and the emission color of the phosphor is not particularly limited. For example, the phosphor used for the wavelength conversion member 5 is not limited to the yellow phosphor, for example, a red phosphor and When used in combination with the green phosphor, white light with high color rendering can be obtained. Further, white light can be obtained even when an LED element that emits ultraviolet light is employed as the LED element 1 and a red phosphor, a green phosphor, and a blue phosphor are used in combination as the phosphor.

ところで、波長変換部材5は、LED素子1の表面側電極4を露出させる露出部として厚み方向に貫通する貫通孔5aが形成されている。貫通孔5aの開口形状は表面側電極4の平面形状よりもやや大きな円形状となっている。ここにおいて、波長変換部材5の厚みは表面側電極4の厚みよりも厚くなっており、LED素子1に波長変換部材5が重ねて配置されたLEDユニットAは、表面側電極4へのボンディングワイヤ7のボンディング後に、波長変換部材5と同じ蛍光体を分散させた透光性材料(例えば、シリコーン樹脂など)からなる色変換部6により貫通孔5aが封止されている。したがって、本実施形態の発光装置では、色変換部6から出射される光も波長変換部材5から出射される光と同様の白色光となり、表面側電極4に対応する部位が局所的に暗くなるのを防止しつつ色むらを低減することができる。ここで、色変換部6は、色変換部材たる波長変換部材5と同じ屈折率を有する材料により形成することが望ましい。ただし、色変換部6の屈折率について、波長変換部材5と同じ屈折率とは、色変換部6の屈折率が波長変換部材5の屈折率と完全に一致する場合に対して、反射損失が0.1%以内に収まる範囲内の屈折率であれば、波長変換部材5と同じ屈折率とみなすこととする。例えば、波長変換部材5の屈折率が1.5であり、色変換部6の屈折率が1.434〜1.566の範囲内(つまり、目的の屈折率±4.4%の範囲内)であれば、波長変換部材5と色変換部6との1つの界面での反射損失を0.05%以内とすることができ、2つの界面での合計の反射損失を0.1%以内とすることができる。なお、上述のようにLEDユニットAが実装基板10に実装された発光装置では、導体パターン13−導電性基板2−発光部3−表面側電極4−ボンディングワイヤ7−導体パターン14の電路が形成されることとなるので、LED素子1のアノード電極とカソード電極との間に順方向バイアス電圧が印加されるように導体パターン13,13間に電圧を印加することにより、LED素子1から青色光が放射され、波長変換部材5および色変換部6それぞれから青色光と黄色光とが出射されることとなる。   By the way, as for the wavelength conversion member 5, the through-hole 5a penetrated in the thickness direction as an exposed part which exposes the surface side electrode 4 of the LED element 1 is formed. The opening shape of the through-hole 5 a is a circular shape that is slightly larger than the planar shape of the surface-side electrode 4. Here, the wavelength conversion member 5 is thicker than the surface side electrode 4, and the LED unit A in which the wavelength conversion member 5 is placed on the LED element 1 is bonded to the surface side electrode 4. After bonding 7, the through-hole 5 a is sealed with a color conversion portion 6 made of a translucent material (for example, silicone resin) in which the same phosphor as the wavelength conversion member 5 is dispersed. Therefore, in the light emitting device of the present embodiment, the light emitted from the color conversion unit 6 is also white light similar to the light emitted from the wavelength conversion member 5, and the part corresponding to the surface side electrode 4 is locally darkened. It is possible to reduce color unevenness while preventing the occurrence of the above. Here, the color conversion unit 6 is preferably formed of a material having the same refractive index as that of the wavelength conversion member 5 serving as a color conversion member. However, with respect to the refractive index of the color conversion unit 6, the same refractive index as that of the wavelength conversion member 5 is a reflection loss compared to the case where the refractive index of the color conversion unit 6 completely matches the refractive index of the wavelength conversion member 5. If the refractive index is within a range that falls within 0.1%, the refractive index is regarded as the same as that of the wavelength conversion member 5. For example, the refractive index of the wavelength conversion member 5 is 1.5, and the refractive index of the color conversion unit 6 is in the range of 1.434 to 1.566 (that is, the target refractive index is within the range of ± 4.4%). If so, the reflection loss at one interface between the wavelength conversion member 5 and the color conversion unit 6 can be made within 0.05%, and the total reflection loss at the two interfaces can be made within 0.1%. can do. In the light emitting device in which the LED unit A is mounted on the mounting substrate 10 as described above, the electric path of the conductor pattern 13-the conductive substrate 2-the light emitting part 3-the surface side electrode 4-the bonding wire 7-the conductor pattern 14 is formed. Therefore, by applying a voltage between the conductor patterns 13 and 13 so that a forward bias voltage is applied between the anode electrode and the cathode electrode of the LED element 1, the blue light is emitted from the LED element 1. Is emitted, and blue light and yellow light are emitted from the wavelength conversion member 5 and the color conversion unit 6 respectively.

以下、上述の発光装置の製造方法について図2(a)〜(e)を参照しながら説明する。   Hereinafter, a method for manufacturing the above-described light-emitting device will be described with reference to FIGS.

まず、図2(a)に示すようにLED素子1と波長変換部材5とを用意し、その後、LED素子1の光取り出し面1a上にゲル状のシリコーン樹脂からなる接着剤を滴下してから、LED素子1の光取り出し面1a側に波長変換部材5を重ねて配置してLED素子1と波長変換部材5とを固着することによって、図2(b)に示す構造を得る。   First, as shown in FIG. 2A, the LED element 1 and the wavelength conversion member 5 are prepared, and then an adhesive composed of a gel-like silicone resin is dropped on the light extraction surface 1 a of the LED element 1. The wavelength conversion member 5 is placed on the light extraction surface 1a side of the LED element 1 and the LED element 1 and the wavelength conversion member 5 are fixed to obtain the structure shown in FIG.

その後、LEDユニットAを実装基板10上(本実施形態では、上述の導体パターン13上)に固着してから、LED素子1の表面側電極4と実装基板10の導体パターン14とをボンディングワイヤ7を介して電気的に接続することによって、図2(c)に示す構造を得る。   Thereafter, the LED unit A is fixed on the mounting substrate 10 (in this embodiment, on the above-described conductor pattern 13), and then the surface-side electrode 4 of the LED element 1 and the conductor pattern 14 of the mounting substrate 10 are bonded to the bonding wire 7. The structure shown in FIG. 2 (c) is obtained by electrically connecting via.

続いて、波長変換部材5の貫通孔5aに波長変換部材5と同じ蛍光体を添加した透光性材料を充填して当該透光性材料を硬化させることで色変換部6を形成することによって、図2(d)に示す構造の発光装置を得る。   Subsequently, by filling the through hole 5a of the wavelength conversion member 5 with a translucent material to which the same phosphor as the wavelength conversion member 5 is added and curing the translucent material, the color conversion unit 6 is formed. The light emitting device having the structure shown in FIG.

以上説明した本実施形態の発光装置では、LED素子1における導電性基板2が発光層32から放射された光に対して不透明なので、発光層32から放射された光が導電性基板2を通過して波長変換部材5へ到達するのを防止することができ、しかも、シート状の波長変換部材5がLED素子1の光取り出し面1aに重ねて配置されているので、波長変換部材5の光入射面に入射する光の光路長差を小さくすることができ、波長変換部材5における光入射面に入射する光の光強度が面内で略均一になるから、色むらを低減できる。また、波長変換部材5は、LED素子1の光取り出し面1aの直上のみに設けてあればよく、LED素子1の平面サイズと同じサイズでよいから、上記特許文献1のように実装基板の凹所を閉塞する平面サイズの波長変換部材に比べて、波長変換部材5の平面サイズの小型化を図れるので、波長変換部材5の材料コストを低減でき、低コスト化を図れるという利点もある。また、本実施形態の発光装置では、上述の導電性基板2が金属基板により構成されているので、発光層32から放射された導電性基板2側へ放射された光を発光部3直下の導電性基板2により反射することができ、光取り出し効率を高めることができる。また、本実施形態の発光装置では、LED素子1と波長変換部材5とで構成される光源のサイズがLED素子1の平面サイズと同等になるので、例えば、LED素子1と波長変換部材5とで構成される光源から放射される光を集光レンズで集光するようにした場合のスポット径をより小さくすることが可能となる。   In the light emitting device of the present embodiment described above, since the conductive substrate 2 in the LED element 1 is opaque to the light emitted from the light emitting layer 32, the light emitted from the light emitting layer 32 passes through the conductive substrate 2. And the sheet-like wavelength conversion member 5 is arranged so as to overlap the light extraction surface 1a of the LED element 1, so that the light incident on the wavelength conversion member 5 can be prevented. The difference in the optical path length of the light incident on the surface can be reduced, and the light intensity of the light incident on the light incident surface in the wavelength conversion member 5 becomes substantially uniform in the surface, so that color unevenness can be reduced. In addition, the wavelength conversion member 5 only needs to be provided directly above the light extraction surface 1a of the LED element 1, and may be the same size as the planar size of the LED element 1, so that the concave portion of the mounting substrate as in Patent Document 1 above. Compared with the wavelength conversion member having a planar size that closes the portion, the planar size of the wavelength conversion member 5 can be reduced, so that there is an advantage that the material cost of the wavelength conversion member 5 can be reduced and the cost can be reduced. Further, in the light emitting device of the present embodiment, since the conductive substrate 2 described above is composed of a metal substrate, the light emitted from the light emitting layer 32 to the conductive substrate 2 side is conducted directly under the light emitting unit 3. Can be reflected by the conductive substrate 2, and the light extraction efficiency can be increased. Moreover, in the light-emitting device of this embodiment, since the size of the light source comprised by the LED element 1 and the wavelength conversion member 5 becomes equivalent to the planar size of the LED element 1, for example, the LED element 1 and the wavelength conversion member 5 It is possible to make the spot diameter smaller when the light emitted from the light source constituted by is condensed by the condenser lens.

また、本実施形態の発光装置では、実装基板10の上記一表面側でLEDユニットAおよびLEDユニットAに電気的に接続されたボンディングワイヤ7を封止した封止材料(例えば、シリコーン樹脂、アクリル樹脂など)からなる凸レンズ状のレンズ部を設けるようにしてもよく、当該レンズ部を設けることにより光取り出し効率を高めることが可能となる。ここにおいて、封止材料は、LEDユニットAから放射される光に対して透明で波長変換部材5の屈折率と同等の屈折率を有する材料が好ましく、このような材料を採用することにより、波長変換部材5とレンズ部との界面で反射する光を低減でき、光取り出し効率を向上させることができる。   Further, in the light emitting device of the present embodiment, the sealing material (for example, silicone resin, acrylic resin) that seals the LED unit A and the bonding wire 7 electrically connected to the LED unit A on the one surface side of the mounting substrate 10. A convex lens-shaped lens portion made of resin or the like may be provided, and the light extraction efficiency can be increased by providing the lens portion. Here, the sealing material is preferably a material that is transparent to the light emitted from the LED unit A and has a refractive index equivalent to the refractive index of the wavelength conversion member 5. By adopting such a material, the wavelength can be reduced. The light reflected at the interface between the conversion member 5 and the lens portion can be reduced, and the light extraction efficiency can be improved.

(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図3に示すように、LED素子1の光取り出し面1aに、発光層32から放射された光の全反射を抑制する微細凹凸構造が形成されている点が相違する。なお、実施形態1と同様の構成要素には同一の符合を付して説明を省略する。
(Embodiment 2)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 3, the total reflection of light emitted from the light emitting layer 32 is suppressed on the light extraction surface 1 a of the LED element 1. The difference is that a fine relief structure is formed. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

ここにおいて、LED素子1の光取り出し面1aに形成する微細凹凸構造は、発光部3の厚み方向に沿った深さ方向において開口幅が徐々に狭くなった断面V字状の凹部が1次元周期構造を有するように形成されているが、2次元周期構造を有するように形成してもよい。なお、このような微細凹凸構造は、例えば、レーザ加工技術やエッチング技術やインプリントリソグラフィ技術などを利用して形成すればよい。   Here, the fine concavo-convex structure formed on the light extraction surface 1a of the LED element 1 has a V-shaped concave section whose opening width is gradually narrowed in the depth direction along the thickness direction of the light emitting section 3 in a one-dimensional cycle. Although it is formed to have a structure, it may be formed to have a two-dimensional periodic structure. Such a fine concavo-convex structure may be formed using, for example, a laser processing technique, an etching technique, an imprint lithography technique, or the like.

LED素子1の光取り出し面1aに形成する微細凹凸構造の周期は、発光部3の発光層32にて発光する光のピーク波長λの1/4〜100倍の範囲で適宜設定すればよく、例えば、微細凹凸構造の周期d(図3(b)参照)をλ/4〜λの範囲で設定した場合には、発光部3におけるn形半導体層33からなる第1の媒質(ここでは、n形GaN系材料)の屈折率をn、n形半導体層33に接する第2の媒質(ここでは、発光部3と波長変換部材5との間に介在しているシリコーン樹脂からなる接着層)の屈折率をnとし、図3(b)の左右方向における第1の媒質の幅をa、第2の媒質の幅をb、TE波に対する微細凹凸構造付近での有効屈折率を<n>とすれば、微細凹凸構造付近での有効屈折率<n>は下記の式で表すことができる。 What is necessary is just to set suitably the period of the fine concavo-convex structure formed in the light extraction surface 1a of the LED element 1 in the range of 1/4 to 100 times the peak wavelength λ of the light emitted from the light emitting layer 32 of the light emitting unit 3, For example, when the period d (see FIG. 3B) of the fine concavo-convex structure is set in the range of λ / 4 to λ, the first medium (here, the n-type semiconductor layer 33 in the light emitting unit 3) The refractive index of the n-type GaN-based material is n 1 , and an adhesive layer made of a silicone resin that is interposed between the light emitting unit 3 and the wavelength conversion member 5 in this case, in contact with the n-type semiconductor layer 33. ) Is n 2 , the width of the first medium in the left-right direction in FIG. 3B is a, the width of the second medium is b, and the effective refractive index near the fine concavo-convex structure with respect to the TE wave is < If n E >, the effective refractive index <n E > near the fine concavo-convex structure is expressed by the following formula. You can.

Figure 0004971672
Figure 0004971672

同様に、TM波に対する微細凹凸構造付近での有効屈折率を<n>とすれば、有効屈折率<n>は下記の式で表すことができる。 Similarly, if the effective refractive index near the fine concavo-convex structure with respect to the TM wave is <n M >, the effective refractive index <n M > can be expressed by the following equation.

Figure 0004971672
Figure 0004971672

ここで、上述の数1、数2から分かるように、本実施形態のLEDユニットAでは、上述の各有効屈折率<n>,<n>が、微細凹凸構造付近では発光部3の厚み方向に沿って徐々に変化することとなり、LED素子1の光取り出し面1aの両側の媒質の中間の値となるので、第1の媒質と第2の媒質との間に両者の中間の屈折率を有する薄膜層を介在させるのと同等となり、第1の媒質と第2の媒質との屈折率差に起因した全反射を低減することができ、光取り出し効率を高めることが可能となる。 Here, as can be seen from the above formulas 1 and 2, in the LED unit A of the present embodiment, the above-described effective refractive indexes <n E > and <n M > are similar to those of the light emitting unit 3 in the vicinity of the fine uneven structure. Since it gradually changes along the thickness direction and becomes an intermediate value between the media on both sides of the light extraction surface 1a of the LED element 1, the intermediate refraction between the first medium and the second medium. This is equivalent to interposing a thin film layer having a refractive index, so that total reflection due to the difference in refractive index between the first medium and the second medium can be reduced, and the light extraction efficiency can be increased.

また、微細凹凸構造の周期dを例えば2λ〜4λの範囲で設定した場合には、波動光学的な効果、つまり、回折光を用いることにより臨界角以上の反射される光を取り出すことができ光の取り出し効率が向上する。   Further, when the period d of the fine concavo-convex structure is set in the range of 2λ to 4λ, for example, the wave optical effect, that is, the light reflected from the critical angle or more can be extracted by using the diffracted light. The take-out efficiency is improved.

また、微細凹凸構造の周期dを例えば5λ〜100λの範囲で設定した場合には、幾何学的な効果、つまり、第1の媒質と第2の媒質との界面への入射角が臨界角未満となる表面の広面積化により、第1の媒質と第2の媒質との屈折率差に起因した全反射を低減することができ、光取り出し効率が向上する。   Further, when the period d of the fine concavo-convex structure is set within a range of 5λ to 100λ, for example, the geometric effect, that is, the incident angle to the interface between the first medium and the second medium is less than the critical angle. By increasing the surface area, the total reflection due to the difference in refractive index between the first medium and the second medium can be reduced, and the light extraction efficiency is improved.

しかして、本実施形態の発光装置では、上述のように、LED素子1の光取り出し面1aに、発光層32から放射された光の全反射を抑制する微細凹凸構造が形成されているので、発光部3における導電性基板2側とは反対に存在する媒質(上記第2の媒質)と発光部3におけるn形半導体層33(上記第1の媒質)との屈折率差に起因した光の全反射を抑制することができ、光取り出し効率を高めることができるとともに、色むらをより低減できる。また、n形半導体層33における表面側電極4の形成部位にも微細凹凸構造を形成しておけば、n形半導体層33と透明電極からなる表面側電極4との屈折率差に起因した全反射を低減でき、光取り出し効率を高めることができるとともに、色むらをより低減できる。   Thus, in the light emitting device of the present embodiment, as described above, the light extraction surface 1a of the LED element 1 is formed with the fine concavo-convex structure that suppresses the total reflection of the light emitted from the light emitting layer 32. The light caused by the difference in refractive index between the medium (the second medium) that is opposite to the conductive substrate 2 side in the light emitting unit 3 and the n-type semiconductor layer 33 (the first medium) in the light emitting unit 3. Total reflection can be suppressed, light extraction efficiency can be increased, and color unevenness can be further reduced. Further, if a fine concavo-convex structure is also formed at the formation site of the surface-side electrode 4 in the n-type semiconductor layer 33, the entire difference due to the refractive index difference between the n-type semiconductor layer 33 and the surface-side electrode 4 made of a transparent electrode. Reflection can be reduced, light extraction efficiency can be increased, and color unevenness can be further reduced.

なお、図4に示すように、波長変換部材5におけるLED素子1側に、LED素子1の光取り出し面1aに形成された微細凹凸構造に合致する形状の微細凹凸構造を形成してもよい。ここで、波長変換部材5に微細凹凸構造を形成するには、例えば、レーザ加工技術やインプリントリソグラフィ技術などを利用すればよい。また、波長変換部材5におけるLED素子1側とは反対側の表面(光出射面)が接する媒質と波長変換部材5とに屈折率差がある場合には、波長変換部材5におけるLED素子1側とは反対側の表面に同様の微細凹凸構造(全反射抑制用の凹凸構造)を形成することにより、光取り出し効率を高めることができる。   As shown in FIG. 4, a fine concavo-convex structure having a shape matching the fine concavo-convex structure formed on the light extraction surface 1 a of the LED element 1 may be formed on the LED element 1 side of the wavelength conversion member 5. Here, in order to form the fine concavo-convex structure on the wavelength conversion member 5, for example, a laser processing technique or an imprint lithography technique may be used. Further, when there is a difference in refractive index between the wavelength conversion member 5 and the medium that is in contact with the surface (light emitting surface) opposite to the LED element 1 side in the wavelength conversion member 5, the LED conversion element 5 side in the wavelength conversion member 5. The light extraction efficiency can be increased by forming the same fine concavo-convex structure (the concavo-convex structure for suppressing total reflection) on the surface opposite to the surface.

(実施形態3)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図5に示すように、表面側電極4の中央部に他の部位に比べて突出した突台部4bが設けられ、突台部4bの先端面に金属細線からなるボンディングワイヤ7がボンディングされている点が相違する。ここで、本実施形態における表面側電極4は、透明電極4bと、透明電極4bの中央部上に形成された導電膜(例えば、Al膜、透明導電膜など)からなる突台部4bとで構成されている。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 5, a protruding portion 4b is provided at the central portion of the surface-side electrode 4 as compared with other portions. The difference is that a bonding wire 7 made of a fine metal wire is bonded to the tip surface of the projecting portion 4b. Here, the surface side electrode 4 in the present embodiment is composed of a transparent electrode 4b and a projecting part 4b made of a conductive film (for example, an Al film, a transparent conductive film, etc.) formed on the central part of the transparent electrode 4b. It is configured. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

ところで、実施形態1や実施形態2の発光装置では、表面側電極4が透明電極により構成され、当該透明電極の表面がボンディングワイヤ7の接合面となっているが、色変換部材たる波長変換部材5をLED素子1に対して接着剤により固着する際に接着剤が表面側電極4の表面(ボンディングワイヤ7の接合面)まで這い上がって当該表面が接着剤により汚染されてしまう可能性があり、表面側電極4におけるボンディングワイヤ7の接合面が汚染されるとボンディング不良による歩留まり低下の原因になる。   By the way, in the light-emitting device of Embodiment 1 or Embodiment 2, although the surface side electrode 4 is comprised by the transparent electrode and the surface of the said transparent electrode is a joining surface of the bonding wire 7, the wavelength conversion member which is a color conversion member When 5 is fixed to the LED element 1 with an adhesive, the adhesive may crawl up to the surface of the surface side electrode 4 (bonding surface of the bonding wire 7) and the surface may be contaminated by the adhesive. If the bonding surface of the bonding wire 7 in the surface side electrode 4 is contaminated, it causes a decrease in yield due to bonding failure.

これに対して、本実施形態の発光装置では、表面側電極4に電気的に接続されるボンディングワイヤ7が表面側電極4の中央部に設けられた突台部4bの先端面にボンディングされるので、波長変換部材5をLED素子1に対して接着剤により固着する際に接着剤が表面側電極4におけるボンディングワイヤ7の接合面まで這い上がるのを防止でき、ボンディングワイヤ7のボンディング不良を低減することができる。なお、表面側電極4は、2層構造に限らず、単層構造で凸状の形状に加工したものでもよい。   On the other hand, in the light emitting device of the present embodiment, the bonding wire 7 electrically connected to the surface side electrode 4 is bonded to the tip surface of the projecting portion 4b provided at the center of the surface side electrode 4. Therefore, when the wavelength conversion member 5 is fixed to the LED element 1 with an adhesive, the adhesive can be prevented from creeping up to the bonding surface of the bonding wire 7 in the surface side electrode 4, and bonding defects of the bonding wire 7 can be reduced. can do. The surface-side electrode 4 is not limited to a two-layer structure, but may be a single-layer structure processed into a convex shape.

(実施形態4)
本実施形態の発光装置の基本構成は実施形態1と略同じであり、図6に示すように、実装基板10の構造や、実装基板10の一表面側でLEDユニットAおよびLEDユニットAに電気的に接続されたボンディングワイヤ7,7を封止した封止材料(例えば、シリコーン樹脂、アクリル樹脂など)からなる凸レンズ状のレンズ部20を備えている点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment. As shown in FIG. 6, the structure of the mounting substrate 10 and the LED unit A and the LED unit A on the one surface side of the mounting substrate 10 are electrically connected. The difference is that a convex lens-shaped lens portion 20 made of a sealing material (for example, silicone resin, acrylic resin, etc.) that seals the bonding wires 7 and 7 that are connected to each other is provided. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態における実装基板10は、熱伝導性材料からなりLEDユニットAが熱応力緩和用のサブマウント部材40を介して実装される矩形板状の伝熱板15と、伝熱板15の一面側(図6における上面側)に積層される矩形板状の配線基板16とで構成されている。ここにおいて、配線基板16は、伝熱板15側とは反対の表面側にLEDユニットAへの給電用の一対のリードパターン17,18が設けられるとともにサブマウント部材40に対応する部位に厚み方向に貫通する矩形状の窓孔16aが形成されており、LEDユニットAのLED素子1および波長変換部材5で発生した熱が配線基板16を介さずにサブマウント部材40および伝熱板21に伝熱されるようになっている。上述の熱伝導性材料としては、Cuを採用しているが、Cuに限らず、例えば、Alなどを採用してもよい。また、配線基板16の絶縁性基材としては、FR4を用いたガラスエポキシ基板を採用しており、各リードパターン17,18は、上記ガラスエポキシ基板の一表面側に形成されたCu膜とNi膜とAg膜との積層膜により構成されている。なお、配線基板16の他表面側には反り防止用金属膜19が形成されており、伝熱板15と配線基板16とは、シート状の接着フィルム(図示せず)を用いて固着されているが、反り防止用金属膜16および伝熱板15それぞれの材料がCuの場合には、接着フィルムを用いずに固着することも可能である。また、配線基板16の絶縁性基材の材料は、FR4のようなガラスエポキシ樹脂に限らず、例えば、ポリイミド系樹脂や、フェノール樹脂などでもよい。   The mounting substrate 10 in the present embodiment includes a rectangular plate-shaped heat transfer plate 15 made of a heat conductive material and mounted on the LED unit A via a submount member 40 for thermal stress relaxation, and one surface of the heat transfer plate 15. And a rectangular plate-like wiring board 16 stacked on the side (the upper surface side in FIG. 6). Here, the wiring substrate 16 is provided with a pair of lead patterns 17 and 18 for supplying power to the LED unit A on the surface side opposite to the heat transfer plate 15 side, and at a portion corresponding to the submount member 40 in the thickness direction. A rectangular window hole 16 a penetrating the LED board 1 is formed, and heat generated in the LED element 1 and the wavelength conversion member 5 of the LED unit A is transferred to the submount member 40 and the heat transfer plate 21 without passing through the wiring board 16. Being heated. As the above-described heat conductive material, Cu is adopted, but not limited to Cu, for example, Al may be adopted. Further, as the insulating base material of the wiring board 16, a glass epoxy board using FR4 is adopted, and each lead pattern 17, 18 includes a Cu film formed on one surface side of the glass epoxy board and a Ni film. It is constituted by a laminated film of a film and an Ag film. Note that a metal film 19 for preventing warpage is formed on the other surface side of the wiring board 16, and the heat transfer plate 15 and the wiring board 16 are fixed using a sheet-like adhesive film (not shown). However, when the material of each of the warp preventing metal film 16 and the heat transfer plate 15 is Cu, it can be fixed without using an adhesive film. The material of the insulating base material of the wiring board 16 is not limited to a glass epoxy resin such as FR4, and may be, for example, a polyimide resin or a phenol resin.

また、LEDユニットAは、導電性基板2の平面サイズよりも大きな平面サイズの矩形板状に形成されLEDユニットAと伝熱板15との線膨張率の差に起因してLEDユニットAに働く応力を緩和する上述のサブマウント部材40を介して伝熱板15に実装されている。   Further, the LED unit A is formed in a rectangular plate shape having a plane size larger than the plane size of the conductive substrate 2 and works on the LED unit A due to a difference in linear expansion coefficient between the LED unit A and the heat transfer plate 15. It is mounted on the heat transfer plate 15 via the above-described submount member 40 that relieves stress.

サブマウント部材40は、上記応力を緩和する機能だけでなく、LEDユニットAで発生した熱を伝熱板15においてLEDユニットAの平面サイズよりも広い範囲に伝熱させる熱伝導機能を有している。本実施形態では、サブマウント部材40の材料として熱伝導率が比較的高く且つ絶縁性を有するAlNを採用しており、LED素子1の上記一方の電極を兼ねる導電性基板2と接合されて電気的に接続される導体パターン41が形成されている。しかして、LEDユニットAは、導電性基板2がサブマウント部材40に設けられた導体パターン41およびボンディングワイヤ7を介して一方のリードパターン17と電気的に接続され、表面側電極4が別のボンディングワイヤ7を介して他方のリードパターン18と電気的に接続されている。なお、LEDユニットAの導電性基板2とサブマウント部材40とは、例えば、SnPb、AuSn、SnAgCuなどの半田や、銀ペーストなどを用いて接合すればよいが、AuSn、SnAgCuなどの鉛フリー半田を用いて接合することが好ましい。なお、サブマウント部材40の厚み寸法は、導体パターン41の表面が配線基板16の上記一表面よりも伝熱板15から離れるように設定してある。   The submount member 40 has not only a function of relieving the stress but also a heat conduction function of transferring heat generated in the LED unit A to a range wider than the planar size of the LED unit A in the heat transfer plate 15. Yes. In the present embodiment, AlN having a relatively high thermal conductivity and insulating property is employed as the material of the submount member 40, and the submount member 40 is joined to the conductive substrate 2 serving also as the one electrode of the LED element 1 to be electrically The conductor pattern 41 to be connected is formed. Thus, in the LED unit A, the conductive substrate 2 is electrically connected to one lead pattern 17 via the conductor pattern 41 and the bonding wire 7 provided on the submount member 40, and the surface side electrode 4 is different from the other. It is electrically connected to the other lead pattern 18 via the bonding wire 7. The conductive substrate 2 and the submount member 40 of the LED unit A may be joined using, for example, solder such as SnPb, AuSn, SnAgCu, or silver paste, but lead-free solder such as AuSn, SnAgCu. It is preferable to join using. The thickness dimension of the submount member 40 is set so that the surface of the conductor pattern 41 is farther from the heat transfer plate 15 than the one surface of the wiring board 16.

また、本実施形態におけるLED素子1は、表面側電極4がNi膜とAu膜との積層膜により構成されており、発光部3の周部に形成されている。一方、色変換部材たる波長変換部材5は、表面側電極4に対応する部位に、LED素子1の表面側電極4を露出させる露出部として切欠部5cが形成されている。したがって、本実施形態においても、LED素子1にシート状の波長変換部材5を重ねて配置した後で、表面側電極4にボンディングワイヤ7をボンディングすることができる。なお、発光部3の周部に形成されている表面側電極4は、LED素子1のカソード電極のうちパッドとなる部分のみであり、パッド以外に、発光部3に流れる電流の電流密度の面内均一性を高めるための電流拡散用パターン部を発光部3の表面に設けることによって、色ばらつきのより一層の低減を図れる。   Further, in the LED element 1 according to the present embodiment, the surface-side electrode 4 is configured by a laminated film of a Ni film and an Au film, and is formed around the light emitting unit 3. On the other hand, the wavelength conversion member 5 that is a color conversion member has a cutout portion 5 c formed at an area corresponding to the front surface side electrode 4 as an exposed portion that exposes the front surface side electrode 4 of the LED element 1. Therefore, also in the present embodiment, the bonding wire 7 can be bonded to the surface side electrode 4 after the wavelength conversion member 5 is placed on the LED element 1 in an overlapping manner. In addition, the surface side electrode 4 formed in the peripheral part of the light emitting part 3 is only the part which becomes a pad among the cathode electrodes of the LED element 1, and the surface of the current density of the current flowing through the light emitting part 3 other than the pad. By providing a current spreading pattern portion on the surface of the light emitting portion 3 for improving the inner uniformity, the color variation can be further reduced.

以上説明した本実施形態の発光装置では、実施形態1と同様に、LED素子1における導電性基板2が発光層32から放射された光に対して不透明なので、発光層32から放射された光が導電性基板2を通過して波長変換部材5へ到達するのを防止することができ、しかも、シート状の波長変換部材5がLED素子1の光取り出し面1aに重ねて配置されているので、波長変換部材5の光入射面に入射する光の光路長差を小さくすることができ、波長変換部材5における光入射面に入射する光の光強度が面内で略均一になるから、色むらを低減できる。   In the light emitting device of the present embodiment described above, similarly to the first embodiment, the conductive substrate 2 in the LED element 1 is opaque to the light emitted from the light emitting layer 32, so that the light emitted from the light emitting layer 32 is not emitted. Since it can prevent passing through the conductive substrate 2 to reach the wavelength conversion member 5, and the sheet-like wavelength conversion member 5 is disposed so as to overlap the light extraction surface 1 a of the LED element 1, Since the optical path length difference of the light incident on the light incident surface of the wavelength conversion member 5 can be reduced and the light intensity of the light incident on the light incident surface of the wavelength conversion member 5 becomes substantially uniform in the surface, color unevenness Can be reduced.

また、本実施形態の発光装置では、LEDユニットAで発生した熱が配線基板16を介さずにサブマウント部材40および伝熱板21に伝熱されるので、実施形態1に比べて放熱性が向上し、LED素子1のジャンクション温度の温度上昇を抑制できるから、入力電力を大きくでき、光出力の高出力化を図れる。また、波長変換部材5における蛍光体の温度上昇も抑制されるから、蛍光体の発光効率の低下を抑制することができる。   Further, in the light emitting device of the present embodiment, heat generated in the LED unit A is transferred to the submount member 40 and the heat transfer plate 21 without passing through the wiring board 16, so that heat dissipation is improved as compared with the first embodiment. And since the temperature rise of the junction temperature of the LED element 1 can be suppressed, the input power can be increased and the light output can be increased. Moreover, since the temperature rise of the fluorescent substance in the wavelength conversion member 5 is also suppressed, the fall of the luminous efficiency of a fluorescent substance can be suppressed.

また、本実施形態の発光装置では、上述の実装基板10の一表面側でLEDユニットAおよびボンディングワイヤ7,7を封止した凸レンズ状のレンズ部20を備えているので、光取り出し効率をより高めることができる。   Further, the light emitting device of the present embodiment includes the convex lens-shaped lens portion 20 in which the LED unit A and the bonding wires 7 and 7 are sealed on the one surface side of the mounting substrate 10 described above. Can be increased.

なお、本実施形態の発光装置においても、実施形態2にて説明した微細凹凸構造を適宜設けてもよい。また、実施形態1〜3においても本実施形態の発光装置と同様のレンズ部20を設けてもよい。   Note that the light-emitting device of this embodiment may be provided with the fine uneven structure described in Embodiment 2 as appropriate. In the first to third embodiments, the same lens unit 20 as that of the light emitting device of the present embodiment may be provided.

(実施形態5)
本実施形態の発光装置の基本構成は実施形態4と略同じであり、図7に示すように、シート状の色変換部材たる波長変換部材5が、LED素子1から放射された光によって励起されてLED素子1の発光色とは異なる色の光を放射する蛍光体からなる蛍光体層52をLED素子1側の表面に被着したガラス基板51により構成されている点が相違する。ここで、蛍光体層52は、例えば、ガラス基板51の上記表面にスパッタ法などにより形成すればよい。なお、実施形態4と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 5)
The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the fourth embodiment. As shown in FIG. 7, the wavelength conversion member 5 that is a sheet-like color conversion member is excited by light emitted from the LED element 1. The LED substrate 1 is different from the LED device 1 in that the phosphor layer 52 made of a phosphor that emits light of a color different from that of the LED element 1 is formed on the surface of the LED element 1. Here, the phosphor layer 52 may be formed on the surface of the glass substrate 51 by, for example, sputtering. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 4, and description is abbreviate | omitted.

しかして、本実施形態の発光装置では、実施形態1のように波長変換部材5が蛍光体を添加した透光性樹脂の成形品により構成されている場合に比べて、波長変換部材5の耐熱性および耐湿性を高めることができ、信頼性が向上する。また、実施形態1〜4のように透光性材料に蛍光体を添加してある場合に比べて、色むらを低減できる。   Thus, in the light emitting device of this embodiment, the heat resistance of the wavelength conversion member 5 is higher than that in the case where the wavelength conversion member 5 is formed of a translucent resin molded product to which a phosphor is added as in the first embodiment. And moisture resistance can be improved, and reliability is improved. Moreover, color unevenness can be reduced compared with the case where the fluorescent substance is added to the translucent material like Embodiment 1-4.

なお、本実施形態の発光装置においても、実施形態2にて説明した微細凹凸構造を適宜設けてもよい。   Note that the light-emitting device of this embodiment may be provided with the fine uneven structure described in Embodiment 2 as appropriate.

実施形態1における発光装置の概略断面図である。1 is a schematic cross-sectional view of a light emitting device in Embodiment 1. FIG. 同上における発光装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the light-emitting device same as the above. 実施形態2における発光装置を示し、(a)は概略断面図、(b)は要部説明図である。The light-emitting device in Embodiment 2 is shown, (a) is a schematic sectional drawing, (b) is principal part explanatory drawing. 同上の他の構成例の要部断面図である。It is principal part sectional drawing of the other structural example same as the above. 実施形態3における発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device in Embodiment 3. FIG. 実施形態4における発光装置の概略断面図である。It is a schematic sectional drawing of the light-emitting device in Embodiment 4. 実施形態5における発光装置の概略断面図である。6 is a schematic cross-sectional view of a light emitting device according to Embodiment 5. FIG.

符号の説明Explanation of symbols

1 LED素子
1a 光取り出し面
2 導電性基板(支持基板)
3 発光部
4 電極(表面側電極)
4a 透明電極
4b 突台部
5 波長変換部材(色変換部材)
5a 貫通孔(露出部)
6 色変換部
7 ボンディングワイヤ(金属細線)
10 実装基板
13 導体パターン
14 導体パターン
31 p形半導体層
32 発光層
33 n形半導体層
A LEDユニット
1 LED element 1a Light extraction surface 2 Conductive substrate (support substrate)
3 Light emitting part 4 Electrode (surface side electrode)
4a Transparent electrode 4b Projecting part 5 Wavelength conversion member (color conversion member)
5a Through hole (exposed part)
6 Color conversion unit 7 Bonding wire (fine metal wire)
DESCRIPTION OF SYMBOLS 10 Mounting board 13 Conductor pattern 14 Conductor pattern 31 P-type semiconductor layer 32 Light emitting layer 33 N-type semiconductor layer A LED unit

Claims (9)

n形半導体層と発光層とp形半導体層との積層構造を有する発光部が支持基板上に設けられ当該支持基板が発光層から放射された光に対して不透明なLED素子と、LED素子の光取り出し面に重ねて配置されLED素子から放射された光によって励起されてLED素子の発光色とは異なる色の光を放射するシート状の色変換部材とを備えてなり、LED素子は、支持基板が導電性基板からなり、当該導電性基板が一方の電極を構成し、他方の電極が発光部に対して支持基板側とは反対側に発光部よりも小さなサイズで形成されてなり、色変換部材は、前記他方の電極の表面を露出させる露出部が形成されてなり、色変換部材における前記露出部が厚み方向に貫通する貫通孔であり、LED素子は、前記他方の電極の中央部に他の部位に比べて突出した突台部が設けられ、色変換部材が前記光取り出し面に重ねて配置された後で突台部の先端面に金属細線がボンディングされてなることを特徴とする発光装置。 a light-emitting portion having a stacked structure of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer is provided on a support substrate, and the support substrate is opaque to light emitted from the light-emitting layer; A sheet-like color conversion member that is arranged on the light extraction surface and is excited by the light emitted from the LED element and emits light of a color different from the emission color of the LED element. The substrate is made of a conductive substrate, and the conductive substrate constitutes one electrode, and the other electrode is formed on the side opposite to the support substrate side with respect to the light emitting portion and having a smaller size than the light emitting portion. The conversion member is formed with an exposed portion that exposes the surface of the other electrode, and the exposed portion of the color conversion member is a through-hole penetrating in the thickness direction. The LED element is a central portion of the other electrode. Compared to other parts Support block which projects is provided, the light emitting device thin metal wire on the distal end surface of the support block after the color conversion member is disposed to overlap on the light extraction surface, characterized in that formed by bonding. 前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体を添加した透光性樹脂の成形品からなることを特徴とする請求項1記載の発光装置。   The color conversion member is formed of a translucent resin molded article to which a phosphor that is excited by light emitted from the LED element and emits light having a color different from the emission color of the LED element is added. The light-emitting device according to claim 1. 前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体を添加したガラスの成形品からなることを特徴とする請求項1記載の発光装置。   The color conversion member is formed of a glass molded article to which a phosphor that is excited by light emitted from the LED element and emits light having a color different from the emission color of the LED element is added. Item 2. The light emitting device according to Item 1. 前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体を添加した半導体基板からなることを特徴とする請求項1記載の発光装置。   2. The color conversion member is formed of a semiconductor substrate to which a phosphor that is excited by light emitted from the LED element and emits light of a color different from the emission color of the LED element is added. The light-emitting device of description. 前記色変換部材は、前記LED素子から放射された光によって励起されて前記LED素子の発光色とは異なる色の光を放射する蛍光体からなる蛍光体層を前記LED素子側の表面に被着したガラス基板からなることを特徴とする請求項1記載の発光装置。   The color conversion member adheres a phosphor layer made of a phosphor that is excited by light emitted from the LED element and emits light of a color different from the emission color of the LED element to the surface on the LED element side. The light emitting device according to claim 1, comprising a glass substrate. 前記LED素子は、前記光取り出し面に、前記発光層から放射された光の全反射を抑制する微細凹凸構造が形成されてなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の発光装置。   6. The LED device according to any one of claims 1 to 5, wherein a fine concavo-convex structure that suppresses total reflection of light emitted from the light emitting layer is formed on the light extraction surface. The light emitting device according to 1. 前記色変換部材は、前記LED素子側とは反対側の光出射面に全反射抑制用の凹凸構造が形成されてなることを特徴とする請求項1ないし請求項6のいずれか1項に記載の発光装置。   7. The color conversion member according to claim 1, wherein an uneven structure for suppressing total reflection is formed on a light emitting surface opposite to the LED element side. Light-emitting device. 前記LED素子は、前記他方の電極が前記発光層から放射された光に対して透明な透明電極であり、前記色変換部材は、前記露出部が厚み方向に貫通する貫通孔であり、当該貫通孔が、前記透明電極への金属細線のボンディング後に、前記色変換部材と同じ屈折率を有する材料からなる色変換部により封止されてなることを特徴とする請求項1ないし請求項7のいずれか1項に記載の発光装置。 The LED element is pre Symbol a transparent transparent electrode with respect to the emitted light and the other electrode from the light emitting layer, the color conversion member is a through hole before Symbol exposed portion penetrates in the thickness direction, The through hole is sealed with a color conversion portion made of a material having the same refractive index as that of the color conversion member after bonding of the thin metal wire to the transparent electrode. 8. The light emitting device according to any one of 7. 前記導電性基板は、金属基板からなることを特徴とする請求項1ないし請求項8のいずれか1項に記載の発光装置 The conductive substrate, the serial placement of the light-emitting device according to any one one of claims 1 to 8, characterized in Rukoto a metal substrate.
JP2006121326A 2005-09-09 2006-04-25 Light emitting device Active JP4971672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121326A JP4971672B2 (en) 2005-09-09 2006-04-25 Light emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005262943 2005-09-09
JP2005262943 2005-09-09
JP2006121326A JP4971672B2 (en) 2005-09-09 2006-04-25 Light emitting device

Publications (2)

Publication Number Publication Date
JP2007103901A JP2007103901A (en) 2007-04-19
JP4971672B2 true JP4971672B2 (en) 2012-07-11

Family

ID=38030497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121326A Active JP4971672B2 (en) 2005-09-09 2006-04-25 Light emitting device

Country Status (1)

Country Link
JP (1) JP4971672B2 (en)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121911A1 (en) * 2006-11-28 2008-05-29 Cree, Inc. Optical preforms for solid state light emitting dice, and methods and systems for fabricating and assembling same
JP5200471B2 (en) * 2006-12-26 2013-06-05 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2008282979A (en) * 2007-05-10 2008-11-20 Sharp Corp Semiconductor light-emitting element, and manufacturing method thereof
JP2009054891A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Method of manufacturing light emitting device
CN101821866B (en) * 2007-10-08 2012-05-23 3M创新有限公司 Light emitting diode with bonded semiconductor wavelength converter
JP5212777B2 (en) * 2007-11-28 2013-06-19 スタンレー電気株式会社 Semiconductor light emitting device and lighting device
CN102015961A (en) 2008-06-02 2011-04-13 松下电器产业株式会社 Semiconductor light emitting apparatus and light source apparatus using the same
JP5187063B2 (en) * 2008-08-18 2013-04-24 信越半導体株式会社 Light emitting element
DE102009020127A1 (en) * 2009-03-25 2010-09-30 Osram Opto Semiconductors Gmbh led
JPWO2010103840A1 (en) * 2009-03-13 2012-09-13 株式会社小糸製作所 Light emitting module and lamp unit
JP5728007B2 (en) * 2009-06-30 2015-06-03 スリーエム イノベイティブ プロパティズ カンパニー Electroluminescent device with color adjustment based on current concentration
DE102010012423A1 (en) 2009-12-21 2011-06-22 OSRAM Opto Semiconductors GmbH, 93055 Luminescence diode arrangement, backlighting device and display device
KR101202174B1 (en) * 2009-12-21 2012-11-15 서울반도체 주식회사 Light-emitting device having phosphor sheet and method of manufacturing the same
JP2012033823A (en) 2010-08-02 2012-02-16 Stanley Electric Co Ltd Light emitting device and method for manufacturing the same
DE102010035490A1 (en) 2010-08-26 2012-03-01 Osram Opto Semiconductors Gmbh Radiation-emitting component and method for producing a radiation-emitting component
JP2012142326A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Light-emitting device and method of manufacturing light-emitting device
DE102011100710A1 (en) * 2011-05-06 2012-11-08 Osram Opto Semiconductors Gmbh Conversion element for light-emitting diodes and manufacturing method
JP5862066B2 (en) * 2011-06-16 2016-02-16 東レ株式会社 Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
JP2013135169A (en) * 2011-12-27 2013-07-08 Jsr Corp Semiconductor light-emitting device
CN103254889B (en) * 2012-02-16 2015-12-09 赛恩倍吉科技顾问(深圳)有限公司 Fluorescent powder film making method and corresponding LED encapsulation method
JP5953797B2 (en) * 2012-02-17 2016-07-20 東レ株式会社 Manufacturing method of semiconductor light emitting device
US20150171287A1 (en) * 2012-06-28 2015-06-18 Toray Industrieis, Inc. Resin sheet laminate and process for producing semiconductor light-emitting element using same
JP6086703B2 (en) * 2012-11-12 2017-03-01 スタンレー電気株式会社 Light emitting element
JP6097084B2 (en) 2013-01-24 2017-03-15 スタンレー電気株式会社 Semiconductor light emitting device
CN104969370A (en) * 2013-02-04 2015-10-07 优志旺电机株式会社 Fluorescent-light-source device
KR101998765B1 (en) * 2013-03-25 2019-07-10 엘지이노텍 주식회사 Light emittng device package
JP6098439B2 (en) 2013-08-28 2017-03-22 日亜化学工業株式会社 Wavelength conversion member, light emitting device, and method of manufacturing light emitting device
KR102120761B1 (en) * 2013-09-27 2020-06-10 엘지이노텍 주식회사 Vertical led package and lighting device using the same
JP2015111626A (en) * 2013-12-06 2015-06-18 シャープ株式会社 Light-emitting device and method of manufacturing the same
WO2015128909A1 (en) 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
CN105940510B (en) 2014-02-28 2019-01-11 松下知识产权经营株式会社 Light emitting device
US9518215B2 (en) 2014-02-28 2016-12-13 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
WO2015129222A1 (en) 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
US9515239B2 (en) 2014-02-28 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and light-emitting apparatus
US9618697B2 (en) 2014-02-28 2017-04-11 Panasonic Intellectual Property Management Co., Ltd. Light directional angle control for light-emitting device and light-emitting apparatus
JP6569856B2 (en) 2015-03-13 2019-09-04 パナソニックIpマネジメント株式会社 Light emitting device and endoscope
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
JP2016171228A (en) 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Light emission element, light emission device and detection device
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
JP2017003697A (en) 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 Light-emitting element and light-emitting device
JP2017005054A (en) 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 Light emission device
JP2017040818A (en) 2015-08-20 2017-02-23 パナソニックIpマネジメント株式会社 Light-emitting element
JP6748905B2 (en) 2015-08-20 2020-09-02 パナソニックIpマネジメント株式会社 Light emitting device
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
JP6719094B2 (en) 2016-03-30 2020-07-08 パナソニックIpマネジメント株式会社 Light emitting element
JP2018074111A (en) * 2016-11-04 2018-05-10 株式会社ディスコ Method for manufacturing light-emitting diode chip
JP7299537B2 (en) * 2020-03-18 2023-06-28 日亜化学工業株式会社 light emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917619B2 (en) * 1997-01-24 2007-05-23 ローム株式会社 Manufacturing method of semiconductor light emitting device
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device
JP2002094123A (en) * 2000-09-14 2002-03-29 Citizen Electronics Co Ltd Surface-mounted light emitting diode and its manufacturing method
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP4415572B2 (en) * 2003-06-05 2010-02-17 日亜化学工業株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2005005544A (en) * 2003-06-13 2005-01-06 Sumitomo Electric Ind Ltd White light emitting element
JP4503950B2 (en) * 2003-07-11 2010-07-14 スタンレー電気株式会社 Method for manufacturing phosphor-integrated LED lamp

Also Published As

Publication number Publication date
JP2007103901A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4971672B2 (en) Light emitting device
US8211722B2 (en) Flip-chip GaN LED fabrication method
KR102239627B1 (en) Light emitting device package
KR100985452B1 (en) Light emitting device
JP4013077B2 (en) Light emitting device and manufacturing method thereof
JP3948488B2 (en) Light emitting device
JP4557542B2 (en) Nitride light emitting device and high luminous efficiency nitride light emitting device
TWI514631B (en) Semiconductor light emitting device and manufacturing method thereof
JP2011159812A (en) Light emitting device
JP2006073618A (en) Optical element and manufacturing method thereof
CN100583469C (en) Light-emitting apparatus
JP4765507B2 (en) Light emitting device
JP4483771B2 (en) Light emitting device and manufacturing method thereof
JP4742761B2 (en) Light emitting device
JP4458008B2 (en) Light emitting device
CN108807633B (en) Light emitting element
JP3952075B2 (en) Light emitting device
JP4678392B2 (en) Light emitting device and manufacturing method thereof
JP2007116124A (en) Light emitting device
JP3963187B2 (en) Light emitting device
JP4483772B2 (en) Light emitting device and manufacturing method thereof
JP2007088090A (en) Light-emitting device
JP6265306B1 (en) Light emitting device
WO2017208321A1 (en) Light-emitting device
JP3948483B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4971672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150