JP2005146044A - Anisotropic conductive adhesive - Google Patents

Anisotropic conductive adhesive Download PDF

Info

Publication number
JP2005146044A
JP2005146044A JP2003382550A JP2003382550A JP2005146044A JP 2005146044 A JP2005146044 A JP 2005146044A JP 2003382550 A JP2003382550 A JP 2003382550A JP 2003382550 A JP2003382550 A JP 2003382550A JP 2005146044 A JP2005146044 A JP 2005146044A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive
type
particles
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003382550A
Other languages
Japanese (ja)
Inventor
Hideaki Toshioka
英昭 年岡
Hideki Kashiwabara
秀樹 柏原
Masamichi Yamamoto
正道 山本
Kazuhiro Kawabata
計博 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003382550A priority Critical patent/JP2005146044A/en
Publication of JP2005146044A publication Critical patent/JP2005146044A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropic conductive adhesive which can connect electrodes to fine IC chips and circuit boards in high reliability. <P>SOLUTION: This anisotropic conductive adhesive is characterized by having a conductive layer which is obtained by reacting a composition comprising an epoxy resin, conductive particles, and two kinds of curing agents having different curing-initiating temperatures, at a temperature near to the reaction temperature of the curing agent reacting at the lower temperature among the curing agents, and has the lowest melt viscosity of 400 to 50,000 Pa×s in a range of 50 to 200°C, and an insulating layer which is laminated to at least one side of the conductive layer and has the lowest melt viscosity of one half or lower based on that of the conductive layer in a range of 50 to 200°C. The conductive particles have preferably a linear shape or a needle-like shape. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高密度実装化する回路基板とICチップの接続等に用いられ、ファインピッチの回路においても電極間ショートしにくい異方導電性接着剤に関する。   The present invention relates to an anisotropic conductive adhesive that is used for connecting a circuit board and an IC chip to be mounted at high density, and that is less likely to cause a short circuit between electrodes even in a fine pitch circuit.

電子機器の軽量化、小型化に伴って、構成部品の小型化が急速に進行している。この結果、各部の回路(ピッチ)や電極間の距離が小さくなり、最近では十数μmにまで近接している。このような回路や電極を、ショートを起こさずに接合するためには、従来使用する異方性導電膜では困難になりつつある。   As electronic devices become lighter and smaller, component parts are rapidly becoming smaller. As a result, the circuit (pitch) of each part and the distance between the electrodes are reduced, and recently, they are close to a few tens of μm. In order to join such circuits and electrodes without causing a short circuit, it is becoming difficult to use an anisotropic conductive film conventionally used.

異方導電性接着剤には、一旦接着した後、接着剤が硬化等の固定化するものを使用する。そして、例えば、回路基板とICチップの電極を接続する等の操作においては、回路基板とICチップとの間に異方導電性接着剤を介在させ、加熱加圧により接続させる。この時に該異方導電性接着剤は流動するが、それと同時に接着剤中に含まれる導電性物質が流動する場合があり、ICと回路基板との電極間に介在して残るはずの導電性物質が接着剤と共に流動する場合がある。このような状況となると、前記電極間は導通不良となり、異方導電性接着剤の役割が果たせない。   As the anisotropic conductive adhesive, one that is once bonded and then fixed by hardening or the like of the adhesive is used. For example, in an operation such as connecting the circuit board and the electrode of the IC chip, an anisotropic conductive adhesive is interposed between the circuit board and the IC chip, and the circuit board and the IC chip are connected by heating and pressing. At this time, the anisotropic conductive adhesive flows, but at the same time, the conductive substance contained in the adhesive may flow, and the conductive substance that should remain between the electrodes of the IC and the circuit board. May flow with the adhesive. If it becomes such a situation, it will become poor conduction between the electrodes, and the role of an anisotropic conductive adhesive cannot be fulfilled.

この解決手段として導電性物質を含む層とその外側に絶縁性接着剤層とを設け、前記導電性物質を含む層の150℃における溶融粘度が100poise以上であり、該絶縁性接着剤層の150℃における溶融粘度が100poise未満である複層構造の多層異方導電性接着剤の開示がある(特許文献1参照)。このようにすることで、昇温すると、まず絶縁性接着剤層が溶融流動し、ICや回路基板等の電極周囲にある隙間を埋めることで、さらなる昇温により導電性粒子を含む層が流動する余地を減らすため、前記導電性粒子が流動による流れだしを防ぐことができるというものである。
特開2000−178511号公報、(0012)
As a solution to this problem, a layer containing a conductive substance and an insulating adhesive layer are provided on the outside thereof, and the melt viscosity at 150 ° C. of the layer containing the conductive substance is 100 poise or more. There is a disclosure of a multilayer anisotropic conductive adhesive having a multilayer structure having a melt viscosity at 100 ° C. of less than 100 poise (see Patent Document 1). In this way, when the temperature rises, the insulating adhesive layer first melts and flows, and by filling the gap around the electrodes of the IC and the circuit board, the layer containing the conductive particles flows due to further temperature rise. Therefore, the conductive particles can prevent the conductive particles from flowing out.
JP 2000-178511 A, (0012)

しかし、特許文献1の手段でも十分な対応とは言えず、流動性においてさらなる解決手段が必要である。特に流動性が大きすぎると、所望の接着温度で異方導電性接着剤を使用する際に、接着剤が周囲に流れ出し、隣接する電極あるいは回路に影響を与える場合があるため、接着温度付近における樹脂の流動性をコントロールする必要があると考えられる。また、導電性物質を含む層の流動性と絶縁層の流動性においては、一定のバランスが必要である。   However, even the means of Patent Document 1 cannot be said to be sufficient, and further solution means is required in terms of fluidity. In particular, if the fluidity is too high, when using anisotropic conductive adhesive at the desired bonding temperature, the adhesive may flow out to the surroundings and affect adjacent electrodes or circuits. It is considered necessary to control the fluidity of the resin. In addition, a certain balance is required between the fluidity of the layer containing a conductive substance and the fluidity of the insulating layer.

本発明は前記流動性についての一つの解をもたらす発明である。その内容は、導電性層と、該導電性層の少なくとも片側に積層された絶縁層とからなる異方導電性接着剤であって、前記導電性層は、エポキシ樹脂、導電性粒子及び硬化開始温度が異なる2種類の硬化剤を含む組成物を、前記硬化剤のうち、低温側で反応する硬化剤の反応温度付近で反応させて得られる、その溶融粘度の最低値が50℃から200℃の範囲内で400Pa・s以上、50000Pa・s以下である特性を有し、前記絶縁層は、その溶融粘度の最低値が、50℃から200℃の範囲内で前記導電性層が示す値の1/2以下であることを特徴とする異方導電性接着剤。   The present invention is an invention that provides a solution to the fluidity. The content is an anisotropic conductive adhesive comprising a conductive layer and an insulating layer laminated on at least one side of the conductive layer, the conductive layer comprising an epoxy resin, conductive particles, and curing initiation The minimum value of the melt viscosity obtained by reacting a composition containing two types of curing agents having different temperatures near the reaction temperature of the curing agent that reacts on the low temperature side among the curing agents is 50 ° C to 200 ° C. In the range of 400 Pa · s to 50000 Pa · s, the insulating layer has a minimum melt viscosity of the value indicated by the conductive layer in the range of 50 ° C. to 200 ° C. An anisotropic conductive adhesive characterized by being 1/2 or less.

即ち、導電性層に用いられるエポキシ樹脂中に2種類の硬化温度が異なる硬化剤を含ませ、異方導電フィルムとする時点で前記硬化剤のうち低温側で硬化する硬化剤を反応させることにより、50℃〜200℃の範囲で溶融粘度の最低値を大きくしておくものである。該溶融粘度が400Pa・s未満であると、異方導電性接着剤として使用する際に、樹脂流動が早くなるため、それに伴って組成物中に含まれる導電性粒子も流れ、電極間に残る導電性粒子の量が減少してしまう。また、溶融粘度が50000Pa・sを超えると、圧力を加えても樹脂が全く流れず、粒子が樹脂中に埋まったままの状態となり導通不良が生じる。   That is, by containing two kinds of curing agents having different curing temperatures in the epoxy resin used for the conductive layer, and reacting with a curing agent that cures on the low temperature side among the curing agents when the anisotropic conductive film is formed. The minimum value of the melt viscosity is increased in the range of 50 ° C to 200 ° C. When the melt viscosity is less than 400 Pa · s, the resin flows faster when used as an anisotropic conductive adhesive, and accordingly, the conductive particles contained in the composition also flow and remain between the electrodes. The amount of conductive particles is reduced. On the other hand, if the melt viscosity exceeds 50000 Pa · s, the resin does not flow at all even if pressure is applied, and the particles remain embedded in the resin, resulting in poor conduction.

また、絶縁層の流動性は、50℃〜200℃の範囲で大きすぎると早くに部品から流出する恐れがあり、小さ過ぎると、流動がスムーズでなく、異方導電接着剤として十分な接着力を確保できない。そして、導電性粒子を含む導電性層の流動性に合わせて流動が進むようにするため、導電性層における溶融粘度の最低値の1/2以下にしておくのがよい。1/2を超えると、絶縁層が十分流動する前に、導電性層の流動が流動し始めるため、絶縁層としての接着力を十分に発揮できない。   Moreover, if the fluidity of the insulating layer is too large in the range of 50 ° C. to 200 ° C., the fluid may flow out of the parts as soon as possible. Cannot be secured. Then, in order to make the flow proceed according to the fluidity of the conductive layer containing the conductive particles, it is preferable to set it to ½ or less of the minimum value of the melt viscosity in the conductive layer. If it exceeds 1/2, the flow of the conductive layer starts to flow before the insulating layer sufficiently flows, so that the adhesive force as the insulating layer cannot be sufficiently exhibited.

なお、絶縁層は50℃〜200℃の範囲において、溶融粘度の最低値が10Pa・s以上あるのが好ましい。10Pa・s未満であると、導電性層の流動性とのバランスがとりにくく、接着される回路基板やICチップ等から流出する可能性が大きくなる。そして、絶縁層においても、接着性、耐熱性及び導電性層との相溶性の観点から、エポキシ樹脂を用いるのが好ましい。   The insulating layer preferably has a minimum melt viscosity of 10 Pa · s or more in the range of 50 ° C. to 200 ° C. If it is less than 10 Pa · s, it is difficult to balance the fluidity of the conductive layer, and the possibility of outflow from the circuit board or IC chip to be bonded increases. And also in an insulating layer, it is preferable to use an epoxy resin from a compatible viewpoint with adhesiveness, heat resistance, and an electroconductive layer.

前記エポキシ樹脂が、ビスフェノールA型、F型又はS型のエポキシ樹脂であり、前記低温側で反応する硬化剤が、イミダゾール系、アミン系、ジシアンジアミド系、メラミン系、ケチミン系、酸無水物系及びフェノール系からなる群より選ばれる1種以上の硬化剤であると、より好ましい。脂環式エポキシ樹脂は一般に探熱性が不十分であり、フェノールノボラック型エポキシでは、溶媒への溶解性に劣るため、本発明では、前記ビスフェノール系エポキシ樹脂が好まれる。   The epoxy resin is a bisphenol A type, F type or S type epoxy resin, and the curing agent that reacts on the low temperature side is an imidazole type, an amine type, a dicyandiamide type, a melamine type, a ketimine type, an acid anhydride type, and It is more preferable that it is at least one curing agent selected from the group consisting of phenols. In general, the alicyclic epoxy resin is insufficient in heat exploration, and the phenol novolac type epoxy is poor in solubility in a solvent. Therefore, in the present invention, the bisphenol-based epoxy resin is preferred.

前記導電性粒子が、前記導電性層の厚み方向に配向されていると、隣り合う電極への回路間ショートが起こりにくく、非常に好ましい。
前記導電性粒子が、微細な金属粒が多数、直鎖状に繋がった形状、又は針形状であると、好ましい。このような形状の場合、特に前記配向性の操作を組み合わせることにより好ましい選択となる。
前記導電性粒子が、磁性を有する金属単体、磁性を有する2種類以上の合金、磁性を有する金属と他の金属との合金及び磁性を有する金属を含む複合体のいずれかであるものを選択すると、好ましい。これは、磁性を有する金属が、互いに引き合うことにより溶融流動時に導電性物質が電極間に挟まれた導電性物質に集合しやすいためである。
前記導電性粒子が、前記導電性層の厚み方向に配向されていると、隣り合う電極への回路間ショートが起こりにくく、非常に好ましい。
It is very preferable that the conductive particles are oriented in the thickness direction of the conductive layer, because short circuit between adjacent electrodes hardly occurs.
It is preferable that the conductive particles have a shape in which a large number of fine metal particles are connected in a straight chain or a needle shape. In the case of such a shape, it becomes a preferable choice especially by combining the operations of the orientation.
When the conductive particles are selected from one of a simple metal having magnetism, two or more kinds of alloys having magnetism, an alloy of a metal having magnetism with another metal, and a composite containing a metal having magnetism ,preferable. This is because the metal having magnetism attracts each other so that the conductive material is likely to gather in the conductive material sandwiched between the electrodes during the melt flow.
It is very preferable that the conductive particles are oriented in the thickness direction of the conductive layer, because short circuit between adjacent electrodes hardly occurs.

導電性粒子が、微細な金属粒が多数、直鎖状に繋がった形状であり、その鎖の太さが50nm以上1μm以下であり、かつアスペクト比が10以上である粒子を50%以上含んでいると、好ましい。これは、導電性層で厚み方向に配向させておけば、厚み方向に加圧されても導電性層中で電極間に挟まれたときに、強固な導電回路形成ができる。
さらに、導電性層の厚みが、前記導電粒子の長さ以下であると、導電性層を突き抜けた状態で導電性粒子が存在するため、絶縁層が流動した時点で電極間に挟まれた状態となり、導電性層の流動においても、該導電性粒子が流動されずに残るので好ましい。
The conductive particles have a shape in which a large number of fine metal particles are connected in a straight chain, the thickness of the chain is 50 nm or more and 1 μm or less, and the particles have an aspect ratio of 10 or more and include 50% or more. It is preferable. If the conductive layer is oriented in the thickness direction, a strong conductive circuit can be formed when it is sandwiched between electrodes in the conductive layer even if it is pressurized in the thickness direction.
Furthermore, when the thickness of the conductive layer is equal to or less than the length of the conductive particles, the conductive particles exist in a state of penetrating the conductive layer, and therefore, the state sandwiched between the electrodes when the insulating layer flows Thus, even when the conductive layer flows, it is preferable because the conductive particles remain without flowing.

本発明になる異方導電性接着剤は、適度に調整された溶融流動性により、ファインピッチの回路基板や、ICチップ等の接着には導通性がよく、かつ隣り合う電極へのリークも抑えられた好適な異方導電性接着剤である。   The anisotropic conductive adhesive according to the present invention has good conductivity for bonding fine pitch circuit boards, IC chips and the like, and suppresses leakage to adjacent electrodes due to moderately adjusted melt fluidity. The preferred anisotropic conductive adhesive.

本発明になる異方導電接着剤は、導電性粒子を含む導電性層に用いるエポキシ樹脂に、その使用時における溶融粘度の最低値を高めるために、導電性層に用いるエポキシ樹脂に硬化温度が異なる2種類の硬化剤を加えたことに一つの特徴がある。そして、該硬化剤のうち低温側で硬化反応を起こす硬化剤が、導電性層をフィルム状に展延し乾燥させる際に硬化反応を進行させておくことにより、導電性層の50℃〜200℃の範囲における溶融粘度の最低値を400Pa・s以上50000Pa・s以下にしておくことができる。このような特性とすることにより、導電性層が異方導電接着剤として使用する際に、早くに流動することを抑え、且つ流動後の接着効果を十分に発揮できる流動性となさしめるものである。   The anisotropic conductive adhesive according to the present invention has a curing temperature in the epoxy resin used for the conductive layer in order to increase the minimum value of the melt viscosity at the time of use of the epoxy resin used in the conductive layer containing the conductive particles. One characteristic is that two different kinds of curing agents are added. And the hardening | curing agent which raise | generates hardening reaction on the low temperature side among this hardening | curing agent makes 50 degreeC-200 of an electroconductive layer by advancing hardening reaction, when extending and drying an electroconductive layer in a film form. The minimum value of the melt viscosity in the range of ° C. can be set to 400 Pa · s or more and 50000 Pa · s or less. By having such characteristics, when the conductive layer is used as an anisotropic conductive adhesive, it is suppressed to flow quickly, and the fluidity that can fully exhibit the adhesive effect after flowing is assumed. is there.

また、絶縁層は、前記導電性層が流動する前に流動し、回路基板やICチップ等に配置された電極同士の隣接する電極間のを埋める役割を有し、隙間を埋めることにより強度な接着力を生じせしめる。従って、接着時の温度範囲である50℃〜200℃において、溶融粘度の最低値を導電性層より小さくする必要があり、その流動性を体験的に判断して、導電性層における溶融粘度の最低値の1/2以下であれば好結果が得られることを見出した。   In addition, the insulating layer flows before the conductive layer flows, and has a role of filling between adjacent electrodes arranged on a circuit board, an IC chip, etc., and is strong by filling the gap. Gives an adhesive force. Therefore, it is necessary to make the minimum value of the melt viscosity smaller than that of the conductive layer in the temperature range of 50 ° C. to 200 ° C. at the time of bonding. It has been found that good results can be obtained if it is 1/2 or less of the minimum value.

絶縁層における前記溶融粘度の最低値は低すぎると流動して基板上に展延し、不要な範囲にまで樹脂層を形成することになるため、10Pa・s以上あるものを選択するのが好ましい。
好ましくは、使用温度に合わせて溶融粘度の最低値を選択することになる。その後、導電性層に用いる樹脂の前記溶融粘度の最低値を調整し、絶縁層の溶融粘度より2倍以上の溶融粘度を有する樹脂配合とすればよい。
If the minimum value of the melt viscosity in the insulating layer is too low, it will flow and spread on the substrate, and the resin layer will be formed to an unnecessary range. Therefore, it is preferable to select one having 10 Pa · s or more. .
Preferably, the minimum value of the melt viscosity is selected according to the use temperature. Then, what is necessary is just to adjust the minimum value of the said melt viscosity of resin used for an electroconductive layer, and to make it the resin compound which has a melt viscosity 2 times or more than the melt viscosity of an insulating layer.

ここで使用するエポキシ樹脂には、エポキシ樹脂としてビスフェノールA型、F型又はS型のエポキシ樹脂を用いるのが好ましい。そして使用する硬化剤としては、イミダゾール系、アミン系、ジシアンジアミド系、メラミン系、ケチミン系、酸無水物系及びフェノール系からなる群より選ばれる1種以上を選択するのが良い。特にイミダゾール系が好ましく用いられる。   The epoxy resin used here is preferably a bisphenol A type, F type or S type epoxy resin as the epoxy resin. And as a hardening | curing agent to be used, it is good to select 1 or more types chosen from the group which consists of an imidazole type | system | group, an amine type, a dicyandiamide type | system | group, a melamine type | system | group, a ketimine type | system | group, an acid anhydride type | system | group, and a phenol type. In particular, an imidazole system is preferably used.

本発明に用いる硬化剤としては、前記したエポキシ樹脂用硬化剤を用いることができるが、導電性層において、導電性粒子を混合した後、乾燥している間に2種類の硬化剤のうち低温側で反応する硬化剤が反応する必要から、乾燥温度である100℃近辺で反応する硬化剤を用いるのが好ましい。そして、高温側で反応する硬化剤は、接着剤としての使用温度付近で反応する目的から、マイクロカプセル化してある硬化剤が好適に使用できる。   As the curing agent used in the present invention, the above-described curing agent for epoxy resin can be used. In the conductive layer, after mixing the conductive particles, the temperature is low among the two types of curing agents. Since the curing agent that reacts on the side needs to react, it is preferable to use a curing agent that reacts near the drying temperature of 100 ° C. As the curing agent that reacts on the high temperature side, a microencapsulated curing agent can be suitably used for the purpose of reacting near the use temperature as an adhesive.

一方、導電性粒子としては、金属粉末が使用できるが、好ましくは、微細な金属粒が多数、直鎖状に繋がった形状、又は針形状である、いわゆるアスペクト比が大きい形状を有するものが好ましい。
そして、これらの粒子は、導電性層を形成する時点で厚み方向にかけた磁場の中を通過させることにより、厚み方向に配向させて用いるのが好ましい。
従って、用いる金属粉末は、その一部に磁性金属が含まれるものが良く、磁性を有する金属単体、磁性を有する2種類以上の合金、磁性を有する金属と他の金属との合金及び磁性を有する金属を含む複合体のいずれかであるのが好ましい。
On the other hand, as the conductive particles, metal powder can be used, but preferably, a shape having a large number of fine metal particles, linearly connected, or a needle shape, a so-called aspect ratio large shape is preferable. .
These particles are preferably used by being oriented in the thickness direction by passing through a magnetic field applied in the thickness direction at the time of forming the conductive layer.
Accordingly, the metal powder to be used preferably contains a magnetic metal in part, and has a magnetic simple substance, two or more kinds of alloys having magnetism, an alloy of magnetism metal and another metal, and magnetism. It is preferably one of composites containing a metal.

特に好ましくは、導電性粒子が、微細な金属粒が多数、直鎖状に繋がった形状であり、その鎖の太さが50nm以上1μm以下であり、かつアスペクト比が10以上である粒子を50%以上含んでいるものが良い。鎖の太さが50nm未満であると、製造工程中の外力により、折れたりすると長さの効果を得ることができない。又、太さが1μmを超えると、大きな金属粒末となるため、分散性に影響する。アスペクト比が10未満では、膜厚方向に配向させる場合、配向の効果が少ない。
より好ましくは、導電性層の厚みが、前記導電粒子の長さ以下であるように、厚みを調整するとよい。若しくは所望の導電性層の厚みより長い鎖状の金属粉末を用いればよい。
前記する微細な金属が多数鎖状に繋がった形状を有する金属粉末は、3価のチタンイオンの存在下で4価のチタンイオンを還元剤として用い、クエン酸等をクラスターとして利用した湿式還元方法により、入手することができる。
Particularly preferably, the conductive particles have a shape in which a large number of fine metal particles are connected in a straight chain, the chain thickness is 50 nm or more and 1 μm or less, and the aspect ratio is 10 or more. What contains more than% is good. If the chain thickness is less than 50 nm, the length effect cannot be obtained if the chain is broken by an external force during the manufacturing process. On the other hand, when the thickness exceeds 1 μm, a large metal particle powder is produced, which affects the dispersibility. When the aspect ratio is less than 10, the orientation effect is small when the film is oriented in the film thickness direction.
More preferably, the thickness is adjusted so that the thickness of the conductive layer is equal to or less than the length of the conductive particles. Alternatively, a chain metal powder longer than the desired thickness of the conductive layer may be used.
The metal powder having a shape in which a number of fine metals are connected in a chain form is a wet reduction method using tetravalent titanium ions as a reducing agent in the presence of trivalent titanium ions and using citric acid or the like as a cluster. Can be obtained.

以上の組み合わせにより、本発明の異方導電性接着剤は、回路のピッチが十数μm程度の電子回路や、電極間に用いても、隣り合う電極間の電気抵抗も大きく、且つ接着対象電極間の導通抵抗は十分に小さいものとなる。   By the above combination, the anisotropic conductive adhesive of the present invention has a large electric resistance between adjacent electrodes even when it is used between an electronic circuit having a circuit pitch of about a dozen μm or between electrodes, and an electrode to be bonded. The conduction resistance between them is sufficiently small.

以下に実施例をあげるが、本発明は実施例に限定するものでもない。
(実施例)
(溶液の作製)導電性粒子としては3μmから15μmまでの鎖の長さ分布を有する直鎖状ニッケル微粒子を用いた。導電性層の樹脂としては、2種のエポキシ樹脂〔JER(株)製、商品名エピコート1010(分子量約5500)および商品名エピコート828(分子量約380)〕と、二種類の硬化剤〔味の素ファインテクノ(株)製、商品名アミキュア PN−23Jおよび旭化成エポキシ(株)製、商品名ノバキュアHX3941〕とを重量比で70/30/1/9の割合で用いた。
Examples are given below, but the present invention is not limited to the examples.
(Example)
(Preparation of solution) As the conductive particles, linear nickel fine particles having a chain length distribution from 3 μm to 15 μm were used. As the resin for the conductive layer, there are two kinds of epoxy resins (manufactured by JER Corporation, trade name Epicoat 1010 (molecular weight about 5500) and trade name Epicoat 828 (molecular weight about 380)), and two kinds of curing agents [Ajinomoto Fine Co., Ltd. Techno Co., Ltd., trade name Amicure PN-23J and Asahi Kasei Epoxy Co., Ltd., trade name NovaCure HX3941] were used at a weight ratio of 70/30/1/9.

これらの樹脂及び硬化剤を酢酸ブチル、メチルイソブチルケトン、トルエンの重量比55/25/20の混合溶媒に溶解、三本ロールで混合し、樹脂濃度が40重量%である溶液を得た。この溶液に、固形分の総量(Ni粉末+樹脂)に占める割合で表される金属充填率が、0.5体積%となるように前記Ni粉末を添加した後、遠心撹拌ミキサーを用いて撹拌することでNi粉末を均一に分散し、導電性層用の溶液を調製した。   These resins and curing agents were dissolved in a mixed solvent of butyl acetate, methyl isobutyl ketone, and toluene in a weight ratio of 55/25/20 and mixed with three rolls to obtain a solution having a resin concentration of 40% by weight. To this solution, the Ni powder was added so that the metal filling rate represented by the ratio of the total solid content (Ni powder + resin) was 0.5% by volume, and then stirred using a centrifugal stirring mixer. As a result, Ni powder was uniformly dispersed to prepare a solution for the conductive layer.

また、絶縁層用の溶液は、2種のエポキシ樹脂〔JER(株)製、商品名エピコート1010(分子量約5500)および商品名エピコート828(分子量約380)〕と、マイクロカプセル型硬化剤〔旭化成エポキシ(株)製商品名ノバキュアHX3941〕との重量比を70/30/10の割合で用いた樹脂を、酢酸ブチル、メチルイソブチルケトン、トルエンの重量比55/25/20の混合溶媒に溶解して作製した。   In addition, the insulating layer solution includes two types of epoxy resins (manufactured by JER Corporation, trade name Epicoat 1010 (molecular weight about 5500) and trade name Epicoat 828 (molecular weight about 380)), and a microcapsule type curing agent [Asahi Kasei. A resin using a weight ratio of 70/30/10 with Epoxy Co., Ltd. trade name NOVACURE HX3941] was dissolved in a mixed solvent of butyl acetate, methyl isobutyl ketone and toluene in a weight ratio of 55/25/20. Made.

(異方導電性接着剤の作製)前記で調製した導電性層用の溶液を、離型処理したPETフィルム上にドクターナイフを用いて塗布した後、磁束密度100mTの磁場中、80℃で30分間乾燥して溶媒を除去し、その後100℃で1時間加熱することにより低温側硬化剤であるアミキュアのみ硬化反応を進めることによって、膜中の直鎖状粒子が磁場方向に配向した、厚さ12μmの導電性層を得た。この片面に、絶縁層用溶液を塗布し、再び80℃で30分間、乾燥、固化させることによって、目的とする総厚みが25μmの異方導電性接着剤を作製した。   (Preparation of anisotropic conductive adhesive) After applying the solution for the conductive layer prepared above onto a PET film subjected to a release treatment using a doctor knife, it was 30 at 80 ° C. in a magnetic field with a magnetic flux density of 100 mT. The thickness of the linear particles in the film oriented in the direction of the magnetic field by proceeding with the curing reaction only for the low temperature side curing agent Amicure by removing the solvent by drying for 1 minute and then heating at 100 ° C. for 1 hour. A 12 μm conductive layer was obtained. The insulating layer solution was applied to one side, and again dried and solidified at 80 ° C. for 30 minutes, thereby producing an anisotropic conductive adhesive having a target total thickness of 25 μm.

(溶融粘度の測定)前記の2種類の溶液について、溶媒を硬化反応が進行しないよう40℃、真空下で除去し、粘弾性測定装置(レオメトリック社製ARES)を用いて50℃から200℃までの溶融粘度を測定し、その最低値を求めた。以下に述べる比較例に用いた溶液の結果も含めて、得られた結果を表1に示す。 (Measurement of Melt Viscosity) For the two types of solutions described above, the solvent was removed under vacuum at 40 ° C. so that the curing reaction would not proceed. The melt viscosity was measured and the minimum value was determined. The results obtained, including the results of the solutions used in the comparative examples described below, are shown in Table 1.

(比較例1)
絶縁層の樹脂として、2種のエポキシ樹脂〔JER(株)製商品名エピコート1010(分子量約5500)および商品名エピコート828(分子量約380)〕と、硬化剤として、高温側で反応する硬化剤である、マイクロカプセル型硬化剤〔旭化成エポキシ(株)製商品名ノバキュアHX3941〕との重量比を95/5/5の割合で用い、硬化剤を1種類としたこと以外は実施例と同様にして総厚みが25μmの異方導電性接着剤を作製した。この絶縁層は、導電性層の50℃〜200℃における溶融粘度の最低値に対して、同温度域における溶融粘度の最低値が、1/2を超える値となる。
(Comparative Example 1)
As the resin for the insulating layer, two kinds of epoxy resins [trade name Epicoat 1010 (molecular weight about 5500) and trade name Epicoat 828 (molecular weight about 380) manufactured by JER Ltd.] and a curing agent that reacts on the high temperature side as a curing agent The same as in the examples except that the weight ratio of the microcapsule type curing agent [trade name NovaCure HX3941 manufactured by Asahi Kasei Epoxy Co., Ltd.] is 95/5/5, and only one curing agent is used. An anisotropic conductive adhesive having a total thickness of 25 μm was prepared. In this insulating layer, the minimum value of the melt viscosity in the same temperature range exceeds 1/2 with respect to the minimum value of the melt viscosity at 50 ° C. to 200 ° C. of the conductive layer.

(比較例2)
導電性層の樹脂として、2種のエポキシ樹脂〔JER(株)製商品名エピコート1256(分子量約5万)および商品名エピコート828(分子量約380)〕と、高温側で反応する硬化剤である、マイクロカプセル型硬化剤〔旭化成エポキシ(株)製商品名ノバキュアHX3941〕とを重量比で70/30/10の割合で用い、エポキシ樹脂を高分子化したこと、及び硬化剤を1種類としたこと以外は実施例と同様にして総厚みが25μmの異方導電性接着剤を作製した。
(Comparative Example 2)
As a resin for the conductive layer, it is a curing agent that reacts with two types of epoxy resins (trade name Epicoat 1256 (molecular weight of about 50,000) and trade name Epicoat 828 (molecular weight of about 380) manufactured by JER) on the high temperature side. , Using a microcapsule type curing agent [trade name Novacure HX3941 manufactured by Asahi Kasei Epoxy Co., Ltd.] at a weight ratio of 70/30/10, and polymerizing the epoxy resin, and one type of curing agent. Except for this, an anisotropic conductive adhesive having a total thickness of 25 μm was prepared in the same manner as in the example.

(比較例3)
導電性層の樹脂として、2種のエポキシ樹脂〔JER(株)製商品名エピコート1256(分子量約5万)および828(分子量約380)〕と、高温側で反応する硬化剤である、マイクロカプセル型硬化剤〔旭化成エポキシ(株)製ノバキュアHX3941〕とを重量比で70/30/10の割合で用いたこと、即ち高分子量のエポキシ樹脂を用いたこと、及び1種類の硬化剤を用いたこと、さらに導電性粒子として直径5μmの金メッキ樹脂粒子を用いたこと以外は実施例と同様にして総厚みが25μmの異方導電性接着剤を作製した。
(Comparative Example 3)
A microcapsule that is a curing agent that reacts with two types of epoxy resins (trade name Epicoat 1256 (molecular weight of about 50,000) and 828 (molecular weight of about 380) manufactured by JER Corporation) on the high temperature side as the resin of the conductive layer Mold curing agent [NOVACURE HX3941 manufactured by Asahi Kasei Epoxy Co., Ltd.] was used in a weight ratio of 70/30/10, that is, a high molecular weight epoxy resin was used, and one type of curing agent was used. In addition, an anisotropic conductive adhesive having a total thickness of 25 μm was prepared in the same manner as in the example except that gold-plated resin particles having a diameter of 5 μm were used as the conductive particles.

以上の実施例と比較例1〜3を異方導電性接着剤として性能評価した。
(抵抗評価)
幅15μm、長さ100μm、高さ16μmのAuメッキバンプが15μm間隔で700個配列されたICチップと、それと同じ線幅で透明導電回路(ITO)が形成されたガラス基板とを用意した。このICチップと回路基板との間に実施例、比較例で作製した異方導電性接着剤をはさみ、200℃に加熱しながら、1バンプ当たり30gfの圧力で15秒間加圧して接着させた。
そして、ITO電極、異方導電性接着剤とAuバンプとを介して導電接続された連続する480個の電極間の導体抵抗も含めた回路抵抗値を測定した。結果を表1に示す。
The above Examples and Comparative Examples 1 to 3 were evaluated as anisotropic conductive adhesives.
(Resistance evaluation)
An IC chip in which 700 Au plated bumps having a width of 15 μm, a length of 100 μm, and a height of 16 μm were arranged at intervals of 15 μm and a glass substrate on which a transparent conductive circuit (ITO) was formed with the same line width were prepared. The anisotropic conductive adhesives produced in Examples and Comparative Examples were sandwiched between the IC chip and the circuit board, and were heated and bonded at a pressure of 30 gf per bump for 15 seconds while being heated to 200 ° C.
And the circuit resistance value including the conductor resistance between the continuous 480 electrodes conductively connected through the ITO electrode, the anisotropic conductive adhesive and the Au bump was measured. The results are shown in Table 1.

(接着力評価)
幅15μm、長さ100μm、高さ16μmのAuメッキバンプが15μm間隔で700個配列されたICチップと、回路を形成していないITOガラス板とを用意した。このICチップとガラス板との間に実施例、比較例で作製した異方導電接着剤をはさみ、200℃に加熱しながら、1バンプ当たり30gfの圧力で15秒間加圧して接着させた。その後、シェア強度テスター(デイジー製2400PC)を用いて接着力を測定した。得られた結果を表1に示す。
(Adhesive strength evaluation)
An IC chip in which 700 Au plated bumps having a width of 15 μm, a length of 100 μm, and a height of 16 μm were arranged at intervals of 15 μm and an ITO glass plate on which no circuit was formed were prepared. The anisotropic conductive adhesives produced in Examples and Comparative Examples were sandwiched between the IC chip and the glass plate, and were heated and bonded at a pressure of 30 gf per bump for 15 seconds while being heated to 200 ° C. Thereafter, the adhesive strength was measured using a shear strength tester (2400PC manufactured by Daisy). The obtained results are shown in Table 1.

Figure 2005146044
Figure 2005146044

表1に示すように、本発明の一例である実施例は、異方導電性接着剤として使用した際に、接着力がよく、接続抵抗も小さい。比較例1は接着時における溶融粘度の最低値が導電性層の値の1/2より絶縁層のそれが大きくなったため、電極間の接続が好ましくなく、接続抵抗を大きくしている。導電性層に2種の硬化剤を用いていない比較例2は、導電性層の溶融粘度を大きくするために、高分子のエポキシ樹脂を使用した結果、接着時の外観は良いが、接着力が低下し接触抵抗も大きくなっている。さらに、比較例3は、比較例2の結果に対比して、導電性層に使用する導電性粒子を直鎖状ニッケル粉末に代え、直径5μmの金めっきされた樹脂の粒子を用いたものである。50℃〜200℃における導電性層の溶融粘度の最低値は導電性粒子を多く含んだため大きくなるが、接着性には寄与度が減少するため、接着強度は低下する。また、溶融粘度の最低値が大きいため、導電粒子の流動性が好ましくなく、互いに接触しにくくなるため、接続抵抗も大きくなる。
以上のように、本発明になる異方導電性接着剤は、ファインピッチの回路基板やICチップの接続に信頼性のある接続をもたらすものである。とりわけ、導電性層に含まれる導電粒子を配向させることにより、その効果は向上する。
As shown in Table 1, when the example which is an example of the present invention is used as an anisotropic conductive adhesive, the adhesive strength is good and the connection resistance is also small. In Comparative Example 1, since the minimum value of the melt viscosity at the time of adhesion is that of the insulating layer is larger than ½ of the value of the conductive layer, the connection between the electrodes is not preferable, and the connection resistance is increased. Comparative Example 2 which does not use two kinds of curing agents in the conductive layer uses a high molecular weight epoxy resin in order to increase the melt viscosity of the conductive layer. Decreases and the contact resistance also increases. Further, in Comparative Example 3, in contrast to the result of Comparative Example 2, the conductive particles used in the conductive layer were replaced with linear nickel powder, and gold-plated resin particles having a diameter of 5 μm were used. is there. Although the minimum value of the melt viscosity of the conductive layer at 50 ° C. to 200 ° C. increases because it contains a large amount of conductive particles, the contribution to the adhesiveness decreases, so the adhesive strength decreases. In addition, since the minimum value of the melt viscosity is large, the fluidity of the conductive particles is not preferable, and it is difficult to contact each other, so that the connection resistance is increased.
As described above, the anisotropic conductive adhesive according to the present invention provides a reliable connection for the connection of fine pitch circuit boards and IC chips. In particular, the effect is improved by orienting the conductive particles contained in the conductive layer.

Claims (8)

導電性層と、該導電性層の少なくとも片側に積層された絶縁層とからなる異方導電性接着剤であって、前記導電性層は、エポキシ樹脂、導電性粒子及び硬化開始温度が異なる2種類の硬化剤を含む組成物を、前記硬化剤のうち、低温側で反応する硬化剤の反応温度付近で反応させて得られる、その溶融粘度の最低値が50℃から200℃の範囲内で400Pa・s以上、50000Pa・s以下である特性を有し、前記絶縁層は、その溶融粘度の最低値が、50℃から200℃の範囲内で前記導電性層が示す値の1/2以下であることを特徴とする異方導電性接着剤。   An anisotropic conductive adhesive comprising a conductive layer and an insulating layer laminated on at least one side of the conductive layer, wherein the conductive layer is different in epoxy resin, conductive particles, and curing start temperature 2 Within the range of the minimum value of the melt viscosity obtained by reacting a composition containing a kind of curing agent near the reaction temperature of the curing agent that reacts on the low temperature side among the curing agents, within a range of 50 ° C to 200 ° C The insulating layer has a characteristic of 400 Pa · s or more and 50000 Pa · s or less, and the insulating layer has a minimum melt viscosity within a range of 50 ° C. to 200 ° C. and is ½ or less of the value of the conductive layer. An anisotropic conductive adhesive, characterized in that 前記エポキシ樹脂が、ビスフェノールA型、F型又はS型のエポキシ樹脂であり、前記低温側で反応する硬化剤が、イミダゾール系、アミン系、ジシアンジアミド系、メラミン系、ケチミン系、酸無水物系及びフェノール系からなる群より選ばれる1種以上の硬化剤である、請求項1に記載の異方導電性接着剤。   The epoxy resin is a bisphenol A type, F type or S type epoxy resin, and the curing agent that reacts on the low temperature side is an imidazole type, an amine type, a dicyandiamide type, a melamine type, a ketimine type, an acid anhydride type, and The anisotropic conductive adhesive according to claim 1, which is one or more curing agents selected from the group consisting of phenols. 前記導電性粒子が、前記導電性層の厚み方向に配向されている請求項1又は2に記載の異方導電性接着剤。   The anisotropic conductive adhesive according to claim 1 or 2, wherein the conductive particles are oriented in the thickness direction of the conductive layer. 前記導電性粒子が、微細な金属粒が多数、直鎖状に繋がった形状、又は針形状である、請求項1乃至3のいずれかに記載の異方導電性接着剤。   The anisotropic conductive adhesive according to any one of claims 1 to 3, wherein the conductive particles have a shape in which a large number of fine metal particles are connected in a straight chain or a needle shape. 前記導電性粒子が、磁性を有する金属単体、磁性を有する2種類以上の合金、磁性を有する金属と他の金属との合金及び磁性を有する金属を含む複合体のいずれかである請求項1乃至4のいずれかに記載の異方導電性接着剤。   The conductive particles are any one of a simple metal having magnetism, two or more kinds of alloys having magnetism, an alloy of a metal having magnetism with another metal, and a composite containing a metal having magnetism. 4. An anisotropic conductive adhesive according to any one of 4 above. 導電性粒子が、微細な金属粒が多数、直鎖状に繋がった形状であり、その鎖の太さが50nm以上1μm以下であり、かつアスペクト比が10以上である粒子を50%以上含んでいる、請求項1又は2に記載の異方導電性接着剤。   The conductive particles have a shape in which a large number of fine metal particles are connected in a straight chain, the thickness of the chain is 50 nm or more and 1 μm or less, and the particles have an aspect ratio of 10 or more and include 50% or more. The anisotropic conductive adhesive according to claim 1 or 2. 導電性層の厚みが、前記導電粒子の長さ以下である、請求項6に記載の異方導電性接着剤。   The anisotropic conductive adhesive according to claim 6, wherein a thickness of the conductive layer is equal to or less than a length of the conductive particles. 前記絶縁層の50℃〜200℃における溶融粘度の最低値が10Pa・s以上である請求項1に記載の異方導電性接着剤。   The anisotropic conductive adhesive according to claim 1, wherein a minimum value of melt viscosity at 50 ° C. to 200 ° C. of the insulating layer is 10 Pa · s or more.
JP2003382550A 2003-11-12 2003-11-12 Anisotropic conductive adhesive Withdrawn JP2005146044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382550A JP2005146044A (en) 2003-11-12 2003-11-12 Anisotropic conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382550A JP2005146044A (en) 2003-11-12 2003-11-12 Anisotropic conductive adhesive

Publications (1)

Publication Number Publication Date
JP2005146044A true JP2005146044A (en) 2005-06-09

Family

ID=34691593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382550A Withdrawn JP2005146044A (en) 2003-11-12 2003-11-12 Anisotropic conductive adhesive

Country Status (1)

Country Link
JP (1) JP2005146044A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002044A (en) * 2005-06-22 2007-01-11 Tomoegawa Paper Co Ltd Adhesive composition for semiconductor device and adhesive sheet for the semiconductor device
JP2007083213A (en) * 2005-09-26 2007-04-05 Sumitomo Electric Ind Ltd Particle classifying apparatus, and adhesive containing particle classified by the apparatus
WO2009001771A1 (en) * 2007-06-27 2008-12-31 Sony Chemical & Information Device Corporation Adhesive film, connection method, and assembly
JP2010267627A (en) * 2008-06-26 2010-11-25 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2011231139A (en) * 2010-04-23 2011-11-17 Kyocera Chemical Corp Method for forming adhesive layer and adhesive composition
US8247701B2 (en) 2006-04-27 2012-08-21 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic electroconductive film
JP2012160765A (en) * 2012-05-28 2012-08-23 Sumitomo Electric Ind Ltd Flexible printed wiring board and manufacturing method thereof
CN102763283A (en) * 2010-11-09 2012-10-31 索尼化学&信息部件株式会社 Anisotropic conductive film
JP2014022405A (en) * 2012-07-12 2014-02-03 Hitachi Chemical Co Ltd Circuit connection member, circuit connection method and circuit connection structure using the same
WO2014083875A1 (en) * 2012-11-30 2014-06-05 三井金属鉱業株式会社 Electroconductive film and electronic component package
KR20160059354A (en) * 2014-11-18 2016-05-26 에이치엔에스하이텍 (주) Anisotropic conductive adhesive film including nano-sized conductive particles

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691401B2 (en) * 2005-06-22 2011-06-01 株式会社巴川製紙所 Adhesive composition for semiconductor device and adhesive sheet for semiconductor device
JP2007002044A (en) * 2005-06-22 2007-01-11 Tomoegawa Paper Co Ltd Adhesive composition for semiconductor device and adhesive sheet for the semiconductor device
JP2007083213A (en) * 2005-09-26 2007-04-05 Sumitomo Electric Ind Ltd Particle classifying apparatus, and adhesive containing particle classified by the apparatus
US8247701B2 (en) 2006-04-27 2012-08-21 Asahi Kasei Emd Corporation Electroconductive particle placement sheet and anisotropic electroconductive film
WO2009001771A1 (en) * 2007-06-27 2008-12-31 Sony Chemical & Information Device Corporation Adhesive film, connection method, and assembly
JP2009007443A (en) * 2007-06-27 2009-01-15 Sony Chemical & Information Device Corp Adhesion film
US8796557B2 (en) 2007-06-27 2014-08-05 Dexerials Corporation Adhesive film, connecting method, and joined structure
JP2010284973A (en) * 2008-06-26 2010-12-24 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP4661986B2 (en) * 2008-06-26 2011-03-30 日立化成工業株式会社 Resin film sheet and electronic parts
JP4661985B2 (en) * 2008-06-26 2011-03-30 日立化成工業株式会社 Resin film sheet and electronic parts
JP2010267627A (en) * 2008-06-26 2010-11-25 Hitachi Chem Co Ltd Resin film sheet and electronic component
JP2011231139A (en) * 2010-04-23 2011-11-17 Kyocera Chemical Corp Method for forming adhesive layer and adhesive composition
CN102763283A (en) * 2010-11-09 2012-10-31 索尼化学&信息部件株式会社 Anisotropic conductive film
JP2012160765A (en) * 2012-05-28 2012-08-23 Sumitomo Electric Ind Ltd Flexible printed wiring board and manufacturing method thereof
JP2014022405A (en) * 2012-07-12 2014-02-03 Hitachi Chemical Co Ltd Circuit connection member, circuit connection method and circuit connection structure using the same
WO2014083875A1 (en) * 2012-11-30 2014-06-05 三井金属鉱業株式会社 Electroconductive film and electronic component package
JP2014110263A (en) * 2012-11-30 2014-06-12 Mitsui Mining & Smelting Co Ltd Conductive film and electronic component package
KR20160059354A (en) * 2014-11-18 2016-05-26 에이치엔에스하이텍 (주) Anisotropic conductive adhesive film including nano-sized conductive particles
WO2016080677A1 (en) * 2014-11-18 2016-05-26 에이치엔에스하이텍(주) Anisotropic conductive adhesive film comprising conductive nanoparticles
KR101727247B1 (en) * 2014-11-18 2017-04-14 에이치엔에스하이텍 (주) Anisotropic conductive adhesive film including nano-sized conductive particles

Similar Documents

Publication Publication Date Title
TWI546821B (en) Conductive particle, anisotropic conductive film, joined structure, and connecting method
JP5151902B2 (en) Anisotropic conductive film
JP2007091959A (en) Anisotropically conductive adhesive
CN104106182B (en) Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
JPWO2006080247A1 (en) Conductive paste
JP2007026776A (en) Conductive fine particle and adhesive using the same
JP5200744B2 (en) Adhesive and electrode connection method using the same
JP2005146044A (en) Anisotropic conductive adhesive
JP2007317563A (en) Circuit connecting adhesive
US9279070B2 (en) Anisotropic conductive adhesive, method of producing the same, connection structure and producing method thereof
JP2005146043A (en) Anisotropic conductive adhesive
JP2007056209A (en) Adhesive for circuit connection
EP3040392B1 (en) Electrically conductive joining composition, electrically conductive joining sheet, electronic component, and production method for same
JP2010024416A (en) Adhesive for connecting electrodes
JP2010278025A (en) Anisotropic conductive film
JP5609492B2 (en) Electronic component and manufacturing method thereof
JP2009037928A (en) Adhesive for electrode connection
JP5273514B2 (en) Electrode connecting adhesive and method for producing the same
JP4918908B2 (en) Anisotropic conductive film
JP2004238483A (en) Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same
JP4687273B2 (en) Electronic component mounting method
JPH02288019A (en) Anisotropic conductive film
JP2006319051A (en) Manufacturing method of semiconductor device
JP5494299B2 (en) Method for demagnetizing magnetic powder
JP2010280871A (en) Film-like adhesive and film-like anisotropically conductive adhesive

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206