JP4970574B2 - Resin film sheet and electronic parts - Google Patents

Resin film sheet and electronic parts Download PDF

Info

Publication number
JP4970574B2
JP4970574B2 JP2010157800A JP2010157800A JP4970574B2 JP 4970574 B2 JP4970574 B2 JP 4970574B2 JP 2010157800 A JP2010157800 A JP 2010157800A JP 2010157800 A JP2010157800 A JP 2010157800A JP 4970574 B2 JP4970574 B2 JP 4970574B2
Authority
JP
Japan
Prior art keywords
resin film
resin
layer
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010157800A
Other languages
Japanese (ja)
Other versions
JP2010278013A (en
Inventor
務 河野
宏治 小林
和良 小島
眞行 美野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2010157800A priority Critical patent/JP4970574B2/en
Publication of JP2010278013A publication Critical patent/JP2010278013A/en
Application granted granted Critical
Publication of JP4970574B2 publication Critical patent/JP4970574B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive

Abstract

The invention provides a rein membrane containing conductive particles and an electronic component electrically connected with the rein membrane containing conductive particles. To improve capture of the particles presented by the number of the particles contained in the rein membrane among electrodes before connecting and the number of the particles clamped in the electrodes after connecting, the rein membrane containing conductive particles provided by the invention is characterized in that the rein membrane containing conductive particles laminated with more than 2 layers or an insulated resin membrane containing at least one resin membrane of the rein membrane that two surfaces of the rein membrane locate in a central plane in a thickness direction in equal to distance or adjacent to the central plane in the direction is formed by the insulated resin membrane.

Description

本発明は、導電性粒子を内在させた樹脂フィルムシートおよび導電性粒子を内在させた樹脂フィルムシートで電気的に接続された電子部品に関する。   The present invention relates to a resin film sheet containing conductive particles and an electronic component electrically connected to the resin film sheet containing conductive particles.

導電性を有する粒子を内在させた樹脂フィルム材料による電極間の接続成形の前段階では、粒子を内在させた樹脂フィルム材料を挟んだ状態で電極同士の間隔がフィルムの肉厚以上離れており、上部電極または下部電極から樹脂フィルム材料に熱を加えながら、電極の間隔を短くする圧縮による接続成形により、導電性を有する粒子を内在させた樹脂フィルム材料が流動し、接続成形後に粒子が電極間に挟まれるプロセスが実施される。   In the previous stage of connection molding between the electrodes by the resin film material in which the particles having conductivity are embedded, the distance between the electrodes is more than the thickness of the film with the resin film material in which the particles are interposed interposed therebetween, Resin film material containing conductive particles flows by connection molding by compression to shorten the distance between the electrodes while applying heat to the resin film material from the upper electrode or lower electrode, and the particles move between the electrodes after connection molding. The process between the two is performed.

本発明は、接続成形後の電極間の粒子捕捉率(接続成形前の電極間に存在する粒子数と接続成形後の電極間に挟まれる粒子数の比率)を向上させる導電性粒子を内在させた樹脂フィルムシートおよび前記樹脂フィルムシートで電気的に接続された電子部品に関する。   The present invention incorporates conductive particles that improve the particle trapping ratio between electrodes after connection molding (ratio of the number of particles existing between electrodes before connection molding and the number of particles sandwiched between electrodes after connection molding). The present invention relates to a resin film sheet and an electronic component electrically connected by the resin film sheet.

異方導電性フィルムの材料構成に関する特許文献としては、例えば、特許文献1、特許文献2、特許文献3が知られている。特許文献1には、導電性粒子を内在させた樹脂フィルムシートの肉厚寸法と粒子径の比率についての技術が開示され、異方導電フィルムの全体肉厚を粒子径の2倍以内とした材料構造が示されている。しかし、実際の接続においては、電極形状ごとに接続・接着するのに必要な異方導電フィルムの全体の肉厚は異なる。   For example, Patent Document 1, Patent Document 2, and Patent Document 3 are known as patent documents relating to the material configuration of the anisotropic conductive film. Patent Document 1 discloses a technique relating to the ratio between the thickness and particle diameter of a resin film sheet in which conductive particles are contained, and is a material in which the total thickness of the anisotropic conductive film is within twice the particle diameter. The structure is shown. However, in actual connection, the total thickness of the anisotropic conductive film necessary for connection and adhesion varies depending on the electrode shape.

また、特許文献2には、異方導電ペースト中に分散させた導電物質の密度を肉厚方向に変更する技術が開示され、導電物質の密度を肉厚方向に変更するために、液状の絶縁樹脂に導電粒子を設置し、導電性ペーストを電極上に塗布された状態で、40℃以上で2時間以上の加熱で粒子を沈降させる接続方法が示されている。しかし、実際の接続は、短時間で行うことが必要であり、固体のフィルム状態の異方導電フィルムを用いる必要がある。更に、肉厚方向に粒子の分布を持たせるために、2層以上のフィルムを有する構造とし、粒子を設置する導電層と、粒子を設置しない絶縁層に分ける構造が有効である。   Patent Document 2 discloses a technique for changing the density of a conductive material dispersed in an anisotropic conductive paste in the thickness direction. In order to change the density of a conductive material in the thickness direction, a liquid insulating material is used. A connection method is shown in which conductive particles are placed on a resin and the conductive paste is applied on an electrode, and the particles are precipitated by heating at 40 ° C. or higher for 2 hours or longer. However, actual connection needs to be performed in a short time, and it is necessary to use an anisotropic conductive film in a solid film state. Furthermore, in order to have a distribution of particles in the thickness direction, a structure having two or more films and a structure in which a conductive layer in which particles are installed and an insulating layer in which particles are not installed are effective.

また、特許文献3は、導電層と絶縁層について、溶融粘度の最低値に差を付けた材料構造である。しかし、実際の樹脂フィルムシートを用いた接続成形においては、昇温速度が速い条件(170℃/10sなど)が用いられるので、最低粘度より電極間隔が粒子径と等しくなるまでのも接続初期状態での粘度変化が重要となる。   Patent Document 3 has a material structure in which a difference is made in the minimum value of the melt viscosity for the conductive layer and the insulating layer. However, in connection molding using an actual resin film sheet, conditions with a high temperature rise rate (such as 170 ° C./10 s) are used. Therefore, the initial connection state until the electrode spacing becomes equal to the particle diameter from the minimum viscosity is also used. Viscosity change at is important.

特開昭63−102110号公報JP 63-102110 A 特開平10−200243号公報JP-A-10-200243 特開2005−146044号公報JP 2005-146044 A

導電性を有する粒子を内在させた樹脂フィルム材料を、接続すべき電極間に設置し、電極間距離を短くする樹脂フィルム材料の圧縮によって、導電性を有する粒子を内在させた樹脂フィルム材料が流動し、接続成形後に粒子が電極間に挟まれる接続成形プロセスにおいては、接続成形前における電極間に存在する樹脂フィルム材料に内在される粒子数と、接続成形後の電極間に挟まれる粒子数の比率で表される粒子の捕捉率向上が、コスト低減、導電性能向上のための課題である。   Resin film material containing conductive particles flows by compressing the resin film material containing conductive particles in between the electrodes to be connected and shortening the distance between the electrodes. In the connection molding process in which particles are sandwiched between electrodes after connection molding, the number of particles present in the resin film material existing between the electrodes before connection molding and the number of particles sandwiched between electrodes after connection molding Improvement in the capture rate of particles represented by the ratio is a problem for cost reduction and improvement of conductive performance.

即ち、粒子捕捉率が低いと、電極間に挟まれる粒子数が少なくなるので、接続した電極間の導電性能低下が生じるため、コストの高い導電粒子を初期状態で樹脂に多く内在させる必要がある。従って、樹脂フィルム材料に内在させる粒子の配置などを適正化することにより、粒子の捕捉率を向上させることが、コスト低減、導電性能向上のために必要である。   That is, when the particle trapping rate is low, the number of particles sandwiched between the electrodes is reduced, so that the conductive performance between the connected electrodes is reduced. Therefore, it is necessary to make many conductive particles having high costs inherent in the resin in the initial state. . Therefore, it is necessary to improve the particle capture rate by optimizing the arrangement of the particles contained in the resin film material in order to reduce costs and improve conductive performance.

また、肉厚方向に2層の積層で構成される樹脂フィルム材料を用いて、1層だけの樹脂フィルムに粒子を内在させた場合に、電極形状によって、粒子を内在させた樹脂フィルム層を上部電極または下部電極のどちらに接触させた状態で設置するかより、粒子捕捉率が異なる。従って、接続成形の前段階で、電極形状によって樹脂フィルム材料の粒子を内在させた樹脂フィルム層を上部電極または下部電極のどちらに接触させて設置すれば、粒子の捕捉率を向上できるかを検討する必要がある。   In addition, when a resin film material composed of two layers in the thickness direction is used and the particles are contained in only one layer of the resin film, the resin film layer containing the particles is placed on the top depending on the electrode shape. Depending on whether the electrode is installed in contact with the electrode or the lower electrode, the particle capture rate differs. Therefore, in the previous stage of connection molding, consider whether the particle capture rate can be improved by placing the resin film layer with resin film material particles in the electrode shape in contact with either the upper electrode or the lower electrode. There is a need to.

また、肉厚方向に2層の積層で構成される樹脂フィルム材料を用いて、1層だけの樹脂フィルムに粒子を内在させた場合に、2層を構成する絶縁層と導電層の粘度、熱伝導率、発熱速度などの物性値の差によって粒子捕捉率が異なる。従って、2層を構成する絶縁層と導電層の材料物性値の差を適正化することにより、粒子捕捉率の向上を図る必要がある。   In addition, when the resin film material composed of two layers in the thickness direction is used and the particles are contained in the resin film of only one layer, the viscosity and heat of the insulating layer and the conductive layer constituting the two layers The particle capture rate varies depending on the difference in physical properties such as conductivity and heat generation rate. Therefore, it is necessary to improve the particle trapping rate by optimizing the difference in material property values between the insulating layer and the conductive layer constituting the two layers.

上記課題を解決するため、本発明では、汎用流体解析プログラム(FLOW−3D FLOW SCIENCE社)を用いることにより、成形前の電極間に存在する樹脂フィルムに内在させた粒子の数と、成形後の電極間に挟まれる粒子数の比率で表される粒子の捕捉率を算出し、樹脂フィルム材料に内在させる粒子の配置、樹脂フィルム材料の粘度、発熱反応速度、熱伝導率を適正化した。   In order to solve the above problems, in the present invention, by using a general-purpose fluid analysis program (FLOW-3D FLOW SCIENCE), the number of particles incorporated in the resin film existing between the electrodes before molding, The trapping rate of the particles represented by the ratio of the number of particles sandwiched between the electrodes was calculated, and the arrangement of the particles contained in the resin film material, the viscosity of the resin film material, the exothermic reaction rate, and the thermal conductivity were optimized.

例えば、2層の積層で構成される樹脂フィルム材料で、2層のうち、1層の樹脂フィルムだけに粒子を内在させる場合には、粒子の捕捉率を向上するための適切な樹脂フィルム材料全体の肉厚、粒子を内在させた樹脂フィルム層の肉厚などを選定する。   For example, in the case of a resin film material composed of two layers, when the particles are contained only in one of the two layers, the entire resin film material suitable for improving the particle capture rate And the thickness of the resin film layer in which the particles are contained are selected.

本発明の導電性粒子を内在させた樹脂フィルムシートは、導電性粒子を内在させた樹脂フィルム層または導電性粒子を内在させない樹脂フィルム層を肉厚方向に2層以上積層し、前記樹脂フィルムシートの両表面から等距離に位置する肉厚方向の中心面を内部に含む樹脂フィルム層または前記肉厚方向の中心面に隣接する少なくとも一つの樹脂フィルム層が、前記導電性粒子を内在させない絶縁性の樹脂フィルム層により形成されていることを特徴とする。   The resin film sheet containing the conductive particles of the present invention is formed by laminating two or more resin film layers containing conductive particles or resin film layers not containing conductive particles in the thickness direction, Insulating property in which the resin film layer containing the center plane in the thickness direction located at the same distance from both surfaces of the inside or at least one resin film layer adjacent to the center plane in the thickness direction does not contain the conductive particles It is characterized by being formed by the resin film layer.

更に、接続成形の前段階で、樹脂フィルム材料の粒子を内在させた樹脂フィルム層を上部電極または下部電極のどちらに接触させて設置すれば、粒子の捕捉率を向上できるかを電極形状によって選定する。また、肉厚方向に2層の積層で構成される樹脂フィルム材料を用いて、1層だけの樹脂フィルムに粒子を内在させた場合に、2層を構成する絶縁層と導電層の粘度、熱伝導率、発熱速度などの物性値に差をつけることを特徴とする。   Furthermore, in the previous stage of connection molding, it is selected according to the electrode shape whether the resin film layer containing the resin film material particles can be placed in contact with the upper electrode or the lower electrode to improve the particle capture rate. To do. In addition, when the resin film material composed of two layers in the thickness direction is used and the particles are contained in the resin film of only one layer, the viscosity and heat of the insulating layer and the conductive layer constituting the two layers It is characterized by making a difference in physical properties such as conductivity and heat generation rate.

本発明における導電性粒子を分散させる接着剤組成物としては、例えば、熱硬化性の接着剤組成物、光硬化性の接着剤組成物等が挙げられる。具体的には、例えば、(1)エポキシ樹脂及び(2)エポキシ樹脂の硬化剤を含有する接着剤組成物、(3)ラジカル重合性物質及び(4)加熱又は光によって遊離ラジカルを発生する硬化剤を含有する接着剤組成物、前記(1)及び(2)の成分を含む接着剤組成物と前記(3)及び(4)の成分を含む接着剤組成物との混合組成物等が使用できる。   Examples of the adhesive composition for dispersing the conductive particles in the present invention include a thermosetting adhesive composition and a photocurable adhesive composition. Specifically, for example, (1) an epoxy resin and (2) an adhesive composition containing an epoxy resin curing agent, (3) a radical polymerizable substance, and (4) curing that generates free radicals by heating or light. An adhesive composition containing an agent, a mixed composition of an adhesive composition containing the components (1) and (2) and an adhesive composition containing the components (3) and (4), etc. it can.

上記した成分(1)のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよい。また、アクリロイル基又はメタクリロイル基をエポキシ樹脂の側鎖に付加させてもよい。これらは単独で又は2種類以上を組み合わせて使用される。   Examples of the epoxy resin of component (1) described above include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin. Bisphenol F novolac type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, aliphatic chain epoxy resin and the like. These epoxy resins may be halogenated or hydrogenated. Further, an acryloyl group or a methacryloyl group may be added to the side chain of the epoxy resin. These may be used alone or in combination of two or more.

上記した成分(2)の硬化剤としては、エポキシ樹脂を硬化させることができるものであれば特に制限はなく、例えば、アニオン重合性の触媒型硬化剤、カチオン重合性の触媒型硬化剤、重付加型の硬化剤等が挙げられる。これらのうち、速硬化性において優れ、化学当量的な考慮が不要である点からは、アニオン又はカチオン重合性の触媒型硬化剤が好ましい。   The curing agent for the component (2) is not particularly limited as long as it can cure the epoxy resin. For example, anionic polymerizable catalyst-type curing agent, cationic polymerizable catalyst-type curing agent, Addition type curing agents and the like can be mentioned. Of these, anionic or cationic polymerizable catalyst-type curing agents are preferred because they are excellent in rapid curability and do not require chemical equivalent considerations.

上記アニオン又はカチオン重合性の触媒型硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、ジシアンジアミド等が挙げられ、これらの変成物なども使用することができる。   Examples of the anionic or cationic polymerizable catalyst-type curing agent include imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, diaminomaleonitrile, melamine and derivatives thereof, polyamine salt, dicyandiamide and the like. These modifications can also be used.

上記重付加型の硬化剤としては、例えば、ポリアミン類、ポリメルカプタン、ポリフェノール、酸無水物等が挙げられる。   Examples of the polyaddition type curing agent include polyamines, polymercaptans, polyphenols, and acid anhydrides.

アニオン重合型の触媒型硬化剤として、例えば、第3級アミン類やイミダゾール類を配合した場合、エポキシ樹脂は160℃〜200℃程度の中温で数10秒〜数時間程度の加熱により硬化する。このため、可使時間(ポットライフ)が比較的長くなるので好ましい。   For example, when a tertiary amine or imidazole is blended as an anionic polymerization type catalyst curing agent, the epoxy resin is cured by heating at a medium temperature of about 160 ° C. to 200 ° C. for several tens of seconds to several hours. For this reason, the pot life is relatively long, which is preferable.

また、エネルギー線照射によりエポキシ樹脂を硬化させる感光性オニウム塩(芳香族ジアゾニウム塩、芳香族スルホニウム塩等が主として用いられる)もカチオン重合型の触媒型硬化剤として好適に使用することができる。また、エネルギー線照射以外に加熱によって活性化しエポキシ樹脂を硬化させるカチオン重合型の触媒型硬化剤として、例えば、脂肪族スルホニウム塩等がある。この種の硬化剤は、速硬化性という特徴を有することから好ましい。   In addition, a photosensitive onium salt (an aromatic diazonium salt, an aromatic sulfonium salt, or the like mainly used) that cures an epoxy resin by irradiation with energy rays can be suitably used as a cationic polymerization type catalyst-type curing agent. In addition to the irradiation with energy rays, examples of the cationic polymerization type catalyst curing agent that is activated by heating to cure the epoxy resin include aliphatic sulfonium salts. This type of curing agent is preferable because it has a feature of fast curing.

これらのエポキシ樹脂の硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質、ニッケル、銅等の金属薄膜、ケイ酸カルシウム等の無機物などで被覆してマイクロカプセル化した潜在性硬化剤は、可使時間が延長できるため好ましい。   Latent curing agents that are microencapsulated by coating these epoxy resin curing agents with polyurethane, polyester or other polymer materials, nickel, copper or other metal thin films, inorganic materials such as calcium silicate, etc. are acceptable. It is preferable because the working time can be extended.

上記エポキシ樹脂の硬化剤の配合量は、接続時間を25秒以下とする場合、充分な反応率を得るためにエポキシ樹脂と必要により配合されるフィルム形成材との合計100質量部に対して、1〜50質量部であることが好ましい。   When the connection time is 25 seconds or less, the amount of the epoxy resin curing agent is 100 parts by mass in total of the epoxy resin and the film-forming material blended as necessary to obtain a sufficient reaction rate. It is preferable that it is 1-50 mass parts.

これらの硬化剤は単独で又は2種類以上を組み合わせて使用される。
上記した成分(3)のラジカル重合性物質としては、例えば、ラジカルにより重合する官能基を有する物質であれば特に制限なく使用することができる。具体的には、例えば、アクリレート(対応するメタクリレートも含み、以下同じ)化合物、アクリロキシ(対応するメタアクリロキシも含み、以下同じ)化合物、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等が挙げられる。これらラジカル重合性物質は、モノマー又はオリゴマーの状態で用いてもよく、モノマーとオリゴマーを併用することも可能である。
These curing agents are used alone or in combination of two or more.
As the radically polymerizable substance of the component (3), for example, any substance having a functional group that is polymerized by radicals can be used without particular limitation. Specifically, for example, an acrylate (including the corresponding methacrylate, the same shall apply hereinafter) compound, an acryloxy (including the corresponding methacryloxy, the same shall apply hereinafter) compound, a maleimide compound, a citraconic imide resin, a nadiimide resin and the like can be given. These radically polymerizable substances may be used in the state of a monomer or an oligomer, and a monomer and an oligomer can be used in combination.

上記アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2−ヒドロキシ−1,3−ジアクリロキシプロパン、2,2−ビス[4−(アクリロキシメトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート、ウレタンアクリレート等が挙げられる。また、必要によりハドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。また、耐熱性の向上の観点から、アクリレート化合物等のラジカル重合製物質がジシクロペンテニル基、トリシクロデカニル基、トリアジン環等の置換基を少なくとも1種有することが好ましい。   Examples of the acrylate compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, 2-hydroxy-1,3-dia Acryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclopentenyl acrylate, tricyclodecanyl acrylate, Examples include tris (acryloyloxyethyl) isocyanurate, urethane acrylate and the like. Moreover, you may use polymerization inhibitors, such as a hydroquinone and methyl ether hydroquinones, suitably if needed. Further, from the viewpoint of improving heat resistance, it is preferable that a radical polymerization product such as an acrylate compound has at least one substituent such as a dicyclopentenyl group, a tricyclodecanyl group, or a triazine ring.

また、上記ラジカル重合性物質に下記化学式(I)で示されるリン酸エステル構造を有するラジカル重合性物質を併用することが好ましい。この場合、金属等の無機物表面に対する接着強度が向上するため、回路電極同士の接着に好適である。

Figure 0004970574
(式中、nは1〜3の整数である) Moreover, it is preferable to use together with the radical polymerizable substance a radical polymerizable substance having a phosphate structure represented by the following chemical formula (I). In this case, since the adhesive strength to the surface of an inorganic material such as metal is improved, it is suitable for bonding circuit electrodes.
Figure 0004970574
(In the formula, n is an integer of 1 to 3)

このリン酸エステル構造を有するラジカル重合性物質は、例えば、無水リン酸と2−ヒドロキシエチル(メタ)アクリレートとを反応させることにより得ることができる。具体的には、例えば、モノ(2−メタクリロイルオキシエチル)アシッドフォスフェート、ジ(2−メタクリロイルオキシエチル)アシッドフォスフェート等が挙げられる。   This radically polymerizable substance having a phosphate ester structure can be obtained, for example, by reacting phosphoric anhydride with 2-hydroxyethyl (meth) acrylate. Specific examples include mono (2-methacryloyloxyethyl) acid phosphate and di (2-methacryloyloxyethyl) acid phosphate.

上記化学式(I)で示されるリン酸エステル構造を有するラジカル重合性物質の配合量は、ラジカル重合性物質と必要により配合するフィルム形成材との合計100質量部に対して、0.01〜50質量部であることが好ましい。   The blending amount of the radical polymerizable substance having the phosphate ester structure represented by the chemical formula (I) is 0.01 to 50 with respect to 100 parts by mass in total of the radical polymerizable substance and the film forming material to be blended as necessary. It is preferable that it is a mass part.

また、上記ラジカル重合性物質は、アリルアクリレートと併用することもができる。この場合、アリルアクリレートの配合量は、ラジカル重合性物質と、必要により配合されるフィルム形成材との合計100質量部に対して、0.1〜10質量部であることが好ましい。   Moreover, the said radically polymerizable substance can also be used together with allyl acrylate. In this case, it is preferable that the compounding quantity of allyl acrylate is 0.1-10 mass parts with respect to a total of 100 mass parts of a radically polymerizable substance and the film forming material mix | blended if necessary.

これらのラジカル重合製物質は単独で又は2種類以上を組み合わせて使用される。
上記した成分(4)の加熱又は光により遊離ラジカルを発生する硬化剤としては、例えば、加熱又は紫外線等の電磁波の照射により分解して遊離ラジカルを発生する硬化剤であれば特に制限なく使用することができる。具体的には、例えば、過酸化化合物、アゾ系化合物等が挙げられる。このような硬化剤は、目的とする接続温度、接続時間、ポットライフ等により適宜選定される。高反応性とポットライフの向上の観点から、半減期10時間の温度が40℃以上、かつ、半減期1分の温度が180℃以下の有機過酸化物が好ましく、半減期10時間の温度が60℃以上、かつ、半減期1分の温度が170℃以下の有機過酸化物がより好ましい。
These radical polymerization substances are used alone or in combination of two or more.
As the curing agent that generates free radicals by heating or light of the component (4) described above, for example, any curing agent that generates free radicals by being decomposed by heating or irradiation with electromagnetic waves such as ultraviolet rays can be used without particular limitation. be able to. Specific examples include peroxide compounds and azo compounds. Such a curing agent is appropriately selected depending on the intended connection temperature, connection time, pot life, and the like. From the viewpoint of high reactivity and improvement in pot life, organic peroxides having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less are preferred. An organic peroxide having a temperature of 60 ° C. or higher and a half-life of 1 minute is 170 ° C. or lower is more preferable.

加熱により遊離ラジカルを発生する硬化剤として、より具体的には、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。これらの中でも、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が好ましく、高反応性が得られるパーオキシエステルがより好ましい。   More specifically, examples of the curing agent that generates free radicals upon heating include diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, silyl peroxide, and the like. Among these, peroxyesters, dialkyl peroxides, hydroperoxides, silyl peroxides, and the like are preferable, and peroxyesters that provide high reactivity are more preferable.

これらの加熱又は光により遊離ラジカルを発生する硬化剤は、例えば、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化して潜在性を付与してもよい。マイクロカプセル化した硬化剤は、可使時間が延長されるために好ましい。   These curing agents that generate free radicals by heating or light may be used by mixing, for example, a decomposition accelerator or an inhibitor. In addition, these curing agents may be coated with a polyurethane-based or polyester-based polymer substance to form a microcapsule, thereby imparting latency. A microencapsulated curing agent is preferred because the pot life is extended.

上記加熱又は光により遊離ラジカルを発生する硬化剤の配合量は、接続時間を25秒以下とする場合、充分な反応率を得るためにラジカル重合性物質と必要により配合されるフィルム形成材との合計100質量部に対して、2〜10質量部であることが好ましい。   The amount of the curing agent that generates free radicals by heating or light is, when the connection time is 25 seconds or less, a radical polymerizable substance and a film forming material that is blended as necessary in order to obtain a sufficient reaction rate. It is preferable that it is 2-10 mass parts with respect to a total of 100 mass parts.

これらの加熱又は光により遊離ラジカルを発生する硬化剤は単独で又は2種類以上を組み合わせて使用される。   These curing agents that generate free radicals by heating or light are used alone or in combination of two or more.

回路接続材料には、必要に応じて、フィルム形成材を添加してもよい。フィルム形成材とは、例えば、液状物を固形化し、構成組成物をフィルム形状とした場合に、そのフィルムの取扱いを容易とし、容易に裂けたり、割れたり、べたついたりしない機械的特性等を付与するものであり、通常の状態(常温常圧下)でフィルムとしての取扱いができるものである。これらフィルム形成材としては、例えば、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂等が挙げられる。これらの中でも、接着性、相溶性、耐熱性、機械的強度等が優れることからフェノキシ樹脂であることが好ましい。   A film forming material may be added to the circuit connecting material as necessary. For example, when a liquid material is solidified and the composition composition is formed into a film shape, the film forming material facilitates the handling of the film, and imparts mechanical properties that do not easily tear, crack, or stick. It can be handled as a film in a normal state (normal temperature and normal pressure). Examples of these film forming materials include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin and the like. Among these, a phenoxy resin is preferable because of excellent adhesion, compatibility, heat resistance, mechanical strength, and the like.

上記フィルム形成材の配合量は、(1)エポキシ樹脂及び(2)エポキシ樹脂の硬化剤を含有する接着剤組成物に配合させる場合、回路接続時の樹脂流動性の観点からエポキシ樹脂とフィルム形成材との合計100質量部に対して、5〜80質量部であることが好ましい。   The blending amount of the film-forming material is (1) epoxy resin and (2) epoxy resin and film formation from the viewpoint of resin fluidity at the time of circuit connection when blended with an adhesive composition containing a curing agent for epoxy resin. It is preferable that it is 5-80 mass parts with respect to 100 mass parts in total with a material.

また、上記フィルム形成材の配合量は、(3)ラジカル重合性物質及び(3)加熱又は光によって遊離ラジカルを発生する硬化剤を含有する接着剤組成物に配合させる場合、回路接続時の樹脂流動性の観点からラジカル重合製物質とフィルム形成材との合計100質量部に対して、5〜80質量部であることが好ましい。   Further, the amount of the film-forming material blended is (3) a radical polymerizable substance and (3) a resin at the time of circuit connection when blended in an adhesive composition containing a curing agent that generates free radicals by heating or light. From the viewpoint of fluidity, it is preferably 5 to 80 parts by mass with respect to 100 parts by mass in total of the radical polymerization product and the film forming material.

これらのフィルム形成材は単独で又は2種類以上を組み合わせて使用される。回路接続材料は、更に、アクリル酸、アクリル酸エステル、メタクリル酸エステル及びアクリロニトリルのうち少なくとも一つをモノマー成分とした重合体又は共重合体を含んでいてもよい。応力緩和の観点からは、グリシジルエーテル基を含有するグリシジルアクリレート又はグリシジルメタクリレートをモノマー成分として含む共重合体系アクリルゴムが好ましい。これらのアクリルゴムの重量平均分子量は、接着剤の凝集力を高める点から20万以上が好ましい。   These film forming materials are used alone or in combination of two or more. The circuit connection material may further contain a polymer or copolymer having at least one of acrylic acid, acrylic acid ester, methacrylic acid ester, and acrylonitrile as a monomer component. From the viewpoint of stress relaxation, a copolymer-based acrylic rubber containing glycidyl acrylate or glycidyl methacrylate containing a glycidyl ether group as a monomer component is preferable. The weight average molecular weight of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive.

異方導電性粒子の配合量は、(1)エポキシ樹脂及び(2)エポキシ樹脂の硬化剤を含有する接着剤組成物に配合させる場合、エポキシ樹脂とフィルム形成材との合計100体積部に対して、0.1〜100体積部であることが好ましい。   When the amount of anisotropic conductive particles is blended in an adhesive composition containing (1) an epoxy resin and (2) a curing agent for the epoxy resin, the total amount of the epoxy resin and the film forming material is 100 parts by volume. And it is preferable that it is 0.1-100 volume parts.

また、異方導電性粒子の配合量は、(3)ラジカル重合性物質及び(3)加熱又は光によって遊離ラジカルを発生する硬化剤を含有する接着剤組成物に配合させる場合、ラジカル重合製物質とフィルム形成材との合計100体積部に対して、1〜100体積部であることが好ましい。   Further, the amount of anisotropically conductive particles blended is (3) a radically polymerizable substance, and (3) a radically polymerized substance when blended in an adhesive composition containing a curing agent that generates free radicals by heating or light. It is preferable that it is 1-100 volume parts with respect to 100 volume parts in total with a film forming material.

回路接続材料には、更に、ゴム微粒子、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を必要に応じて含有させることもできる。   Circuit connection materials further include fine rubber particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins, melamine resins, isocyanates, etc. It can also be contained as needed.

また、本発明における導電性粒子は、電気的接続を得ることができる導電性を有するものであれば特に制限されない。上記導電性粒子としては、例えば、Au、Ag、Ni、Cu及びはんだ等の金属粒子やカーボン等が挙げられる。また、導電性粒子は、核となる粒子を1層又は2層以上の層で被覆し、その最外層が導電性を有するものであってもよい。また、上記導電性粒子は、プラスチック等の絶縁性粒子を核とし、この核の表面に上記金属又はカーボンを主成分とする層で被覆したものであってもよい。また、これらを絶縁被覆処理してもよい。これらは単独で又は2種類以上を組み合わせて使用される。   Further, the conductive particles in the present invention are not particularly limited as long as they have conductivity capable of obtaining electrical connection. Examples of the conductive particles include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon. Further, the conductive particles may be one in which the core particles are covered with one layer or two or more layers, and the outermost layer has conductivity. Further, the conductive particles may be those in which insulating particles such as plastic are used as nuclei and the surface of the nuclei is covered with a layer containing the metal or carbon as a main component. Moreover, you may carry out an insulation coating process. These may be used alone or in combination of two or more.

また、本発明における樹脂フィルム層を得るためには上述した接着剤組成物に必要に応じ導電性粒子を分散させた混合液を、支持基材上に塗布し、又は不織布等の基材に上記混合液を含浸させて支持基材上に載置し、溶剤等を除去することによって得ることができる。   Moreover, in order to obtain the resin film layer in this invention, the liquid mixture which disperse | distributed the electroconductive particle as needed to the adhesive composition mentioned above is apply | coated on a support base material, or the above-mentioned on base materials, such as a nonwoven fabric. It can be obtained by impregnating the mixed solution and placing it on a supporting substrate and removing the solvent and the like.

このように得られた絶縁性の樹脂フィルム層や導電性粒子を含む樹脂フィルム層を各々貼り合わせることにより、簡単に多層化が可能である。   The insulating resin film layer and the resin film layer containing conductive particles obtained in this manner are bonded to each other, whereby multilayering can be easily performed.

所望する物性に応じて材料や配合量を適宜調整することにより、上述したように樹脂フィルムシートを製造することができるが、市場からも入手可能である。入手可能な樹脂フィルムシートとしては、例えば、日立化成工業(株)製製品名ANISOLM AC−200系、AC−2000系、AC−4000系、AC−7000系、AC−8000系、AC−9000系、ソニーケミカル&インフォメーションデバイス(株)製製品名CP901AH−35AC、CP1220IS、CP1720ISV、CP5720GT、CP5720ISV、CP5920IKS、CP6920F、CP6920F3、CP6930IFN、CP6930JV3、CP8016K−35AC、CP9042KSV、CP9731SB、CP9742KS、CP9842KS、CP9920ISV、CP20531−35AG、CP30941−20AB、DP3232S9、DP3342MS、FP1708E、FP1726Y、FP1830VS、FP2322D、FP2622A、FP5530DF、(株)EXAX製製品名EX−G192、EX−G193、EX−P6906、EX−P6907等が挙げられる。これらの樹脂フィルムシートが導電粒子を含有する単層の樹脂フィルムシートの場合は、それを除くように依頼することにより簡便に絶縁性の樹脂フィルムシートを入手可能である。そのように得た絶縁性の樹脂フィルムシートと導電性粒子を含む樹脂フィルムシートを各々貼り合わせることにより多層化が可能である。   A resin film sheet can be produced as described above by appropriately adjusting materials and blending amounts according to desired physical properties, but is also available from the market. Examples of the available resin film sheet include product names manufactured by Hitachi Chemical Co., Ltd. ANISOLM AC-200 series, AC-2000 series, AC-4000 series, AC-7000 series, AC-8000 series, AC-9000 series. Product names CP901AH-35AC, CP1220IS, CP1720ISV, CP5720GT, CP5720ISV, CP5920IKS, CP6920F, CP6920F3, CP6930IFN, CP6930JV3, CP8016KCP, 42742SSV, CP9741KSCP 35AG, CP30941-20AB, DP3232S9, DP3342MS, FP1708 , FP1726Y, FP1830VS, FP2322D, FP2622A, FP5530DF, include the (stock) EXAX trade name, manufactured by EX-G192, EX-G193, EX-P6906, EX-P6907 and the like. When these resin film sheets are single-layer resin film sheets containing conductive particles, an insulating resin film sheet can be easily obtained by requesting removal of the resin film sheet. Multi-layering is possible by bonding the insulating resin film sheet thus obtained and the resin film sheet containing conductive particles, respectively.

本発明によれば、電極間の圧縮による接続成形により、粒子を内在させた樹脂フィルム材料が流動し、成形後に粒子が電極間に挟まれるプロセスにおいて、粒子の捕捉率を向上できる適切な樹脂フィルム材料全体の肉厚、粒子を内在させた樹脂フィルム層の肉厚、または、粒子を内在させた樹脂フィルム層を上部電極または下部電極のどちらに接触させて設置するかなどの電極形状ごとのフィルム設置方法の適正化、適切な樹脂フィルムの導電層と絶縁層の粘度差、熱伝導率差、発熱速度差を選定することにより、コスト低減、導電性能向上を実現することができる。   According to the present invention, an appropriate resin film capable of improving the particle capture rate in a process in which a resin film material containing particles flows by connection molding by compression between electrodes and the particles are sandwiched between electrodes after molding. Film for each electrode shape, such as the thickness of the entire material, the thickness of the resin film layer containing particles, or whether the resin film layer containing particles is placed in contact with the upper electrode or the lower electrode By optimizing the installation method and selecting an appropriate viscosity difference between the conductive layer and the insulating layer of the resin film, a difference in thermal conductivity, and a difference in heat generation rate, cost reduction and improvement in conductive performance can be realized.

図1は、解析対象となる導電性を有する粒子を含む樹脂材料を用いた半導体集積回路(IC)と基板の接続成成形プロセスを示す模式図である。FIG. 1 is a schematic view showing a process for forming a connection between a semiconductor integrated circuit (IC) and a substrate using a resin material containing conductive particles to be analyzed. 図2は、解析に用いた電極形状である。FIG. 2 shows the electrode shape used for the analysis. 図3は、樹脂フィルムシートの肉厚全体に粒子1を設置した場合の粒子1の捕捉率の計算結果である。FIG. 3 is a calculation result of the capture rate of the particles 1 when the particles 1 are installed over the entire thickness of the resin film sheet. 図4は、粒子設置層の肉厚が4μmの場合の粒子捕捉率の計算結果である。FIG. 4 shows the calculation result of the particle trapping rate when the thickness of the particle installation layer is 4 μm. 図5は、粒子設置層の肉厚が6μmの場合の粒子捕捉率の計算結果である。FIG. 5 is a calculation result of the particle trapping rate when the thickness of the particle installation layer is 6 μm. 図6は、粒子設置層の肉厚が8μmの場合の粒子捕捉率の計算結果である。FIG. 6 is a calculation result of the particle trapping rate when the thickness of the particle installation layer is 8 μm. 図7は、形状(1)について、2層樹脂フィルムを用いた接続成形におけるX方向の樹脂流動速度の分布と粒子位置である。FIG. 7 shows the distribution and particle position of the resin flow velocity in the X direction in connection molding using a two-layer resin film for shape (1). 図8は、形状(1)について、3層樹脂フィルムを用いた接続成形におけるX方向の樹脂流動速度の分布と粒子位置である。FIG. 8 shows the distribution and particle position of the resin flow rate in the X direction in connection molding using a three-layer resin film for shape (1). 図9は、電極形状ごとの(1層目に粒子1を設置した場合の粒子捕捉率)/(2層目に粒子1を設置した場合の粒子捕捉率)の計算結果である。FIG. 9 is a calculation result of (particle trapping rate when particle 1 is placed in the first layer) / (particle trapping rate when particle 1 is placed in the second layer) for each electrode shape. 図10は、1層目に粒子を設置した場合の捕捉率/2層目に粒子を設置した場合の捕捉率についての計算結果である。FIG. 10 shows the calculation result of the trapping rate when particles are placed in the first layer / the trapping rate when particles are placed in the second layer. 図11は、2層樹脂フィルムシート全体の肉厚を10,12,14.16μmと変更した場合の粒子捕捉率の計算結果である。FIG. 11 is a calculation result of the particle trapping rate when the thickness of the entire two-layer resin film sheet is changed to 10, 12, 14.16 μm. 図12は、2層構造の樹脂フィルムシートについて、粒子を内在させない絶縁層を肉厚方向の中心面部分に設置させる構造である。FIG. 12 shows a structure in which a two-layered resin film sheet is provided with an insulating layer that does not contain particles in the central surface portion in the thickness direction. 図13は、3層構造の樹脂フィルムシートについて、粒子を内在させない絶縁層を肉厚方向の中心面部分に設置させる構造である。FIG. 13 shows a structure in which a three-layered resin film sheet is provided with an insulating layer that does not contain particles in the central surface portion in the thickness direction. 図14は、4層構造の樹脂フィルムシートについて、粒子を内在させない絶縁層を肉厚方向の中心面部分に設置させる構造である。FIG. 14 shows a structure in which an insulating layer that does not contain particles is installed on the central surface portion in the thickness direction of a resin film sheet having a four-layer structure. 図15は、解析に用いた電極形状である。FIG. 15 shows the electrode shape used for the analysis. 図16は、樹脂(1)(2)(3)の粘度の時間変化についての計算結果である。FIG. 16 is a calculation result about the time change of the viscosity of the resins (1), (2), and (3). 図17は、導電層に樹脂(1)を用いて、絶縁層に樹脂(1)(2)(3)を用いた場合の粒子捕捉率の計算結果である。FIG. 17 shows calculation results of the particle trapping rate when the resin (1) is used for the conductive layer and the resins (1), (2), and (3) are used for the insulating layer. 図18は、導電層に樹脂(1)を用いて、絶縁層に樹脂(1)(2)(3)を用いた場合の基盤間隔の時間変化についての計算結果である。FIG. 18 shows the calculation result of the time change of the base interval when the resin (1) is used for the conductive layer and the resins (1), (2), and (3) are used for the insulating layer. 図19は、樹脂(1)(4)(6)(7)(8)の粘度の時間変化についての計算結果である。FIG. 19 is a calculation result of the change over time in the viscosity of the resins (1), (4), (6), (7), and (8). 図20は、導電層に樹脂(1)を用いて、絶縁層に樹脂(1)(4)(6)(7)(8)を用いた場合の粒子捕捉率の計算結果である。FIG. 20 shows the calculation results of the particle trapping rate when the resin (1) is used for the conductive layer and the resins (1), (4), (6), (7), and (8) are used for the insulating layer. 図21は、樹脂(1)(14)の発熱反応速度と樹脂温度の関係についての計算結果である。FIG. 21 is a calculation result on the relationship between the exothermic reaction rate of the resins (1) and (14) and the resin temperature. 図22は、導電層に樹脂(1)を用いて、絶縁層に樹脂(9)(10)(11)(12)(13)を用いた場合の粒子捕捉率の計算結果である。FIG. 22 shows calculation results of the particle trapping rate when the resin (1) is used for the conductive layer and the resins (9), (10), (11), (12), and (13) are used for the insulating layer. 図23は、3層構造の樹脂フィルムシートについて、最上部の絶縁層と最下層の導電層に挟まれて設置される中間層に、熱伝導率が低い粒子を内在させない絶縁層を設置させる構造である。FIG. 23 shows a structure in which an insulating layer that does not contain particles with low thermal conductivity is installed in an intermediate layer that is sandwiched between the uppermost insulating layer and the lowermost conductive layer in a three-layer resin film sheet. It is. 図24は、電極形状ごとの(電極ピッチ)/(電極高さ)を横軸に、(1層目設置の補足率)/(2層目設置の補足率)を縦軸にして整理した結果を示す図である。FIG. 24 is a result of arranging (electrode pitch) / (electrode height) for each electrode shape on the horizontal axis and (supplement rate for installing the first layer) / (supplement rate for installing the second layer) on the vertical axis. FIG.

以下、添付の図面を参照しながら、本発明に係る実施の形態について説明する。まず、解析対象となる成形工程を、図1を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, the forming process to be analyzed will be described with reference to FIG.

図1(a)は、XZ断面のX方向のプラスとマイナス側に対称形状で電極が設置されている構造において、電気的に接続すべき一対の電極を示している。また、図1(b)は、図1(a)に垂直なYZ断面のY方向に伸びている電気的に接続すべき一対の電極を示している。   FIG. 1A shows a pair of electrodes to be electrically connected in a structure in which electrodes are arranged symmetrically on the plus and minus sides in the X direction of the XZ cross section. FIG. 1B shows a pair of electrodes to be electrically connected extending in the Y direction of the YZ cross section perpendicular to FIG.

接続成形の初期状態では、導電性を有する粒子1を内在した樹脂材料2が半導体集積回路(IC)3の上部電極4と基板5の下部電極6間に設置されている。ここで、上部電極4の高さをHU、下部電極6の電極高さをHsとし、電気的に接続すべき1対の電極高さの和をH1(=HU+Hs)、電極4,6の幅をW1、X方向のプラスとマイナス側に設置される電極4の間隔(ピッチ)をW2、Y方向の電極長さをL1で表している。   In the initial state of connection molding, a resin material 2 containing conductive particles 1 is placed between an upper electrode 4 of a semiconductor integrated circuit (IC) 3 and a lower electrode 6 of a substrate 5. Here, the height of the upper electrode 4 is HU, the electrode height of the lower electrode 6 is Hs, the sum of a pair of electrode heights to be electrically connected is H1 (= HU + Hs), and the widths of the electrodes 4 and 6 Is represented by W1, the interval (pitch) between the electrodes 4 arranged on the plus and minus sides in the X direction is represented by W2, and the electrode length in the Y direction is represented by L1.

接続成形プロセスは、熱を加えた半導体集積回路(IC)3を基板5の方向に移動させ、粒子1を含む樹脂材料2を圧縮することにより、粒子1を内在した樹脂材料2が流動する。このとき、半導体集積回路(IC)3の電極4と樹脂材料2の接触により、樹脂材料2の温度が変化し、温度変化に伴う粘度変化を生じながら、樹脂材料2が粒子1と共に圧縮されながら流動する。   In the connection molding process, heat is applied to the semiconductor integrated circuit (IC) 3 in the direction of the substrate 5, and the resin material 2 containing the particles 1 is compressed, whereby the resin material 2 containing the particles 1 flows. At this time, the temperature of the resin material 2 changes due to the contact between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the resin material 2, and the resin material 2 is compressed together with the particles 1 while the viscosity changes due to the temperature change. To flow.

樹脂材料2としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material 2, an epoxy resin, an epoxy resin latent curing agent, and an adhesive composition containing a phenoxy resin, in which conductive particles are dispersed as required, can be used.

なお、半導体集積回路(IC)3の電極4と基板5の電極6との間隔が粒子1の直径よりも小さくなったときには、電極4間に挟まれる粒子1は変形しながら圧縮される。半導体集積回路(IC)3の移動が終了したときには、電極4、6間に挟まれる粒子1の導電性により、半導体集積回路(IC)3と基板5間の電気信号を伝えることが可能となる。   When the distance between the electrode 4 of the semiconductor integrated circuit (IC) 3 and the electrode 6 of the substrate 5 becomes smaller than the diameter of the particle 1, the particle 1 sandwiched between the electrodes 4 is compressed while being deformed. When the movement of the semiconductor integrated circuit (IC) 3 is completed, the electrical signal between the semiconductor integrated circuit (IC) 3 and the substrate 5 can be transmitted by the conductivity of the particles 1 sandwiched between the electrodes 4 and 6. .

ここで、成形後の上部電極4と下部電極6に挟まれる粒子1の数および粒子1と電極4、6との接触面積により半導体集積回路(IC)3と基板5間の導電性が決まる。なお、導電性は、電極4、6間に一定電圧を印加した場合に流れる電流によって評価される。従って、導電性能を向上させるためには、成形後の上部電極4と下部電極6に挟まれる粒子数を向上させる必要がある。   Here, the conductivity between the semiconductor integrated circuit (IC) 3 and the substrate 5 is determined by the number of particles 1 sandwiched between the upper electrode 4 and the lower electrode 6 after molding and the contact area between the particles 1 and the electrodes 4 and 6. The conductivity is evaluated by a current that flows when a constant voltage is applied between the electrodes 4 and 6. Therefore, in order to improve the conductive performance, it is necessary to improve the number of particles sandwiched between the upper electrode 4 and the lower electrode 6 after molding.

以下の検討では、成形前の電極4,6間に存在する樹脂フィルム中の粒子1の数と、成形後の電極4,6間に挟まれる粒子1の数との比率で定義した粒子捕捉率を向上できる樹脂フィルム材料の構造について示す。   In the following examination, the particle capture rate defined by the ratio between the number of particles 1 in the resin film existing between the electrodes 4 and 6 before molding and the number of particles 1 sandwiched between the electrodes 4 and 6 after molding. It shows about the structure of the resin film material which can improve.

肉厚方向の2層の積層で構成される樹脂フィルム材料について、2層のうち1層だけの樹脂フィルム層に粒子1を設置した樹脂フィルム材料について流動解析を用いて検討した。電極4,6および樹脂フィルム材料の寸法を図2に示す。このように、5種類の異なる電極形状4を用いて、X方向のプラス、マイナス方向共に対称として解析モデルを設定した。   Regarding the resin film material constituted by the lamination of two layers in the thickness direction, the resin film material in which the particles 1 are installed in only one resin film layer out of the two layers was examined by using flow analysis. The dimensions of the electrodes 4 and 6 and the resin film material are shown in FIG. Thus, using five different electrode shapes 4, the analysis model was set to be symmetric in both the positive and negative directions in the X direction.

ここで、2層の樹脂フィルムの内、上部電極4に接して配置する樹脂フィルム層を1層目、下部電極6と接して配置する樹脂フィルム層を2層目と定義し、1層目または2層目に粒子1を内在させた粒子設置層(導電層)を配置した。なお、図2は粒子設置層(導電層)が2層目であり、粒子を内在しない層(絶縁層)を1層目に設置した場合だけについて示しており、下部電極6の高さHs=0.5μmとする。   Here, of the two resin films, the resin film layer disposed in contact with the upper electrode 4 is defined as the first layer, and the resin film layer disposed in contact with the lower electrode 6 is defined as the second layer. In the second layer, a particle installation layer (conductive layer) in which the particles 1 were contained was disposed. FIG. 2 shows only the case where the particle installation layer (conductive layer) is the second layer, and the layer (insulating layer) not containing particles is installed in the first layer, and the height Hs = 0.5 μm.

ここで、粒子1の径を4μm、粒子設置層の肉厚を4,6,8μmの3水準とし、樹脂フィルム全体の肉厚は16μmで一定とした。なお、比較のために、粒子設置層の肉厚が16μm(樹脂フィルムの肉厚全体に粒子を設置)の場合の検討も行った。また、内在させた粒子数は、粒子設置層の肉厚が4μmの場合には200個,6μmの場合には300個,8μmの場合には400個,16μmの場合は800個である。   Here, the diameter of the particle 1 was 4 μm, the thickness of the particle installation layer was three levels of 4, 6, and 8 μm, and the thickness of the entire resin film was constant at 16 μm. For comparison, the case where the thickness of the particle installation layer was 16 μm (particles were installed over the entire thickness of the resin film) was also examined. The number of particles contained is 200 when the thickness of the particle installation layer is 4 μm, 300 when 6 μm, 400 when 8 μm, and 800 when 16 μm.

また、上部電極4の温度は25℃から200℃まで10秒間で上昇し、上部電極4が下部電極6の方向に移動するものとする。初期の上部電極4の移動速度は、1×10−3m/sである。なお、流動解析には汎用流体解析ソフトを用いた。   The temperature of the upper electrode 4 rises from 25 ° C. to 200 ° C. in 10 seconds, and the upper electrode 4 moves in the direction of the lower electrode 6. The initial moving speed of the upper electrode 4 is 1 × 10 −3 m / s. In addition, general-purpose fluid analysis software was used for the flow analysis.

解析では、初期の上部電極4の移動速度と、樹脂2の粘度変化を考慮して上部電極4の移動速度を計算し、粒子1は樹脂2内に仮想的にマーカ粒子として設置した。なお、1層目と2層目の樹脂2の物性値は同一とし、解析に用いた発熱反応式を式(1)〜(5)に、粘度式を(6)〜(8)に示す。また、樹脂2は熱硬化性樹脂であるエポキシ樹脂を用いるものとし、物性値(粘度式の係数、発熱反応式の係数)を表1の樹脂(1)に示す。なお、熱伝導率は0.2W/(m・K)、比熱は1700J/(kg・K)、密度は1100kg/m3とする。   In the analysis, the moving speed of the upper electrode 4 was calculated in consideration of the initial moving speed of the upper electrode 4 and the viscosity change of the resin 2, and the particles 1 were virtually installed as marker particles in the resin 2. The physical property values of the first layer and the second layer of resin 2 are the same, and the exothermic reaction formulas used in the analysis are shown in formulas (1) to (5), and the viscosity formulas are shown in (6) to (8). Resin 2 is an epoxy resin that is a thermosetting resin, and the physical properties (viscosity coefficient, exothermic reaction coefficient) are shown in Table 1 (1). The thermal conductivity is 0.2 W / (m · K), the specific heat is 1700 J / (kg · K), and the density is 1100 kg / m 3.

◎発熱反応式
dα/dt=(K1+K2αM)(1−α)N ‥(1)
K1=Ka exp(−Ea /T) ‥(2)
K2=Kb exp(−Eb /T) ‥(3)
α=Q/Q0 ‥(4)
dQ/dt=Q0(K1+K2αM)(1−α)N ‥(5)
Exothermic reaction formula dα / dt = (K1 + K2αM) (1-α) N (1)
K1 = Ka exp (−Ea / T) (2)
K2 = Kb exp (-Eb / T) (3)
α = Q / Q0 (4)
dQ / dt = Q0 (K1 + K2αM) (1-α) N (5)

ここで、α:反応率、t:時間、T:温度、dA/dt:反応速度、K1,K2:温度の関数となる係数、Q:任意時刻までの発熱量、Q0:反応終了時までの総発熱量、N,M,Ka,Ea,Kb,Eb:材料固有の係数、dQ/dt:発熱速度を表す。   Where α: reaction rate, t: time, T: temperature, dA / dt: reaction rate, K1, K2: coefficients as a function of temperature, Q: calorific value up to an arbitrary time, Q0: up to the end of the reaction Total calorific value, N, M, Ka, Ea, Kb, Eb: Material specific coefficient, dQ / dt: Heat generation rate.

◎粘度式
η=η0((1+α/αgel)/(1−α/αgel))H ‥(6)
η0=a・exp(b/T) ‥(7)
H=f/T−g ‥(8)
ここで、η:粘度、α:反応率、T:樹脂温度、αgel:ゲル化反応率、a,b,f,g:材料固有の定数を表す。
Viscosity formula η = η0 ((1 + α / αgel) / (1-α / αgel)) H (6)
η0 = a · exp (b / T) (7)
H = f / T-g (8)
Here, η: viscosity, α: reaction rate, T: resin temperature, αgel: gelation reaction rate, a, b, f, g: constants specific to the material.

本解析手法を用いて、粒子1の捕捉率を算出した。なお、粒子1の捕捉率ε(%)は、接続成形前の電極4,6間に存在する樹脂フィルム材料中の粒子数N1と、成形後の電極4,6間に挟まれる粒子数N2の比率で式(9)にて算出する。
ε=N2/N1×100 ‥(9)
Using this analysis technique, the capture rate of the particles 1 was calculated. Note that the capture rate ε (%) of the particles 1 is the number N1 of particles in the resin film material existing between the electrodes 4 and 6 before connection molding and the number N2 of particles sandwiched between the electrodes 4 and 6 after molding. The ratio is calculated by equation (9).
ε = N2 / N1 × 100 (9)

粒子1の捕捉率の解析結果を図3、4、5、6に示す。
図3は、各電極形状について樹脂フィルムの肉厚全体に粒子1を設置した場合の粒子1の捕捉率を比較しており、図4は、各電極形状について粒子設置層の肉厚が4μmの場合の粒子1の捕捉率を比較しており、図5は、各電極形状について粒子設置層の肉厚が6μmの場合の粒子1の捕捉率を比較しており、図6は、各電極形状について粒子設置層の肉厚が8μmの場合の粒子1の捕捉率を比較している。このように、各電極形状によって、粒子捕捉率は異なるが、粒子設置層の肉厚が小さいほど粒子1の捕捉率が高くなっている。
The analysis results of the capture rate of the particles 1 are shown in FIGS.
FIG. 3 compares the capture rate of the particles 1 when the particles 1 are placed over the entire thickness of the resin film for each electrode shape, and FIG. 4 shows that the thickness of the particle placement layer is 4 μm for each electrode shape. FIG. 5 compares the capture rate of the particles 1 when the thickness of the particle-installed layer is 6 μm for each electrode shape, and FIG. The trapping rate of the particles 1 when the thickness of the particle installation layer is 8 μm is compared. Thus, although the particle trapping rate differs depending on each electrode shape, the trapping rate of the particles 1 is higher as the thickness of the particle installation layer is smaller.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

図7は、形状(1)について、2層目に設置した粒子設置層の肉厚が8μmの場合において、上部電極4と下部電極6間の距離が14μmにおけるX方向の樹脂流動速度の分布について、比率を線で表している(XZ平面)。この速度分布の比率は、X方向の速度最大値を1とした場合の比率で線を描いた。   FIG. 7 shows the distribution of the resin flow rate in the X direction when the distance between the upper electrode 4 and the lower electrode 6 is 14 μm when the thickness of the particle-installed layer installed in the second layer is 8 μm for the shape (1). The ratio is represented by a line (XZ plane). As for the ratio of this speed distribution, a line was drawn with the ratio when the maximum speed value in the X direction was 1.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

このように、X方向の速度分布の比率が最大値となるのは、上部電極4と下部電極6間の肉厚寸法の中心部分近傍である。従って、X方向の樹脂流動速度が最大となり、粒子1が電極4,6間からXプラス方向に排出されやすい肉厚方向の中心部分に、粒子1を内在させた導電層を設置せずに、粒子1を内在させない絶縁層を設置する構造にすることにより、粒子1の捕捉率を向上できる。   Thus, the ratio of the velocity distribution in the X direction has the maximum value in the vicinity of the central portion of the thickness dimension between the upper electrode 4 and the lower electrode 6. Accordingly, the resin flow rate in the X direction is maximized, and the conductive layer containing the particles 1 is not installed in the central portion in the thickness direction in which the particles 1 are easily discharged from between the electrodes 4 and 6 in the X plus direction. The trapping rate of the particles 1 can be improved by adopting a structure in which an insulating layer that does not contain the particles 1 is provided.

つまり、図12に示すように、2層構造の樹脂フィルムシートについて、粒子1を内在させない絶縁層を、樹脂フィルムの任意の複数場所における肉厚寸法の中心点から構成される面7の部分あるいは肉厚寸法の中心点から構成される面7に隣接する層に設置させる構造が、粒子1の捕捉率の向上には有効である。   That is, as shown in FIG. 12, in the resin film sheet having a two-layer structure, the insulating layer that does not contain the particles 1 is the portion of the surface 7 constituted by the center points of the wall thickness dimension at arbitrary plural positions of the resin film or A structure installed in a layer adjacent to the surface 7 constituted by the center point of the wall thickness dimension is effective in improving the capture rate of the particles 1.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

また、図13に示すように、3層構造の樹脂フィルムシートを用いる場合にも、樹脂フィルムの任意の複数場所における肉厚寸法の中心点から構成される断面7の部分に、粒子1を内在させない絶縁層を設置させる構造にすることにより、粒子捕捉率を向上できる。   Further, as shown in FIG. 13, even when a resin film sheet having a three-layer structure is used, the particles 1 are inherently present in the portion of the cross section 7 constituted by the center points of the wall thickness dimensions at arbitrary positions of the resin film. By employing a structure in which an insulating layer that is not to be provided is provided, the particle capture rate can be improved.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

また、図14に示すように、4層構造の樹脂フィルムシートを用いる場合にも、樹脂フィルムの任意の複数場所における肉厚寸法の中心点から構成される断面7の部分に、粒子1を内在させない絶縁層を設置させる構造にすることにより、粒子捕捉率を向上できる。また、更に、多層の樹脂フィルム層を備えた構造の樹脂フィルムシートを用いる場合も同様である。   In addition, as shown in FIG. 14, even when a resin film sheet having a four-layer structure is used, the particles 1 are inherently present in the section of the cross section 7 constituted by the center points of the wall thickness dimensions at arbitrary locations of the resin film. By employing a structure in which an insulating layer that is not to be provided is provided, the particle capture rate can be improved. Furthermore, the same applies to the case of using a resin film sheet having a structure having a multilayer resin film layer.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

なお、肉厚方向に2層以上の積層で構成される粒子を内在した樹脂フィルムシートについては、製造時に層間の肉厚比にバラツキが生じる場合がある。従って、肉厚方向に2層以上の積層で構成される粒子を内在させた樹脂フィルムシートについて、樹脂フィルムシートの任意の複数場所における肉厚寸法の中心点から構成される面7から樹脂フィルム肉厚の±5%以内の範囲に粒子が設置されていない絶縁層を設置させる構造とすることもできるので、樹脂フィルムシートの任意の複数場所における肉厚寸法の中心点から構成される面7に隣接する樹脂フィルム層を、粒子1を内在させない絶縁層とすることも可能である。   In addition, about the resin film sheet which included the particle | grains comprised by the lamination | stacking of two or more layers in the thickness direction, the thickness ratio between layers may produce at the time of manufacture. Accordingly, with respect to the resin film sheet in which particles composed of two or more layers in the thickness direction are contained, the resin film thickness from the surface 7 constituted by the center point of the thickness dimension at any plurality of locations of the resin film sheet. Since it can also be set as the structure which installs the insulating layer in which the particle | grains are not installed in the range within +/- 5% of thickness, in the surface 7 comprised from the center point of the thickness dimension in arbitrary several places of a resin film sheet The adjacent resin film layer can be an insulating layer that does not contain the particles 1.

ここで、図3〜6に示すように、粒子1を設置したフィルム層の肉厚を薄くすることにより、速度が最大となる上部電極4と下部電極6間の肉厚方向の中央部分から離れた場所に粒子1を設置できるので、粒子の捕捉率が高くなる。   Here, as shown in FIGS. 3 to 6, by reducing the thickness of the film layer on which the particles 1 are installed, it is separated from the central portion in the thickness direction between the upper electrode 4 and the lower electrode 6 where the speed is maximized. Since the particles 1 can be installed at the same place, the particle capturing rate is increased.

本解析では、粒子1を内在させる樹脂フィルム層の肉厚を4,6,8μmと設定した検討を行ったが、粒子1の捕捉率を向上するためには、図3〜6に示したように、粒子設置層の肉厚を小さくする必要があり、粒子1の直径と等しくするまで肉厚を小さくすることが望ましい。但し、粒子1の直径と等しい肉厚を有する樹脂フィルムを製造する場合には、樹脂フィルム材料から粒子1が露出するため、製造装置の装置設定誤差で、粒子1を設置するフィルムの肉厚が粒子1の直径よりも小さくなると、粒子1が変形する問題が生じるなど、製造上の問題が生じる。   In this analysis, the investigation was performed in which the thickness of the resin film layer in which the particles 1 were contained was set to 4, 6, and 8 μm. In order to improve the capture rate of the particles 1, as shown in FIGS. In addition, it is necessary to reduce the thickness of the particle installation layer, and it is desirable to reduce the thickness until it is equal to the diameter of the particle 1. However, when a resin film having a thickness equal to the diameter of the particle 1 is manufactured, the particle 1 is exposed from the resin film material, and therefore the thickness of the film on which the particle 1 is installed is set by an apparatus setting error of the manufacturing apparatus. If the diameter is smaller than the diameter of the particle 1, production problems such as a problem of deformation of the particle 1 occur.

従って、2層のうち1層だけの樹脂フィルム層に粒子1を設置した2層樹脂フィルムシートにおいて、粒子設置層の肉厚は、粒子1の直径+10%以下であることが望ましい。以上では、2層の積層で構成される樹脂フィルム材料についての検討結果を示したが、本発明はこれだけに限定されるものではなく、3層、4層あるいは更に多層の樹脂フィルムシートについても適用することができる。   Therefore, in the two-layer resin film sheet in which the particles 1 are disposed on only one resin film layer out of the two layers, the thickness of the particle-installed layer is preferably less than the diameter of the particles 1 + 10%. In the above, although the examination result about the resin film material comprised by lamination | stacking of two layers was shown, this invention is not limited only to this, It applies also to the resin film sheet of 3 layers, 4 layers, or a multilayer further can do.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

一例として、3層の積層で構成される樹脂フィルム材料で、3層のうち、上部電極4と下部電極6に接する層の樹脂フィルムに粒子1を設置した場合の解析検討を行った。解析に用いた形状は図2に示した電極形状(1)と同一とし、粒子設置層の肉厚は上下ともに4μmの検討を行った。設置した粒子1数は400個である。また樹脂フィルム層の物性値は、3層とも同一で表1の値とした。   As an example, in the case of a resin film material composed of a laminate of three layers, an analysis study was performed when the particles 1 were placed on a resin film of a layer in contact with the upper electrode 4 and the lower electrode 6 among the three layers. The shape used for the analysis was the same as the electrode shape (1) shown in FIG. 2, and the thickness of the particle-installed layer was 4 μm in both the upper and lower sides. The number of installed particles 1 is 400. The physical property values of the resin film layer were the same as in Table 1 for all three layers.

解析結果として、上下電極4,6の距離が14μmにおけるX方向の速度分布(XZ平面)の比率を線で表すと同時に、粒子の捕捉率の計算結果を図8に示す。このように、XZ平面におけるX方向の速度は、上下電極間の肉厚方向のほぼ中心部分(粒子1を設置していない部分)で最大となっており、3層の樹脂フィルムのうち、上部電極4と下部電極6に接する層の樹脂フィルムに粒子1を設置した場合の粒子捕捉率は、図3で示した形状(1)のフィルム肉厚全体に粒子1を設置した場合よりも高く出来る。 As an analysis result, the ratio of the velocity distribution (XZ plane) in the X direction when the distance between the upper and lower electrodes 4 and 6 is 14 μm is represented by a line, and the calculation result of the particle capture rate is shown in FIG . As described above, the velocity in the X direction on the XZ plane is maximum at the substantially central portion (the portion where the particles 1 are not installed) in the thickness direction between the upper and lower electrodes. The particle capture rate when the particles 1 are placed on the resin film in the layer in contact with the electrode 4 and the lower electrode 6 can be higher than when the particles 1 are placed over the entire film thickness of the shape (1) shown in FIG. .

また、粒子設置層の肉厚が薄い場合に、X方向の速度が最大となる電極間の肉厚方向の中心部分から離れた場所に粒子1を設置できるので、粒子捕捉率を高く出来る。従って、3層の樹脂フィルム材料を用いた場合にも、フィルム肉厚方向の最上部と最下部における粒子設置層の肉厚は、2層フィルムの場合と同様に、粒子径+10%以下であることが望ましい。   In addition, when the particle installation layer is thin, the particles 1 can be installed at a location away from the central portion in the thickness direction between the electrodes where the speed in the X direction is maximum, so that the particle capture rate can be increased. Therefore, even when a three-layer resin film material is used, the thickness of the particle installation layer at the uppermost and lowermost portions in the film thickness direction is the particle size + 10% or less, as in the case of the two-layer film. It is desirable.

以上では、粒子を内在させた導電層の設置位置についての樹脂フィルムシートの構造を示したが、本樹脂フィルムシートを用いて電気的に接続された電子部品にも適用できるものとする。以上では、肉厚方向の2層または3層の積層構造の場合を示したが、本発明はこれだけに限定されるものではなく、2層以上に積層された多層積層構造の樹脂フィルムシートに用いることが出来る。   In the above, the structure of the resin film sheet with respect to the installation position of the conductive layer in which the particles are contained is shown. However, the structure can also be applied to an electronic component electrically connected using the resin film sheet. In the above, the case of a laminated structure of two or three layers in the thickness direction has been shown, but the present invention is not limited to this, and is used for a resin film sheet having a multilayer laminated structure laminated in two or more layers. I can do it.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

図4、5、6で示したように、粒子捕捉率は、図2の1層目または2層目のどちらに粒子1を設置した場合に粒子捕捉率を高く出来るかが、電極の形状により異なる。ここで、電極形状ごとに(1層目に粒子1を設置した場合の粒子捕捉率)/(2層目に粒子1を設置した場合の粒子捕捉率)を縦軸にして整理した結果を図9に示す。   As shown in FIGS. 4, 5, and 6, whether the particle trapping rate can be increased when the particle 1 is placed in the first layer or the second layer in FIG. 2 depends on the shape of the electrode. Different. Here, the graph shows the result of arranging the (vertical particle trapping rate when particle 1 is installed in the first layer) / (particle trapping rate when particle 1 is installed in the second layer) on the vertical axis for each electrode shape. 9 shows.

なお、(1層目に粒子1を設置した場合の粒子捕捉率)/(2層目に粒子1を設置した場合の粒子捕捉率)が1よりも大きい場合には、1層目に粒子1を設置した場合に粒子捕捉率を高く出来る形状であり、(1層目に粒子1を設置した場合の粒子捕捉率)/(2層目に粒子1を設置した場合の粒子捕捉率)が1よりも小さい場合には、2層目に粒子1を設置した場合に粒子捕捉率を高く出来る形状である。   In addition, when (particle capture rate when particle 1 is installed in the first layer) / (particle capture rate when particle 1 is installed in the second layer) is greater than 1, particle 1 in the first layer The particle trapping rate can be increased when the particle size is set, and the particle trapping rate when the particle 1 is set in the first layer / the particle trapping rate when the particle 1 is set in the second layer is 1. If the particle size is smaller than 1, the particle capture rate can be increased when the particles 1 are installed in the second layer.

ここで、図1に示したように、接続すべき1対の電極高さの和をH1(=HU+Hs)、電極4,6の幅の平均値をW1、X方向のプラスとマイナス側に設置される電極4の間隔(ピッチ)をW2、粒子径をH2とした場合に、
((W2−W1)×(H1+H2) )/(W1×H2 )を横軸とし、(1層目に粒子を設置した場合の捕捉率)/(2層目に粒子を設置した場合の捕捉率)を縦軸にして整理した結果を図10に示す。
Here, as shown in FIG. 1, the sum of the height of the pair of electrodes to be connected is H1 (= HU + Hs), the average width of the electrodes 4 and 6 is W1, and the positive and negative sides in the X direction are installed. When the interval (pitch) between the electrodes 4 is W2 and the particle diameter is H2,
((W2−W1) × (H1 + H2) 3 ) / (W1 × H2 3 ) on the horizontal axis, (capturing rate when particles are placed in the first layer) / (when particles are placed in the second layer) FIG. 10 shows the results of arranging the capture rate) on the vertical axis.

このように、2層樹脂フィルムシートを用いた場合に、電極形状によって決まる、例えば、((W2−W1)×(H1+H2) )/(W1×H2 )の値により、1層目または2層目のどちらに粒子を設置すれば、粒子捕捉率を高く出来るかが明確化できる。 As described above, when the two-layer resin film sheet is used, the first layer or the second layer is determined depending on the electrode shape, for example, depending on the value of ((W2-W1) × (H1 + H2) 3 ) / (W1 × H2 3 ). It can be clarified whether the particle trapping rate can be increased by installing particles in which layer.

つまり、例えば、((W2−W1)×(H1+H2) )/(W1×H2 )の値が50未満の場合には、電極高さが高い電極4とは反対側の電極6側のフィルム層に粒子1を設置し、((W2−W1)×(H1+H2) )/(W1×H2 )の値が90以上の場合には、電極高さが高い電極4側のフィルム層に粒子1を設置することにより、粒子1の捕捉率を高くすることが出来るように、電子部品の電極形状あるいは電極構造に適合した樹脂フィルムシートを用いるようにすることが可能である。 That is, for example, when the value of ((W2−W1) × (H1 + H2) 3 ) / (W1 × H2 3 ) is less than 50, the film on the electrode 6 side opposite to the electrode 4 having a high electrode height When the particle 1 is placed in the layer and the value of ((W2-W1) × (H1 + H2) 3 ) / (W1 × H2 3 ) is 90 or more, the particle is placed on the film layer on the electrode 4 side having a high electrode height. By installing 1, it is possible to use a resin film sheet suitable for the electrode shape or electrode structure of the electronic component so that the capture rate of the particles 1 can be increased.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

電極の形状が、例えば、((W2−W1)×(H1+H2) )/(W1×H2 )の値が90以上の場合には、2層樹脂フィルムシートを用いた接続成形の前段階で、電極高さが高い電極4側のフィルム層に粒子1を設置して接続成形した電子部品は粒子捕捉率を向上できる。 When the shape of the electrode is, for example, a value of ((W2−W1) × (H1 + H2) 3 ) / (W1 × H2 3 ) of 90 or more, it is a stage before connection molding using a two-layer resin film sheet. An electronic component obtained by connecting and molding the particles 1 on the film layer on the electrode 4 side having a high electrode height can improve the particle capture rate.

電極形状ごとの(電極ピッチ)/(電極高さ)を横軸に、(1層目設置の補足率)/(2層目設置の補足率)を縦軸にして整理した結果を図24に示す。
このように、(電極ピッチ)/(電極高さ)が0.7以上のときには、2層樹脂フィルムシートを用いた接続成形の前段階で、電極高さが高い電極4側のフィルム層に粒子1を設置して接続成形した電子部品は粒子捕捉率を向上できる。
FIG. 24 shows the result of arranging (electrode pitch) / (electrode height) for each electrode shape on the horizontal axis, and (supplement rate for installing the first layer) / (supplement rate for installing the second layer) on the vertical axis. Show.
Thus, when (electrode pitch) / (electrode height) is 0.7 or more, particles are formed on the film layer on the electrode 4 side where the electrode height is high at the stage before connection molding using the two-layer resin film sheet. The electronic component formed by connecting and molding 1 can improve the particle capture rate.

ここで、図2の電極形状(1)を用いた場合に、2層樹脂フィルム全体の肉厚を10,12,14.16μmと変更した検討を行った。なお、粒子1を設置した層の肉厚は、4,6,8μmと変更し、全ての層について、樹脂材料の物性値は、発熱反応式および粘度式は式(1)〜(8)に従い、各パラメータは表1の値を用いた。   Here, when the electrode shape (1) of FIG. 2 was used, examination was performed by changing the thickness of the entire two-layer resin film to 10, 12, and 14.16 μm. In addition, the thickness of the layer in which the particles 1 are installed is changed to 4, 6, and 8 μm, and the physical property values of the resin materials are the exothermic reaction formula and the viscosity formula according to the formulas (1) to (8) for all layers. The values in Table 1 were used for each parameter.

粒子捕捉率の結果を図11に示す。このように、図3〜6に示した結果と同様に、粒子1の設置層の肉厚が小さい場合に粒子捕捉率を高く出来る。更に、樹脂フィルム全体の肉厚が小さいと粒子1の捕捉率を高く出来る。なお、樹脂フィルム全体の肉厚が大きいと、粒子捕捉率が低くなるのは、図1に示すY方向への樹脂および粒子の排出量が多くなるためである。   The result of the particle capture rate is shown in FIG. Thus, similarly to the results shown in FIGS. 3 to 6, the particle capture rate can be increased when the thickness of the installation layer of the particles 1 is small. Furthermore, if the thickness of the entire resin film is small, the capture rate of the particles 1 can be increased. In addition, when the thickness of the whole resin film is large, the particle capture rate decreases because the amount of resin and particles discharged in the Y direction shown in FIG. 1 increases.

前記した段落[0080]にて、粒子設置層の肉厚は、粒子1の直径+10%以下であることが望ましいと記載したが、粒子とフィルムの肉厚をほぼ等しくすることは、フィルム肉厚のバラツキを抑えて、粒子がフィルムから突出しないようにする必要があり、フィルム製造コストが高くなる場合がある。 In the paragraph [0080] described above, it is described that the thickness of the particle installation layer is desirably less than the diameter of the particle 1 + 10% or less. However, the thickness of the film and the film is almost equal. Therefore, it is necessary to prevent the particles from protruding from the film, which may increase the film production cost.

従って、図11に示すように粒子の捕捉率が30%以上と高くでき、電極間に捕捉される粒子数の向上によるコスト低減を図るためには、粒子設置層の最も望ましい肉厚は、前記した粒子1の直径+10%以下であり、次に望ましいフィルム肉厚は、粒子の6/4=1.5倍以下であり、その次に望ましい肉厚は、8/4=2倍以下である。 Therefore, as shown in FIG. 11, the particle capture rate can be as high as 30% or more, and in order to reduce the cost by improving the number of particles captured between the electrodes , the most desirable thickness of the particle installation layer is Next, the desirable film thickness is 6/4 = 1.5 times or less of the particle, and the next desirable thickness is 8/4 = 2 times or less. .

以上では、2層の積層で構成される樹脂フィルム材料についての検討結果を示したが、本発明はこれだけに限定されるものではなく、3層、4層あるいは更に多層の樹脂フィルムシートについても適用することができる。   In the above, although the examination result about the resin film material comprised by lamination | stacking of two layers was shown, this invention is not limited only to this, It applies also to the resin film sheet of 3 layers, 4 layers, or a multilayer further can do.

また、粒子設置層の肉厚と粒子を設置しない層の肉厚の比率として、望ましくは、図11に示すように、粒子の捕捉率を48%以上と高くできるNCF層肉厚/ACF層肉厚=6/4=1.5倍以上である。 Further, as a ratio of the thickness of the particle installation layer to the thickness of the layer where no particles are installed, desirably, as shown in FIG. 11, the NCF layer thickness / ACF layer thickness can increase the particle capture rate to 48% or more. Thickness = 6/4 = 1.5 times or more .

なお、フィルムで接続する電極の高さが高い場合には、フィルム全体の肉厚を大きくする必要がある。この場合に、次に望ましいNCF層肉厚/ACF層肉厚の比率は、粒子の捕捉率を45%以上にできるNCF層肉厚/ACF層肉厚=10/4=2.5倍以上である。その次に望ましいのは、粒子捕捉率を40%以上にできるNCF層肉厚/ACF層肉厚=12/4=3倍以上である。 In addition, when the height of the electrode connected with a film is high, it is necessary to enlarge the thickness of the whole film. In this case, the next desirable ratio of NCF layer thickness / ACF layer thickness is NCF layer thickness / ACF layer thickness = 10/4 = 2.5 times or more which can increase the particle capture rate to 45% or more . is there. Next, it is desirable that the NCF layer thickness / ACF layer thickness = 12/4 = 3 times or more that can increase the particle trapping rate to 40% or more.

以上では、2層の積層で構成される樹脂フィルム材料についての検討結果を示したが、本発明はこれだけに限定されるものではなく、3層、4層あるいは更に多層の樹脂フィルムシートについても適用することができる。   In the above, although the examination result about the resin film material comprised by lamination | stacking of two layers was shown, this invention is not limited only to this, It applies also to the resin film sheet of 3 layers, 4 layers, or a multilayer further can do.

従って、粒子捕捉率を向上させるためには、樹脂フィルム全体の肉厚を小さくする必要があるが、樹脂フィルムと電極4の接着強度などを考えると、図1に示すXZ平面の断面において樹脂材料が満たされる量は最低でも必要である。   Therefore, in order to improve the particle trapping rate, it is necessary to reduce the thickness of the entire resin film. However, considering the adhesive strength between the resin film and the electrode 4, the resin material in the XZ plane cross section shown in FIG. The amount that is satisfied is at least necessary.

ここで、上部電極4の移動により、図1に示すXZ平面において樹脂材料が満たされるための樹脂フィルムの最低肉厚Hminは、図1に示すように、接続すべき1対の電極高さの和をH1(=HU+Hs)、電極4,6の幅の平均値をW1、X方向のプラスとマイナス側に設置される電極4の間隔(ピッチ)をW2とした場合に、式(9)で表される。
Hmin=((W2−W1)/W2)×H1 ‥‥‥(9)
Here, the minimum thickness Hmin of the resin film for filling the resin material in the XZ plane shown in FIG. 1 by the movement of the upper electrode 4 is the height of a pair of electrodes to be connected as shown in FIG. When the sum is H1 (= HU + Hs), the average value of the widths of the electrodes 4 and 6 is W1, and the interval (pitch) between the electrodes 4 arranged on the plus and minus sides in the X direction is W2, the equation (9) expressed.
Hmin = ((W2−W1) / W2) × H1 (9)

但し、樹脂フィルム中には、粒子を設置する必要があるので、粒子捕捉率を向上できる樹脂フィルム全体の肉厚は、「Hmin=((W2−W1)/W2)×H1+粒子径」以下であることが望ましい。   However, since it is necessary to install particles in the resin film, the thickness of the entire resin film capable of improving the particle capture rate is equal to or less than “Hmin = ((W2−W1) / W2) × H1 + particle diameter”. It is desirable to be.

従って、1層以上で構成される粒子を内在させた樹脂フィルム材料で電気的に接続された電子部品であり、接続成形の前段階において電極間に設置する1層以上で構成される粒子1を内在させた樹脂フィルム材料の全体肉厚が、例えば、「((W2−W1)/W2)×H1+粒子径」以下であれば、粒子を内在させた樹脂フィルムで電気的に接続された電子部品は、粒子の捕捉率を高く出来る。   Accordingly, an electronic component electrically connected with a resin film material containing particles composed of one or more layers, and the particles 1 composed of one or more layers placed between the electrodes in the previous stage of connection molding. If the overall thickness of the internal resin film material is, for example, “((W2−W1) / W2) × H1 + particle diameter” or less, the electronic component electrically connected by the resin film in which the particles are included Can increase the trapping rate of particles.

以上では、2層以上の樹脂フィルム材料の粒子設置層と、粒子を設置しない層は、複数の層には分割されていない例を示したが、本発明はこれだけに限定されるものではなく、粒子設置層と、粒子を設置しない層は2層以上に分割できる。   In the above, the particle installation layer of the resin film material of two or more layers and the layer in which the particles are not installed are shown as examples that are not divided into a plurality of layers, but the present invention is not limited to this, The particle installation layer and the layer where no particles are installed can be divided into two or more layers.

また、以上では、2層以上の樹脂フィルム材料の粒子設置層と、粒子を設置しない層の物性値は全て同一で表1の値を用いたが、本発明はこれだけに限定されるものではなく、層ごとに異なる物性値の樹脂フィルムを用いることができる。また、以上では、エポキシ樹脂を用いた解析の結果を示したが、本発明はこれだけに限定されるものではなく、任意の樹脂材料を用いることが出来る。   In the above, the physical property values of the particle installation layer of the resin film material of two or more layers and the layer where the particles are not installed are all the same and the values shown in Table 1 are used, but the present invention is not limited to this. Resin films having different physical properties can be used for each layer. Moreover, although the result of the analysis using an epoxy resin was shown above, this invention is not limited only to this, Arbitrary resin materials can be used.

以下の検討では、成形前の電極4,6間に存在する樹脂フィルム中の粒子1の数と、成形後の電極4,6間に挟まれる粒子1の数との比率で定義した粒子捕捉率を向上できる樹脂フィルム材料の物性値について示す。   In the following examination, the particle capture rate defined by the ratio between the number of particles 1 in the resin film existing between the electrodes 4 and 6 before molding and the number of particles 1 sandwiched between the electrodes 4 and 6 after molding. It shows about the physical-property value of the resin film material which can improve.

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

肉厚方向の2層の積層で構成される樹脂フィルム材料について、2層のうち1層だけの樹脂フィルム層に粒子1を設置した導電層を有する樹脂フィルム材料について流動解析を用いて検討した。電極4,6および樹脂フィルム材料の寸法を図15に示す。なお、X方向のプラス、マイナス方向共に対称として解析モデルを設定した。   Regarding the resin film material constituted by the lamination of two layers in the thickness direction, the resin film material having a conductive layer in which the particles 1 are disposed on only one resin film layer out of the two layers was examined using flow analysis. The dimensions of the electrodes 4 and 6 and the resin film material are shown in FIG. The analysis model was set to be symmetrical in both the positive and negative directions in the X direction.

ここで、2層の樹脂フィルムの内、上部電極4に接して配置する樹脂フィルム層を1層目、下部電極6と接して配置する樹脂フィルム層を2層目と定義し、粒子設置層(導電層)を2層目に設置し、粒子1を内在しない層(絶縁層)を1層目に設置ており、下部電極6の高さHs=0.5μmとする。   Of the two resin films, the resin film layer disposed in contact with the upper electrode 4 is defined as the first layer, and the resin film layer disposed in contact with the lower electrode 6 is defined as the second layer. The conductive layer is provided in the second layer, the layer not including the particles 1 (insulating layer) is provided in the first layer, and the height Hs of the lower electrode 6 is 0.5 μm.

ここで、粒子径を4μm、粒子設置層の肉厚を8μmとし、樹脂フィルム全体の肉厚は16μmで一定とした。また、内在させた粒子数は、400個である。   Here, the particle diameter was 4 μm, the thickness of the particle installation layer was 8 μm, and the thickness of the entire resin film was constant at 16 μm. The number of particles contained is 400.

また、上部電極4の温度は25℃から200℃まで10秒間で上昇し、この上部電極4の温度上昇によって樹脂フィルムが加熱されるものとする。また、上部電極4が下部電極6の方向に移動するものとし、初期の上部電極4の移動速度は、1×10−3m/sである。なお、流動解析には汎用流体解析ソフトを用いた。   Further, the temperature of the upper electrode 4 rises from 25 ° C. to 200 ° C. in 10 seconds, and the resin film is heated by the temperature rise of the upper electrode 4. Further, it is assumed that the upper electrode 4 moves in the direction of the lower electrode 6, and the initial moving speed of the upper electrode 4 is 1 × 10 −3 m / s. In addition, general-purpose fluid analysis software was used for the flow analysis.

解析では、初期の上部電極4の移動速度と、樹脂2の粘度変化を考慮して上部電極4の移動速度を計算し、粒子1は樹脂2内に仮想的にマーカ粒子として設置した。なお、解析に用いた発熱反応式は式(1)〜(5)、粘度式は(6)〜(8)を用いた。ここで、式(6)〜(8)で示す粘度式の係数について、2層目の導電層には樹脂材料(1)の値を、1層目の絶縁層には樹脂材料(1)(2)(3)の3つの樹脂材料の値を用いた。一方、式(1)〜(5)で示す発熱反応式の係数について、1層目と2層目の値は同一で樹脂材料(1)の値を用いた。また、樹脂2は熱硬化性樹脂であるエポキシ樹脂を用いるものとし、樹脂(1)〜(3)についての物性値(粘度式の係数、発熱反応速度式の係数、密度、熱伝導率、比熱)を表1に示す。

Figure 0004970574
In the analysis, the moving speed of the upper electrode 4 was calculated in consideration of the initial moving speed of the upper electrode 4 and the viscosity change of the resin 2, and the particles 1 were virtually installed as marker particles in the resin 2. In addition, the exothermic reaction formula used for analysis used Formula (1)-(5), and the viscosity formula used (6)-(8). Here, with respect to the coefficients of the viscosity equations represented by the equations (6) to (8), the value of the resin material (1) is used for the second conductive layer, and the resin material (1) ( 2) The values of the three resin materials in (3) were used. On the other hand, the values of the first layer and the second layer are the same for the coefficients of the exothermic reaction equations represented by the formulas (1) to (5), and the value of the resin material (1) is used. The resin 2 is an epoxy resin that is a thermosetting resin, and the physical properties of the resins (1) to (3) (viscosity coefficient, exothermic reaction rate coefficient, density, thermal conductivity, specific heat). ) Is shown in Table 1.
Figure 0004970574

本解析手法を用いて、粒子1の捕捉率を算出した。ここで、設定した粘度の時間変化を解析で求めた結果を、図16に示す。このように、なお、材料(1)の最低粘度は、材用(2)よりも1.3倍高く、材料(3)よりも1.3倍低い設定である。なお、材料(3)は(1)に比べて最低粘度を低くするために、例えば重量平均分子量を(1)よりも小さくしている。   Using this analysis technique, the capture rate of the particles 1 was calculated. Here, FIG. 16 shows a result obtained by analyzing the time change of the set viscosity. Thus, the minimum viscosity of the material (1) is 1.3 times higher than that for the material (2) and 1.3 times lower than that of the material (3). The material (3) has a weight average molecular weight smaller than that of (1), for example, in order to lower the minimum viscosity as compared with (1).

粒子1の捕捉率の解析結果を図17に、基板4,6の間隔の時間変化を図18に示す。
図17に示すように、1層目の絶縁層と2層目の導電層の粘度に差を付けても粒子捕捉率に差は生じない。この粒子捕捉率に差が生じない理由を図18の結果を用いて考察した。図18は基板間隔の時間変化を示しており、基盤間隔が粒子径と等しい4μmとなった時間で基板間に挟まれる粒子数と粒子の捕捉率が決まる。
FIG. 17 shows the analysis result of the capture rate of the particles 1, and FIG. 18 shows the time change of the interval between the substrates 4 and 6.
As shown in FIG. 17, there is no difference in the particle capture rate even if the viscosity of the first insulating layer and the second conductive layer are different. The reason why there is no difference in the particle capture rate was examined using the results of FIG. FIG. 18 shows the time change of the substrate interval, and the number of particles sandwiched between the substrates and the particle capture rate are determined by the time when the base interval is 4 μm which is equal to the particle diameter.

図18に示すように、基盤間隔が粒子径と等しくなる時間は約1.5sである。しかし、図16に示すように、今回設定した樹脂材料(1)〜(3)の粘度は、1.5sまでの粘度の時間変化は等しく、最低粘度だけに差を付けて設定した。従って、粒子捕捉率が決まる1.5sまでの粘度変化に差が生じないので、図16に示すように1層目の絶縁層と2層目の導電層の粘度に差を付けても粒子捕捉率に差は生じない結果になったと考えられる。   As shown in FIG. 18, the time for the base interval to be equal to the particle diameter is about 1.5 s. However, as shown in FIG. 16, the viscosities of the resin materials (1) to (3) set this time were set such that the changes over time of the viscosity up to 1.5 s were equal, and only the minimum viscosity was varied. Accordingly, there is no difference in the viscosity change up to 1.5 s, which determines the particle trapping rate. Therefore, even if the viscosity of the first insulating layer and the second conductive layer are different as shown in FIG. It is thought that the result did not produce a difference in rate.

このように、1層目の絶縁層と2層目の導電層の最低粘度に差を付けても粒子捕捉率を向上することはできない。従って、以下では1.5sまでの接続成形の初期段階において、1層目の絶縁層と2層目の導電層粘度に差をつけた材料を用いた検討を行った。   Thus, even if the minimum viscosity of the first insulating layer and the second conductive layer is different, the particle capture rate cannot be improved. Therefore, in the following, in the initial stage of connection molding up to 1.5 s, examination was performed using a material having a difference in viscosity between the first insulating layer and the second conductive layer.

解析には図15の形状を用いて、粒子径は4μmとし、2層目の粒子設置層(導電層)の肉厚は4,6,8μmの3水準とし、樹脂フィルムシート全体の肉厚は16μmで一定とした。ここで、式(6)〜(8)で示す粘度式について、2層目の導電層には樹脂材料(1)を、1層目の絶縁層には樹脂材料(1),(4)〜(8)を用いた。一方、式(1)〜(5)で示す発熱反応式について、1層目と2層目の物性値は同一で樹脂材料(1)を用いた。また、樹脂2は熱硬化性樹脂であるエポキシ樹脂を用いるものとし、樹脂(1)、(4)〜(8)についての物性値(粘度、密度、熱伝導率、比熱、発熱反応)を表1に示す。   In the analysis, the shape of FIG. 15 is used, the particle diameter is 4 μm, the thickness of the second particle installation layer (conductive layer) is three levels of 4, 6 and 8 μm, and the thickness of the entire resin film sheet is Constant at 16 μm. Here, with respect to the viscosity formulas represented by the formulas (6) to (8), the resin material (1) is used for the second conductive layer, and the resin materials (1), (4) to (4) are used for the first insulating layer. (8) was used. On the other hand, regarding the exothermic reaction formulas represented by the formulas (1) to (5), the physical properties of the first layer and the second layer were the same, and the resin material (1) was used. Resin 2 is an epoxy resin that is a thermosetting resin, and represents physical properties (viscosity, density, thermal conductivity, specific heat, exothermic reaction) for resins (1) and (4) to (8). It is shown in 1.

ここで、樹脂(4)は樹脂(1)に比べて25℃における接続前の粘度が2倍の設定であり、樹脂(5)は樹脂(1)に比べて25℃における接続前の粘度が1/1.2倍の設定であり、樹脂(6)は樹脂(1)に比べて25℃における接続前の粘度が1/2倍の設定であり、樹脂(7)は樹脂(1)に比べて25℃における接続前の粘度が1/5倍の設定であり、樹脂(8)は樹脂(1)に比べて25℃における接続前の粘度が1/10倍の設定である。   Here, resin (4) has a setting of twice the viscosity before connection at 25 ° C. compared to resin (1), and resin (5) has a viscosity before connection at 25 ° C. compared to resin (1). The resin (6) is set to 1/2 times the viscosity before connection at 25 ° C. compared to the resin (1), and the resin (7) is set to the resin (1). In comparison, the viscosity before connection at 25 ° C. is set to 1/5 times, and the viscosity of resin (8) before connection at 25 ° C. is set to 1/10 times that of resin (1).

樹脂フィルムシートの樹脂材料としては、エポキシ樹脂、エポキシ樹脂の潜在性硬化剤及びフェノキシ樹脂を含有する接着剤組成物に、必要に応じ、導電性粒子を分散させたものを用いることができる。   As the resin material of the resin film sheet, an adhesive composition containing an epoxy resin, an epoxy resin latent curing agent, and a phenoxy resin, in which conductive particles are dispersed as required, can be used.

また、上部電極4の温度は25℃から200℃まで10秒間で上昇し、上部電極4が下部電極6の方向に移動するものとする。初期の上部電極4の移動速度は、1×10−3m/sである。なお、材料(4)は(1)に比べて粘度を高くするために、例えば重量平均分子量を(1)よりも大きくしている。   The temperature of the upper electrode 4 rises from 25 ° C. to 200 ° C. in 10 seconds, and the upper electrode 4 moves in the direction of the lower electrode 6. The initial moving speed of the upper electrode 4 is 1 × 10 −3 m / s. In addition, in order for material (4) to make a viscosity high compared with (1), the weight average molecular weight is made larger than (1), for example.

解析に用いた樹脂粘度の時間変化の計算結果を図19に示す。ここでは、樹脂(1)、(4)、(6)、(8)の粘度変化について示しており、時間0sの粘度が25℃における接続成形前の粘度を示す。このように、1層目の絶縁層に樹脂(5)〜(8)を用いることにより、2層目の導電層に用いる樹脂(1)と初期状態での粘度差を付けることができる。   The calculation result of the time change of the resin viscosity used for the analysis is shown in FIG. Here, it shows about the viscosity change of resin (1), (4), (6), (8), and the viscosity of time 0s shows the viscosity before connection molding in 25 degreeC. In this way, by using the resins (5) to (8) for the first insulating layer, the viscosity difference in the initial state can be given to the resin (1) used for the second conductive layer.

粒子捕捉率の解析結果を図20に示す。このように一層目の絶縁層に樹脂(4)を用いると、絶縁層の粘度が導電層よりも高いので、基板間の圧縮により粘度の低い導電層の樹脂材料が流動し、導電層の樹脂材料が基板間に残りにくくなり、粒子捕捉率は低くなる。   The analysis result of the particle capture rate is shown in FIG. Thus, when resin (4) is used for the first insulating layer, the viscosity of the insulating layer is higher than that of the conductive layer, so that the resin material of the conductive layer having a low viscosity flows due to compression between the substrates. The material is less likely to remain between the substrates, and the particle capture rate is low.

一方、一層目の絶縁層に樹脂(5)〜(8)を用いると、絶縁層の粘度が導電層よりも低いので、基板間の圧縮により粘度の低い絶縁層の樹脂材料が流動し、導電層の樹脂材料が基板間に残りやすくなり、絶縁層と導電層の粘度差が大きいほど粒子捕捉率は高くなる。また、粒子を設置した導電層の肉厚が小さいほど粒子の捕捉率を高くできる。   On the other hand, when the resins (5) to (8) are used for the first insulating layer, since the viscosity of the insulating layer is lower than that of the conductive layer, the resin material of the insulating layer having a low viscosity flows due to compression between the substrates. The resin material of the layer tends to remain between the substrates, and the particle trapping rate increases as the viscosity difference between the insulating layer and the conductive layer increases. Further, the smaller the thickness of the conductive layer on which the particles are installed, the higher the particle capture rate.

このように、1層目の絶縁層と2層目の導電層に用いる樹脂について、25℃における粘度を1層目の絶縁層を2層目の導電層よりも低くすると、粒子捕捉率を向上できる。特に、25℃における粘度を1層目の絶縁層を2層目の導電層よりも0.5倍以下に低くすると、粒子捕捉率を向上できる。なお、粘度の測定には、パラレルプレートまたはコーンアンドプレートを用いた回転型粘度計を用いるものとし、粒子を内在させたフィルム層は粒子を内在させた状態で、せん断速度0.1(1/s)、25℃における接続成形前のフィルムの測定を行うものとする。   Thus, for the resin used for the first insulating layer and the second conductive layer, if the viscosity at 25 ° C. is lower than that of the second conductive layer, the particle capture rate is improved. it can. In particular, when the viscosity at 25 ° C. is lowered to 0.5 times or less of the first insulating layer than that of the second conductive layer, the particle capture rate can be improved. The viscosity is measured using a rotary viscometer using a parallel plate or cone-and-plate, and the film layer in which the particles are incorporated has a shear rate of 0.1 (1 / s) The film before connection molding at 25 ° C. shall be measured.

以上では、2層の樹脂フィルムについての結果を示したが、本発明はこれだけに限定されるものではなく、2層以上の任意に積層した樹脂シートに対して用いることができる。また、以上では2層の粘度差を付けた検討を行ったが、本発明はこれだけに限定されるものではなく、絶縁性の樹脂フィルム層の示差走査熱量計で測定された発熱反応速度の最大値が、導電性粒子を内在させた樹脂フィルム層よりも低温側にある構造とすることにより、粒子捕捉率を向上することが出来る。   In the above, although the result about the resin film of 2 layers was shown, this invention is not limited only to this, It can use with respect to the resin sheet laminated | stacked arbitrarily two or more layers. In addition, the above discussion was made with a difference in viscosity between the two layers, but the present invention is not limited to this, and the maximum exothermic reaction rate measured with a differential scanning calorimeter of the insulating resin film layer is not limited thereto. By setting the value to a lower temperature side than the resin film layer in which the conductive particles are contained, the particle capture rate can be improved.

例えば、表1に示す樹脂(14)と樹脂(1)について、2層目(導電層)に用いた樹脂(14)と、1層目(絶縁層)に用いた樹脂(1)の発熱反応速度(dQ/dt)について、昇温速度5℃/minとした場合の発熱反応速度と樹脂温度の関係についての示差走査熱量計の測定結果を図21に示す。このように、樹脂(14)は低い樹脂温度で反応速度が最大値となる。   For example, for the resin (14) and resin (1) shown in Table 1, the exothermic reaction of the resin (14) used for the second layer (conductive layer) and the resin (1) used for the first layer (insulating layer) FIG. 21 shows the measurement results of the differential scanning calorimeter regarding the relationship between the exothermic reaction rate and the resin temperature when the rate of temperature (dQ / dt) is 5 ° C./min. Thus, the resin (14) has a maximum reaction rate at a low resin temperature.

また、粘度は1層目、2層目ともに表1に示すように等しい値を用いている。よって、低い樹脂温度で発熱反応速度が最大となると、式(6)〜(8)で示すα(反応率)の関数である粘度は低い温度で高くなる。従って、1層目の絶縁層よりも2層目の導電層の発熱反応速度の最大値が低温度側にあれば、1層目の絶縁層よりも2層目の導電層の粘度が高くなり、基板の圧縮によっても流動しにくくなるので、粒子の捕捉率を高く出来る。なお、発熱反応速度の測定には示差熱計を用いて、図8に示すように発熱反応速度と樹脂温度の関係において、発熱反応速度の最大値が低温側にある樹脂を導電層に用いるものとする。   In addition, the same value is used for the viscosity as shown in Table 1 for both the first layer and the second layer. Therefore, when the exothermic reaction rate becomes maximum at a low resin temperature, the viscosity, which is a function of α (reaction rate) represented by the formulas (6) to (8), increases at a low temperature. Therefore, if the maximum exothermic reaction rate of the second conductive layer is lower than that of the first insulating layer, the viscosity of the second conductive layer is higher than that of the first insulating layer. Since it becomes difficult to flow even when the substrate is compressed, the particle capture rate can be increased. For the measurement of the exothermic reaction rate, a differential thermometer is used. As shown in FIG. 8, in the relationship between the exothermic reaction rate and the resin temperature, a resin having a maximum exothermic reaction rate on the low temperature side is used for the conductive layer. And

次に、1層目の絶縁層と2層目の導電層の熱伝導率に差を付けた場合の解析による粒子捕捉率の検討を行った。解析には図12の形状を用いて、粒子径は4μmとし、2層目の粒子設置層(導電層)の肉厚は4,8μmの2水準とし、樹脂フィルムシート全体の肉厚は16μmで一定とした。   Next, the particle trapping rate was examined by analysis in the case where a difference was made in the thermal conductivity between the first insulating layer and the second conductive layer. In the analysis, the shape of FIG. 12 is used, the particle diameter is 4 μm, the thickness of the second particle installation layer (conductive layer) is 4 or 8 μm, and the thickness of the entire resin film sheet is 16 μm. Constant.

式(1)〜(5)で示す発熱反応式、式(6)〜(8)で示す粘度式について、2層目の導電層には表1に示す樹脂(1)を用いた。1層目の絶縁層には式(1)〜(5)で示す発熱反応式、式(6)〜(8)で示す粘度式については樹脂(1)と同一であるが、熱伝導率だけが樹脂(1)よりも低い樹脂(9)〜(13)を用いた。樹脂(9)〜(13)の物性値を表1に示す。なお、材料(9)〜(13)は(1)に比べて熱伝導率を低くするために、例えばマイカなどの低熱伝導フィラーを配合する。   Regarding the exothermic reaction formulas represented by the formulas (1) to (5) and the viscosity formulas represented by the formulas (6) to (8), the resin (1) shown in Table 1 was used for the second conductive layer. For the first insulating layer, the exothermic reaction formulas represented by the formulas (1) to (5) and the viscosity formulas represented by the formulas (6) to (8) are the same as those of the resin (1), but only the thermal conductivity. Resins (9) to (13), which are lower than the resin (1), were used. Table 1 shows the physical property values of the resins (9) to (13). In addition, in order for material (9)-(13) to make heat conductivity low compared with (1), low heat conductive fillers, such as mica, are mix | blended, for example.

また、上部電極4の温度は25℃から200℃まで10秒間で上昇し、上部電極4が下部電極6の方向に移動するものとする。初期の上部電極4の移動速度は、1×10−3m/sである。なお、流動解析には汎用流体解析ソフトを用いた。   The temperature of the upper electrode 4 rises from 25 ° C. to 200 ° C. in 10 seconds, and the upper electrode 4 moves in the direction of the lower electrode 6. The initial moving speed of the upper electrode 4 is 1 × 10 −3 m / s. In addition, general-purpose fluid analysis software was used for the flow analysis.

粒子捕捉率の解析結果を図22に示す。図22(a)は粒子を設置した導電層の肉厚が8μmの場合、図22(b)は粒子1を設置した導電層の肉厚が4μmの場合の結果を示す。このように、1層目の絶縁層の熱伝導率が、2層目の導電層の熱伝導率よりも低い場合に、粒子捕捉率を高く出来る。このとき、樹脂フィルムシートには上部電極4から伝熱されており、1層目の絶縁層の熱伝導率が低いと、2層目の導電層に伝熱しにくいので、導電層の粘度は絶縁層よりも高くなる。従って、電極間の圧縮によって、導電層の樹脂が流動しにくいので、粒子捕捉率を高く出来る。特に、図22に示すように、1層目の導電粒子を内在させない絶縁層の熱伝導率を2層目の導電粒子を内在させた導電層よりも0.7倍以下に小さくすると、粒子捕捉率を向上できる。   The analysis result of the particle capture rate is shown in FIG. FIG. 22A shows the result when the thickness of the conductive layer provided with the particles is 8 μm, and FIG. 22B shows the result when the thickness of the conductive layer provided with the particles 1 is 4 μm. Thus, when the thermal conductivity of the first insulating layer is lower than the thermal conductivity of the second conductive layer, the particle trapping rate can be increased. At this time, heat is transferred from the upper electrode 4 to the resin film sheet, and if the thermal conductivity of the first insulating layer is low, it is difficult to transfer heat to the second conductive layer. Higher than the layer. Therefore, since the resin of the conductive layer hardly flows due to compression between the electrodes, the particle capture rate can be increased. In particular, as shown in FIG. 22, when the thermal conductivity of the insulating layer that does not contain the first conductive particles is smaller than 0.7 times that of the conductive layer that contains the second conductive particles, particle trapping is achieved. The rate can be improved.

また、粒子を設置した導電層の肉厚が4μmの場合には、1層目の熱伝導率の低い絶縁層の肉厚が大きくなるので、導電層の肉厚が8μmの場合よりも2層目の導電層に伝熱しにくくなるため、粒子捕捉率を高く出来る。   In addition, when the thickness of the conductive layer on which the particles are installed is 4 μm, the thickness of the first insulating layer having a low thermal conductivity is larger, so that the thickness of the conductive layer is 2 layers than when the thickness of the conductive layer is 8 μm. Since it is difficult to transfer heat to the conductive layer of the eye, the particle capture rate can be increased.

また、以上では2層積層の樹脂フィルムシートについて示したが、本発明はこれだけに限定されるものではなく、2層以上の積層の樹脂フィルムシートに用いることが出来る。一例として3層積層の樹脂フィルムシートについて、図23に示す。ここでは、樹脂フィルムシートの最外層表面を形成する肉厚方向の最上部には絶縁層が設置され、最下部には導電層が設置されており、最上部の絶縁層と最下層の導電層に挟まれて設置される絶縁層8の熱伝導率が、前記の最上部の絶縁層と最下層の導電層よりも低いことを特徴としている。   Moreover, although it showed about the resin film sheet of 2 layers lamination | stacking above, this invention is not limited only to this, It can use for the resin film sheet of 2 layers or more lamination | stacking. As an example, a three-layer laminated resin film sheet is shown in FIG. Here, an insulating layer is installed at the uppermost part in the thickness direction forming the outermost layer surface of the resin film sheet, and a conductive layer is installed at the lowermost part. The uppermost insulating layer and the lowermost conductive layer The insulating layer 8 placed between the layers is characterized in that the thermal conductivity is lower than that of the uppermost insulating layer and the lowermost conductive layer.

この最上部の絶縁層と最下層の導電層に挟まれて設置される絶縁層8の熱伝導率が低いので、最下層の導電層に伝熱しにくく、導電層の粘度が下がらずに、電極間の圧縮によって、導電層の樹脂が流動しにくいので、粒子捕捉率を高く出来る。なお、熱伝導率の測定は、粒子を内在させたフィルム層は粒子を内在させた状態で、接続成形前の樹脂フィルムを用いて、25℃以下の測定温度で行うものとする。   Since the heat conductivity of the insulating layer 8 placed between the uppermost insulating layer and the lowermost conductive layer is low, it is difficult to transfer heat to the lowermost conductive layer, and the viscosity of the conductive layer does not decrease. Since the resin of the conductive layer hardly flows due to the compression in between, the particle capture rate can be increased. In addition, the measurement of thermal conductivity shall be performed at the measurement temperature of 25 degrees C or less using the resin film before connection shaping | molding in the state in which the film layer in which particle | grains were made to contain particle | grains.

以上では、2層以上の樹脂フィルム材料の粒子設置層と、粒子を設置しない層は、複数の層には分割されていない例を示したが、本発明はこれだけに限定されるものではなく、粒子設置層と、粒子を設置しない層は2層以上に分割できる。   In the above, the particle installation layer of the resin film material of two or more layers and the layer in which the particles are not installed are shown as examples that are not divided into a plurality of layers, but the present invention is not limited to this, The particle installation layer and the layer where no particles are installed can be divided into two or more layers.

また、以上では、エポキシ樹脂を用いた解析の結果を示したが、本発明はこれだけに限定されるものではなく、任意の樹脂材料を用いることが出来る。   Moreover, although the result of the analysis using an epoxy resin was shown above, this invention is not limited only to this, Arbitrary resin materials can be used.

また、以上では、粒子の設置位置と導電層と絶縁層の物性値の差について個別に述べたが、本発明はこれだけに限定されるものではなく、樹脂フィルム層を肉厚方向に2層以上積層した導電性粒子を内在させた樹脂フィルムシートにおいて、樹脂フィルムシートの両表面から等距離に位置する肉厚方向の中心面を内部に含む樹脂フィルム層または前記肉厚方向の中心面に隣接する少なくとも一つの樹脂フィルム層が、前記導電性粒子を内在させない絶縁性の樹脂フィルム層により形成されている樹脂フィルムシートについて、25℃における接続成形前の絶縁層の粘度が導電層よりも低い、または、絶縁層の示差走査熱量計で測定された発熱反応速度の最大値が、導電層よりも低温側にある、または、絶縁層の熱伝導率が導電層よりも低いことを特徴とする樹脂フィルムシートにも用いることが出来る。   Further, in the above, the particle installation position and the difference between the physical property values of the conductive layer and the insulating layer have been individually described, but the present invention is not limited to this, and the resin film layer has two or more layers in the thickness direction. In the resin film sheet in which the laminated conductive particles are embedded, the resin film layer including the center plane in the thickness direction located at the same distance from both surfaces of the resin film sheet or adjacent to the center plane in the thickness direction For a resin film sheet in which at least one resin film layer is formed of an insulating resin film layer that does not contain the conductive particles, the viscosity of the insulating layer before connection molding at 25 ° C. is lower than that of the conductive layer, or The maximum exothermic reaction rate measured with a differential scanning calorimeter of the insulating layer is lower than that of the conductive layer, or the thermal conductivity of the insulating layer is lower than that of the conductive layer. It can also be used in the resin film sheet according to claim.

1 導電性粒子
2 樹脂材料
3 半導体集積回路(IC)
4 上部電極
5 基板
6 下部電極
7 樹脂フィルムシートの肉厚方向の中心点から構成される面
8 最上部の絶縁層と最下層の導電層に挟まれて設置される絶縁層
DESCRIPTION OF SYMBOLS 1 Conductive particle 2 Resin material 3 Semiconductor integrated circuit (IC)
4 Upper electrode 5 Substrate 6 Lower electrode 7 Surface composed of center point of resin film sheet in thickness direction 8 Insulating layer placed between uppermost insulating layer and lowermost conductive layer

Claims (5)

導電性粒子を内在させた樹脂フィルム層及び絶縁性の樹脂フィルム層の各層を少なくとも1層備えるようにして肉厚方向に2層以上積層し、短時間で急速に加熱及び加圧を同時に行って電気的接続を行う樹脂フィルムシートにおいて
該樹脂フィルムシートによる電極間の接続形成前から前記電極の間隔が前記導電性粒子の粒子径と等しくなるまでの間で前記絶縁性の樹脂フィルム層の樹脂材料の粘度が前記導電性粒子を内在させた樹脂フィルム層の樹脂材料の粘度よりも低く、
前記絶縁性の樹脂フィルム層の樹脂材料の25℃における接続形成前の粘度が前記導電性粒子を内在させた樹脂フィルム層の樹脂材料の25℃における接続形成前の粘度の0.5倍以下に設定され、
前記導電性粒子を内在させた樹脂フィルム層の肉厚方向の厚みが、前記導電性粒子の粒子径よりも大きく、且つ、前記導電性粒子の粒子径の1.5倍以下に設定され、
前記絶縁性の樹脂フィルム層及び前記導電性粒子を内在させた樹脂フィルム層の樹脂材料が熱硬化性接着剤組成物であることを特徴とする樹脂フィルムシート。
Laminate two or more layers in the thickness direction so as to have at least one resin film layer containing conductive particles and an insulating resin film layer, and perform heating and pressurization simultaneously in a short time. in the resin film sheet for electrical connection,
Before the connection between the electrodes by the resin film sheet is formed until the distance between the electrodes becomes equal to the particle diameter of the conductive particles, the viscosity of the resin material of the insulating resin film layer includes the conductive particles. Lower than the viscosity of the resin material of the resin film layer,
The viscosity before the connection formation at 25 ° C. of the resin material of the insulating resin film layer is not more than 0.5 times the viscosity before the connection formation at 25 ° C. of the resin material of the resin film layer containing the conductive particles. Set,
The thickness in the thickness direction of the resin film layer containing the conductive particles is set to be larger than the particle size of the conductive particles and 1.5 times or less the particle size of the conductive particles,
The resin film sheet, wherein the resin material of the resin film layer in which the insulating resin film layer and the conductive particles are contained is a thermosetting adhesive composition.
請求項1に記載の樹脂フィルムシートであって、
前記絶縁性の樹脂フィルム層の樹脂材料の25℃における接続成形前の粘度が前記導電性粒子を内在させた樹脂フィルム層の樹脂材料の25℃における接続成形前の粘度の0.2倍以下に設定されていることを特徴とする樹脂フィルムシート。
The resin film sheet according to claim 1,
The viscosity before connection molding at 25 ° C. of the resin material of the insulating resin film layer is 0.2 times or less of the viscosity before connection molding at 25 ° C. of the resin material of the resin film layer containing the conductive particles. A resin film sheet characterized by being set.
請求項1に記載の樹脂フィルムシートであって、
前記絶縁性の樹脂フィルム層の樹脂材料の25℃における接続成形前の粘度が前記導電性粒子を内在させた樹脂フィルム層の樹脂材料の25℃における接続成形前の粘度の0.1倍以下に設定されていることを特徴とする樹脂フィルムシート。
The resin film sheet according to claim 1,
The viscosity before connection molding at 25 ° C. of the resin material of the insulating resin film layer is not more than 0.1 times the viscosity before connection molding at 25 ° C. of the resin material of the resin film layer containing the conductive particles. A resin film sheet characterized by being set.
請求項1ないし3のいずれかに記載の樹脂フィルムシートであって、
前記絶縁性の樹脂フィルム層の肉厚方向の厚みが、前記導電性粒子を内在させた樹脂フィルム層の肉厚方向の厚みの1.5倍以上に設定されていることを特徴とする樹脂フィルムシート。
The resin film sheet according to any one of claims 1 to 3,
A thickness of the insulating resin film layer in the thickness direction is set to be 1.5 times or more of a thickness in the thickness direction of the resin film layer containing the conductive particles. Sheet.
請求項1ないし4のいずれかに記載の樹脂フィルムシートを電子部品の電極間に配置して接続成形を行うことにより前記電極間が電気的に接続されたことを特徴とする電子部品。   An electronic component comprising the resin film sheet according to any one of claims 1 to 4 disposed between electrodes of an electronic component so as to be electrically connected by performing connection molding.
JP2010157800A 2008-06-26 2010-07-12 Resin film sheet and electronic parts Expired - Fee Related JP4970574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157800A JP4970574B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008167454 2008-06-26
JP2008167454 2008-06-26
JP2010157800A JP4970574B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009148551A Division JP4623224B2 (en) 2008-06-26 2009-06-23 Resin film sheet and electronic parts

Publications (2)

Publication Number Publication Date
JP2010278013A JP2010278013A (en) 2010-12-09
JP4970574B2 true JP4970574B2 (en) 2012-07-11

Family

ID=41495036

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2009148551A Expired - Fee Related JP4623224B2 (en) 2008-06-26 2009-06-23 Resin film sheet and electronic parts
JP2010157800A Expired - Fee Related JP4970574B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts
JP2010157782A Expired - Fee Related JP4661985B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts
JP2010158078A Expired - Fee Related JP4766185B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts
JP2010158022A Expired - Fee Related JP4661986B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts
JP2011127061A Withdrawn JP2011233529A (en) 2008-06-26 2011-06-07 Resin film sheet and electronic part
JP2011127070A Pending JP2011233530A (en) 2008-06-26 2011-06-07 Resin film sheet and electronic component
JP2011127055A Withdrawn JP2011233528A (en) 2008-06-26 2011-06-07 Resin film sheet, and electronic component
JP2011127062A Withdrawn JP2011198767A (en) 2008-06-26 2011-06-07 Resin film sheet and electronic component

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009148551A Expired - Fee Related JP4623224B2 (en) 2008-06-26 2009-06-23 Resin film sheet and electronic parts

Family Applications After (7)

Application Number Title Priority Date Filing Date
JP2010157782A Expired - Fee Related JP4661985B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts
JP2010158078A Expired - Fee Related JP4766185B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts
JP2010158022A Expired - Fee Related JP4661986B2 (en) 2008-06-26 2010-07-12 Resin film sheet and electronic parts
JP2011127061A Withdrawn JP2011233529A (en) 2008-06-26 2011-06-07 Resin film sheet and electronic part
JP2011127070A Pending JP2011233530A (en) 2008-06-26 2011-06-07 Resin film sheet and electronic component
JP2011127055A Withdrawn JP2011233528A (en) 2008-06-26 2011-06-07 Resin film sheet, and electronic component
JP2011127062A Withdrawn JP2011198767A (en) 2008-06-26 2011-06-07 Resin film sheet and electronic component

Country Status (4)

Country Link
JP (9) JP4623224B2 (en)
KR (8) KR101038614B1 (en)
CN (4) CN102298988B (en)
TW (3) TWI396626B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts
WO2013132831A1 (en) * 2012-03-06 2013-09-12 東洋インキScホールディングス株式会社 Conductive fine particles, method for manufacturing same, conductive resin composition, conductive sheet, and electromagnetic shielding sheet
JP6221285B2 (en) * 2013-03-21 2017-11-01 日立化成株式会社 Circuit member connection method
JP6069153B2 (en) * 2013-09-27 2017-02-01 デクセリアルズ株式会社 Underfill material and method for manufacturing semiconductor device using the same
JP6645730B2 (en) * 2014-01-28 2020-02-14 デクセリアルズ株式会社 Connection body and method for manufacturing connection body
JP6307308B2 (en) * 2014-03-06 2018-04-04 デクセリアルズ株式会社 Manufacturing method of connection structure and circuit connection material
KR102430609B1 (en) * 2014-03-31 2022-08-08 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film and production method therefor
KR101737173B1 (en) 2014-07-24 2017-05-17 삼성에스디아이 주식회사 Anisotropic conductive films, a method for preparing the same, and semiconductive devices comprising the same
TWI715542B (en) * 2014-11-12 2021-01-11 日商迪睿合股份有限公司 Light curing anisotropic conductive adhesive, method for producing connector and method for connecting electronic components
JP6661886B2 (en) * 2015-03-11 2020-03-11 日立化成株式会社 Method for producing film-like circuit connection material and circuit member connection structure
KR101684144B1 (en) 2015-07-08 2016-12-07 울산대학교 산학협력단 High efficiency wave energy converter using continuously variable transmission and control method thereof
JP6327630B1 (en) * 2017-04-28 2018-05-23 リンテック株式会社 Film-like fired material, film-like fired material with support sheet, method for producing film-like fired material, and method for producing film-like fired material with support sheet
WO2019050006A1 (en) * 2017-09-11 2019-03-14 日立化成株式会社 Adhesive film for circuit connection and method for manufacturing same, method for manufacturing circuit connection structure, and adhesive tape-containing set
JP7210846B2 (en) * 2017-09-11 2023-01-24 株式会社レゾナック Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2020024937A (en) * 2019-10-28 2020-02-13 日立化成株式会社 Film-like circuit connection material and method for manufacturing connection structural body of circuit member
KR20210154293A (en) 2020-06-11 2021-12-21 현대자동차주식회사 Lithium ion secondary battery and manufacturing method of the same
KR20220019470A (en) 2020-08-10 2022-02-17 현대자동차주식회사 System and method for manufacturing lithium ion secondary battery

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102110A (en) * 1986-10-17 1988-05-07 富士ゼロックス株式会社 Anisotropic conductor and making thereof
JPH03107888A (en) * 1989-09-21 1991-05-08 Sharp Corp Connecting structure for circuit board
JPH0645204A (en) * 1992-07-21 1994-02-18 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0645024A (en) * 1992-07-22 1994-02-18 Hitachi Chem Co Ltd Anisotropic conductive adhesive film
JPH08148213A (en) * 1994-11-25 1996-06-07 Hitachi Chem Co Ltd Connection member and structure and method for connecting electrode using the same
GB2296845A (en) * 1995-01-04 1996-07-10 Plessey Semiconductors Ltd Frequency shift keyed radio receivers
JP3656768B2 (en) * 1995-02-07 2005-06-08 日立化成工業株式会社 Connection member, electrode connection structure using the connection member, and connection method
JP4032439B2 (en) * 1996-05-23 2008-01-16 日立化成工業株式会社 Connection member, electrode connection structure and connection method using the connection member
TW392179B (en) * 1996-02-08 2000-06-01 Asahi Chemical Ind Anisotropic conductive composition
JPH10200243A (en) * 1997-01-13 1998-07-31 Toshiba Chem Corp Electrical connecting method using anisotropic conductive paste
JP2000182691A (en) * 1998-12-17 2000-06-30 Hitachi Chem Co Ltd Circuit connecting member and connection method using therewith
WO2001071854A1 (en) * 2000-03-23 2001-09-27 Sony Corporation Electrical connection material and electrical connection method
JP2004006417A (en) 2003-08-22 2004-01-08 Hitachi Chem Co Ltd Connecting element and connection structure of electrode using this
JP2005146044A (en) * 2003-11-12 2005-06-09 Sumitomo Electric Ind Ltd Anisotropic conductive adhesive
JP4728665B2 (en) * 2004-07-15 2011-07-20 積水化学工業株式会社 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP2006233202A (en) * 2005-01-31 2006-09-07 Asahi Kasei Electronics Co Ltd Anisotropically electroconductive adhesive film for circuit connection
JP4877230B2 (en) * 2005-11-18 2012-02-15 日立化成工業株式会社 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
JP4967482B2 (en) * 2006-02-27 2012-07-04 日立化成工業株式会社 Conductive particles, adhesive composition and circuit connecting material
EP2015399A4 (en) * 2006-04-11 2013-01-30 Jsr Corp Anisotropic conductive connector and anisotropic conductive connector device
JP5388572B2 (en) * 2006-04-27 2014-01-15 デクセリアルズ株式会社 Conductive particle arrangement sheet and anisotropic conductive film
JP2008112732A (en) * 2007-11-19 2008-05-15 Hitachi Chem Co Ltd Connecting method of electrode
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts

Also Published As

Publication number Publication date
JP2011198767A (en) 2011-10-06
KR101120253B1 (en) 2012-03-16
JP2010267627A (en) 2010-11-25
JP4623224B2 (en) 2011-02-02
JP4661985B2 (en) 2011-03-30
JP2011233528A (en) 2011-11-17
JP2011233529A (en) 2011-11-17
KR20100102571A (en) 2010-09-24
JP4661986B2 (en) 2011-03-30
JP2011233530A (en) 2011-11-17
KR20100002196A (en) 2010-01-06
JP2010278013A (en) 2010-12-09
CN101615446B (en) 2013-07-17
KR101120277B1 (en) 2012-03-07
TW201215504A (en) 2012-04-16
CN102298988B (en) 2016-09-07
KR20110084489A (en) 2011-07-25
JP4766185B2 (en) 2011-09-07
CN102298987A (en) 2011-12-28
KR101200148B1 (en) 2012-11-12
TWI415144B (en) 2013-11-11
JP2010284973A (en) 2010-12-24
KR20110084490A (en) 2011-07-25
KR20110084492A (en) 2011-07-25
KR20110084488A (en) 2011-07-25
TW201013710A (en) 2010-04-01
TWI396626B (en) 2013-05-21
TW201101343A (en) 2011-01-01
KR20110084491A (en) 2011-07-25
JP2011003544A (en) 2011-01-06
JP2010034037A (en) 2010-02-12
CN101615446A (en) 2009-12-30
CN102298988A (en) 2011-12-28
KR20110130376A (en) 2011-12-05
CN102298989A (en) 2011-12-28
KR101038614B1 (en) 2011-06-03

Similar Documents

Publication Publication Date Title
JP4970574B2 (en) Resin film sheet and electronic parts
TWI455151B (en) Circuit connecting material, film-form circuit connecting material using the same, circuit member connecting structure and method of manufacturing the same
KR101385899B1 (en) Adhesive composition, film-like adhesive, and connection structure for circuit member
KR102036230B1 (en) Circuit connecting material, connection structure and method for producing connection structure
KR101970376B1 (en) Adhesive composition and connection body
KR20110057253A (en) Circuit connection structure
JP7347576B2 (en) adhesive film
JP2012209097A (en) Anisotropic conductive material and connection structure
CN114746524A (en) Method for producing connector and adhesive film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110624

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4970574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees