JP2018074111A - Method for manufacturing light-emitting diode chip - Google Patents

Method for manufacturing light-emitting diode chip Download PDF

Info

Publication number
JP2018074111A
JP2018074111A JP2016216397A JP2016216397A JP2018074111A JP 2018074111 A JP2018074111 A JP 2018074111A JP 2016216397 A JP2016216397 A JP 2016216397A JP 2016216397 A JP2016216397 A JP 2016216397A JP 2018074111 A JP2018074111 A JP 2018074111A
Authority
JP
Japan
Prior art keywords
wafer
transparent substrate
emitting diode
light
diode chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016216397A
Other languages
Japanese (ja)
Inventor
卓 岡村
Taku Okamura
卓 岡村
宏 北村
Hiroshi Kitamura
宏 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2016216397A priority Critical patent/JP2018074111A/en
Priority to TW106133666A priority patent/TW201830725A/en
Priority to CN201711000328.3A priority patent/CN108023005A/en
Priority to KR1020170144562A priority patent/KR102270092B1/en
Publication of JP2018074111A publication Critical patent/JP2018074111A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a light-emitting diode chip capable of obtaining sufficient luminance.SOLUTION: A method for manufacturing a light-emitting diode chip comprises: a wafer preparing step of preparing a wafer which includes a laminate layer in which a plurality of semiconductor layers containing a light-emitting layer are formed on a transparent substrate for crystal growth, and in which an LED circuit is formed in each of the regions partitioned by a plurality of division schedule lines mutually crossing a surface of the laminate layer; an integrating step of forming an integrated wafer by sticking a surface of the transparent substrate in which a plurality of air bubbles are formed inside to a rear surface of the wafer; a transparent substrate processing step of forming a plurality of dents corresponding to each LED circuit of the wafer on a rear surface of the transparent substrate of the integrated wafer after performing the integrating step; and a dividing step of dividing the integrated wafer into individual light-emitting diode chips by cutting the wafer together with the transparent substrate along the division schedule lines after performing the transparent substrate processing step.SELECTED DRAWING: Figure 4

Description

本発明は、発光ダイオードチップの製造方法に関する。   The present invention relates to a method for manufacturing a light-emitting diode chip.

サファイア基板、GaN基板、SiC基板等の結晶成長用基板の表面にn型半導体層、発光層、p型半導体層が複数積層された積層体層が形成され、この積層体層に交差する複数の分割予定ラインによって区画された領域に複数のLED(Light Emitting Diode)等の発光デバイスが形成されたウエーハは、分割予定ラインに沿って切断されて個々の発光デバイスチップに分割され、分割された発光デバイスチップは携帯電話、パソコン、照明機器等の各種電気機器に広く利用されている。   A stacked body layer in which a plurality of n-type semiconductor layers, light-emitting layers, and p-type semiconductor layers are stacked is formed on the surface of a crystal growth substrate such as a sapphire substrate, a GaN substrate, or a SiC substrate. A wafer in which a plurality of light emitting devices such as LEDs (Light Emitting Diodes) are formed in a region partitioned by the planned division line is cut along the planned division line and divided into individual light emitting device chips, and the divided light emission Device chips are widely used in various electric devices such as mobile phones, personal computers, and lighting devices.

発光デバイスチップの発光層から出射される光は等方性を有しているため、結晶成長用基板の内部にも照射されて基板の裏面及び側面からも光が出射する。然し、基板の内部に照射された光のうち空気層との界面での入射角が臨界角以上の光は界面で全反射されて基板内部に閉じ込められ、基板から外部に出射されることがないから発光デバイスチップの輝度の低下を招くという問題がある。   Since the light emitted from the light emitting layer of the light emitting device chip is isotropic, the light is emitted also to the inside of the crystal growth substrate, and the light is also emitted from the back and side surfaces of the substrate. However, of the light irradiated to the inside of the substrate, light whose incident angle at the interface with the air layer is greater than the critical angle is totally reflected at the interface and confined inside the substrate, and is not emitted outside from the substrate. Therefore, there is a problem that the luminance of the light emitting device chip is lowered.

この問題を解決するために、発光層から出射された光が基板の内部に閉じ込められるのを抑制するために、基板の裏面に透明部材を貼着して輝度の向上を図るようにした発光ダイオード(LED)が特開2014−175354号公報に記載されている。   In order to solve this problem, a light emitting diode in which a transparent member is attached to the back surface of the substrate to improve the luminance in order to prevent light emitted from the light emitting layer from being confined inside the substrate. (LED) is described in Japanese Patent Application Laid-Open No. 2014-175354.

特開2014−175354号公報JP 2014-175354 A

然し、特許文献1に開示された発光ダイオードでは、基板の裏面に透明部材を貼着することにより輝度が僅かに向上したものの十分な輝度が得られないという問題がある。   However, the light emitting diode disclosed in Patent Document 1 has a problem that sufficient luminance cannot be obtained although the luminance is slightly improved by sticking a transparent member to the back surface of the substrate.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、十分な輝度が得られる発光ダイオードチップの製造方法を提供することである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a method of manufacturing a light-emitting diode chip capable of obtaining sufficient luminance.

本発明によると、発光ダイオードチップの製造方法であって、結晶成長用の透明基板上に発光層を含む複数の半導体層が形成された積層体層を有し、該積層体層の表面に互いに交差する複数の分割予定ラインによって区画された各領域にそれぞれLED回路が形成されたウエーハを準備するウエーハ準備工程と、該ウエーハの裏面に内部に複数の気泡が形成された透明基板の表面を貼着して一体化ウエーハを形成する一体化工程と、該一体化工程を実施した後、該一体化ウエーハの該透明基板の裏面に該ウエーハの各LED回路に対応して複数の窪みを形成する透明基板加工工程と、該透明基板加工工程を実施した後、該ウエーハを該分割予定ラインに沿って該透明基板と共に切断して該一体化ウエーハを個々の発光ダイオードチップに分割する分割工程と、を備えたことを特徴とする発光ダイオードチップの製造方法が提供される。   According to the present invention, there is provided a method for manufacturing a light-emitting diode chip, comprising: a stacked body layer in which a plurality of semiconductor layers including a light-emitting layer are formed on a transparent substrate for crystal growth; A wafer preparation step of preparing a wafer in which LED circuits are formed in each region partitioned by a plurality of intersecting scheduled lines, and a surface of a transparent substrate in which a plurality of bubbles are formed on the back surface of the wafer are pasted. An integration step for forming an integrated wafer and performing the integration step, and then forming a plurality of depressions corresponding to each LED circuit of the wafer on the back surface of the transparent substrate of the integrated wafer. After performing the transparent substrate processing step and the transparent substrate processing step, the wafer is cut along with the transparent substrate along the division line to divide the integrated wafer into individual light emitting diode chips. That the light-emitting diode chip production method of the division process, comprising the is provided.

好ましくは、透明基板加工工程において形成される窪みの断面形状は、三角形状、四角形状、又は円形状の何れかである。好ましくは、透明基板加工工程において形成される窪みは、エッチング、サンドブラスト、レーザーの何れかで形成される。   Preferably, the cross-sectional shape of the recess formed in the transparent substrate processing step is any one of a triangular shape, a quadrangular shape, and a circular shape. Preferably, the recess formed in the transparent substrate processing step is formed by any one of etching, sand blasting, and laser.

好ましくは、該透明基板は、透明セラミックス、光学ガラス、サファイア、透明樹脂の何れかで形成され、該一体化工程において該透明基板は透明接着剤でウエーハに接着される。   Preferably, the transparent substrate is formed of any one of transparent ceramics, optical glass, sapphire, and transparent resin, and in the integration step, the transparent substrate is bonded to the wafer with a transparent adhesive.

本発明の発光ダイオードチップは、LEDの裏面に貼着された内部に複数の気泡を有する透明部材の裏面に窪みが形成されているので、透明部材の表面積が増大することに加え、LEDの発光層から照射され透明部材に進入した光の一部が外部に出射する際、窪み部分で複雑に屈折して出射する。従って、透明部材から出射する際に透明部材と空気層との界面での入射角が臨界角以上の光の割合が減少し、透明部材から出射される光の量が増大して発光ダイオードチップの輝度が向上する。   Since the light emitting diode chip of the present invention has depressions formed on the back surface of the transparent member having a plurality of bubbles inside the LED chip attached to the back surface of the LED, in addition to increasing the surface area of the transparent member, the light emission of the LED When a part of the light irradiated from the layer and entering the transparent member is emitted to the outside, it is refracted and emitted in a complicated manner at the recessed portion. Accordingly, when the light is emitted from the transparent member, the ratio of light whose incident angle at the interface between the transparent member and the air layer is greater than the critical angle is decreased, and the amount of light emitted from the transparent member is increased, so that the light emitting diode chip Brightness is improved.

光デバイスウエーハの表面側斜視図である。It is a surface side perspective view of an optical device wafer. 図2(A)はウエーハの裏面に透明基板の表面を貼着して一体化する一体化工程を示す斜視図、図2(B)は一体化ウエーハの斜視図である。FIG. 2A is a perspective view showing an integration process in which the surface of the transparent substrate is attached to the back surface of the wafer and integrated, and FIG. 2B is a perspective view of the integrated wafer. 図3(A)は一体化ウエーハの透明基板の裏面に光デバイスウエーハの各LED回路に対応した複数の穴を有するマスクを貼着する様子を示す斜視図、図3(B)は一体化ウエーハの透明基板の裏面にマスクを貼着した状態の斜視図、図3(C)〜図3(E)は透明基板の裏面に形成された窪みの形状を示す部分斜視図である。3A is a perspective view showing a state in which a mask having a plurality of holes corresponding to each LED circuit of the optical device wafer is attached to the back surface of the transparent substrate of the integrated wafer, and FIG. 3B is an integrated wafer. The perspective view of the state which stuck the mask on the back surface of the transparent substrate of FIG. 3, FIG.3 (C)-FIG.3 (E) are the partial perspective views which show the shape of the hollow formed in the back surface of the transparent substrate. 図4(A)はレーザービームの照射により一体化ウエーハの透明基板の裏面に光デバイスウエーハの各LED回路に対応した複数の溝を形成する様子を示す斜視図、図4(B)は窪みの形状を示す部分斜視図である。FIG. 4A is a perspective view showing a state in which a plurality of grooves corresponding to each LED circuit of the optical device wafer are formed on the back surface of the transparent substrate of the integrated wafer by laser beam irradiation, and FIG. It is a fragmentary perspective view which shows a shape. 一体化ウエーハをダイシングテープを介して環状フレームで支持する支持工程を示す斜視図である。It is a perspective view which shows the support process which supports an integrated wafer with a cyclic | annular flame | frame via a dicing tape. 一体化ウエーハを発光ダイオードチップに分割する分割工程を示す斜視図である。It is a perspective view which shows the division | segmentation process which divides | segments an integrated wafer into a light emitting diode chip. 分割工程終了後の一体化ウエーハの斜視図である。It is a perspective view of the integrated wafer after completion | finish of a division | segmentation process. 本発明実施形態に係る発光ダイオードチップの斜視図である。1 is a perspective view of a light emitting diode chip according to an embodiment of the present invention.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1を参照すると、光デバイスウエーハ(以下、単にウエーハと略称することがある)11の表面側斜視図が示されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, there is shown a front side perspective view of an optical device wafer 11 (hereinafter sometimes simply referred to as a wafer) 11.

光デバイスウエーハ11は、サファイア基板13上に窒化ガリウム(GaN)等のエピタキシャル層(積層体層)15が積層されて構成されている。光デバイスウエーハ11は、エピタキシャル層15が積層された表面11aと、サファイア基板13が露出した裏面11bとを有している。   The optical device wafer 11 is configured by laminating an epitaxial layer (laminated body layer) 15 such as gallium nitride (GaN) on a sapphire substrate 13. The optical device wafer 11 has a front surface 11a on which an epitaxial layer 15 is stacked and a back surface 11b on which the sapphire substrate 13 is exposed.

ここで、本実施形態の光デバイスウエーハ11では、結晶成長用基板としてサファイア基板13を採用しているが、サファイア基板13に替えGaN基板又はSiC基板等を採用するようにしてもよい。   Here, in the optical device wafer 11 of the present embodiment, the sapphire substrate 13 is employed as the crystal growth substrate. However, a GaN substrate or a SiC substrate may be employed instead of the sapphire substrate 13.

積層体層(エピタキシャル層)15は、電子が多数キャリアとなるn型半導体層(例えば、n型GaN層)、発光層となる半導体層(例えば、InGaN層)、正孔が多数キャリアとなるp型半導体層(例えば、p型GaN層)を順にエピタキシャル成長させることにより形成される。   The stacked body layer (epitaxial layer) 15 includes an n-type semiconductor layer (for example, an n-type GaN layer) in which electrons are majority carriers, a semiconductor layer (for example, an InGaN layer) that is a light emitting layer, and a p in which holes are majority carriers. It is formed by epitaxially growing a type semiconductor layer (for example, a p-type GaN layer) in this order.

サファイア基板13は例えば100μmの厚みを有しており、積層体層15は例えば5μmの厚みを有している。積層体層15に複数のLED回路19が格子状に形成された複数の分割予定ライン17によって区画されて形成されている。ウエーハ11は、LED回路19が形成された表面11aと、サファイア基板13が露出した裏面11bとを有している。   The sapphire substrate 13 has a thickness of 100 μm, for example, and the laminate layer 15 has a thickness of 5 μm, for example. A plurality of LED circuits 19 are defined on the laminate layer 15 by a plurality of division lines 17 formed in a lattice pattern. The wafer 11 has a front surface 11a on which the LED circuit 19 is formed and a back surface 11b on which the sapphire substrate 13 is exposed.

本発明実施形態の発光ダイオードチップの製造方法によると、まず図1に示すような光デバイスウエーハ11を準備するウエーハ準備工程を実施する。次いで、図2(A)に示すように、ウエーハ11の裏面11bに内部に複数の気泡29を有する透明基板21の表面21を貼着して、ウエーハ11と透明基板25とを一体化して図2(B)に示す一体化ウエーハ25を形成する一体化工程を実施する。   According to the light emitting diode chip manufacturing method of the embodiment of the present invention, first, a wafer preparation step for preparing an optical device wafer 11 as shown in FIG. 1 is performed. Next, as shown in FIG. 2A, the front surface 21 of the transparent substrate 21 having a plurality of bubbles 29 is attached to the back surface 11b of the wafer 11 so that the wafer 11 and the transparent substrate 25 are integrated. An integration step for forming the integrated wafer 25 shown in FIG.

一体化工程を実施した後、一体化ウエーハ25の透明基板21の裏面21bにLED回路19に対応して複数の窪みを形成する透明基板加工工程を実施する。この透明基板加工工程では、図3(A)に示すように、ウエーハ11のLED回路19に対応した複数の穴4を有するマスク2を使用する。   After performing the integration step, a transparent substrate processing step is performed in which a plurality of depressions are formed on the back surface 21b of the transparent substrate 21 of the integrated wafer 25 corresponding to the LED circuit 19. In this transparent substrate processing step, as shown in FIG. 3A, a mask 2 having a plurality of holes 4 corresponding to the LED circuits 19 of the wafer 11 is used.

図3(B)に示すように、マスク2の穴4をウエーハ11の各LED回路19に対応させてマスク2を一体化ウエーハ25の透明基板21の裏面21bに貼着する。そして、ウェットエッチング又はプラズマエッチングにより透明基板21の裏面21bに、図3(C)に示すように、マスク2の穴4の形状に対応した三角形状の窪み5を形成する。   As shown in FIG. 3B, the mask 2 is attached to the back surface 21 b of the transparent substrate 21 of the integrated wafer 25 with the holes 4 of the mask 2 corresponding to the LED circuits 19 of the wafer 11. Then, a triangular recess 5 corresponding to the shape of the hole 4 of the mask 2 is formed on the back surface 21b of the transparent substrate 21 by wet etching or plasma etching, as shown in FIG.

マスク2の穴4の形状を四角形状、又は円形状に変形することにより、透明基板21の裏面21bに図3(D)に示すような四角形状の窪み5Aを形成するか、図3(E)に示すような透明基板21の裏面21bに円形状の窪み5Bを形成するようにしてもよい。   By changing the shape of the hole 4 of the mask 2 into a quadrangular shape or a circular shape, a rectangular recess 5A as shown in FIG. 3D is formed on the back surface 21b of the transparent substrate 21, or FIG. The circular recess 5B may be formed on the back surface 21b of the transparent substrate 21 as shown in FIG.

内部に複数の気泡29を有する透明基板21の裏面21bにLED回路19に対応した複数の窪みを形成するのに、レーザー加工装置を利用するようにしてもよい。レーザー加工装置による実施形態では、図4(A)に示すように、透明基板21に対して吸収性を有する波長(例えば、266nm)のレーザービームを集光器(レーザーヘッド)24から透明基板21の裏面21bに間欠的に照射しながら、一体化ウエーハ25を保持した図示しないチャックテーブルを矢印X1方向に加工送りすることにより、透明基板21の裏面21bに窪み9をアブレーションにより形成する。   A laser processing apparatus may be used to form a plurality of depressions corresponding to the LED circuit 19 on the back surface 21b of the transparent substrate 21 having a plurality of bubbles 29 therein. In the embodiment using the laser processing apparatus, as shown in FIG. 4A, a laser beam having a wavelength (for example, 266 nm) having an absorptivity with respect to the transparent substrate 21 is transmitted from the condenser (laser head) 24 to the transparent substrate 21. A recess 9 is formed on the back surface 21b of the transparent substrate 21 by ablation by processing and feeding a chuck table (not shown) holding the integrated wafer 25 in the direction of the arrow X1 while intermittently irradiating the back surface 21b of the transparent substrate 21b.

一体化ウエーハ25を矢印X1方向に直交する方向にウエーハ11の分割予定ライン17のピッチずつ割り出し送りしながら、透明基板21の裏面21bをアブレーション加工して、図4(B)に示すような窪み9を次々と形成する。   The back surface 21b of the transparent substrate 21 is ablated while indexing and feeding the integrated wafer 25 in the direction orthogonal to the direction of the arrow X1 by the pitch of the division lines 17 of the wafer 11, and a depression as shown in FIG. 9 are formed one after another.

透明基板21は、透明樹脂、光学ガラス、サファイア、透明セラミックスの何れかから形成される。本実施形態では、光学ガラスに比べて耐久性のあるポリカーボネイト、アクリル等の透明樹脂から透明基板21を形成した。   The transparent substrate 21 is formed from any one of transparent resin, optical glass, sapphire, and transparent ceramics. In the present embodiment, the transparent substrate 21 is formed from a transparent resin such as polycarbonate or acrylic that is more durable than optical glass.

一体化ウエーハ25を構成する透明基板21の裏面21bに複数の窪み9を形成する透明基板加工工程を実施した後、図5に示すように、一体化ウエーハ25の透明基板21を外周部が環状フレームFに貼着されたダイシングテープTに貼着してフレームユニットを形成し、一体化ウエーハ25をダイシングテープTを介して環状フレームFで支持する支持工程を実施する。   After carrying out the transparent substrate processing step of forming a plurality of depressions 9 on the back surface 21b of the transparent substrate 21 constituting the integrated wafer 25, the outer peripheral portion of the transparent substrate 21 of the integrated wafer 25 is annular as shown in FIG. A frame unit is formed by adhering to the dicing tape T adhered to the frame F, and a supporting process for supporting the integrated wafer 25 with the annular frame F through the dicing tape T is performed.

支持工程を実施した後、フレームユニットを切削装置に投入し、切削装置で一体化ウエーハ25を切削して個々の発光ダイオードチップに分割する分割ステップを実施する。この分割ステップについて、図6を参照して説明する。   After carrying out the supporting process, the frame unit is put into a cutting device, and the dividing step of cutting the integrated wafer 25 with the cutting device and dividing it into individual light emitting diode chips is carried out. This division step will be described with reference to FIG.

図6に示すように、切削装置の切削ユニット10は、スピンドルハウジング12と、スピンドルハウジング12中に回転可能に挿入された図示しないスピンドルと、スピンドルの先端に装着された切削ブレード14とを含んでいる。   As shown in FIG. 6, the cutting unit 10 of the cutting apparatus includes a spindle housing 12, a spindle (not shown) rotatably inserted into the spindle housing 12, and a cutting blade 14 attached to the tip of the spindle. Yes.

切削ブレード14の切り刃は、例えば、ダイヤモンド砥粒をニッケルメッキで固定した電鋳砥石で形成されており、その先端形状は三角形状、四角形状、又は半円形状をしている。   The cutting blade of the cutting blade 14 is formed of, for example, an electroforming grindstone in which diamond abrasive grains are fixed by nickel plating, and the tip shape thereof is triangular, quadrangular, or semicircular.

切削ブレード14の概略上半分はブレードカバー(ホイールカバー)16で覆われており、ブレードカバー16には切削ブレード14の奥側及び手前側に水平に伸長する一対の(1本のみ図示)クーラーノズル18が配設されている。   The upper half of the cutting blade 14 is covered with a blade cover (wheel cover) 16, and the blade cover 16 is a pair of cooler nozzles (only one is shown) extending horizontally toward the back side and the near side of the cutting blade 14. 18 is arranged.

分割ステップでは、一体化ウエーハ25をフレームユニットのダイシングテープTを介して切削装置のチャックテーブル20で吸引保持し、環状フレームFは図示しないクランプでクランプして固定する。   In the dividing step, the integrated wafer 25 is sucked and held by the chuck table 20 of the cutting device via the dicing tape T of the frame unit, and the annular frame F is clamped and fixed by a clamp (not shown).

そして、切削ブレード14を矢印R方向に高速回転させながら切削ブレード14の先端がダイシングテープTに届くまでウエーハ11の分割予定ライン17に切り込み、クーラーノズル18から切削ブレード14及びウエーハ11の加工点に向かって切削液を供給しつつ、一体化ウエーハ25を矢印X1方向に加工送りすることにより、ウエーハ11の分割予定ライン17に沿ってウエーハ11及び透明基板21を切断する切断溝27を形成する。   Then, while rotating the cutting blade 14 in the direction of arrow R at high speed, the cutting blade 14 is cut into the division line 17 of the wafer 11 until the tip of the cutting blade 14 reaches the dicing tape T. From the cooler nozzle 18 to the processing point of the cutting blade 14 and the wafer 11. The cutting groove 27 for cutting the wafer 11 and the transparent substrate 21 is formed along the division line 17 of the wafer 11 by processing and feeding the integrated wafer 25 in the direction of the arrow X1 while supplying the cutting fluid.

切削ユニット10をY軸方向に割り出し送りしながら、第1の方向に伸長する分割予定ライン17に沿って同様な切断溝27を次々と形成する。次いで、チャックテーブル20を90°回転してから、第1の方向に直交する第2の方向に伸長する全ての分割予定ライン17に沿って同様な切断溝27を形成して、図7に示す状態にすることで、一体化ウエーハ25を図8に示すような発光ダイオードチップ31に分割する。   While indexing and feeding the cutting unit 10 in the Y-axis direction, similar cutting grooves 27 are formed one after another along the planned dividing line 17 extending in the first direction. Next, after the chuck table 20 is rotated by 90 °, similar cutting grooves 27 are formed along all the planned dividing lines 17 extending in the second direction orthogonal to the first direction, as shown in FIG. In this state, the integrated wafer 25 is divided into light emitting diode chips 31 as shown in FIG.

上述した実施形態では、一体化ウエーハ25を個々の発光ダイオードチップ31に分割するのに切削装置を使用しているが、ウエーハ11及び透明基板21に対して透過性を有する波長のレーザービームを分割予定ライン13に沿ってウエーハ11に照射して、ウエーハ11及び透明基板21の内部に厚み方向に複数層の改質層を形成し、次いで、一体化ウエーハ25に外力を付与して、改質層を分割起点に一体化ウエーハ25を個々の発光ダイオードチップ31に分割するようにしてもよい。   In the embodiment described above, the cutting device is used to divide the integrated wafer 25 into the individual light emitting diode chips 31. However, the laser beam having a wavelength that is transmissive to the wafer 11 and the transparent substrate 21 is divided. Irradiate the wafer 11 along the planned line 13 to form a plurality of modified layers in the thickness direction inside the wafer 11 and the transparent substrate 21, and then apply an external force to the integrated wafer 25 to modify the wafer. The integrated wafer 25 may be divided into individual light emitting diode chips 31 using the layers as division starting points.

図8に示された発光ダイオードチップ31は、表面にLED回路19を有するLED13Aの裏面に内部に複数の気泡29が形成された透明部材21Aが貼着されている。更に、透明部材21Aの裏面に窪み5,5A,5B又は9が形成されている。   The light emitting diode chip 31 shown in FIG. 8 has a transparent member 21A in which a plurality of bubbles 29 are formed on the back surface of an LED 13A having an LED circuit 19 on the front surface. Further, the recess 5, 5A, 5B or 9 is formed on the back surface of the transparent member 21A.

従って、図8に示す発光ダイオードチップ31では、透明部材21Aの裏面21bに窪み5,5A,5B又は9が形成されているため、透明部材21Aの表面積が増大する。更に、発光ダイオードチップ31のLED回路19から出射され透明部材21A中に進入した光の一部は、透明部材21Aから出射する際、窪み5,5A,5B又は9部分で複雑に屈折されて出射する。   Therefore, in the light emitting diode chip 31 shown in FIG. 8, since the recess 5, 5A, 5B or 9 is formed on the back surface 21b of the transparent member 21A, the surface area of the transparent member 21A increases. Further, part of the light emitted from the LED circuit 19 of the light emitting diode chip 31 and entering the transparent member 21A is refracted in a complicated manner at the recess 5, 5A, 5B, or 9 when emitted from the transparent member 21A. To do.

従って、透明部材21Aから外部に屈折して出射する際、透明部材21Aと空気層との界面での入射角が臨界角以上となる光の割合が減少し、透明部材21Aから出射される光の量が増大し、発光ダイオードチップ31の輝度が向上する。   Accordingly, when the light is refracted and emitted from the transparent member 21A, the ratio of the light whose incident angle at the interface between the transparent member 21A and the air layer is greater than the critical angle is reduced, and the light emitted from the transparent member 21A is reduced. The amount increases, and the luminance of the light emitting diode chip 31 is improved.

5,5A,5B,9 窪み
10 切削ユニット
11 光デバイスウエーハ(ウエーハ)
13 サファイア基板
14 切削ブレード
15 積層体層
17 分割予定ライン
19 LED回路
21 透明基板
21A 透明部材
25 一体化ウエーハ
27 切断溝
29 気泡
31 発光ダイオードチップ
5, 5A, 5B, 9 Dimple 10 Cutting unit 11 Optical device wafer (wafer)
DESCRIPTION OF SYMBOLS 13 Sapphire substrate 14 Cutting blade 15 Laminate body layer 17 Scheduled division line 19 LED circuit 21 Transparent substrate 21A Transparent member 25 Integrated wafer 27 Cutting groove 29 Air bubble 31 Light emitting diode chip

Claims (4)

発光ダイオードチップの製造方法であって、
結晶成長用の透明基板上に発光層を含む複数の半導体層が形成された積層体層を有し、該積層体層の表面に互いに交差する複数の分割予定ラインによって区画された各領域にそれぞれLED回路が形成されたウエーハを準備するウエーハ準備工程と、
該ウエーハの裏面に内部に複数の気泡が形成された透明基板の表面を貼着して一体化ウエーハを形成する一体化工程と、
該一体化工程を実施した後、該一体化ウエーハの該透明基板の裏面に該ウエーハの各LED回路に対応して複数の窪みを形成する透明基板加工工程と、
該透明基板加工工程を実施した後、該ウエーハを該分割予定ラインに沿って該透明基板と共に切断して該一体化ウエーハを個々の発光ダイオードチップに分割する分割工程と、
を備えたことを特徴とする発光ダイオードチップの製造方法。
A method of manufacturing a light emitting diode chip,
Each of the regions has a laminate layer in which a plurality of semiconductor layers including a light emitting layer are formed on a transparent substrate for crystal growth, and is divided into a plurality of division lines intersecting each other on the surface of the laminate layer. A wafer preparation step of preparing a wafer on which an LED circuit is formed;
An integration step of forming an integrated wafer by sticking the surface of a transparent substrate having a plurality of bubbles formed therein on the back surface of the wafer;
After performing the integration step, a transparent substrate processing step of forming a plurality of depressions corresponding to each LED circuit of the wafer on the back surface of the transparent substrate of the integrated wafer;
After performing the transparent substrate processing step, the dividing step of cutting the wafer together with the transparent substrate along the division line to divide the integrated wafer into individual light emitting diode chips;
A method for producing a light-emitting diode chip, comprising:
該透明基板加工工程で形成される前記窪みの断面形状は三角形状、四角形状、円形状の何れかである請求項1記載の発光ダイオードチップの製造方法。   The method for manufacturing a light-emitting diode chip according to claim 1, wherein a cross-sectional shape of the recess formed in the transparent substrate processing step is any one of a triangular shape, a square shape, and a circular shape. 該透明基板加工工程において、前記窪みは、エッチング、サンドブラスト、レーザーの何れかで形成される請求項1記載の発光ダイオードチップの製造方法。   The method for manufacturing a light-emitting diode chip according to claim 1, wherein in the transparent substrate processing step, the recess is formed by any one of etching, sandblasting, and laser. 該透明基板は、透明セラミックス、光学ガラス、サファイア、透明樹脂の何れかで形成され、該一体化工程において該透明基板は透明接着剤を使用して該ウエーハに貼着される請求項1記載の発光ダイオードチップの製造方法。   The transparent substrate is formed of any one of transparent ceramics, optical glass, sapphire, and transparent resin, and the transparent substrate is attached to the wafer using a transparent adhesive in the integration step. Manufacturing method of light emitting diode chip.
JP2016216397A 2016-11-04 2016-11-04 Method for manufacturing light-emitting diode chip Pending JP2018074111A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016216397A JP2018074111A (en) 2016-11-04 2016-11-04 Method for manufacturing light-emitting diode chip
TW106133666A TW201830725A (en) 2016-11-04 2017-09-29 Method for manufacturing light emitting diode chip
CN201711000328.3A CN108023005A (en) 2016-11-04 2017-10-24 The manufacture method of light-emitting diode chip for backlight unit
KR1020170144562A KR102270092B1 (en) 2016-11-04 2017-11-01 Method for manufacturing light emitting diode chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016216397A JP2018074111A (en) 2016-11-04 2016-11-04 Method for manufacturing light-emitting diode chip

Publications (1)

Publication Number Publication Date
JP2018074111A true JP2018074111A (en) 2018-05-10

Family

ID=62079598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016216397A Pending JP2018074111A (en) 2016-11-04 2016-11-04 Method for manufacturing light-emitting diode chip

Country Status (4)

Country Link
JP (1) JP2018074111A (en)
KR (1) KR102270092B1 (en)
CN (1) CN108023005A (en)
TW (1) TW201830725A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093728A (en) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd Light-emitting device
JP2005191514A (en) * 2003-10-31 2005-07-14 Toyoda Gosei Co Ltd Light emitting element and light emitting device
JP2006278751A (en) * 2005-03-29 2006-10-12 Mitsubishi Cable Ind Ltd Garium nitride-based semiconductor light emitting element
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2007266472A (en) * 2006-03-29 2007-10-11 Stanley Electric Co Ltd Nitride semiconductor wafer or nitride semiconductor device, and manufacturing method thereof
US20100176415A1 (en) * 2009-01-14 2010-07-15 Samsung Electronics Co., Ltd. Light emitting device with improved light extraction efficiency
JP2010162765A (en) * 2009-01-15 2010-07-29 Panasonic Electric Works Co Ltd Method of manufacturing thermoset resin expanded molded form and expanded molded form obtained by the method
JP2011107508A (en) * 2009-11-19 2011-06-02 Showa Denko Kk Phosphor filter, method of manufacturing the same, and lamp
WO2015030237A1 (en) * 2013-08-30 2015-03-05 旭化成イーマテリアルズ株式会社 Semiconductor light-emitting element, and optical film
JP2015192100A (en) * 2014-03-28 2015-11-02 豊田合成株式会社 Light-emitting element and method of manufacturing light-emitting element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100959079B1 (en) * 2005-06-27 2010-05-20 한빔 주식회사 Light emitting diode device having enhanced heat dissipation and preparation method thereof
CN101766052B (en) * 2007-07-27 2012-07-18 旭硝子株式会社 Translucent substrate, method for manufacturing the translucent substrate, organic led element and method for manufacturing the organic LED element
JP2012038889A (en) * 2010-08-06 2012-02-23 Koito Mfg Co Ltd Fluorescent member and light-emitting module
KR101726807B1 (en) * 2010-11-01 2017-04-14 삼성전자주식회사 Light Emitting Device
KR20120107271A (en) * 2011-03-21 2012-10-02 삼성전자주식회사 Light emitting diode package and manufaturing method thereof
EP2721653A4 (en) * 2011-06-15 2014-11-19 Sensor Electronic Tech Inc Device with inverted large scale light extraction structures
JP5509394B2 (en) * 2012-02-01 2014-06-04 パナソニック株式会社 Semiconductor light emitting device, method for manufacturing the same, and light source device
JP5941306B2 (en) * 2012-03-19 2016-06-29 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP2014175354A (en) 2013-03-06 2014-09-22 Disco Abrasive Syst Ltd Light-emitting diode
KR101426433B1 (en) * 2013-04-30 2014-08-06 주식회사 세미콘라이트 Manufacturing method of semiconductor light emitting device
JP2014239123A (en) * 2013-06-06 2014-12-18 株式会社ディスコ Processing method
US20150353417A1 (en) * 2013-12-26 2015-12-10 Shin-Etsu Quartz Products Co., Ltd. Quartz glass member for wavelength conversion and method of manufacturing the same
JP6255255B2 (en) * 2014-01-27 2017-12-27 株式会社ディスコ Optical device processing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093728A (en) * 2003-09-17 2005-04-07 Toyoda Gosei Co Ltd Light-emitting device
JP2005191514A (en) * 2003-10-31 2005-07-14 Toyoda Gosei Co Ltd Light emitting element and light emitting device
JP2006278751A (en) * 2005-03-29 2006-10-12 Mitsubishi Cable Ind Ltd Garium nitride-based semiconductor light emitting element
JP2007103901A (en) * 2005-09-09 2007-04-19 Matsushita Electric Works Ltd Light emitting device
JP2007266472A (en) * 2006-03-29 2007-10-11 Stanley Electric Co Ltd Nitride semiconductor wafer or nitride semiconductor device, and manufacturing method thereof
US20100176415A1 (en) * 2009-01-14 2010-07-15 Samsung Electronics Co., Ltd. Light emitting device with improved light extraction efficiency
JP2010162765A (en) * 2009-01-15 2010-07-29 Panasonic Electric Works Co Ltd Method of manufacturing thermoset resin expanded molded form and expanded molded form obtained by the method
JP2011107508A (en) * 2009-11-19 2011-06-02 Showa Denko Kk Phosphor filter, method of manufacturing the same, and lamp
WO2015030237A1 (en) * 2013-08-30 2015-03-05 旭化成イーマテリアルズ株式会社 Semiconductor light-emitting element, and optical film
JP2015192100A (en) * 2014-03-28 2015-11-02 豊田合成株式会社 Light-emitting element and method of manufacturing light-emitting element

Also Published As

Publication number Publication date
CN108023005A (en) 2018-05-11
KR20180050232A (en) 2018-05-14
TW201830725A (en) 2018-08-16
KR102270092B1 (en) 2021-06-25

Similar Documents

Publication Publication Date Title
JP2018060946A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018029110A (en) Light-emitting diode chip manufacturing method and light-emitting diode chip
JP2018014421A (en) Method for manufacturing light-emitting diode chip, and light-emitting diode chip
JP2018010898A (en) Light-emitting diode chip manufacturing method and light-emitting diode chip
JP2018074111A (en) Method for manufacturing light-emitting diode chip
JP2018010900A (en) Light-emitting diode chip manufacturing method
JP2018074110A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018041782A (en) Light-emitting diode chip manufacturing method
JP2018060949A (en) Method for manufacturing light-emitting diode chip
JP2018074109A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018074112A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018074113A (en) Method for manufacturing light-emitting diode chip
JP2018010899A (en) Light-emitting diode chip manufacturing method and light-emitting diode chip
JP2018060950A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018060951A (en) Method for manufacturing light-emitting diode chip
JP2018078142A (en) Method for manufacturing light-emitting diode chip
JP2018060947A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018186166A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018041781A (en) Light-emitting diode chip manufacturing method and light-emitting diode chip
JP2018148017A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018060948A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018186167A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018078140A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018148096A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip
JP2018129344A (en) Method for manufacturing light-emitting diode chip and light-emitting diode chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210202