JP2000022222A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JP2000022222A
JP2000022222A JP10191476A JP19147698A JP2000022222A JP 2000022222 A JP2000022222 A JP 2000022222A JP 10191476 A JP10191476 A JP 10191476A JP 19147698 A JP19147698 A JP 19147698A JP 2000022222 A JP2000022222 A JP 2000022222A
Authority
JP
Japan
Prior art keywords
wavelength conversion
light
emitting diode
conversion element
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10191476A
Other languages
Japanese (ja)
Other versions
JP4109756B2 (en
Inventor
Munehiro Kato
宗弘 加藤
Michihiro Sano
道宏 佐野
Mitsunori Harada
光範 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP19147698A priority Critical patent/JP4109756B2/en
Publication of JP2000022222A publication Critical patent/JP2000022222A/en
Application granted granted Critical
Publication of JP4109756B2 publication Critical patent/JP4109756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Abstract

PROBLEM TO BE SOLVED: To make a uniform wavelength conversion and prevent a color unevenness caused by a difference between conversion efficiencies, by a method wherein a wavelength conversion element in which a thickness and a density of a wavelength conversion substance have previously been set to be a desired value is provided. SOLUTION: A wavelength conversion element 4 is provided with a wavelength conversion element layer 4a, in which uniform mixture of a wavelength conversion substance with a resin binder holding the wavelength conversion substance is coated and cured on a sheet-like base body film 4b. And, it is arranged in a reflection horn 2 so that the wavelength conversion element layer 4a is brought into contact with a translucent substrate 3a of a LED chip 3. The wavelength conversion element 4 is not predipped in the reflection horn 2 to cure, but the wavelength conversion substance is formed in a layered manner. Accordingly, it is possible to control a thickness of the wavelength conversion substance layer and enhance uniformity of a wavelength conversion efficiency and an efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発光ダイオード(以下、
LEDと称す)に関するものであり、詳細には、発光ダ
イオードチップ(以下、LEDチップと称す)からの放
射光の色変換を目的とする波長変換物質を使用したLE
Dに係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode (hereinafter referred to as "light emitting diode").
More specifically, the present invention relates to an LE using a wavelength conversion substance for color conversion of light emitted from a light emitting diode chip (hereinafter, referred to as an LED chip).
It relates to D.

【0002】[0002]

【従来の技術】従来の、この種の波長変換物質を使用し
たLEDの例として、例えば特開平7−99345号が
知られている。図6に示すようにリードフレーム91に
形成した反射ホーン92内にLEDチップ93を載置
し、LEDチップ93の一方の電極は反射ホーン92に
接続され、他方の電極はリードフレーム94にワイヤー
95によりボンディング接続されている。反射ホーン9
2内にはLEDチップの発光波長を他の波長に変換する
蛍光物質、または発光波長の一部の光を吸収するフィル
ター物質等の変換物質を含有する第1の樹脂96をプレ
ディップして硬化させている。その後、第1の樹脂より
屈折率の小さなものとし、空気の屈折率と近くなるよう
にした第2の樹脂97を、これらを覆うようにして硬化
させてLED90を形成している。
2. Description of the Related Art Japanese Patent Laid-Open No. 7-99345 is known as an example of a conventional LED using such a wavelength converting substance. As shown in FIG. 6, an LED chip 93 is placed in a reflection horn 92 formed on a lead frame 91. One electrode of the LED chip 93 is connected to the reflection horn 92, and the other electrode is connected to a lead frame 94 by a wire 95. Bonding connection. Reflective horn 9
A first resin 96 containing a conversion substance such as a fluorescent substance that converts the emission wavelength of the LED chip to another wavelength or a filter substance that absorbs a part of the emission wavelength is hardened by pre-dip in 2. Let me. After that, the second resin 97 having a lower refractive index than that of the first resin and being close to the refractive index of air is cured so as to cover them, thereby forming the LED 90.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記し
た従来のLED90においては、蛍光物質等の波長変換
物質を含有した第1の樹脂96をワイヤーボンデイング
接続しているLEDチップ93を覆うように反射ホーン
92内にプレディップをした後に硬化して形成している
ため、第1の樹脂96は複雑な凸形状を覆う不均一な厚
みのものとなる。また、波長変換物質をプレディップす
る場合に波長変換物質は比重が樹脂の比重に比べて大き
いため、硬化するまで間に波長変換物質が沈降し、塗布
後の波長変換物質分布が不均一になり易い。そのため、
LEDチップから放射された光は様々な厚みに形成され
ている第1の樹脂96内でより一層不均一に波長変換さ
れることとなる。したがって、変換効率が低下するとい
う問題点、および位置によって変換効率が異なるものと
なり、その結果LEDは色ムラを生じるという問題点を
生じるものとなる。
However, in the above-mentioned conventional LED 90, the reflection horn is formed so as to cover the LED chip 93 connected to the first resin 96 containing the wavelength conversion material such as a fluorescent material by wire bonding. Since the first resin 96 is formed by hardening after pre-dip in the inside 92, the first resin 96 has a non-uniform thickness covering a complicated convex shape. Also, when pre-dipping the wavelength converting substance, the specific gravity of the wavelength converting substance is higher than the specific gravity of the resin, so that the wavelength converting substance settles before curing, and the distribution of the wavelength converting substance after application becomes uneven. easy. for that reason,
The light emitted from the LED chip is further non-uniformly converted in wavelength in the first resin 96 formed in various thicknesses. Therefore, there is a problem that the conversion efficiency is reduced, and the conversion efficiency varies depending on the position. As a result, there is a problem that the LED causes color unevenness.

【0004】[0004]

【課題を解決するための手段】本発明は、前記した従来
の課題を解決するための具体的手段として、反射ホーン
を形成したリードフレームと、該反射ホーン内に載置し
た発光ダイオードチップと、発光ダイオードチップから
の放射光を波長変換する波長変換素子とを有し、これら
を透光性材料により覆って封止した発光ダイオードであ
って、前記反射ホーン内には、前記透光性基板が反射ホ
ーン上面側に位置し、前記電極が反射ホーン底面側にて
リードフレームと電気的に接続するように配設した少な
くとも1個以上の発光ダイオードチップを有し、前記波
長変換素子は、波長変換物質とそれを保持する透光性基
体とを含み、予め所定の密度、厚みとなるように調整さ
れて層状に形成されており、前記反射ホーンには係合爪
が形成され、前記発光ダイオードチップの上部となる位
置にて、該係合爪により前記波長変換素子が固定されて
いる発光ダイオードを提供することで上記した課題を解
決するものである。
According to the present invention, as a specific means for solving the above-mentioned conventional problems, there are provided a lead frame having a reflective horn, a light emitting diode chip mounted in the reflective horn, A wavelength conversion element that converts the wavelength of light emitted from the light-emitting diode chip, and a light-emitting diode in which these are covered with a light-transmitting material and sealed, and in the reflection horn, the light-transmitting substrate is provided. At least one or more light emitting diode chips are disposed on the reflection horn upper surface side and arranged so that the electrodes are electrically connected to the lead frame on the reflection horn bottom surface side. Including a substance and a translucent substrate holding the substance, the density is adjusted in advance to a predetermined density and a thickness is formed in a layered form, and the reflection horn is formed with an engaging claw, At the top of the photodiode chip position, is intended to solve the problems described above by the wavelength conversion element by engaging claw is to provide a light-emitting diode is fixed.

【0005】[0005]

【発明の実施の形態】つぎに、本発明について、図に示
す実施形態に基づいて詳細に説明する。図1は本発明に
かかる発光ダイオード10を示す。一対のリードフレー
ム1、1には夫々反射ホーン2、2が形成され、LED
チップ3は反射ホーン2、2の底面2a、2bと該チッ
プに設けた電極3c、3dとが夫々接続するように配設
され、透光性基板3aが反射ホーン2の上側に位置する
ように配置されている。
Next, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 shows a light emitting diode 10 according to the present invention. Reflection horns 2 and 2 are formed on a pair of lead frames 1 and 1, respectively, and LED
The chip 3 is disposed such that the bottom surfaces 2a and 2b of the reflection horns 2 and 2 and the electrodes 3c and 3d provided on the chip are connected to each other, and the light-transmitting substrate 3a is positioned above the reflection horn 2. Are located.

【0006】さらに、LEDチップ3の上方には波長変
換素子4が該チップ3の透光性基板3aと接するように
配設されている。波長変換素子4は波長変換物質と、波
長変換物質を保持する樹脂結合剤とを均一に混合したも
のを、シート状の基体フィルム4b上に塗布硬化させた
波長変換素子層4aを設けたものとされ、該波長変換素
子層4aがLEDチップ3の透光性基板3aと接するよ
うにして反射ホーン2内に配設されている。また、反射
ホーン2の反射枠内周縁の略全周には波長変換素子4を
固定するための係合爪2cが形成されており、波長変換
素子4の基体フィルム4bの部分を係合爪2cにより押
さえつけることにより確実に固定するものとしている。
Further, a wavelength conversion element 4 is disposed above the LED chip 3 so as to be in contact with the translucent substrate 3a of the chip 3. The wavelength conversion element 4 is provided with a wavelength conversion element layer 4a formed by uniformly coating a wavelength conversion substance and a resin binder holding the wavelength conversion substance on a sheet-like base film 4b. The wavelength conversion element layer 4 a is disposed in the reflection horn 2 so as to be in contact with the light transmitting substrate 3 a of the LED chip 3. An engagement claw 2c for fixing the wavelength conversion element 4 is formed substantially all around the inner peripheral edge of the reflection frame of the reflection horn 2, and a portion of the base film 4b of the wavelength conversion element 4 is engaged with the engagement claw 2c. It is to be surely fixed by pressing down.

【0007】LEDチップ3としては、例えば青色およ
び/または紫外光(λ=370〜500nm)を出射す
るGaN系のLEDを用いることができる。発光波長に
対して透過性のサファイア等からなる透光性基板3aの
上にGaN系の発光層3bを形成し、同一面側にp電極
3cおよびn電極3dを形成する。また、本実施例にお
いては従来例のようにワイヤーボンディング接続するも
のではなく、LEDチップ3の電極とリードフレーム1
の反射ホーン2との電気的接続にワイヤーを用いていな
い。即ち、p電極3cおよびn電極3dの一対の電極の
夫々にはボンディング用バンプを形成し、該バンプを介
して一対のリードフレーム1、1の各反射ホーン底面2
a、2bとを電気的に接続している。
As the LED chip 3, for example, a GaN-based LED that emits blue and / or ultraviolet light (λ = 370 to 500 nm) can be used. A GaN-based light-emitting layer 3b is formed on a light-transmitting substrate 3a made of sapphire or the like that transmits light at the emission wavelength, and a p-electrode 3c and an n-electrode 3d are formed on the same surface side. Further, in this embodiment, the wire bonding connection is not performed as in the conventional example, but the electrode of the LED chip 3 and the lead frame 1 are connected.
No wire is used for the electrical connection with the reflection horn 2 of FIG. That is, a bonding bump is formed on each of the pair of electrodes of the p-electrode 3c and the n-electrode 3d, and the reflection horn bottom surfaces 2 of the pair of lead frames 1, 1 are formed via the bumps.
a and 2b are electrically connected.

【0008】次に波長変換素子4を固定した後に、これ
らを覆うようにリードフレーム1、1の外周を、透光性
のエポキシ樹脂などにより成形して硬化させた透光性封
止材料5により覆うものとしてLED10を得ている。
なお、波長変換素子4はLEDチップ3と接する側に波
長変換物質が多く存在するように波長変換素子層4aを
LEDチップ3側とし、且つ図に示したように反射ホー
ン2の全面を覆うように載置すると変換効率および均一
性の面から好ましい。
Next, after the wavelength conversion elements 4 are fixed, the outer circumferences of the lead frames 1 and 1 are covered with a light-transmitting sealing material 5 molded and hardened with a light-transmitting epoxy resin or the like so as to cover them. An LED 10 is obtained as a cover.
The wavelength conversion element 4 has the wavelength conversion element layer 4a on the LED chip 3 side so that a large amount of the wavelength conversion substance exists on the side in contact with the LED chip 3, and covers the entire surface of the reflection horn 2 as shown in the drawing. Is preferable in terms of conversion efficiency and uniformity.

【0009】上記したように波長変換素子4を反射ホー
ン2内にプレディップして硬化させたものではなく、波
長変換物質を層状に形成したものとしているので波長変
換物質層の厚みを制御することができ、波長変換効率の
均一化と効率の向上を図ることができる。また、均一な
波長変換が可能となるので、変換効率の差に起因する色
ムラを著しく低減することができる。また、波長変換素
子4をLEDチップ3の真上に配設して係合爪2cによ
り固定しているので、LEDチップからの放射光、即ち
波長変換素子4に入射する光のロスを最小に押さえるよ
うにして固定することができる。さらにまた、波長変換
素子4を反射ホーン2の略全面を覆う大きさのものとす
ることで、LEDチップ3の側面から放射された光に対
しても波長変換が可能となり、より一層均一な発光とす
ることができる。
As described above, the wavelength conversion element 4 is not pre-dip and cured in the reflection horn 2, but is formed in a layered form of the wavelength conversion substance. Therefore, the thickness of the wavelength conversion substance layer is controlled. Thus, the wavelength conversion efficiency can be made uniform and the efficiency can be improved. In addition, since uniform wavelength conversion is possible, color unevenness due to a difference in conversion efficiency can be significantly reduced. Further, since the wavelength conversion element 4 is disposed right above the LED chip 3 and is fixed by the engagement claws 2c, the loss of light emitted from the LED chip, that is, light incident on the wavelength conversion element 4, is minimized. It can be fixed by pressing. Furthermore, by making the wavelength conversion element 4 large enough to cover substantially the entire surface of the reflection horn 2, it is possible to convert the wavelength of light emitted from the side surface of the LED chip 3 and to achieve more uniform light emission. It can be.

【0010】ここで、前記波長変換素子4について更に
説明する。波長変換素子4は、前記したように基体フィ
ルム4b上に波長変換素子層4aを塗布形成したものを
用いているが、これに限るものではない。例えば、以下
に示す方法により得ることができる。
Here, the wavelength conversion element 4 will be further described. As described above, the wavelength conversion element 4 is formed by coating the wavelength conversion element layer 4a on the base film 4b as described above, but is not limited thereto. For example, it can be obtained by the following method.

【0011】図2(A)から(C)は波長変換素子41
の製造方法を工程順に説明するための概略図である。あ
らかじめ波長変換物質42を熱硬化型樹脂よりなる分散
媒43に分散させ、十分に攪拌させる。次に所望の形の
開孔を形成したパターンマスク45と支持体46とを重
ねあわせ、開孔に前記分散媒を所定量流し込んで、一定
時間静置する。その後分散媒を硬化させ、パターンマス
ク45から離型させると、比重差により下部側には波長
変換物質42が高密度に均一分散した高密度波長変換素
子層41aが、上側には低密度もしくは波長変換物質が
分散していない低密度波長変換素子層41bが形成され
た波長変換素子41が得られる。高密度波長変換素子層
41aと低密度波長変換素子層41bの厚みおよび波長
変換物質の密度は、使用する材料の比重、粘度、開孔に
注入し放置している時間、混合比率等を適宜変更するこ
とで調整することができる。
FIGS. 2A to 2C show the wavelength conversion element 41.
FIG. 3 is a schematic diagram for describing a manufacturing method of (1) in the order of steps. The wavelength conversion substance 42 is dispersed in advance in a dispersion medium 43 made of a thermosetting resin and sufficiently stirred. Next, the pattern mask 45 in which the opening of the desired shape is formed and the support 46 are overlapped, a predetermined amount of the dispersion medium is poured into the opening, and the opening is allowed to stand for a certain time. After that, when the dispersion medium is cured and released from the pattern mask 45, the high-density wavelength conversion element layer 41a in which the wavelength conversion substance 42 is uniformly dispersed at high density due to the specific gravity difference, and the low-density or wavelength The wavelength conversion element 41 on which the low-density wavelength conversion element layer 41b in which the conversion substance is not dispersed is formed is obtained. The thickness of the high-density wavelength conversion element layer 41a and the low-density wavelength conversion element layer 41b and the density of the wavelength conversion substance are appropriately changed by the specific gravity and viscosity of the material to be used, the time during which the material is injected into the openings and left standing, the mixing ratio, and the like. Can be adjusted.

【0012】具体的には、波長変換物質42として比重
4.1のZnS系蛍光体11.2gを分散媒43である
比重1.1の透光性エポキシ樹脂100gに混合し、マ
グネチックスターラーにより500rpmで30分間攪
拌させる。次にこの攪拌懸濁液をディスペンサー44に
てパターンマスク45の外形2mm、深さ1mmの開孔
に所定量流し込み、30分間放置した。これにより比重
の大きい波長変換物質42は下部に沈降する。その状態
のまま熱処理を行いエポキシ樹脂43を硬化させ、パタ
ーンマスク45を支持体46から離すと、外形2mmの
円形ペレット状の波長変換素子41を得ることができ
た。
Specifically, 11.2 g of a ZnS-based phosphor having a specific gravity of 4.1 as the wavelength converting substance 42 is mixed with 100 g of a translucent epoxy resin having a specific gravity of 1.1, which is a dispersion medium 43, and is mixed with a magnetic stirrer. Stir at 500 rpm for 30 minutes. Next, a predetermined amount of this stirred suspension was poured into an opening having an outer shape of 2 mm and a depth of 1 mm of the pattern mask 45 by a dispenser 44, and was left for 30 minutes. As a result, the wavelength conversion substance 42 having a large specific gravity sinks to the lower part. In this state, heat treatment was performed to cure the epoxy resin 43, and the pattern mask 45 was separated from the support 46. Thus, a circular pellet-shaped wavelength conversion element 41 having an outer diameter of 2 mm could be obtained.

【0013】波長変換物質42としては、例えばZn
S:Cu、Au、Al蛍光体、ZnS:Cu、Al蛍光
体、ZnS:Ag蛍光体、ZnS:Ag+(Zn、C
d)S:Cu、Al蛍光体等のZnSにAg、Cu、A
l、Ga、Clなどの種々の不純物を付活させたもの
や、(Zn、Cd)SにCu、Al、Ag等の不純物を
付活させたものなどを用いて青、白、黄緑等の色に変換
するもの、およびその他の主として紫外域〜青色の波長
光を変換する蛍光体など様々な蛍光体を単独で、もしく
は複数の蛍光体を組み合わせて用いることができる。ま
た、分散媒43としては発光波長および変換波長に対し
て高い透過率を有するエポキシ樹脂、PET(ポリエチ
レンテフタレート)、シリコン樹脂、ポリカーボネー
ト、アクリル系樹脂等の熱硬化性の樹脂や、UV硬化樹
脂など、様々なものを用いることができる。
As the wavelength conversion material 42, for example, Zn
S: Cu, Au, Al phosphor, ZnS: Cu, Al phosphor, ZnS: Ag phosphor, ZnS: Ag + (Zn, C
d) Ag: Cu, A to ZnS such as S: Cu, Al phosphor, etc.
Blue, white, yellow-green, etc. using a material activated with various impurities such as l, Ga, Cl or the like, or a material activated with (Zn, Cd) S with impurities such as Cu, Al, Ag, etc. And various other phosphors, such as those that convert light in the ultraviolet to blue wavelengths, can be used alone or in combination of a plurality of phosphors. As the dispersion medium 43, a thermosetting resin such as an epoxy resin, a PET (polyethylene terephthalate), a silicon resin, a polycarbonate, an acrylic resin, or a UV-curable resin having a high transmittance with respect to an emission wavelength and a conversion wavelength. Various things can be used.

【0014】なお、波長変換素子は前記した製造方法に
より製造したものに限られるものではなく、先に記した
ようにシート状の透光性基体上に波長変換物質層を塗布
もしくは印刷したものとし、波長変換物質層を形成した
後に所定形状に切断するものとしたり、低密度もしくは
波長変換物質が分散していない低密度波長変換素子層と
波長変換物質を高密度に均一分散した高密度波長変換素
子層とを射出成形などの手法により所定形状に積層成形
もしくは成形後切断するものであっても良い。
The wavelength conversion element is not limited to the one manufactured by the above-described manufacturing method, but may be any one in which a wavelength conversion material layer is applied or printed on a sheet-like translucent substrate as described above. After the wavelength conversion material layer is formed, the wavelength conversion material layer may be cut into a predetermined shape, or the low-density or low-density wavelength conversion element layer in which the wavelength conversion material is not dispersed, and the high-density wavelength conversion in which the wavelength conversion material is uniformly dispersed. The element layer may be laminated into a predetermined shape by injection molding or the like, or may be cut after molding.

【0015】次いで、前記した実施形態のLED10の
波長変換素子4の代わりに上記波長変換素子40を図1
に示したLED10に用いることによる作用および効果
について説明を行う。波長変換の効率は、LEDチップ
からの照射光により励起される波長変換物質の密度およ
び厚みに大きく依存する。先に記した実施形態における
波長変換素子4を用いた場合に比べて、本実施形態にて
製造した波長変換素子40を用いると、先の実施形態の
場合よりもより高密度に波長変換物質を設けた高密度波
長変換物質層41aを簡単に且つ均一に効率よく製造す
ることができる。そのため、該高密度波長変換物質層4
1aをLEDチップ3と密接するように設けることで、
LEDチップ3の出射光が波長変換物質42に達する際
のロスをより一層最小限に押さえることができる。
Next, instead of the wavelength conversion element 4 of the LED 10 of the above-described embodiment, the wavelength conversion element 40 is
The operation and effect of using the LED 10 shown in FIG. The efficiency of wavelength conversion largely depends on the density and thickness of the wavelength conversion substance excited by the irradiation light from the LED chip. Compared with the case where the wavelength conversion element 4 in the above-described embodiment is used, the use of the wavelength conversion element 40 manufactured in the present embodiment allows the wavelength conversion substance to be more densely formed than in the case of the previous embodiment. The provided high-density wavelength conversion material layer 41a can be manufactured easily, uniformly, and efficiently. Therefore, the high-density wavelength conversion material layer 4
By providing 1a in close contact with the LED chip 3,
Loss when the light emitted from the LED chip 3 reaches the wavelength conversion material 42 can be further minimized.

【0016】続いて他の実施形態について説明する。先
の実施形態においては、LEDチップ3の透光性基板3
aを波長変換素子4側として、波長変換素子4を前記基
板3aと密接するようにして固定するものとして設けて
いたが、本実施形態においては図3に示したように、波
長変換素子34をLEDチップ33と密接しないよう
に、且つ反射ホーンに設けた係合爪32cにより反射枠
段差32dとで挟むようにして固定したものとしてい
る。また、LEDチップ33はチップ基板33を一方の
リードフレーム31に形成した反射ホーン32の底面上
に設置し、LEDチップ基板33の上面に形成した一対
の電極と、該反射ホーン32の底面及び他方のリードフ
レームに形成した反射ホーン32の底面とを夫々ワイヤ
35により電気的に接続している。なお、波長変換素子
34は波長変換物質が高密度に存在する高密度波長変換
素子層34aがLEDチップ33側に、低密度波長変換
素子層34bが反対側に位置するように配設している。
Next, another embodiment will be described. In the above embodiment, the light-transmitting substrate 3 of the LED chip 3
a is provided on the side of the wavelength conversion element 4 so that the wavelength conversion element 4 is fixed so as to be in close contact with the substrate 3a. However, in this embodiment, as shown in FIG. It is fixed so as not to be in close contact with the LED chip 33 and to be sandwiched between the reflection frame steps 32d by the engagement claws 32c provided on the reflection horn. In addition, the LED chip 33 has the chip substrate 33 installed on the bottom surface of the reflection horn 32 formed on one lead frame 31, and a pair of electrodes formed on the top surface of the LED chip substrate 33, the bottom surface of the reflection horn 32 and the other end. The bottom surface of the reflection horn 32 formed on the lead frame is electrically connected to each other by a wire 35. The wavelength conversion element 34 is disposed such that the high-density wavelength conversion element layer 34a in which the wavelength conversion substance exists at high density is located on the LED chip 33 side, and the low-density wavelength conversion element layer 34b is located on the opposite side. .

【0017】このようにLEDチップ33をワイヤ35
にて接続する場合には、ワイヤ35がLEDチップ35
と波長変換素子34との間に存在するため、密着するよ
うに設けることができない。そこで、反射ホーン32に
段差32d等を設け、該段差32dと係合爪32cによ
り波長変換素子34を固定することで、先の実施形態と
同様に均一な波長変換ができるものとなる。なお、本発
明のようにワイヤがLEDチップと波長変換素子との間
に存在すると、ワイヤがあるために発光層にて放射され
た光をワイヤ及びワイヤを設けるための電極により遮光
し、また、両者の距離を適宜設けなければならなくなる
ため、LED発光層より外部に取り出す放射光の利用効
率が劣るものとなる。そこで、ワイヤ接続する場合に
は、LEDチップと波長変換素子との間の距離をできる
だけ短いものとし、且つその間に存在するLEDチップ
電極及びワイヤ等の遮光物質の面積を小さくすることが
好ましい。
Thus, the LED chip 33 is connected to the wire 35
When the connection is made with the LED chip 35
And the wavelength conversion element 34, it cannot be provided in close contact. Therefore, by providing a step 32d or the like on the reflection horn 32 and fixing the wavelength conversion element 34 by the step 32d and the engaging claw 32c, uniform wavelength conversion can be performed as in the previous embodiment. When a wire exists between the LED chip and the wavelength conversion element as in the present invention, light emitted from the light emitting layer is blocked by the wire and the electrode for providing the wire because of the presence of the wire, Since the distance between the two must be appropriately provided, the utilization efficiency of the radiated light extracted from the LED light emitting layer to the outside is deteriorated. Therefore, in the case of wire connection, it is preferable to make the distance between the LED chip and the wavelength conversion element as short as possible, and to reduce the area of the light-shielding substance such as the LED chip electrode and the wire existing therebetween.

【0018】続いて更に他の実施形態について説明す
る。先の実施形態においては、リードフレーム1、1の
双方に反射ホーン2、2を形成していたが。本実施形態
においては図4に示したように一方のリードフレーム1
1aにのみ反射ホーン12を形成し、該反射ホーン12
の底面には開口14が設けてある。そして、他方のリー
ドフレーム11bは、前記した反射ホーン12の開口1
4に位置するものとしている。LEDチップ13は反射
ホーン12の底面に載置され、LEDチップ13の一対
の電極は反射ホーン12と該反射ホーン12の開口14
に位置するリードフレーム11bの夫々に電気的に接続
されている。なお、波長変換素子は図面をわかりやすく
するために図示しないが、LEDチップ13の上面に密
接するように波長変換素子を設置すると共に、反射ホー
ン12の全周に形成した係合爪12cにて固定するもの
とされ、前の実施形態と同様にLEDチップ13からの
出射光の波長を変更するものとしている。
Next, still another embodiment will be described. In the above embodiment, the reflection horns 2 and 2 are formed on both the lead frames 1 and 1. In the present embodiment, as shown in FIG.
1a, the reflection horn 12 is formed only on the reflection horn 12;
An opening 14 is provided on the bottom surface of. The other lead frame 11b is connected to the opening 1 of the reflection horn 12 described above.
No.4. The LED chip 13 is mounted on the bottom surface of the reflection horn 12, and a pair of electrodes of the LED chip 13 are formed by the reflection horn 12 and the opening 14 of the reflection horn 12.
Are electrically connected to the respective lead frames 11b. The wavelength conversion element is not shown for simplicity of the drawing. The wavelength of the light emitted from the LED chip 13 is changed as in the previous embodiment.

【0019】このようにすることで、波長変換素子を固
定する係合爪12cを反射ホーン12の反射枠外周縁内
面の全周に設けることができ、波長変換素子を固定した
際に反射ホーンと波長変換素子との間に一切隙間が生じ
ないようにすることが可能となる。これにより、隙間か
ら波長変換されていないLEDチップ13からの出射光
が漏れることがなく、波長の均一性が更に向上する。な
お、開口14は図示したような円形形状に限るものでは
なく、U字状の切り欠き等とすることもできる。
By doing so, the engaging claw 12c for fixing the wavelength conversion element can be provided on the entire circumference of the inner peripheral surface of the reflection frame of the reflection horn 12, and when the wavelength conversion element is fixed, the reflection horn and the wavelength can be reduced. It is possible to prevent any gap from being formed between the conversion element and the conversion element. Thereby, the light emitted from the LED chip 13 whose wavelength has not been converted does not leak from the gap, and the uniformity of the wavelength is further improved. The opening 14 is not limited to a circular shape as shown, but may be a U-shaped notch or the like.

【0020】図5は、更に他の実施形態のLED20の
要部を示すものであり、本実施形態においては発光波長
の異なる2個のLEDチップ25、26を用いている。
開口及び反射ホーン22を有するリードフレーム21a
と、21aの開口に位置するリードフレーム21b、2
1cの3本のリードフレームを有し、反射ホーン22の
底面には2個のLEDチップ25、26が載置されてい
る。LEDチップ25の電極25a、25bは夫々反射
ホーン22、リードフレーム21bにワイヤーを用いる
ことなく接続されている。LEDチップ26の電極26
a、26bもまた夫々反射ホーン22、リードフレーム
21cにワイヤーを用いることなく接続されている。ま
た、これらのLEDチップ25、26の上には波長変換
素子24が密接するように配設され、その上に更に拡散
板27が配設されており、反射ホーン22の全周に設け
た係合爪22cにより固定されている。
FIG. 5 shows a main part of an LED 20 of still another embodiment. In this embodiment, two LED chips 25 and 26 having different emission wavelengths are used.
Lead frame 21a having opening and reflective horn 22
And lead frames 21b, 2 located at the opening of 21a.
It has three lead frames 1c, and two LED chips 25 and 26 are mounted on the bottom surface of the reflection horn 22. The electrodes 25a and 25b of the LED chip 25 are connected to the reflection horn 22 and the lead frame 21b without using wires. Electrode 26 of LED chip 26
a and 26b are also connected to the reflection horn 22 and the lead frame 21c, respectively, without using wires. A wavelength conversion element 24 is disposed on these LED chips 25 and 26 in close contact with each other, and a diffusion plate 27 is further disposed thereon. It is fixed by the dovetail 22c.

【0021】このような構成としたことにより、一方の
LEDチップ25の出射光は係合爪22cにより間接的
に固定されている波長変換素子24により波長変換さ
れ、その光は拡散板27にて拡散される。他方のLED
チップ26の出射光は発光波長が波長変換素子と合わな
いので、波長変換素子24による波長変換を受けずに透
過して、係合爪22cにより直接的に固定されている拡
散板27に到達し、拡散する。拡散板27においては両
LEDチップからの光が拡散され、均一化する。これに
より、波長変換素子24による波長変換色と波長変換さ
れないLEDチップからの放射光色により、LED20
の発光色を波長変換素子のみを用いた場合に比べて更に
任意に変更することができるようになる。なお、異なる
波長を照射するLEDチップを2個用いる例にて説明し
たが、2個以上の複数のLEDチップとしてもよく、同
じ波長を照射するLEDチップであってもよい。更に、
拡散板27若しくは波長変換素子の表面にレンズ効果を
持たせて、より一層均一な発光のLED20が得られる
ようにする等の変更を加えることもできる。
With such a configuration, the light emitted from one LED chip 25 is wavelength-converted by the wavelength conversion element 24 indirectly fixed by the engaging claw 22c, and the light is converted by the diffusion plate 27. Spread. The other LED
Since the emission light of the chip 26 has an emission wavelength that does not match the wavelength conversion element, it passes through without being subjected to wavelength conversion by the wavelength conversion element 24, and reaches the diffusion plate 27 directly fixed by the engagement claws 22c. ,Spread. In the diffusion plate 27, light from both LED chips is diffused and made uniform. Thus, the color of the LED 20 is determined by the wavelength conversion color of the wavelength conversion element 24 and the color of the emitted light from the LED chip that is not
Can be further arbitrarily changed as compared with the case where only the wavelength conversion element is used. In addition, although the example using two LED chips that emit different wavelengths has been described, two or more LED chips may be used, or LED chips that emit the same wavelength may be used. Furthermore,
Modifications such as providing a lens effect on the surface of the diffusion plate 27 or the wavelength conversion element so as to obtain a more uniform light-emitting LED 20 can be added.

【0022】今までに説明した実施形態においては、青
色および/または紫外光を出射するGaN系のLEDチ
ップを用い、その出射光により波長変換物質である蛍光
体を励起して波長変換する例にて説明したが、これに限
るものではなく、LEDチップとしてSiC系LED、
ZnSe系LED、GaAs系LED(λ=630〜8
50nm)、GaAlAs系LED、ZnO系LED等
を用いたり、波長変換物質も前記した主として青色およ
び/または紫外光を他の波長に変換するものに限らず、
例えばNdP14、LiNdP12、Na
d(WO、AlNd(BO、CsNa
NdCl6、SrSなどや、各種の赤外励起蛍光体等に
より、異なる波長に変換するものとすることができる。
また、波長変換物質として蛍光体ではなく、染料等の特
定波長吸収物質を用いて波長変換するなどとすることも
できる。
In the embodiments described so far, a GaN-based LED chip that emits blue and / or ultraviolet light is used, and the emitted light excites a phosphor, which is a wavelength conversion substance, to convert the wavelength. However, the present invention is not limited to this.
ZnSe-based LED, GaAs-based LED (λ = 630-8
50 nm), a GaAlAs-based LED, a ZnO-based LED, or the like, and the wavelength converting material is not limited to the one that mainly converts the blue and / or ultraviolet light into another wavelength.
For example, NdP 5 O 14 , LiNdP 4 O 12 , Na 5 N
d (WO 4 ) 4 , Al 3 Nd (BO 3 ) 4 , Cs 2 Na
The wavelength can be converted to a different wavelength by NdCl6 , SrS, or the like, or various infrared-excited phosphors.
Further, wavelength conversion may be performed by using a specific wavelength absorbing material such as a dye instead of a phosphor as the wavelength converting material.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
従来のようにLEDチップを載置していることで凸形状
となっている反射ホーンの内部に波長変換物質をディッ
プするものではなく、予め波長変換物質の厚み、密度を
所望の値に設定した波長変換素子を別途設けることで、
均一な波長変換が可能となり、変換効率の差に起因する
色ムラを著しく低減することができる。また、本発明に
おいては波長変換素子をLEDチップ真上に配設してい
るので、更にLEDチップからの出射光ロス、即ち波長
変換素子に入射する光の減衰を最小に押さえることがで
きる。さらにまた、波長変換素子は反射ホーンの略全面
を覆うようにして係合爪にて固定されていることで、L
EDチップの側面から放射された光に対しても波長変換
が可能となり、より一層均一な発光とすることができ
る。また、波長変換素子と反射ホーンとの間に僅かな隙
間が開いていても、その個所に係合爪が存在することで
係合爪によりLED正面方向による漏れ光を防ぐことが
できるなどの優れた効果を奏する。
As described above, according to the present invention,
Rather than dip the wavelength conversion material inside the reflection horn that has become convex by mounting the LED chip as in the past, the thickness and density of the wavelength conversion material are set to desired values in advance. By separately providing a wavelength conversion element,
Uniform wavelength conversion becomes possible, and color unevenness due to a difference in conversion efficiency can be significantly reduced. Further, in the present invention, since the wavelength conversion element is disposed directly above the LED chip, loss of light emitted from the LED chip, that is, attenuation of light incident on the wavelength conversion element can be further minimized. Furthermore, since the wavelength conversion element is fixed with the engagement claw so as to cover substantially the entire surface of the reflection horn, L
Wavelength conversion is possible for light emitted from the side surface of the ED chip, and more uniform light emission can be achieved. In addition, even if there is a slight gap between the wavelength conversion element and the reflection horn, the presence of the engaging claw at that location prevents leakage light in the LED front direction by the engaging claw. It has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のLEDを説明する概略模式断面図
である。
FIG. 1 is a schematic cross-sectional view illustrating an LED of the present invention.

【図2】 本発明の波長変換素子の製造方法を示す概
略工程図である。
FIG. 2 is a schematic process diagram illustrating a method for manufacturing a wavelength conversion element of the present invention.

【図3】 本発明の別の実施形態を説明する概略断面
図である。
FIG. 3 is a schematic cross-sectional view illustrating another embodiment of the present invention.

【図4】 本発明の他の実施形態を説明する概略斜視
図である。
FIG. 4 is a schematic perspective view illustrating another embodiment of the present invention.

【図5】 本発明の更に別の実施形態を説明する要部
断面図である。
FIG. 5 is a cross-sectional view of a principal part explaining still another embodiment of the present invention.

【図6】 従来のLEDを説明する概略図である。FIG. 6 is a schematic diagram illustrating a conventional LED.

【符号の説明】[Explanation of symbols]

1 リードフレーム 2 反射ホーン 3 LEDチップ 4 波長変換素子 4a 波長変換素子層 4b シート状フィルム 5 透光性封止材料 10 LED 11a、11b リードフレーム 12 反射ホーン 12c 係合爪 13 LEDチップ 14 開口 30 LED 31 リードフレーム 32 反射ホーン 32c 係合爪 32d 反射枠段差 33 基板 34 波長変換素子 34a 高密度波長変換素子層 34b 低密度波長変換素子層 35 ワイヤ 90 LED 91 リードフレーム 92 反射ホーン 93 LEDチップ 94 リードフレーム 95 ワイヤー 96 第1の樹脂 97 第2の樹脂 DESCRIPTION OF SYMBOLS 1 Lead frame 2 Reflection horn 3 LED chip 4 Wavelength conversion element 4a Wavelength conversion element layer 4b Sheet-like film 5 Translucent sealing material 10 LED 11a, 11b Lead frame 12 Reflection horn 12c Engagement nail 13 LED chip 14 Opening 30 LED REFERENCE SIGNS LIST 31 lead frame 32 reflection horn 32 c engagement claw 32 d reflection frame step 33 substrate 34 wavelength conversion element 34 a high-density wavelength conversion element layer 34 b low-density wavelength conversion element layer 35 wire 90 LED 91 lead frame 92 reflection horn 93 LED chip 94 lead frame 95 wire 96 first resin 97 second resin

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F041 AA11 AA12 CA13 DA04 DA09 DA14 DA18 DA26 DA43 DA57 EE17 EE25  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 5F041 AA11 AA12 CA13 DA04 DA09 DA14 DA18 DA26 DA43 DA57 EE17 EE25

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 反射ホーンを形成したリードフレーム
と、該反射ホーン内に載置した発光ダイオードチップ
と、発光ダイオードチップからの放射光を波長変換する
波長変換素子とを有し、これらを透光性材料により覆っ
て封止した発光ダイオードであって、前記反射ホーン内
には、前記透光性基板が反射ホーン上面側に位置し、前
記電極が反射ホーン底面側にてリードフレームと電気的
に接続するように配設した少なくとも1個以上の発光ダ
イオードチップを有し、前記波長変換素子は、波長変換
物質とそれを保持する透光性基体とを含み、予め所定の
密度、厚みとなるように調整されて層状に形成されてお
り、前記反射ホーンには係合爪が形成され、前記発光ダ
イオードチップの上部となる位置にて、該係合爪により
前記波長変換素子を固定していることを特徴とする発光
ダイオード。
1. A lead frame having a reflection horn, a light-emitting diode chip mounted in the reflection horn, and a wavelength conversion element for converting the wavelength of light emitted from the light-emitting diode chip. A light-emitting diode covered and sealed with a conductive material, wherein in the reflective horn, the translucent substrate is located on the reflective horn upper surface side, and the electrode is electrically connected to the lead frame on the reflective horn bottom surface side. At least one or more light emitting diode chips disposed so as to be connected to each other, wherein the wavelength conversion element includes a wavelength conversion substance and a translucent substrate holding the wavelength conversion substance, and has a predetermined density and thickness in advance. The reflection horn has an engagement claw formed thereon, and the engagement claw fixes the wavelength conversion element at a position above the light emitting diode chip. A light-emitting diode, comprising:
【請求項2】 反射ホーンを形成したリードフレーム
と、該反射ホーン内に載置した発光ダイオードチップ
と、発光ダイオードチップからの放射光を波長変換する
波長変換素子とを有し、これらを透光性材料により覆っ
て封止した発光ダイオードであって、前記反射ホーン内
には少なくとも1個以上の発光ダイオードチップが電気
的に接続するように配設され、前記波長変換素子は、波
長変換物質とそれを保持する透光性物質とを含み、予め
所定の密度、厚みとなるように調整されて層状に形成さ
れており、前記反射ホーンには係合爪が形成されてお
り、該係合爪により前記発光ダイオードチップの透光性
基板と密接するように該基板上部に配設した波長変換素
子が固定されていることを特徴とする発光ダイオード。
2. A lead frame having a reflection horn, a light-emitting diode chip mounted in the reflection horn, and a wavelength conversion element for converting the wavelength of light emitted from the light-emitting diode chip. A light-emitting diode covered and sealed with a conductive material, wherein at least one or more light-emitting diode chips are disposed in the reflection horn so as to be electrically connected, and the wavelength conversion element includes a wavelength conversion substance and A light-transmissive substance for holding the light-transmitting material, which is adjusted in advance to have a predetermined density and thickness to form a layer, and the reflection horn is formed with an engagement claw. A light-emitting diode, characterized in that a wavelength conversion element disposed on the substrate is fixed so as to be in close contact with the light-transmitting substrate of the light-emitting diode chip.
【請求項3】 前記波長変換素子は、波長変換物質が
相対的に高密度に含まれる波長変換素子層と低密度に含
まれる波長変換素子層とを有し、高密度な波長変換素子
層側がLEDチップ側に位置するように配設されている
ことを特徴とする請求項1または請求項2記載の発光ダ
イオード。
3. The wavelength conversion element has a wavelength conversion element layer containing a wavelength conversion substance at a relatively high density and a wavelength conversion element layer containing a wavelength conversion substance at a low density. The light-emitting diode according to claim 1, wherein the light-emitting diode is disposed so as to be located on an LED chip side.
【請求項4】 前記波長変換素子は、分散媒樹脂に波
長変換物質を混合分散した後に、型に流入して前記分散
媒樹脂と波長変換物質との比重差により、波長変換物質
が相対的に高密度に含まれる波長変換素子層と低密度に
含まれる波長変換素子層を有するようにして硬化させた
波長変換素子であることを特徴とする請求項3記載の発
光ダイオード。
4. The wavelength conversion element, after mixing and dispersing the wavelength conversion substance in the dispersion medium resin, flows into a mold, and the wavelength conversion substance is relatively dispersed due to a difference in specific gravity between the dispersion medium resin and the wavelength conversion substance. 4. The light-emitting diode according to claim 3, wherein the light-emitting diode is a wavelength conversion element that is cured by having a wavelength conversion element layer included in high density and a wavelength conversion element layer included in low density.
【請求項5】 前記発光ダイオードチップは異なる発
光波長を放射する2個以上の発光ダイオードチップを前
記反射ホーン内に有し、該発光ダイオードチップの上に
は波長変換素子と拡散板とが順に積層されると共に、反
射ホーンに形成した係合爪により固定されていることを
特徴とする請求項1から請求項4のいずれか記載の発光
ダイオード。
5. The light-emitting diode chip has two or more light-emitting diode chips emitting different emission wavelengths in the reflection horn, and a wavelength conversion element and a diffusion plate are sequentially stacked on the light-emitting diode chip. The light emitting diode according to any one of claims 1 to 4, wherein the light emitting diode is fixed by an engagement claw formed on the reflection horn.
【請求項6】 前記発光ダイオードチップは、発光波
長に対し透光性の基板上に発光層を形成し、且つ発光層
と同一面側に電極を形成したものとされると共に、前記
透光性の基板側が反射ホーンの上側となるようにして反
射ホーン内に配設され、反射ホーン底面側とされた電極
とリードフレームとがワイヤーを用いることなく電気的
に接続されていることを特徴とする請求項2記載の発光
ダイオード。
6. The light-emitting diode chip has a light-emitting layer formed on a substrate having a light-transmitting wavelength, and an electrode formed on the same surface as the light-emitting layer. Is disposed in the reflection horn so that the substrate side of the reflection horn is above the reflection horn, and the electrode and the lead frame, which are the reflection horn bottom side, are electrically connected without using a wire. The light emitting diode according to claim 2.
JP19147698A 1998-07-07 1998-07-07 Light emitting diode Expired - Fee Related JP4109756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19147698A JP4109756B2 (en) 1998-07-07 1998-07-07 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19147698A JP4109756B2 (en) 1998-07-07 1998-07-07 Light emitting diode

Publications (2)

Publication Number Publication Date
JP2000022222A true JP2000022222A (en) 2000-01-21
JP4109756B2 JP4109756B2 (en) 2008-07-02

Family

ID=16275296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19147698A Expired - Fee Related JP4109756B2 (en) 1998-07-07 1998-07-07 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4109756B2 (en)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059851A1 (en) * 2000-02-09 2001-08-16 Nippon Leiz Corporation Light source
JP2002043633A (en) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd White light emitting diode
JP2002076440A (en) * 2000-08-28 2002-03-15 Stanley Electric Co Ltd Light emitting device and free-space optical transmitter
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
JP2002151744A (en) * 2000-11-15 2002-05-24 Nippon Leiz Co Ltd Light source device
JP2002170999A (en) * 2000-12-04 2002-06-14 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2002246648A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
JP2002246647A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
WO2003056636A1 (en) * 2001-12-29 2003-07-10 Hangzhou Fuyang Xinying Dianzi Ltd. A led and led lamp
JP2003347588A (en) * 2002-05-28 2003-12-05 Sumitomo Electric Ind Ltd White-light emitting device
JP2005005544A (en) * 2003-06-13 2005-01-06 Sumitomo Electric Ind Ltd White light emitting element
EP1528603A2 (en) * 2003-10-31 2005-05-04 Osram Opto Semiconductors GmbH Light emitting diode
JP2005166733A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2005244075A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light emitting device
JP2005268634A (en) * 2004-03-19 2005-09-29 Kyoshin Kagi Kofun Yugenkoshi Molding structure of replaceable light emitting diode device
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
WO2007144809A1 (en) 2006-06-14 2007-12-21 Philips Intellectual Property & Standards Gmbh Lighting device
JP2008502131A (en) * 2004-06-03 2008-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Luminescent ceramics for light emitting devices
JPWO2006016398A1 (en) * 2004-08-10 2008-05-01 株式会社ルネサステクノロジ Light emitting device and method for manufacturing light emitting device
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
US7510890B2 (en) * 2003-10-31 2009-03-31 Osram Opto Semiconductors Gmbh Method for producing a luminescence diode chip
US7744243B2 (en) 2007-05-08 2010-06-29 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7768192B2 (en) 2005-12-21 2010-08-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US7791092B2 (en) 2003-05-01 2010-09-07 Cree, Inc. Multiple component solid state white light
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
JP2010541222A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor-based device, housing member for semiconductor-based device, and method for manufacturing semiconductor-based device
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
JP2011035420A (en) * 2007-05-02 2011-02-17 Cree Inc Multi-chip light-emitting device lamp for providing high-cri warm white light and lighting fixture including the same
US7901107B2 (en) 2007-05-08 2011-03-08 Cree, Inc. Lighting device and lighting method
US7918581B2 (en) 2006-12-07 2011-04-05 Cree, Inc. Lighting device and lighting method
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
KR20110107384A (en) * 2009-01-23 2011-09-30 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor component
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US8038317B2 (en) 2007-05-08 2011-10-18 Cree, Inc. Lighting device and lighting method
US8079729B2 (en) 2007-05-08 2011-12-20 Cree, Inc. Lighting device and lighting method
US8120240B2 (en) 2005-01-10 2012-02-21 Cree, Inc. Light emission device and method utilizing multiple emitters
JP2012074739A (en) * 2004-06-09 2012-04-12 Philips Lumileds Lightng Co Llc Semiconductor light-emitting device with pre-fabricated wavelength converting element
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
JP2013016588A (en) * 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led light-emitting device
JP2013077679A (en) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013521647A (en) * 2010-03-03 2013-06-10 クリー インコーポレイテッド Radiators with improved color rendering index through phosphor separation
US8506114B2 (en) 2007-02-22 2013-08-13 Cree, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
JP2013168647A (en) * 2012-02-16 2013-08-29 Advanced Optoelectronic Technology Inc Method of manufacturing fluorescent film and method of manufacturing light-emitting diode package
JP2013219398A (en) * 2013-07-26 2013-10-24 Stanley Electric Co Ltd Semiconductor light emitting device
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
JP2015524620A (en) * 2012-08-08 2015-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, conversion means plate, and method of manufacturing conversion means plate
JP2015164216A (en) * 2015-05-12 2015-09-10 シチズン電子株式会社 Led light emitting device
JP2015192105A (en) * 2014-03-28 2015-11-02 豊田合成株式会社 Manufacturing method for light emitting device
US9217544B2 (en) 2010-03-03 2015-12-22 Cree, Inc. LED based pedestal-type lighting structure
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
KR20160106152A (en) * 2014-01-07 2016-09-09 코닌클리케 필립스 엔.브이. Glueless light emitting device with phosphor converter
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
JPWO2014122888A1 (en) * 2013-02-06 2017-01-26 株式会社小糸製作所 Light emitting module
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
JP2017117912A (en) * 2015-12-24 2017-06-29 日亜化学工業株式会社 Light-emitting device using wavelength conversion member, and wavelength conversion member and method of manufacturing light-emitting device
JP2017157723A (en) * 2016-03-02 2017-09-07 日亜化学工業株式会社 Light emitting device and method of manufacturing the same
JP2017224667A (en) * 2016-06-14 2017-12-21 日亜化学工業株式会社 Method of manufacturing light transmitting member and method of manufacturing light emitting device
JP2018092989A (en) * 2016-11-30 2018-06-14 日亜化学工業株式会社 Method of manufacturing light emitting device
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
US10665762B2 (en) 2010-03-03 2020-05-26 Ideal Industries Lighting Llc LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878270B1 (en) * 2011-09-15 2018-07-13 엘지이노텍 주식회사 Lighting device comprising photoluminescent plate and photoluminescent tape

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121275U (en) * 1980-02-19 1981-09-16
JPS6166965U (en) * 1985-10-03 1986-05-08
JPH0645660A (en) * 1992-07-21 1994-02-18 Sharp Corp Light emitting diode lamp and full-color display panel using it
JPH0677537A (en) * 1992-08-24 1994-03-18 Asahi Chem Ind Co Ltd Light emitting diode
JPH0799345A (en) * 1993-09-28 1995-04-11 Nichia Chem Ind Ltd Light emitting diode
JPH07297449A (en) * 1994-04-27 1995-11-10 Rohm Co Ltd Led lamp of its manufacture
JPH08264840A (en) * 1995-03-27 1996-10-11 Sanyo Electric Co Ltd Light emitting diode display device
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JP3048368U (en) * 1997-10-27 1998-05-06 興 陳 Light emitting diode
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121275U (en) * 1980-02-19 1981-09-16
JPS6166965U (en) * 1985-10-03 1986-05-08
JPH0645660A (en) * 1992-07-21 1994-02-18 Sharp Corp Light emitting diode lamp and full-color display panel using it
JPH0677537A (en) * 1992-08-24 1994-03-18 Asahi Chem Ind Co Ltd Light emitting diode
JPH0799345A (en) * 1993-09-28 1995-04-11 Nichia Chem Ind Ltd Light emitting diode
JPH07297449A (en) * 1994-04-27 1995-11-10 Rohm Co Ltd Led lamp of its manufacture
JPH08264840A (en) * 1995-03-27 1996-10-11 Sanyo Electric Co Ltd Light emitting diode display device
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JP3048368U (en) * 1997-10-27 1998-05-06 興 陳 Light emitting diode

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6680568B2 (en) 2000-02-09 2004-01-20 Nippon Leiz Corporation Light source
WO2001059851A1 (en) * 2000-02-09 2001-08-16 Nippon Leiz Corporation Light source
JP2002043633A (en) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd White light emitting diode
JP2002076440A (en) * 2000-08-28 2002-03-15 Stanley Electric Co Ltd Light emitting device and free-space optical transmitter
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
JP2002151744A (en) * 2000-11-15 2002-05-24 Nippon Leiz Co Ltd Light source device
JP2002170999A (en) * 2000-12-04 2002-06-14 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2002246648A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
JP2002246647A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
WO2003056636A1 (en) * 2001-12-29 2003-07-10 Hangzhou Fuyang Xinying Dianzi Ltd. A led and led lamp
JP2003347588A (en) * 2002-05-28 2003-12-05 Sumitomo Electric Ind Ltd White-light emitting device
US7791092B2 (en) 2003-05-01 2010-09-07 Cree, Inc. Multiple component solid state white light
JP2005005544A (en) * 2003-06-13 2005-01-06 Sumitomo Electric Ind Ltd White light emitting element
US7510890B2 (en) * 2003-10-31 2009-03-31 Osram Opto Semiconductors Gmbh Method for producing a luminescence diode chip
EP1528603A3 (en) * 2003-10-31 2010-08-25 OSRAM Opto Semiconductors GmbH Light emitting diode
EP1528603A2 (en) * 2003-10-31 2005-05-04 Osram Opto Semiconductors GmbH Light emitting diode
JP2005166733A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2005244075A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light emitting device
JP2005268634A (en) * 2004-03-19 2005-09-29 Kyoshin Kagi Kofun Yugenkoshi Molding structure of replaceable light emitting diode device
JP2008502131A (en) * 2004-06-03 2008-01-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Luminescent ceramics for light emitting devices
US10290775B2 (en) 2004-06-03 2019-05-14 Lumileds Llc Luminescent ceramic for a light emitting device
JP2012060180A (en) * 2004-06-03 2012-03-22 Koninkl Philips Electronics Nv Light-emitting ceramic for light-emitting device
US9722148B2 (en) 2004-06-03 2017-08-01 Lumileds Llc Luminescent ceramic for a light emitting device
JP2012074739A (en) * 2004-06-09 2012-04-12 Philips Lumileds Lightng Co Llc Semiconductor light-emitting device with pre-fabricated wavelength converting element
JPWO2006016398A1 (en) * 2004-08-10 2008-05-01 株式会社ルネサステクノロジ Light emitting device and method for manufacturing light emitting device
JP4571139B2 (en) * 2004-08-10 2010-10-27 ルネサスエレクトロニクス株式会社 Light emitting device and method for manufacturing light emitting device
US8125137B2 (en) 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US8120240B2 (en) 2005-01-10 2012-02-21 Cree, Inc. Light emission device and method utilizing multiple emitters
US8513873B2 (en) 2005-01-10 2013-08-20 Cree, Inc. Light emission device
US8410680B2 (en) 2005-01-10 2013-04-02 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
US8337071B2 (en) 2005-12-21 2012-12-25 Cree, Inc. Lighting device
US7768192B2 (en) 2005-12-21 2010-08-03 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US8878429B2 (en) 2005-12-21 2014-11-04 Cree, Inc. Lighting device and lighting method
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
US8733968B2 (en) 2006-04-18 2014-05-27 Cree, Inc. Lighting device and lighting method
US7828460B2 (en) 2006-04-18 2010-11-09 Cree, Inc. Lighting device and lighting method
US9297503B2 (en) 2006-04-18 2016-03-29 Cree, Inc. Lighting device and lighting method
US8123376B2 (en) 2006-04-18 2012-02-28 Cree, Inc. Lighting device and lighting method
US10018346B2 (en) 2006-04-18 2018-07-10 Cree, Inc. Lighting device and lighting method
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
US9417478B2 (en) 2006-04-18 2016-08-16 Cree, Inc. Lighting device and lighting method
US7997745B2 (en) 2006-04-20 2011-08-16 Cree, Inc. Lighting device and lighting method
US8596819B2 (en) 2006-05-31 2013-12-03 Cree, Inc. Lighting device and method of lighting
US8628214B2 (en) 2006-05-31 2014-01-14 Cree, Inc. Lighting device and lighting method
JP2009540595A (en) * 2006-06-14 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device
WO2007144809A1 (en) 2006-06-14 2007-12-21 Philips Intellectual Property & Standards Gmbh Lighting device
US8251538B2 (en) 2006-06-14 2012-08-28 Koninklijke Philips Electronics N.V. Lighting device
US8382318B2 (en) 2006-11-07 2013-02-26 Cree, Inc. Lighting device and lighting method
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
US7918581B2 (en) 2006-12-07 2011-04-05 Cree, Inc. Lighting device and lighting method
US8506114B2 (en) 2007-02-22 2013-08-13 Cree, Inc. Lighting devices, methods of lighting, light filters and methods of filtering light
JP2011035420A (en) * 2007-05-02 2011-02-17 Cree Inc Multi-chip light-emitting device lamp for providing high-cri warm white light and lighting fixture including the same
US7901107B2 (en) 2007-05-08 2011-03-08 Cree, Inc. Lighting device and lighting method
US8079729B2 (en) 2007-05-08 2011-12-20 Cree, Inc. Lighting device and lighting method
US8038317B2 (en) 2007-05-08 2011-10-18 Cree, Inc. Lighting device and lighting method
US10030824B2 (en) 2007-05-08 2018-07-24 Cree, Inc. Lighting device and lighting method
US7744243B2 (en) 2007-05-08 2010-06-29 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
US8742433B2 (en) 2007-05-24 2014-06-03 Stanley Electric Co., Ltd. Semiconductor light emitting apparatus
JP2008294224A (en) * 2007-05-24 2008-12-04 Stanley Electric Co Ltd Semiconductor light emitting device
US9166118B2 (en) 2007-05-24 2015-10-20 Stanley Electric Co., Ltd. Semiconductor light emitting apparatus
US9054282B2 (en) 2007-08-07 2015-06-09 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials and methods for forming the same
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
US8878195B2 (en) 2007-09-28 2014-11-04 Osram Opto Semiconductors Gmbh Semiconductor based component, receptacle for a semiconductor based component, and method for producing a semiconductor based component
JP2010541222A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor-based device, housing member for semiconductor-based device, and method for manufacturing semiconductor-based device
KR101515252B1 (en) 2007-09-28 2015-04-24 오스람 옵토 세미컨덕터스 게엠베하 Radiation-emitting semi-conductor component, receptacle for a radiation-emitting semiconductor component, and method for producing a radiation-emitting semiconductor component
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
US8916886B2 (en) 2009-01-23 2014-12-23 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
KR20110107384A (en) * 2009-01-23 2011-09-30 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor component
JP2012516044A (en) * 2009-01-23 2012-07-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronics semiconductor components
KR101647866B1 (en) * 2009-01-23 2016-08-11 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor component
EP2382673B1 (en) * 2009-01-23 2019-01-30 OSRAM Opto Semiconductors GmbH Optoelectronic semiconductor component and method of its fabrication
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US9217544B2 (en) 2010-03-03 2015-12-22 Cree, Inc. LED based pedestal-type lighting structure
US10665762B2 (en) 2010-03-03 2020-05-26 Ideal Industries Lighting Llc LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
JP2013521647A (en) * 2010-03-03 2013-06-10 クリー インコーポレイテッド Radiators with improved color rendering index through phosphor separation
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
JP2013016588A (en) * 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led light-emitting device
JP2013077679A (en) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
JP2013168647A (en) * 2012-02-16 2013-08-29 Advanced Optoelectronic Technology Inc Method of manufacturing fluorescent film and method of manufacturing light-emitting diode package
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
JP2015524620A (en) * 2012-08-08 2015-08-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor device, conversion means plate, and method of manufacturing conversion means plate
US9406847B2 (en) 2012-08-08 2016-08-02 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component, conversion-medium lamina and method for producing a conversion-medium lamina
JPWO2014122888A1 (en) * 2013-02-06 2017-01-26 株式会社小糸製作所 Light emitting module
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
JP2013219398A (en) * 2013-07-26 2013-10-24 Stanley Electric Co Ltd Semiconductor light emitting device
JP2017501589A (en) * 2014-01-07 2017-01-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Adhesive-free light-emitting device with fluorescent converter
KR20160106152A (en) * 2014-01-07 2016-09-09 코닌클리케 필립스 엔.브이. Glueless light emitting device with phosphor converter
KR102323289B1 (en) 2014-01-07 2021-11-08 루미리즈 홀딩 비.브이. Glueless light emitting device with phosphor converter
US11024781B2 (en) 2014-01-07 2021-06-01 Lumileds Llc Glueless light emitting device with phosphor converter
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
JP2015192105A (en) * 2014-03-28 2015-11-02 豊田合成株式会社 Manufacturing method for light emitting device
JP2015164216A (en) * 2015-05-12 2015-09-10 シチズン電子株式会社 Led light emitting device
JP2017117912A (en) * 2015-12-24 2017-06-29 日亜化学工業株式会社 Light-emitting device using wavelength conversion member, and wavelength conversion member and method of manufacturing light-emitting device
JP2017157723A (en) * 2016-03-02 2017-09-07 日亜化学工業株式会社 Light emitting device and method of manufacturing the same
JP2017224667A (en) * 2016-06-14 2017-12-21 日亜化学工業株式会社 Method of manufacturing light transmitting member and method of manufacturing light emitting device
JP2018092989A (en) * 2016-11-30 2018-06-14 日亜化学工業株式会社 Method of manufacturing light emitting device
JP7011143B2 (en) 2016-11-30 2022-01-26 日亜化学工業株式会社 Manufacturing method of light emitting device

Also Published As

Publication number Publication date
JP4109756B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4109756B2 (en) Light emitting diode
KR100880638B1 (en) Light emitting device package
JP3640153B2 (en) Illumination light source
KR101892593B1 (en) A light emitting device and the manufacturing method
US7906892B2 (en) Light emitting device
KR101019765B1 (en) Thin-type light emitting diode lamp, and its manufacturing
US8921877B2 (en) Semiconductor light-emitting device for producing wavelength-converted light and method for manufacturing the same
TWI447450B (en) Light guide panel, backlight module, and manufacturing method thereof
KR101297405B1 (en) Light emitting device employing dielectric multilayer reflecting mirror
JP4756841B2 (en) Manufacturing method of semiconductor light emitting device
JP4238681B2 (en) Light emitting device
US20230288042A1 (en) Lighting apparatus
US20080054280A1 (en) Light emitting packages and methods of making same
US20110089815A1 (en) Light-emitting device
JP2000031547A (en) Planar light source
JP2004056075A (en) Light-emitting device and method of manufacturing the same
JP2007324417A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2002252376A (en) Surface-mounted type light-emitting diode and its manufacturing method
WO2005015646A1 (en) Led illumination light source
KR20090039932A (en) Light emitting device package
JP2011114093A (en) Lighting system
JP2009094199A (en) Light emitting device, plane light source, display device, and method of manufacturing the light emitting device
JP5345414B2 (en) Semiconductor light emitting device
CN106887507B (en) Light emitting device and method for manufacturing the same
JP2021170632A (en) Light-emitting device and surface light-emitting light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees