JP2005005544A - White light emitting element - Google Patents

White light emitting element Download PDF

Info

Publication number
JP2005005544A
JP2005005544A JP2003168548A JP2003168548A JP2005005544A JP 2005005544 A JP2005005544 A JP 2005005544A JP 2003168548 A JP2003168548 A JP 2003168548A JP 2003168548 A JP2003168548 A JP 2003168548A JP 2005005544 A JP2005005544 A JP 2005005544A
Authority
JP
Japan
Prior art keywords
led
phosphor
light emitting
white light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003168548A
Other languages
Japanese (ja)
Inventor
Shinsuke Fujiwara
伸介 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003168548A priority Critical patent/JP2005005544A/en
Publication of JP2005005544A publication Critical patent/JP2005005544A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-power white light emitting element not to easily degrade and usable for illumination even when applied with high power. <P>SOLUTION: The white light emitting element comprises a fluorescent substance 4, a light emitting diode (LED) substrate 2, and a light emitting diode (LED) light emitting layer 3. The fluorescent substance 4 is selected from a group consisting of substances wherewith the relation between the thermal conductivity λ(W/cmK) and the optical absorption coefficient α(1/cm) for the light from the LED substrate 2 and from the LED light emitting layer 3 satisfies the inequality: λα>2. The material for the LED substrate 2 is selected from the group consisting of SiC, GaN, and AlN; and then the LED light emitting layer 3 is arranged in contact with the fluorescent substance 4. In another embodiment, wherein the LED substrate 2 is made of sapphire, the LED substrate 2 is arranged in contact with the fluorescent substance 4. In a white light emitting element constituted in this way, heat is sufficiently radiated even when a power of ≥200 W/cm<SP>2</SP>is inputted, and this excludes the adverse effect of temperature. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、照明用、表示用、液晶バックライトなどに利用できる白色発光素子に関する。
【0002】
【従来の技術】
白色光を発する発光ダイオードは近年種々工夫されてきている。白色光は赤、緑、青と言った光の三原色を有する発光ダイオードを組み合わせることでも達成できるが、安価で省スペースとするには、単一のダイオードで白色を発光できるダイオードが望まれる。そして、特に電球や蛍光灯に代わって照明に用いられる程度の光度の大きな白色光を発するダイオードが要求される。
【0003】
これに対し、最近では図7(a),(b)に示されるようなInGaN系の青色LEDの周囲を、粉末状のYAG蛍光体を分散させた透明樹脂層で包囲することにより、LEDから発する青色の光の一部を黄色光に変換し、LEDからの青色光とYAG蛍光体からの黄色光が合成され、白色光とする技術が開示されている(非特許文献1参照)。この技術は、図7(a)に記載するように、透明樹脂101でモールドした中に、リード102と電極のみのリード103が固定されており、LEDチップ107はリード102の先端部に形成されているくぼみ104に搭載されている。LEDチップ107には、リード102とリード103とにそれぞれワイヤ105とワイヤ106が接続されている。くぼみ104にはLEDチップ107を覆ってYAG蛍光体110が充填されている。
図7(b)は、LEDチップ107近辺の拡大図である。リード102のくぼみ104にはLEDが設置されるが、LED基板109が下に、LED発光部108が上に位置する。LEDの周囲には、くぼみ104に充填された透明樹脂中に分散するYAG蛍光体110が充填されている。LED発光部108から上方に向かって発光された青色光Bは、YAG蛍光体110に一部吸収され、黄色光Yを発光する。青色光Bは一部がYAG蛍光体110をそのまま通過するため、前記黄色光Yと重なって白色光を発することになる。
【0004】
また、図8(a),(b)に示す他の技術がある(特許文献1参照)。図8(a)において、透明樹脂111でモールドされたLEDを搭載するリード112と、電極のみのリード113がある。リード112に搭載されたLEDは、ZnSeのLED基板116とZnCdSeのLED発光部115から構成される。このLEDは導電性があるため、電極の一端はリード112を直接利用し、他端はワイヤ114でリード113に接続する。白色発光の原理は、図8(b)のLED部分の拡大図によって説明する。リード112上に搭載されたLEDは、ZnSeのLED基板116と、その上にあるZnCdSeのLED発光部115からなる。LED発光部115で発光する青色光Bは直接透明樹脂111側(記載略)に行くものと、LED基板116側に行くものがあり、LED基板116に入光した青色光Bは、ZnSe中で吸収されると共に自己励起光を発する。この自己励起光は黄色光Y乃至橙色となり、ZnCdSeのLED発光部115を透過して透明樹脂111に行く。即ち外部から見れば、青色光Bと黄色光Yが重なって白色光として見える。
【0005】
さらに図9では、別の構造を有する技術を開示する(特許文献2参照)。この技術は、ステム127に固定されたLEDチップ126を搭載するリード122と、電極のみのリード123とを透明樹脂121が覆っている。透明樹脂121の中には、LEDチップ126とワイヤ124がリードと共に埋め込まれている。透明樹脂121の上部には窓材125が備えられ、該窓材はZnSeを用いている。LEDチップ126は、InGaN系の発光部を有し、青色光を発する。この光は、窓材125を透過して外部に出ると共に、一部が窓材125中で吸収され、黄色光乃至橙光となって自己励起光を発光する。外部からは、窓材125を通過した青色光と、窓材125中での黄色光乃至橙光の自己励起光とが重なって、白色光として見える。
【0006】
【特許文献1】
特開2000−82845号公報、(0019〜0020,図3b)
【特許文献2】
特開2000−261034号公報、(0030〜0031,図1)
【非特許文献1】
「光機能材料マニュアル」光機能材料マニュアル編集幹事会編、オプトエレクトロニクス社刊、p457,1997年6月
【0007】
【発明が解決しようとする課題】
既に先行技術として白色光を発するLEDは、前記したように存在する。これらの白色発光素子は、信号他低出力での使用においては特に問題なく使用できる。しかし、照明の代用となる高出力の使用においては、それぞれさらなる工夫が必要である。例えば、YAG蛍光体は、高出力により発生する熱で透明性が低下する。ZnSe基板の場合は、青色発光層が劣化しやすい。また、ZnSe窓材の場合では、窓材の発する熱が放散しきれない。こういった問題により、前記技術を直接高出力のLEDとするには無理があり、さらなる改良が必要となる。
【0008】
【課題を解決するための手段】
本発明の第1の発明は、蛍光体と発光ダイオード(LED)を組み合わせてなる発光素子であって、前記蛍光体は、熱伝導率λ(W/cmK)と前記LEDからの光に対する吸収係数α(1/cm)との関係が、λα>2である材料から選ばれ、かつ、前記LEDを構成する基板がSiC、GaN及びAlNのいずれかから選ばれ、該LEDと前記蛍光体が接して配置されるか、または、前記LEDに用いる基板がSiC、GaN、AlN及びサファイアのいずれかであり、該LEDの基板側に前記蛍光体が接して配置されていることを特徴とする白色発光素子である。このような構成により、LEDチップに負荷する投入電力密度を200W/cm以上で使用できるものである。ここで接して配置するとは、接着剤等を用いて密着させる意味である。
特に使用するLEDには、InGaN系を用いるとよい。
【0009】
本発明の第2の発明は、ステム上に設置された、蛍光体と発光ダイオード(LED)を組み合わせてなる発光素子であって、前記ステム上の前記LEDは、周囲の一部若しくは全部を放熱体で囲まれており、その上部に該放熱体と接して蛍光体が設置されている構造を特徴とする白色発光素子である。
特に、使用する蛍光体の厚みt(cm)が、蛍光体の面積をS(cm)、熱伝導率をλ(W/cmK)で表したときに、
√S>t>6S/2000λ
の範囲にあると、好ましい。通常の低出力では問題はないが、蛍光体の厚みを上記範囲とすることにより、放熱効果が著しい。
また、LEDを構成する基板がSiC、GaN及びAlNのいずれかから選ばれるか、または、前記LEDに用いる基板がSiC、GaN、AlN及びサファイアのいずれかであり、該LEDがフリップチップ型に実装されている構成をとることにより、放熱性を配慮した構成となり好ましい。
【0010】
以上2つの発明において、放熱体の主成分がAl又はCuであると熱伝導率を大きくすることができるため、放熱性が良く好ましい。また、使用する蛍光体がZnSSe1−x(0≦x≦1)によって形成されていると、白色光を形成する蛍光体として好ましい。その蛍光体中に、Al、Ga、In、Cl、Br、Iのいずれか1種以上を1×1017個/cm以上含ませておくのが好ましい。
【0011】
【発明の実施の形態】
本発明の第1の発明は、図1(a),(b)の模式図を用いて説明する。図1の(a)はLED基板の発光部を上にする通常の搭載形態であり、(b)はLEDをフリップチップに搭載する形態である。図1(a)では、ステム1にLED基板2が接続され、その上にLED発光部3が位置する。さらにその上には蛍光体4が搭載される。LEDはLED発光部側に電極が配置されているため、ワイヤ5,5´でステム上に配置された電極6,6´で外部電極に接続する。電極6,6´はステム1とは絶縁7、7´により絶縁されている。また、図1(b)では、ステム11上にLEDがフリップチップで搭載されている。即ちLED発光部13がLEDの電極と共にステム11に接しており、その上にLED基板12が位置する。LED基板12の更に上方には蛍光体14が接する。LEDの電極はステム11に配置された電極16,16´に直結しているため、ワイヤは不要となる。電極16,16´は絶縁17,17´によりステム11とは絶縁されている。以上の構造を持ち、その材質的特徴は蛍光体4,14において、熱伝導率をλ(W/cmK)、LEDの光に対する吸収係数をα(1/cm)としたときに、λα>2を満たすことである。また、図1(a)の場合は、LED基板2に用いる材料をSiC,GaN若しくはAlNとし、図1(b)の場合は、LED基板12に用いる材料をSiC,GaN、AlN若しくはサファイアとした点にある。
【0012】
こうした構造を取る理由は、発生する熱の排出にある。即ち、LEDを取り巻く透明樹脂は、熱伝導性が小さく、そこに混合された蛍光体が発光すると同時に発熱しても、周囲の透明樹脂による熱伝導は期待できない。ところが、透明樹脂に比べ熱伝導性が大きい蛍光体を集中させれば、透明樹脂の昇温は防げる。また、そこで発生する熱を透明樹脂以外の熱放熱性の良い材料に接しておけば、蛍光体自身の昇温も防ぐことが出来る。
以上の内容から、図1の構成が成り立つ。これを簡略した計算により以下に説明する。
【0013】
図1(a)の構成で作製された白色発光素子を想定する。ここで、
:LEDの発熱密度(W/cm
:蛍光体の発熱密度(W/cm
:LED下面の温度(K)
:LED上面の温度(K)
:蛍光体上面の温度(K)
:LED基板中の温度勾配(K/cm)
:蛍光体中の温度勾配(K/cm)
λ:LED基板の熱伝導率(W/cmK)
λ:蛍光体の熱伝導率(W/cmK)
:LED基板の厚み(cm)
:蛍光体の厚み(cm)
とおいて、定常状態での熱流バランスを式で表すと、
+w=λ、 w=λ
=T+t、 T=T+t
と示される。ここでLEDと蛍光体の発熱は、それぞれの表面で発生する仮定をおいているが、温度上昇が過大となる傾向であり、安全上問題はない。
【0014】
前記式を整理し、LEDへの投入電力密度をw(W/cm)とした場合の式に置き換えると以下のようになる。
ΔT=T−T=t(w+w)/λ=((a+a)t/λ)w
ΔT=T−T=t(w+w)/λ+t/λ=((a+a)t/λ+a/λ)w
ここで、w=a、 w=a とし、a、aはそれぞれLEDの発熱率、蛍光体の発熱率である。
【0015】
以上の式を用いて具体的な温度上昇を見積もると以下のようになる。
図1(a)において、LED基板2にサファイアを、LED発光部3にInGaNを蛍光体4にZnSSe(ZnS組成0.5)を用いた場合を例に挙げる。
具体的な数値は、
λ(サファイア):0.3W/cmK、 λ(ZnSSe):0.15W/cmK
(LED厚み):0.04cm、 t(蛍光体厚み):0.01cm
:0.7, a:0.1
とした。aは、InGaNの外部量子効率が約30%であるため、残りが発熱に使用されることとした。aは、InGaNからの光の10%は蛍光体を通過し、20%が蛍光体に入りそのうち10%が蛍光体内で発熱に使用されるとして数値を決めた。
【0016】
以上の数値を前記式に当てはめて計算すると、表1のようになる。ここで、投入電力密度が200W/cmを越えると、蛍光体はLEDにより、20℃以上の温度上昇を受けるため、好ましくない状況になる。
また、この温度差はそのほとんどがLEDチップに起因するが、LEDの熱伝導率が大きくないために、熱伝導率が大きい蛍光体を使用した効果が十分に発揮できていない。そこで、LED基板に熱伝導率の大きい材料を使用すると良いことが解る。
LED基板としては、InGaN系のLEDを形成でき、高熱伝導率でかつLED発光に対して透明であることが必要である。SiC、GaN、AlNがこの条件に当てはまる。
そこで、これらの材料を用いた前記式のシミュレーション計算をした結果が、表2である。表2では、投入電力密度wが200W/cmである。
【0017】
【表1】

Figure 2005005544
【0018】
【表2】
Figure 2005005544
【0019】
表2によれば、前記3種類の基板材料において、LED内の温度差(ΔT)と蛍光体内での温度差(ΔT−ΔT)が大きな差をもたず、大きな投入電力密度を負荷しても使用できる構成となる。LED基板の熱伝導率が大きい材料を使用することによって温度勾配を押さえることが出来ることは、以上述べたとおりであるが、蛍光体における温度差を押さえるには、以下のようになる。
蛍光体においても、熱伝導率の大きな材料が得られれば問題はない。ところが、蛍光体の目的は、LEDからの単色光を一旦吸収し、波長の長い光として自己励起光を発するものであり、単色光を一部通過する必要から、該単色光に対して透明である必要がある。こうした条件の中で材料を選択することになり、材料の物性にも限りがある。そこで蛍光体の材料を有効に使用する条件を見いだした。即ち、前記に使用された式の関係からa/λが小さくなるようにすれば、解決できる。
即ち、
/λ<(a+a)t/λ
上記式に前述の計算に用いた数値を入れると、
/λ<1
なる条件にすれば良い。即ち、蛍光体の厚み(cm)は、蛍光体の熱伝導率(W/cmK)より小さい値とすることになる。実体的には、LED発光からの熱吸収は蛍光体の表面近くでほとんど吸収されてしまうので、蛍光体のLED光の吸収係数をα(1/cm)とすると、発熱部分は2/α(1/cm)程度の幅に限定される。
従って、上記式は、
αλ>2
なる関係になる。この関係を満たせば、蛍光体が温度上昇による問題なしに使用可能となる。
【0020】
前記したLED基板にサファイアを用いた場合には、基板のサファイアの熱伝導率が小さいためそのままでは高出力化する際に問題となる。この場合はLEDをフリップチップに実装すれば、発熱量をステム側に大量に放散できるため、使用が可能となる。即ち、図1(b)の形態にする手段である。もちろん、前記したSiC、GaN及びAlNの基板であっても同様にフリップチップに搭載することができ、発光部による発熱に対して、温度上昇をより軽減できる構造となる。
【0021】
本発明の第2の発明を図2(a),(b)の模式図に示す。図2の(a)はLED基板の発光部を上にする通常の搭載形態であり、(b)はLEDをフリップチップに搭載する形態である。図2(a)では、ステム21にLED基板22が接続され、その上にLED発光部23が位置する。LEDの周囲の一部若しくは全部を囲んで放熱体28,28′が設置され、そのステム又は電極と接する部分は電気的に絶縁29,29′されている。さらにその上方には放熱体28,28′に接して蛍光体24が位置する。LEDはLED発光部23側に電極が配置されているため、ワイヤ25,25´でステム21上に配置された電極26,26´に接続し、更に電極26,26′で外部電極に接続する。電極26,26´はステム21とは絶縁27、27´により絶縁されている。ステム21,放熱体28,28′、蛍光体24に囲まれる空間30は真空にしても良いが、通常透明樹脂を充填する。
【0022】
また、図2(b)では、ステム31上にLEDがフリップチップで搭載されている。即ちLED発光部33がLEDの電極と共にステム31に接続されており、その上にLED基板32が位置する。LEDの周囲を囲んで放熱体38,38′が設置され、そのステム又は電極と接する部分は電気的に絶縁39,39′されている。LED基板32の更に上方には蛍光体14が放熱体38,38′に接して位置する。LEDの電極はステム31に配置された電極36,36´に直結しているため、ワイヤは不要となる。電極36,36´は絶縁37,37´によりステム31とは絶縁されている。ステム31,放熱体38,38′、蛍光体34に囲まれる空間40は真空にしても良いが、通常透明樹脂を充填する。
【0023】
すなわち、図2の構成は、高度の発熱となるLEDと蛍光体を離した状態で用いる構成である。従って、図1のように、蛍光体が発する自己励起光に伴う発熱を、LEDを介してステム側に放熱することをせず、別に周囲に設けた放熱体を利用して放熱する手段を取っている。このような形状とすることにより、LEDで発する熱はステムに放熱し、蛍光体で発する熱は放熱体を経てステム等へ放散することが出来る。
ここで、蛍光体を円盤状に見立て、発生する熱量をW、円盤の外半径をr、円盤中心から発熱中心までの半径rから外周までの温度差をΔT、円盤の厚みをt、熱伝導率をλとすると、
ΔT=W/λ・ln(r/r)・1/2πt
なる関係が導かれる。また、熱発生が円盤全体から発生する場合、円盤半径の1/2付近に熱が発生すると考えれば良いから、上記式にr=2rを代入すると、
ΔT=0.11W/λt
なる式が得られる。
【0024】
前記蛍光体の発熱を次元解析と数値計算を用いて算出すると、
ΔT=0.1W/tλ
なる関係式が得られる。前述の仮定に近似する式となる。
ここで、ΔT:蛍光体の中央部の温度上昇分(K) である。
また、第1の発明で示したように、蛍光体の発熱量Wは、LEDへの投入電力Wの約1/10であることから、前記式は、
ΔT=0.01W/tλ
と表せる。
前記した本発明の第1の発明と同様に、蛍光体が20℃以上の温度上昇とならないようにするには、ΔT<20となる必要がある。
従って、W<2000tλなる関係にあればよい。
【0025】
また、蛍光体は外部を空気に囲まれていることから、熱伝達による熱放散がある。
この熱放散量は、空気の自然対流伝熱における伝熱係数が0.03W/cmK程度であるので、20℃の温度上昇時での放熱量Wは、
=0.03×20S=0.6S
ここで、Sは蛍光体の空気に触れている側の面積である。ここでLEDの投入電力(W)による蛍光体の発熱量は0.1Wであるから、W<0.1Wなる状況にしなければならない。即ち、
>6S
ところが、使用時における熱伝達において、上記放熱量は、蛍光体の面が垂直状態時の放熱量であり、実質放熱量はより小さい。そこで、実質放熱量によって放熱されずに蛍光体に残る熱量は、伝熱により放熱体に吸収される。
以上の2つの関係から、
6S<2000tλ
なる関係が得られる。
λは材料の特性であり、SはLEDの大きさで決められるため、tで調整する必要がある。そこから、
>6S/2000λ
とするのが好ましい。ここでtは特に上限はないが、蛍光体は板状として使用するため、
√S>tであればよい。
以上の条件は、蛍光体の一部が放熱体に接している状態で成立する。放熱体は、製造上、LEDが搭載されるステム上に設置されるが、LEDを挟んで両側に、若しくはLEDを囲んで4方向に設置するのが好ましい。
【0026】
このような条件は、放熱材が蛍光体の発熱を十分に放熱する必要がある。従って、放熱材には、蛍光体の熱伝導率より大きな熱伝導率を有する材料を用いるのがよく、特に高熱電導性を有する,Cu又はAlを主成分とする金属を用いるのが好ましい。
【0027】
以上の状況は、図2(a)に示す模式図における説明であるが、図2(b)に示すLEDをステム上にフリップチップに装着した場合も同じである。LED基板が十分な熱伝導性を有する材料、即ちSiC、GaN、AlNを用いる場合は、図2(a)の構成を用いるのがよい。LED基板に熱伝導性が十分でない材料、即ちサファイアを用いる場合は、図2(b)の構成を用いる必要がある。SiC、GaN、AlNの場合は、フリップチップにした方が放熱が良いが、通常の搭載方法でも十分に放熱できる。
なお、本発明の第1の発明及び第2の発明に用いる蛍光体には、ZnSSe、ZnS、ZnSeが好ましく用いられる。これらを併せてZnSSe1−x(0≦x≦1)と記載する。そのほかには、ZnCdSを用いることも出来る。
また、上記蛍光体には、自己励起光の核となる原子を含ませるのが良く、Al、Ga、In、Cl、Br、Iのいずれか1種以上の原子を含ませる。これらの原子の種類と量により、自己励起光の波長が調整でき、赤乃至黄色の自己励起光を発することが出来る。好ましくはその量を1×1017個/cm以上含ませるのが良い。
【0028】
【実施例】
以下に実施例を示すが、本発明は以下の実施例に限定されるものではない。
(実施例1)ヨウ素輸送法によって成長させたのち、Zn雰囲気中で1000℃の熱処理をしたZnSSe結晶(ZnS組成0.5)を切り出し、両面をミラー研磨して厚み200μmの板とした。このZnSSe蛍光体の特性を調べたところ、波長440nm光に対する吸収係数αは100/cmであり、熱伝導率λは0.15W/cmKであった。従ってαλ=15(W/K)である。この板から300μm角に蛍光体を切りだした。
別に、GaN基板とサファイア基板を用いた表面にInGaN活性層を持つ発光波長440nmの400μm角の青色LEDチップを準備した。
【0029】
上記LEDと蛍光体を用いて白色発光素子を作製した。その構成を図3に示す。Al製ステム51にあらかじめ絶縁57,57′をした電極56,56′を配置しておき、該電極間のステム上にAgペーストでLEDチップをLED基板52を下にLED発光部53を上にして貼り付けた。その上にZnSSe蛍光体54を、透明樹脂を用いて接続した。Au製ワイヤ55,55′を用いてLEDチップ上の電極とAl製ステム51上の電極56,56′を接続した後、LEDチップと蛍光体の周囲をAl製放熱体58,58′で囲み、ステム51,電極56,56′に接する部分は、絶縁59,59′した。こうして出来た囲いの内部をSiC粉末からなる拡散材を含むエポキシ系透明樹脂60を用いたポッティングにより充填した。この素子は、GaN基板と、サファイア基板について作製すると同時に、サファイア基板についてはLEDをフリップチップに貼り付けたものも用意した。
【0030】
以上3種類の白色発光素子の特性を測定するため、外部電極と接続して通電して発光させた。LEDの上方で発光波長分布を採取し、色度座標xを算出した。LEDに投入する電力を変え、得られた電力密度と色度座標xの関係を図5に示す。この図から、サファイヤ基板のLEDは、投入電力密度が200W/cmを越えると、色度座標xが変化し始めるが、GaN基板を用いたLEDでは色度座標xの変化は見られない。測定は電力密度が350W/cmまでであるが、本発明になる白色発光素子は少なくともサファイアを用いたLED基板の倍程度の投入電力密度に対して問題なく使用できる。
【0031】
なお、図5には記載していないが、サファイア基板を用いたLEDをフリップチップに貼り付けた白色発光素子についても測定したが、図5のGaN基板LEDを用いた場合とほぼ同様のデータを得ている。
実施例1では、LED周囲を放熱材で囲っているが、特に使用してもしなくても、本発明は成立する。
【0032】
(実施例2)実施例1で用いたZnSSe(ZnS組成0.5)を切り出し、両面をミラー研磨して厚み200μmの板とした。これを3mm角に切り出し、蛍光体とした。
別に、GaN基板とサファイア基板を用いた表面にInGaN活性層を持つ発光波長450nmの1mm角の青色LEDチップを準備した。
【0033】
上記LEDチップと蛍光体を用いて白色発光素子を作製した。その構成を図4に示す。
Al製ステム61にあらかじめ絶縁67,67′を介して電極66,66′を配置しておき、この中間に前記LEDチップをLED基板62を下に発光部63を上にしてAgペーストを用いて搭載した。その後、Au製ワイヤ65,65′を用いてLEDの電極とステム上の電極66,66′を接続した。このLEDを囲んでAl製の放熱体68,68′をステム側に絶縁69,69′して設置した。放熱体68,68′で囲まれた内部をエポキシ系透明樹脂70をポッティングして充填し、その上に蛍光体64を放熱体68,68′に接触させて置き、前記透明樹脂70で固定した。
【0034】
上記の白色発光素子をサファイア基板のものとGaN基板のもので作製した。蛍光体の熱伝導率λは実施例1と同じ0.15W/cmKであり、S=0.09cmであるから、t>6/2000・S/λ=0.0018cm=18μmである。
この白色発光素子に通電し、LEDの上方で発光波長分布を採取し、色度座標xを算出した。負荷する投入電力を種々変えた結果、図6に示す結果を得た。サファイア基板を使用したLEDは、投入電力2Wまでは色度座標xに変化は見られないが、2Wを越えると色度座標xに変化が見られた。これに対し、本発明になるGaN基板を用いたLEDでは投入電力5Wまで色度座標xに変化は見えなかった。この結果から本発明になる白色発光素子は、大きな投入電力に置いても使用が可能であり、高出力の白色発光素子として使用が可能である。
【0035】
【発明の効果】
本発明により、白色発光素子を用いる信号用LEDのみでなく、一般照明用のLEDとして使用可能な、高入力にも耐え、そこから発生する高出力の白色発光素子を提供できる。
【図面の簡単な説明】
【図1】本発明における第1の発明の構成説明図である。(a)はLEDを通常搭載した場合、(b)はLEDをフリップチップに搭載した場合である。
【図2】本発明における第2の発明の構成説明図である。(a)はLEDを通常搭載した場合、(b)はLEDをフリップチップに搭載した場合である。
【図3】本発明における第1の発明を、実施例として示す一例である。
【図4】本発明における第2の発明を、実施例として示す一例である。
【図5】本発明の第1の発明を用いた白色発光素子の、投入電力密度と色度座標の関係を示す。
【図6】本発明の第2の発明を用いた白色発光素子の、投入電力密度と色度座標の関係を示す。
【図7】従来技術における白色発光素子の第1の例である。
【図8】従来技術における白色発光素子の第2の例である。
【図9】従来技術における白色発光素子の第3の例である。
【符号の説明】
1,11,21,31,51,61.ステム、
2,12,22,32,52,62.LED基板、
3,13,23,33,53,63.LED発光部、
4,14,24,34,54,64.蛍光体、
5,5′,25,25′,55,55′,65,65′.ワイヤ、
6,6′,16,16′,26,26′,36,36′,56,56′,66,66′.電極、
7,7′,17,17′,27,27′,29,29′,37,37′,39,39′,57,57′,59,59′,67,67′,69,69′.絶縁、
28,28′,38,38′,58,58′,68,68′.放熱体、
30,40.空間又は透明樹脂、
60,70.透明樹脂、
101,111,121.透明樹脂、
102,103,112,113,122,123.リード、
104.くぼみ、
105,106,114,124.ワイヤ、
125.窓材、
107,126.LEDチップ、
108,115.LED発光部、
109,116.LED基板、
110.YAG蛍光体、
127.ステム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a white light-emitting element that can be used for illumination, display, a liquid crystal backlight, and the like.
[0002]
[Prior art]
Various light emitting diodes that emit white light have been devised in recent years. White light can also be achieved by combining light emitting diodes having the three primary colors of red, green, and blue, but a diode that can emit white light with a single diode is desired to be inexpensive and save space. In particular, a diode that emits white light having such a large luminous intensity that is used for illumination instead of a light bulb or a fluorescent lamp is required.
[0003]
On the other hand, recently, by surrounding the periphery of an InGaN-based blue LED as shown in FIGS. 7A and 7B with a transparent resin layer in which a powdery YAG phosphor is dispersed, A technique is disclosed in which part of the emitted blue light is converted into yellow light, and the blue light from the LED and the yellow light from the YAG phosphor are combined to produce white light (see Non-Patent Document 1). In this technique, as shown in FIG. 7A, a lead 102 and an electrode-only lead 103 are fixed while being molded with a transparent resin 101, and an LED chip 107 is formed at the tip of the lead 102. It is mounted in the indentation 104. In the LED chip 107, a wire 105 and a wire 106 are connected to the lead 102 and the lead 103, respectively. The depression 104 is filled with a YAG phosphor 110 so as to cover the LED chip 107.
FIG. 7B is an enlarged view of the vicinity of the LED chip 107. An LED is installed in the recess 104 of the lead 102, and the LED substrate 109 is positioned below and the LED light emitting unit 108 is positioned above. The LED is filled with a YAG phosphor 110 dispersed in a transparent resin filled in the depression 104. The blue light B emitted upward from the LED light emitting unit 108 is partially absorbed by the YAG phosphor 110 and emits yellow light Y. A part of the blue light B passes through the YAG phosphor 110 as it is, so that it overlaps with the yellow light Y and emits white light.
[0004]
Further, there is another technique shown in FIGS. 8A and 8B (see Patent Document 1). In FIG. 8A, there are a lead 112 for mounting an LED molded with a transparent resin 111 and a lead 113 having only an electrode. The LED mounted on the lead 112 includes a ZnSe LED substrate 116 and a ZnCdSe LED light emitting unit 115. Since this LED is conductive, one end of the electrode directly uses the lead 112 and the other end is connected to the lead 113 by a wire 114. The principle of white light emission will be described with reference to an enlarged view of the LED portion in FIG. The LED mounted on the lead 112 includes a ZnSe LED substrate 116 and a ZnCdSe LED light emitting unit 115 disposed thereon. The blue light B emitted from the LED light emitting unit 115 is directly directed to the transparent resin 111 (not shown) and the blue light B that is directed to the LED substrate 116. The blue light B incident on the LED substrate 116 is in ZnSe. Absorbs and emits self-excitation light. This self-excitation light becomes yellow light Y to orange, passes through the ZnCdSe LED light-emitting portion 115, and goes to the transparent resin 111. That is, when viewed from the outside, the blue light B and the yellow light Y overlap and appear as white light.
[0005]
Further, FIG. 9 discloses a technique having another structure (see Patent Document 2). In this technique, a transparent resin 121 covers a lead 122 on which an LED chip 126 fixed to a stem 127 is mounted and a lead 123 having only an electrode. In the transparent resin 121, an LED chip 126 and a wire 124 are embedded together with leads. A window member 125 is provided on the transparent resin 121, and the window member is made of ZnSe. The LED chip 126 has an InGaN-based light emitting unit and emits blue light. This light passes through the window member 125 and exits to the outside, and part of the light is absorbed in the window member 125 and becomes yellow light or orange light to emit self-excitation light. From the outside, the blue light that has passed through the window material 125 overlaps with the self-excitation light of yellow light or orange light in the window material 125 and appears as white light.
[0006]
[Patent Document 1]
JP 2000-82845 A, (0019-0020, FIG. 3b)
[Patent Document 2]
JP 2000-261634 A, (0030-0031, FIG. 1)
[Non-Patent Document 1]
"Optical Functional Materials Manual", Optical Functional Materials Manual Editorial Board, Optoelectronics, p457, June 1997
[0007]
[Problems to be solved by the invention]
As described above, LEDs that emit white light already exist as the prior art. These white light-emitting elements can be used without any particular problems when used at low output such as signals. However, in the use of high output as a substitute for illumination, further ingenuity is required. For example, the transparency of a YAG phosphor is lowered by heat generated by high output. In the case of a ZnSe substrate, the blue light emitting layer tends to deteriorate. In the case of a ZnSe window material, the heat generated by the window material cannot be dissipated. Due to these problems, it is impossible to directly make the above technology a high-power LED, and further improvement is required.
[0008]
[Means for Solving the Problems]
A first aspect of the present invention is a light emitting device comprising a phosphor and a light emitting diode (LED), wherein the phosphor has a thermal conductivity λ (W / cmK) and an absorption coefficient for light from the LED. The relationship with α (1 / cm) is selected from materials having λα> 2, and the substrate constituting the LED is selected from SiC, GaN, and AlN, and the LED and the phosphor are in contact with each other. Or a substrate used for the LED is one of SiC, GaN, AlN, and sapphire, and the phosphor is disposed in contact with the LED substrate side. It is an element. With such a configuration, the input power density loaded on the LED chip is 200 W / cm.2The above can be used. Here, the phrase “contacting” means that they are adhered using an adhesive or the like.
In particular, an InGaN-based LED may be used for the LED used.
[0009]
According to a second aspect of the present invention, there is provided a light emitting device that is a combination of a phosphor and a light emitting diode (LED) installed on a stem, and the LED on the stem dissipates part or all of the surroundings. It is a white light emitting element characterized in that a phosphor is placed in contact with the heat dissipator on the upper part thereof.
In particular, the thickness t (cm) of the phosphor used determines the area of the phosphor as S (cm2), When the thermal conductivity is represented by λ (W / cmK),
√S> t> 6S / 2000λ
If it is in the range, it is preferable. Although there is no problem with a normal low output, the heat radiation effect is remarkable by setting the thickness of the phosphor within the above range.
Further, the substrate constituting the LED is selected from any one of SiC, GaN, and AlN, or the substrate used for the LED is any one of SiC, GaN, AlN, and sapphire, and the LED is mounted in a flip chip type. It is preferable to adopt a configuration that takes heat dissipation into consideration.
[0010]
In the above two inventions, it is preferable that the main component of the radiator is Al or Cu, since the thermal conductivity can be increased, and the heat dissipation is good. The phosphor used is ZnS.xSe1-xWhen it is formed by (0 ≦ x ≦ 1), it is preferable as a phosphor that forms white light. 1 × 10 of any one of Al, Ga, In, Cl, Br, and I is contained in the phosphor.17Piece / cm3It is preferable to include the above.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The first aspect of the present invention will be described with reference to the schematic diagrams of FIGS. FIG. 1A shows a normal mounting configuration in which the light-emitting portion of the LED substrate faces up, and FIG. 1B shows a configuration in which the LED is mounted on a flip chip. In FIG. 1A, the LED substrate 2 is connected to the stem 1, and the LED light emitting unit 3 is positioned thereon. Furthermore, the phosphor 4 is mounted thereon. Since the electrodes are arranged on the LED light emitting part side, the LEDs are connected to the external electrodes by the electrodes 6 and 6 ′ arranged on the stem by the wires 5 and 5 ′. The electrodes 6 and 6 'are insulated from the stem 1 by insulation 7 and 7'. Moreover, in FIG.1 (b), LED is mounted on the stem 11 by the flip chip. That is, the LED light emitting unit 13 is in contact with the stem 11 together with the electrode of the LED, and the LED substrate 12 is positioned thereon. The phosphor 14 is in contact with the LED substrate 12 further above. Since the electrodes of the LED are directly connected to the electrodes 16 and 16 ′ arranged on the stem 11, no wires are necessary. The electrodes 16 and 16 'are insulated from the stem 11 by insulation 17 and 17'. With the above structure, the material characteristics of the phosphors 4 and 14 are λα> 2 when the thermal conductivity is λ (W / cmK) and the light absorption coefficient of the LED is α (1 / cm). Is to satisfy. In the case of FIG. 1A, the material used for the LED substrate 2 is SiC, GaN, or AlN. In the case of FIG. 1B, the material used for the LED substrate 12 is SiC, GaN, AlN, or sapphire. In the point.
[0012]
The reason for adopting such a structure is the discharge of generated heat. That is, the transparent resin surrounding the LED has low thermal conductivity, and even if the phosphor mixed therein emits light and generates heat at the same time, heat conduction by the surrounding transparent resin cannot be expected. However, if the phosphors having higher thermal conductivity than the transparent resin are concentrated, the temperature rise of the transparent resin can be prevented. Further, if the heat generated there is in contact with a material with good heat dissipation other than the transparent resin, the temperature rise of the phosphor itself can be prevented.
From the above contents, the configuration of FIG. 1 is established. This will be described below with a simplified calculation.
[0013]
Assume a white light-emitting element manufactured with the configuration of FIG. here,
w1: LED heat generation density (W / cm2)
w2: Heat generation density of phosphor (W / cm2)
T0: LED bottom surface temperature (K)
T1: LED top surface temperature (K)
T2: Temperature of the phosphor upper surface (K)
G1: Temperature gradient in the LED substrate (K / cm)
G2: Temperature gradient in phosphor (K / cm)
λ1: Thermal conductivity of LED substrate (W / cmK)
λ2: Thermal conductivity of phosphor (W / cmK)
t1: LED substrate thickness (cm)
t2: Thickness of phosphor (cm)
Then, the heat flow balance in the steady state is expressed by an equation:
w1+ W2= Λ1G1, W2= Λ2G2
T1= T0+ T1G1, T2= T1+ T2G2
It is indicated. Here, it is assumed that the heat generation of the LED and the phosphor occurs on the respective surfaces, but the temperature rise tends to be excessive, and there is no safety problem.
[0014]
The above formula is arranged, and the input power density to the LED is w0(W / cm2) Is replaced with the following formula:
ΔT1= T1-T0= T1(W1+ W2) / Λ1= ((A1+ A2) T1/ Λ1) W0
ΔT2= T2-T0= T1(W1+ W2) / Λ1+ T2w2/ Λ2= ((A1+ A2) T1/ Λ1+ A2t2/ Λ2) W0
Where w1= A1w0, W2= A2w0  And a1, A2Are the heating rate of the LED and the heating rate of the phosphor.
[0015]
A specific temperature rise is estimated using the above formula as follows.
In FIG. 1A, a case where sapphire is used for the LED substrate 2, InGaN is used for the LED light emitting portion 3, and ZnSSe (ZnS composition 0.5) is used for the phosphor 4 is taken as an example.
The specific figures are
λ1(Sapphire): 0.3 W / cmK, λ2(ZnSSe): 0.15 W / cmK
t1(LED thickness): 0.04 cm, t2(Phosphor thickness): 0.01 cm
a1: 0.7, a2: 0.1
It was. a1Since the external quantum efficiency of InGaN is about 30%, the remainder is used for heat generation. a2The numerical value was determined on the assumption that 10% of the light from InGaN passes through the phosphor and 20% enters the phosphor and 10% is used for heat generation in the phosphor.
[0016]
When the above numerical values are applied to the above formula, calculation is as shown in Table 1. Here, the input power density is 200 W / cm.2If the temperature exceeds the range, the phosphor is subjected to a temperature increase of 20 ° C. or more by the LED, which is not preferable.
Further, most of this temperature difference is caused by the LED chip, but since the thermal conductivity of the LED is not large, the effect of using the phosphor having a large thermal conductivity cannot be sufficiently exhibited. Therefore, it is understood that it is good to use a material having a high thermal conductivity for the LED substrate.
As the LED substrate, an InGaN-based LED can be formed, and it is necessary to have high thermal conductivity and be transparent to LED light emission. SiC, GaN, and AlN apply to this condition.
Table 2 shows the result of the simulation calculation of the above formula using these materials. In Table 2, input power density w0200W / cm2It is.
[0017]
[Table 1]
Figure 2005005544
[0018]
[Table 2]
Figure 2005005544
[0019]
According to Table 2, in the three kinds of substrate materials, the temperature difference in the LED (ΔT1) And the temperature difference in the phosphor (ΔT2-ΔT1) Does not have a large difference, and can be used even when a large input power density is loaded. As described above, the temperature gradient can be suppressed by using a material having a high thermal conductivity of the LED substrate. As described above, the temperature difference in the phosphor is suppressed as follows.
Even in the case of a phosphor, there is no problem if a material having a high thermal conductivity is obtained. However, the purpose of the phosphor is to absorb monochromatic light from the LED once and emit self-excited light as light having a long wavelength, and since it is necessary to partially pass the monochromatic light, it is transparent to the monochromatic light. There must be. Under such conditions, the material is selected, and the physical properties of the material are limited. Therefore, the present inventors have found out conditions for using phosphor materials effectively. That is, from the relationship of the equations used above, a2t2/ Λ2This can be solved by reducing.
That is,
a2t2/ Λ2<(A1+ A2) T1/ Λ1
If you put the numerical value used in the above calculation into the above formula,
t2/ Λ2<1
It is sufficient to use the following conditions. That is, the thickness (cm) of the phosphor is set to a value smaller than the thermal conductivity (W / cmK) of the phosphor. Substantially, the heat absorption from the LED emission is almost absorbed near the surface of the phosphor, so if the absorption coefficient of the LED light of the phosphor is α (1 / cm), the heat generation part is 2 / α ( The width is limited to about 1 / cm).
Therefore, the above formula is
αλ> 2
It becomes a relationship. If this relationship is satisfied, the phosphor can be used without any problem due to temperature rise.
[0020]
When sapphire is used for the LED substrate described above, since the thermal conductivity of sapphire of the substrate is small, it becomes a problem when the output is increased as it is. In this case, if the LED is mounted on the flip chip, the heat generation amount can be dissipated in a large amount to the stem side, so that it can be used. That is, it is means for making the configuration of FIG. Of course, the SiC, GaN, and AlN substrates described above can be similarly mounted on a flip chip, and the temperature rise can be further reduced with respect to heat generated by the light emitting portion.
[0021]
The second invention of the present invention is shown in the schematic diagrams of FIGS. 2 (a) and 2 (b). FIG. 2A shows a normal mounting configuration in which the light emitting portion of the LED substrate is facing up, and FIG. 2B shows a configuration in which the LED is mounted on a flip chip. In FIG. 2A, the LED substrate 22 is connected to the stem 21, and the LED light emitting unit 23 is positioned thereon. The radiators 28 and 28 'are installed so as to surround part or all of the periphery of the LED, and the portions in contact with the stems or electrodes are electrically insulated 29 and 29'. Further above, the phosphor 24 is positioned in contact with the radiators 28 and 28 '. Since the LED is arranged on the LED light emitting unit 23 side, the LED is connected to the electrodes 26 and 26 'arranged on the stem 21 by wires 25 and 25', and further connected to an external electrode by the electrodes 26 and 26 '. . The electrodes 26 and 26 ′ are insulated from the stem 21 by insulation 27 and 27 ′. The space 30 surrounded by the stem 21, the radiators 28 and 28 ', and the phosphor 24 may be evacuated, but is usually filled with a transparent resin.
[0022]
In FIG. 2B, the LED is mounted on the stem 31 by flip chip. That is, the LED light emitting unit 33 is connected to the stem 31 together with the electrode of the LED, and the LED substrate 32 is positioned thereon. The radiators 38 and 38 'are installed so as to surround the LED, and the portions that contact the stems or electrodes are electrically insulated 39 and 39'. Above the LED substrate 32, the phosphor 14 is positioned in contact with the heat radiating bodies 38, 38 '. Since the electrodes of the LED are directly connected to the electrodes 36 and 36 ′ arranged on the stem 31, no wires are necessary. The electrodes 36 and 36 ′ are insulated from the stem 31 by insulation 37 and 37 ′. A space 40 surrounded by the stem 31, the radiators 38 and 38 ', and the phosphor 34 may be evacuated, but is usually filled with a transparent resin.
[0023]
That is, the configuration of FIG. 2 is a configuration used in a state where the LED that generates high heat and the phosphor are separated from each other. Therefore, as shown in FIG. 1, the heat generated by the self-excitation light emitted from the phosphor is not dissipated to the stem side via the LED, but a means for dissipating heat using a separate heat dissipator is provided. ing. By adopting such a shape, heat generated by the LED can be dissipated to the stem, and heat generated by the phosphor can be dissipated to the stem or the like via the heat dissipator.
Here, the phosphor is regarded as a disk, the amount of heat generated is W, and the outer radius of the disk is r.2, Radius r from disk center to heat generation center1And ΔT, the thickness of the disk t, and the thermal conductivity λ,
ΔT = W / λ · ln (r2/ R1) ・ 1 / 2πt
The following relationship is derived. In addition, when heat is generated from the entire disk, it can be considered that heat is generated in the vicinity of ½ of the disk radius.2= 2r1Substituting
ΔT = 0.11W / λt
The following formula is obtained.
[0024]
When calculating the heat generation of the phosphor using dimensional analysis and numerical calculation,
ΔT3= 0.1W2/ T2λ2
The following relational expression is obtained. The equation approximates the above assumption.
Where ΔT3: Temperature rise (K) at the center of the phosphor.
Further, as shown in the first invention, the calorific value W of the phosphor2Is the input power W to the LED0Is about 1/10 of that
ΔT3= 0.01W0/ T2λ2
It can be expressed.
As in the first aspect of the present invention described above, in order to prevent the phosphor from increasing in temperature by 20 ° C. or more, ΔT3<20.
Therefore, W0<2000t2λ2It only has to be a relationship.
[0025]
In addition, since the phosphor is surrounded by air, there is heat dissipation due to heat transfer.
This heat dissipation amount is 0.03 W / cm in the heat transfer coefficient in natural convection heat transfer of air.2Since it is about K, the heat dissipation W when the temperature rises to 20 ° CaIs
Wa= 0.03 x 20S = 0.6S
Here, S is the area of the phosphor that is in contact with the air. Here, the input power (W0) Is 0.1W0So Wa<0.1W0Must be in a situation. That is,
W0> 6S
However, in heat transfer during use, the heat dissipation amount is the heat dissipation amount when the surface of the phosphor is vertical, and the actual heat dissipation amount is smaller. Therefore, the amount of heat remaining in the phosphor without being dissipated by the substantial amount of heat dissipated is absorbed by the heat dissipator by heat transfer.
From the above two relationships,
6S <2000t2λ2
The following relationship is obtained.
λ2Is a property of the material and S is determined by the size of the LED, so t2It is necessary to adjust with. From there,
t2> 6S / 2000λ2
Is preferable. Where t2There is no particular upper limit, but the phosphor is used as a plate,
√S> t2If it is.
The above conditions are satisfied when a part of the phosphor is in contact with the heat radiating body. The radiator is installed on a stem on which the LED is mounted for manufacturing, but is preferably installed on both sides of the LED or in four directions surrounding the LED.
[0026]
Such conditions require that the heat dissipation material sufficiently dissipate the heat generated by the phosphor. Therefore, it is preferable to use a material having a thermal conductivity larger than that of the phosphor as the heat dissipation material, and it is particularly preferable to use a metal having Cu or Al as a main component and having a high thermal conductivity.
[0027]
The above situation is the description in the schematic diagram shown in FIG. 2A, but the same is true when the LED shown in FIG. 2B is mounted on the flip chip on the stem. When the LED substrate uses a material having sufficient thermal conductivity, that is, SiC, GaN, or AlN, the configuration shown in FIG. When a material having insufficient thermal conductivity, that is, sapphire is used for the LED substrate, it is necessary to use the configuration of FIG. In the case of SiC, GaN, and AlN, heat dissipation is better when flip-chip is used, but sufficient heat dissipation can be achieved by a normal mounting method.
In addition, ZnSSe, ZnS, and ZnSe are preferably used for the phosphor used in the first and second inventions of the present invention. Together these ZnSxSe1-x(0 ≦ x ≦ 1). In addition, ZnCdS can also be used.
In addition, the phosphor preferably contains an atom serving as a nucleus of self-excitation light, and contains at least one atom of Al, Ga, In, Cl, Br, and I. Depending on the type and amount of these atoms, the wavelength of the self-excitation light can be adjusted, and red to yellow self-excitation light can be emitted. Preferably the amount is 1 × 1017Piece / cm3It is good to include above.
[0028]
【Example】
Examples are shown below, but the present invention is not limited to the following examples.
(Example 1) After growing by the iodine transport method, a ZnSSe crystal (ZnS composition 0.5) which was heat-treated at 1000 ° C in a Zn atmosphere was cut out, and both surfaces were mirror-polished to form a plate having a thickness of 200 µm. When the characteristics of the ZnSSe phosphor were examined, the absorption coefficient α for light having a wavelength of 440 nm was 100 / cm, and the thermal conductivity λ was 0.15 W / cmK. Therefore, αλ = 15 (W / K). A phosphor was cut out from this plate into a 300 μm square.
Separately, a 400 μm square blue LED chip with an emission wavelength of 440 nm having an InGaN active layer on the surface using a GaN substrate and a sapphire substrate was prepared.
[0029]
A white light emitting device was fabricated using the LED and the phosphor. The configuration is shown in FIG. Electrodes 56 and 56 'previously insulated 57 and 57' are arranged on the Al stem 51, and the LED chip is placed on the stem between the electrodes with Ag paste with the LED substrate 52 facing down and the LED light emitting portion 53 facing up. And pasted. A ZnSSe phosphor 54 was connected thereon using a transparent resin. After the electrodes on the LED chip and the electrodes 56, 56 'on the Al stem 51 are connected using Au wires 55, 55', the periphery of the LED chip and the phosphor is surrounded by Al radiators 58, 58 '. The portions in contact with the stem 51 and the electrodes 56 and 56 'are insulated 59 and 59'. The inside of the enclosure thus formed was filled by potting using an epoxy transparent resin 60 containing a diffusing material made of SiC powder. This device was prepared for a GaN substrate and a sapphire substrate, and at the same time, a sapphire substrate in which an LED was attached to a flip chip was also prepared.
[0030]
In order to measure the characteristics of the above three types of white light emitting elements, they were connected to external electrodes and energized to emit light. The emission wavelength distribution was sampled above the LED, and the chromaticity coordinate x was calculated. FIG. 5 shows the relationship between the power density obtained and the chromaticity coordinate x obtained by changing the power supplied to the LED. From this figure, the sapphire substrate LED has an input power density of 200 W / cm.2The chromaticity coordinate x begins to change beyond the range, but no change in the chromaticity coordinate x is observed in an LED using a GaN substrate. The power density is 350 W / cm2However, the white light emitting device according to the present invention can be used without any problem with respect to the input power density at least twice that of the LED substrate using sapphire.
[0031]
Although not shown in FIG. 5, a white light emitting element in which an LED using a sapphire substrate is attached to a flip chip was also measured, but data similar to the case of using the GaN substrate LED in FIG. It has gained.
In Example 1, the LED is surrounded by a heat radiating material. However, the present invention is established whether or not it is used.
[0032]
(Example 2) ZnSSe (ZnS composition 0.5) used in Example 1 was cut out, and both surfaces were mirror-polished to form a plate having a thickness of 200 µm. This was cut into 3 mm squares to obtain phosphors.
Separately, a 1 mm square blue LED chip with an emission wavelength of 450 nm having an InGaN active layer on the surface using a GaN substrate and a sapphire substrate was prepared.
[0033]
A white light emitting device was fabricated using the LED chip and the phosphor. The configuration is shown in FIG.
Electrodes 66 and 66 'are arranged in advance on an Al stem 61 via insulations 67 and 67', and the LED chip is placed between them using an Ag paste with the LED substrate 62 facing down and the light emitting part 63 facing up. equipped. Thereafter, the electrodes of the LED and the electrodes 66 and 66 'on the stem were connected using Au wires 65 and 65'. Surrounding this LED, heat sinks 68 and 68 'made of Al were installed with insulation 69 and 69' on the stem side. The interior surrounded by the heat radiators 68 and 68 ′ is filled with an epoxy transparent resin 70, and the phosphor 64 is placed in contact with the heat radiators 68 and 68 ′ and fixed with the transparent resin 70. .
[0034]
The white light emitting device described above was fabricated using a sapphire substrate and a GaN substrate. The thermal conductivity λ of the phosphor is 0.15 W / cmK, which is the same as in Example 1, and S = 0.09 cm.2Therefore, t> 6/2000 · S / λ = 0.018 cm = 18 μm.
The white light emitting element was energized, the emission wavelength distribution was collected above the LED, and the chromaticity coordinate x was calculated. As a result of variously changing the input power to be loaded, the result shown in FIG. 6 was obtained. In the LED using the sapphire substrate, no change was observed in the chromaticity coordinate x until input power of 2 W, but a change in chromaticity coordinate x was observed after exceeding 2 W. On the other hand, in the LED using the GaN substrate according to the present invention, no change was seen in the chromaticity coordinate x up to an input power of 5 W. From this result, the white light-emitting element according to the present invention can be used even at a large input power, and can be used as a high-output white light-emitting element.
[0035]
【The invention's effect】
According to the present invention, it is possible to provide a high-power white light-emitting element that can be used not only as a signal LED using a white light-emitting element but also as an LED for general illumination and that can withstand high input and is generated therefrom.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration according to a first aspect of the present invention. (A) is a case where an LED is normally mounted, and (b) is a case where an LED is mounted on a flip chip.
FIG. 2 is a diagram illustrating the configuration of a second invention in the present invention. (A) is a case where an LED is normally mounted, and (b) is a case where an LED is mounted on a flip chip.
FIG. 3 is an example showing the first invention in the present invention as an embodiment;
FIG. 4 is an example showing the second aspect of the present invention as an embodiment.
FIG. 5 shows the relationship between input power density and chromaticity coordinates of a white light emitting device using the first invention of the present invention.
FIG. 6 shows the relationship between input power density and chromaticity coordinates of a white light emitting device using the second invention of the present invention.
FIG. 7 is a first example of a white light emitting element in the prior art.
FIG. 8 is a second example of a white light emitting element in the prior art.
FIG. 9 is a third example of a white light emitting element in the prior art.
[Explanation of symbols]
1, 11, 21, 31, 51, 61. Stem,
2, 12, 22, 32, 52, 62. LED board,
3, 13, 23, 33, 53, 63. LED light emitting part,
4, 14, 24, 34, 54, 64. Phosphor,
5, 5 ', 25, 25', 55, 55 ', 65, 65'. Wire,
6, 6 ', 16, 16', 26, 26 ', 36, 36', 56, 56 ', 66, 66'. electrode,
7, 7 ', 17, 17', 27, 27 ', 29, 29', 37, 37 ', 39, 39', 57, 57 ', 59, 59', 67, 67 ', 69, 69'. Insulation,
28, 28 ', 38, 38', 58, 58 ', 68, 68'. Radiator,
30, 40. Space or transparent resin,
60, 70. Transparent resin,
101, 111, 121. Transparent resin,
102, 103, 112, 113, 122, 123. Lead,
104. Hollow,
105, 106, 114, 124. Wire,
125. Window material,
107,126. LED chip,
108,115. LED light emitting part,
109,116. LED board,
110. YAG phosphor,
127. Stem

Claims (8)

蛍光体と発光ダイオード(LED)を組み合わせてなる発光素子であって、前記蛍光体は、熱伝導率λ(W/cmK)と前記LEDからの光に対する吸収係数α(1/cm)との関係が、λα>2である材料から選ばれ、かつ、前記LEDを構成する基板がSiC、GaN及びAlNのいずれかから選ばれ、該LEDと前記蛍光体が接して配置されるか、または、前記LEDに用いる基板がSiC、GaN、AlN及びサファイアのいずれかであり、該LEDの基板側に前記蛍光体が接して配置されていることを特徴とする白色発光素子。A light emitting device comprising a combination of a phosphor and a light emitting diode (LED), wherein the phosphor has a relationship between a thermal conductivity λ (W / cmK) and an absorption coefficient α (1 / cm) for light from the LED. Is selected from materials satisfying λα> 2, and the substrate constituting the LED is selected from SiC, GaN and AlN, and the LED and the phosphor are disposed in contact with each other, or A white light-emitting element, wherein a substrate used for an LED is one of SiC, GaN, AlN, and sapphire, and the phosphor is disposed in contact with the substrate of the LED. 前記LEDに用いる発光体が,InGaN系である請求項1に記載の白色発光素子。The white light emitting element according to claim 1, wherein a light emitter used for the LED is an InGaN-based material. ステム上に設置された、蛍光体と発光ダイオード(LED)を組み合わせてなる発光素子であって、前記ステム上の前記LEDは、その周囲の一部若しくは全部を放熱体で囲まれており、その上方に該放熱体と接して蛍光体が設置されている構造を特徴とする白色発光素子。A light-emitting element that is a combination of a phosphor and a light-emitting diode (LED) installed on a stem, and the LED on the stem is surrounded by a part or all of its periphery with a heat radiator, A white light-emitting element characterized by having a structure in which a phosphor is placed in contact with the heat dissipator above. 前記蛍光体の厚みt(cm)が、蛍光体の面積をS(cm)、熱伝導率をλ(W/cmK)で表したときに、
√S>t>6S/2000λ
の範囲にある請求項3に記載の白色発光素子。
When the thickness t (cm) of the phosphor is represented by S (cm 2 ) as the phosphor area and λ (W / cmK) as the thermal conductivity,
√S>t> 6S / 2000λ
The white light-emitting element according to claim 3, which is in the range of
前記LEDを構成する基板がSiC、GaN及びAlNのいずれかから選ばれるか、または、前記LEDに用いる基板がサファイアであり、該LEDがフリップチップに実装されている請求項3又は4に記載の白色発光素子。The substrate constituting the LED is selected from SiC, GaN, and AlN, or the substrate used for the LED is sapphire, and the LED is mounted on a flip chip. White light emitting element. 前記放熱体の主成分がAl又はCuである、請求項3乃至5のいずれかに記載の白色発光素子。The white light emitting element according to claim 3, wherein a main component of the radiator is Al or Cu. 蛍光体がZnSSe1−x(0≦x≦1)によって形成された請求項1乃至6のいずれかに記載の白色発光素子。The white light emitting element according to any one of claims 1 to 6, wherein the phosphor is formed of ZnS x Se 1-x (0 ≦ x ≦ 1). 前記蛍光体中に、Al、Ga、In、Cl、Br、Iのいずれか1種以上を1×1017個/cm以上含む請求項7に記載の白色発光素子。The white light emitting element according to claim 7, wherein the phosphor includes 1 × 10 17 pieces / cm 3 or more of any one of Al, Ga, In, Cl, Br, and I.
JP2003168548A 2003-06-13 2003-06-13 White light emitting element Pending JP2005005544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168548A JP2005005544A (en) 2003-06-13 2003-06-13 White light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168548A JP2005005544A (en) 2003-06-13 2003-06-13 White light emitting element

Publications (1)

Publication Number Publication Date
JP2005005544A true JP2005005544A (en) 2005-01-06

Family

ID=34093958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168548A Pending JP2005005544A (en) 2003-06-13 2003-06-13 White light emitting element

Country Status (1)

Country Link
JP (1) JP2005005544A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303352A (en) * 2005-03-10 2006-11-02 Nichia Chem Ind Ltd Light emitting device
KR100673873B1 (en) 2005-05-12 2007-01-25 삼성코닝 주식회사 Single crystalline gallium nitride plate having improved thermal conductivity
JP2007027688A (en) * 2005-06-13 2007-02-01 Nichia Chem Ind Ltd Light emitting device
JP2007066939A (en) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2007220737A (en) * 2006-02-14 2007-08-30 Seiwa Electric Mfg Co Ltd Light emitting device
JP2008004690A (en) * 2006-06-21 2008-01-10 Noda Screen:Kk Light-emitting diode package
JP2009135153A (en) * 2007-11-28 2009-06-18 Kyocera Corp Light emitting device
WO2012057330A1 (en) * 2010-10-29 2012-05-03 株式会社光波 Light-emitting device
JP2012531040A (en) * 2009-06-18 2012-12-06 ブリッジラックス インコーポレイテッド Light emitting diode array package covered with high thermal conductivity plate
JP2018206725A (en) * 2017-06-09 2018-12-27 オムロン株式会社 Light source device and distance measuring sensor comprising the same
JP2019502254A (en) * 2015-12-21 2019-01-24 福建中科芯源光電科技有限公司 Dual channel heat transfer packaging structure and packaging method for solid state phosphor integrated light source

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299150A (en) * 1993-04-20 1994-10-25 Matsushita Electric Ind Co Ltd Fluorescent material and its production
JPH1187782A (en) * 1997-09-03 1999-03-30 Oki Electric Ind Co Ltd Light emitting diode
JP2000022222A (en) * 1998-07-07 2000-01-21 Stanley Electric Co Ltd Light emitting diode
JP2000150961A (en) * 1998-11-13 2000-05-30 Sumitomo Electric Ind Ltd Led element with light emitting substrate
JP2000261034A (en) * 1999-03-10 2000-09-22 Sumitomo Electric Ind Ltd Light emitting device
JP2001036148A (en) * 1999-07-23 2001-02-09 Matsushita Electric Works Ltd Light source
JP2001156338A (en) * 1999-11-24 2001-06-08 Koha Co Ltd Visible light emitting device
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299150A (en) * 1993-04-20 1994-10-25 Matsushita Electric Ind Co Ltd Fluorescent material and its production
JPH1187782A (en) * 1997-09-03 1999-03-30 Oki Electric Ind Co Ltd Light emitting diode
JP2000022222A (en) * 1998-07-07 2000-01-21 Stanley Electric Co Ltd Light emitting diode
JP2000150961A (en) * 1998-11-13 2000-05-30 Sumitomo Electric Ind Ltd Led element with light emitting substrate
JP2000261034A (en) * 1999-03-10 2000-09-22 Sumitomo Electric Ind Ltd Light emitting device
JP2001036148A (en) * 1999-07-23 2001-02-09 Matsushita Electric Works Ltd Light source
JP2001156338A (en) * 1999-11-24 2001-06-08 Koha Co Ltd Visible light emitting device
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303352A (en) * 2005-03-10 2006-11-02 Nichia Chem Ind Ltd Light emitting device
KR100673873B1 (en) 2005-05-12 2007-01-25 삼성코닝 주식회사 Single crystalline gallium nitride plate having improved thermal conductivity
JP2007027688A (en) * 2005-06-13 2007-02-01 Nichia Chem Ind Ltd Light emitting device
JP2007066939A (en) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2007220737A (en) * 2006-02-14 2007-08-30 Seiwa Electric Mfg Co Ltd Light emitting device
JP2008004690A (en) * 2006-06-21 2008-01-10 Noda Screen:Kk Light-emitting diode package
JP2009135153A (en) * 2007-11-28 2009-06-18 Kyocera Corp Light emitting device
JP2012531040A (en) * 2009-06-18 2012-12-06 ブリッジラックス インコーポレイテッド Light emitting diode array package covered with high thermal conductivity plate
WO2012057330A1 (en) * 2010-10-29 2012-05-03 株式会社光波 Light-emitting device
JPWO2012057330A1 (en) * 2010-10-29 2014-05-12 株式会社光波 Light emitting device
US9112123B2 (en) 2010-10-29 2015-08-18 National Institute For Materials Science Light-emitting device
JP2019502254A (en) * 2015-12-21 2019-01-24 福建中科芯源光電科技有限公司 Dual channel heat transfer packaging structure and packaging method for solid state phosphor integrated light source
JP2018206725A (en) * 2017-06-09 2018-12-27 オムロン株式会社 Light source device and distance measuring sensor comprising the same

Similar Documents

Publication Publication Date Title
US10598317B2 (en) Light emitting device
US10340429B2 (en) Light emitting device
JP5521325B2 (en) Light emitting device and manufacturing method thereof
JP5710603B2 (en) Light emitting device
JP2010526425A (en) Semiconductor light emitting device, and light source device and illumination system using the same
JP2010283281A (en) Light emitting device
JP6542509B2 (en) Phosphor and light emitting device package including the same
JP2007088472A (en) Light emitting diode package and method for manufacture it
JP2007035802A (en) Light-emitting device
JP2010225917A (en) Semiconductor light emitting device
JP5561330B2 (en) Light emitting device
JP5039164B2 (en) Light emitting device
JP5610036B2 (en) Light emitting device
JP6015734B2 (en) Light emitting device
US20070007542A1 (en) White-Light Emitting Device
JP4591106B2 (en) White light emitting device
JP2005005544A (en) White light emitting element
JP2007243054A (en) Light-emitting device
JP4508034B2 (en) Lighting equipment using white LED
JP2008218998A (en) Light emitting device
JP2009070892A (en) Led light source
JP2007243056A (en) Light emitting device
JP5786278B2 (en) Light emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP2008244468A (en) Light-emitting device

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304