JP2010278025A - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
JP2010278025A
JP2010278025A JP2010192289A JP2010192289A JP2010278025A JP 2010278025 A JP2010278025 A JP 2010278025A JP 2010192289 A JP2010192289 A JP 2010192289A JP 2010192289 A JP2010192289 A JP 2010192289A JP 2010278025 A JP2010278025 A JP 2010278025A
Authority
JP
Japan
Prior art keywords
layer
anisotropic conductive
resin
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010192289A
Other languages
Japanese (ja)
Other versions
JP5563932B2 (en
Inventor
Masahiro Iiyama
昌弘 飯山
Yoshihito Tanaka
芳人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2010192289A priority Critical patent/JP5563932B2/en
Publication of JP2010278025A publication Critical patent/JP2010278025A/en
Application granted granted Critical
Publication of JP5563932B2 publication Critical patent/JP5563932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anisotropic conductive film having superior connectivity in a fine circuit. <P>SOLUTION: The anisotropic conductive film is constituted of a 3-layer structure of an ACF layer 11 which is a conductive particle containing layer, an NCF layer 12 which is a first insulating resin layer, and a pressurized flow layer 13 which is a second insulating resin layer. Due to the pressurized flow layer 13, which does not contain a curing agent, conductive particles jam-packed between bumps are made to be a pressurized flow, outbreak of short-circuits is suppressed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱硬化性樹脂中に導電性粒子が分散された異方性導電フィルムに関する。   The present invention relates to an anisotropic conductive film in which conductive particles are dispersed in a thermosetting resin.

従来、異方性導電フィルム(ACF:Anisotropic Conductive Film)は、プリント基板に半導体などの部品を装着させるために使用されている。例えば、LCD(Liquid Crystal Display)パネルの製造においては、画素をコントロールする駆動IC(集積回路)をガラス基板に接合する、いわゆるチップ・オン・グラス(COG)などに用いられている。   Conventionally, an anisotropic conductive film (ACF) is used for mounting a component such as a semiconductor on a printed circuit board. For example, in the manufacture of an LCD (Liquid Crystal Display) panel, a driving IC (integrated circuit) for controlling pixels is used for a so-called chip-on-glass (COG) that is bonded to a glass substrate.

この異方性導電フィルムをファインピッチの配線接続に用いる場合、異方性導電フィルムに分散された導電性粒子が配線間に挟まり、ショートが発生する不都合がある。このため、例えば、特許文献1には、導電性粒子の全表面を絶縁性皮膜で被覆し、ショートの発生を抑えることが提案されている。   When this anisotropic conductive film is used for fine pitch wiring connection, there is a disadvantage that the conductive particles dispersed in the anisotropic conductive film are sandwiched between the wirings and a short circuit occurs. For this reason, for example, Patent Document 1 proposes that the entire surface of the conductive particles is covered with an insulating film to suppress the occurrence of a short circuit.

しかしながら、特許文献1に記載された技術では、近年の更に微細化された配線間に導電性粒子が挟まった場合、電極間の接続抵抗が上昇してしまい、安定した導通抵抗を得ることが困難であった。   However, in the technique described in Patent Document 1, when conductive particles are sandwiched between wirings that have been further refined in recent years, the connection resistance between the electrodes increases, and it is difficult to obtain a stable conduction resistance. Met.

特開平8−335407号公報JP-A-8-335407

本発明は、このような従来の実情に鑑みて提案されたものであり、微細回路における接続性に優れた異方性導電フィルムを提供する。   The present invention has been proposed in view of such conventional circumstances, and provides an anisotropic conductive film excellent in connectivity in a fine circuit.

本件発明者らは、鋭意検討を行った結果、圧着時に導電性粒子を配線間外に押流すための硬化剤を含有しない絶縁性樹脂層を設けることにより、ショートの発生を抑制し、接続性を向上させることができることを見出した。   As a result of intensive studies, the inventors of the present invention have suppressed the occurrence of short-circuits by providing an insulating resin layer that does not contain a curing agent for causing conductive particles to flow out between the wires during crimping, thereby reducing connectivity. It was found that can be improved.

すなわち、本発明に係る異方性導電フィルムは、膜形成樹脂と、熱硬化性樹脂と、硬化剤と、導電性粒子とを含有する導電性粒子含有層と、膜形成樹脂と、熱硬化性樹脂と、硬化剤とを含有する第1の絶縁性樹脂層と、膜形成樹脂と、熱硬化性樹脂とを含有し、硬化剤を含有しない第2の絶縁性樹脂層とを有する。   That is, the anisotropic conductive film according to the present invention includes a film-forming resin, a thermosetting resin, a curing agent, a conductive particle-containing layer containing conductive particles, a film-forming resin, and a thermosetting resin. It has the 1st insulating resin layer containing resin, a hardening | curing agent, film forming resin, and the 2nd insulating resin layer which contains a thermosetting resin and does not contain a hardening | curing agent.

また、本発明に係る異方性導電フィルムの製造方法は、膜形成樹脂と、熱硬化性樹脂と、硬化剤と、導電性粒子とを含有する導電性粒子含有層と、膜形成樹脂と、熱硬化性樹脂と、硬化剤とを含有する第1の絶縁性樹脂層と、膜形成樹脂と、熱硬化性樹脂とを含有し、硬化剤を含有しない第2の絶縁性樹脂層とを積層させる。   Moreover, the method for producing an anisotropic conductive film according to the present invention includes a film-forming resin, a thermosetting resin, a curing agent, a conductive particle-containing layer containing conductive particles, a film-forming resin, Laminating a first insulating resin layer containing a thermosetting resin, a curing agent, a film-forming resin, and a second insulating resin layer containing a thermosetting resin and no curing agent Let

また、本発明に係る接続方法は、第1の電子部品の端子上に上述した異方性導電フィルムを貼付け、前記異方性導電フィルム上に第2の電子部品を仮配置させ、前記第2の電子部品上から加熱押圧装置により押圧し、前記第1の電子部品の端子と、前記第2の電子部品の端子とを接続させる。   In the connection method according to the present invention, the above-described anisotropic conductive film is pasted on the terminal of the first electronic component, the second electronic component is temporarily arranged on the anisotropic conductive film, and the second The electronic component is pressed by a heat pressing device to connect the terminal of the first electronic component and the terminal of the second electronic component.

また、本発明に係る接続体は、上記接続方法により製造される接続体である。   Moreover, the connection body which concerns on this invention is a connection body manufactured by the said connection method.

本発明によれば、硬化剤を含有しない絶縁性樹脂層が、圧着時に導電性粒子を配線間外に押流すため、ショートの発生を抑制し、接続性を向上させることができる。   According to the present invention, since the insulating resin layer that does not contain a curing agent pushes the conductive particles out of the wiring during pressure bonding, the occurrence of a short circuit can be suppressed and the connectivity can be improved.

異方性導電フィルムの構成例を示す図である。It is a figure which shows the structural example of an anisotropic conductive film. バンプ間に導電性粒子が詰まる状態を説明するための図である。It is a figure for demonstrating the state in which electroconductive particle is jammed between bumps.

以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.異方性導電フィルム
2.異方性導電フィルムの製造方法
3.接続方法
4.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Anisotropic conductive film 2. Manufacturing method of anisotropic conductive film Connection method 4. Example

<1.異方性導電フィルム>
本発明の具体例として示す異方性導電フィルムは、膜形成樹脂と、熱硬化性樹脂と、硬化剤と、導電性粒子とを含有する導電性粒子含有層と、膜形成樹脂と、熱硬化性樹脂と、硬化剤とを含有する第1の絶縁性樹脂層と、膜形成樹脂と、熱硬化性樹脂とを含有し、硬化剤を含有しない第2の絶縁性樹脂層とを有するものである。
<1. Anisotropic Conductive Film>
An anisotropic conductive film shown as a specific example of the present invention includes a film-forming resin, a thermosetting resin, a curing agent, a conductive particle-containing layer containing conductive particles, a film-forming resin, and a thermosetting resin. A first insulating resin layer containing a curable resin, a curing agent, a film-forming resin, a thermosetting resin, and a second insulating resin layer containing no curing agent. is there.

図1は、異方性導電フィルムの構成例を示す図である。本実施の形態における異方性導電フィルムは、図1の(i)〜(iii)に示すように、導電性粒子含有層であるACF層11、第1の絶縁性樹脂層であるNCF層12、及び第2の絶縁性樹脂層である押流し層13の3層構造からなる。   FIG. 1 is a diagram illustrating a configuration example of an anisotropic conductive film. The anisotropic conductive film in the present embodiment includes an ACF layer 11 that is a conductive particle-containing layer and an NCF layer 12 that is a first insulating resin layer, as shown in (i) to (iii) of FIG. , And a three-layer structure of a draft layer 13 which is a second insulating resin layer.

図1の(i)に示す異方性導電フィルムは、剥離フィルムであるPET(Polyethylene Terephthalate)層14から順に押流し層13、NCF層12、及びACF層11が配置された構成である。また、図1の(ii)に示す異方性導電フィルムは、PET層14から順にNCF層12、押流し層13及びACF層11が配置された構成である。また、図1の(iii)に示す異方性導電フィルムは、PET層14から順にNCF層12、ACF層11、及び押流し層13が配置された構成である。一方、図1の(iv)に示す異方性導電フィルムは、PET層14から順にNCF層12、及びACF層11が配置された従来の構成である。   The anisotropic conductive film shown in (i) of FIG. 1 has a configuration in which a push layer 13, an NCF layer 12, and an ACF layer 11 are disposed in order from a PET (Polyethylene Terephthalate) layer 14 that is a release film. In addition, the anisotropic conductive film shown in (ii) of FIG. 1 has a configuration in which an NCF layer 12, a rush current layer 13, and an ACF layer 11 are arranged in this order from the PET layer 14. In addition, the anisotropic conductive film shown in (iii) of FIG. 1 has a configuration in which an NCF layer 12, an ACF layer 11, and an urging layer 13 are arranged in this order from the PET layer. On the other hand, the anisotropic conductive film shown in (iv) of FIG. 1 has a conventional configuration in which the NCF layer 12 and the ACF layer 11 are arranged in this order from the PET layer 14.

従来の異方性導電フィルムは、硬化剤を含有するNCF層12、及びACF層11から構成されるため、図2(A)のように、圧着時に配線間に導電性粒子が挟まった状態で硬化してしまい、ショートが発生することがある。しかし、本実施の形態における異方性導電フィルムは、硬化剤を含有しない押流し層13を有することにより、図2(B)に示すように、圧着時に速やかに熱溶融してバンプ間に詰まった導電性粒子を押流し、ショートの発生を抑制することができる。また、導電性粒子の絶縁性皮膜を厚くするなどの強化を行う必要がないので、低い抵抗で接続させることができる。さらに、導電性粒子の配合量を減らす必要もないので、微細回路でも高い接続信頼性を得ることができる。   Since the conventional anisotropic conductive film is composed of the NCF layer 12 containing the curing agent and the ACF layer 11, the conductive particles are sandwiched between the wirings during crimping as shown in FIG. It may harden and cause a short circuit. However, the anisotropic conductive film according to the present embodiment has a push layer 13 that does not contain a curing agent, and as a result, as shown in FIG. The conductive particles that have been swept away can be suppressed and the occurrence of short circuits can be suppressed. In addition, since it is not necessary to reinforce such as increasing the thickness of the insulating film of conductive particles, the connection can be made with a low resistance. Furthermore, since it is not necessary to reduce the compounding quantity of electroconductive particle, high connection reliability can be acquired also with a fine circuit.

また、本実施の形態における異方性導電フィルムは、図1に示す(i)〜(iii)の構成の中でも、押流し層13がNCF層12及びACF層11に挟持される(ii)の構成であることが好ましい。構成(ii)とすることにより、バンプ間に詰まった導電性粒子を押流してショートの発生を強く抑制するとともに、導電性粒子を高い捕捉率で捕捉することができる。   In addition, the anisotropic conductive film in the present embodiment has the structure (i) to (iii) shown in FIG. 1, in which the push-flow layer 13 is sandwiched between the NCF layer 12 and the ACF layer 11 (ii). A configuration is preferred. By adopting the configuration (ii), the conductive particles clogged between the bumps can be swept to suppress the occurrence of a short circuit, and the conductive particles can be captured at a high capture rate.

また、押流し層13の溶融粘度は、NCF層12が最低溶融粘度を示す温度において、NCF層12及びACF層11の溶融粘度よりも低いことが好ましい。これにより、圧着時に押流し層13が速やかに熱溶融してバンプ間に詰まった導電性粒子を押流すため、ショートの発生を抑制することができる。   Moreover, it is preferable that the melt viscosity of the draft layer 13 is lower than the melt viscosity of the NCF layer 12 and the ACF layer 11 at the temperature at which the NCF layer 12 exhibits the lowest melt viscosity. As a result, the swirling layer 13 quickly heats and melts the conductive particles clogged between the bumps at the time of pressure bonding, so that the occurrence of a short circuit can be suppressed.

また、具体的な押流し層13の溶融粘度は、1.0×10〜2.5×10Pa・sであることが好ましい。押流し層13の溶融粘度が1.0×10Pa・s以上であることにより、押流し層13の形状を維持することができる。また、押流し層13の溶融粘度が2.5×10Pa・s以下であることにより、圧着時の流動性を確保することができ、導電性粒子を押流すことができる。 Moreover, it is preferable that the specific melt viscosity of the draft layer 13 is 1.0 * 10 < 2 > -2.5 * 10 < 3 > Pa * s. When the melt viscosity of the draft layer 13 is 1.0 × 10 2 Pa · s or more, the shape of the draft layer 13 can be maintained. Moreover, the fluidity | liquidity at the time of crimping | compression-bonding can be ensured and the electroconductive particle can be swept away because the melt viscosity of the draft layer 13 is 2.5 * 10 < 3 > Pa * s or less.

また、ACF層11、NCF層12、及び押流し層13の3層の全体厚みは、接続する電子部品のバンプの高さよりも大きいことが好ましい。より好ましくは、バンプの高さに15〜45μmを加算した厚さである。これにより、バンプ間に詰まった導電性粒子を強く押流すことができ、接続抵抗値を低くすることができる。   Moreover, it is preferable that the total thickness of the three layers of the ACF layer 11, the NCF layer 12, and the swirling layer 13 is larger than the height of the bump of the electronic component to be connected. More preferably, the thickness is obtained by adding 15 to 45 μm to the height of the bump. Thereby, the conductive particles clogged between the bumps can be strongly swept away, and the connection resistance value can be lowered.

次に、本実施の形態における異方性導電フィルムのACF層11、NCF層12、押流し層13、及びPET層14について説明する。   Next, the ACF layer 11, the NCF layer 12, the rush layer 13, and the PET layer 14 of the anisotropic conductive film in the present embodiment will be described.

<1−1.ACF層>
ACF層11は、膜形成樹脂と、熱硬化性樹脂と、硬化剤と、導電性粒子とを含有する。
<1-1. ACF layer>
The ACF layer 11 contains a film forming resin, a thermosetting resin, a curing agent, and conductive particles.

膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000〜80000程度の平均分子量であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、ポリエステルウレタン樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂などの種々の樹脂が挙げられ、これらは単独で用いても良いし、2種類以上を組み合わせて用いても良い。これらの中でも膜形成状態、接続信頼性などの観点からフェノキシ樹脂が好適に用いられる。   The film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation. Examples of the film forming resin include various resins such as phenoxy resin, polyester urethane resin, polyester resin, polyurethane resin, acrylic resin, polyimide resin, butyral resin, and these may be used alone or in combination of two or more. You may use it in combination. Among these, phenoxy resin is preferably used from the viewpoints of film formation state, connection reliability, and the like.

熱硬化性樹脂は、エポキシ樹脂、常温で流動性を有する液状エポキシ樹脂などを単独で用いても2種以上を混合して用いてもよい。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂や、ゴム、ウレタン等の各種変成エポキシ樹脂等が例示され、これらは単独でも、2種以上を混合して用いてもよい。また、液状エポキシ樹脂としては、ビスフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができ、これらは単独でも、2種以上を混合して用いてもよい。   As the thermosetting resin, an epoxy resin, a liquid epoxy resin having fluidity at room temperature, or the like may be used alone, or two or more kinds may be mixed and used. Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, various modified epoxy resins such as rubber and urethane, etc. These are used alone or in combination of two or more. May be. Liquid epoxy resins include bisphenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin, and naphthol type epoxy resin. Resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin and the like can be used, and these may be used alone or in admixture of two or more.

硬化剤は、特に制限はなく、目的に応じて適宜選択することができ、例えば、加熱により活性化する潜在性硬化剤、加熱により遊離ラジカルを発生させる潜在性硬化剤などを用いることができる。加熱により活性化する潜在性硬化剤としては、例えば、ポリアミン、イミダゾール等のアニオン系硬化剤やスルホニウム塩などのカチオン系硬化剤などが挙げられる。   The curing agent is not particularly limited and can be appropriately selected depending on the purpose. For example, a latent curing agent that is activated by heating, a latent curing agent that generates free radicals by heating, and the like can be used. Examples of the latent curing agent activated by heating include anionic curing agents such as polyamine and imidazole, and cationic curing agents such as sulfonium salts.

導電性粒子は、電気的に良好な導体であるものであれば使用でき、例えば、銅、銀、ニッケル等の金属粉末や樹脂よりなる粒子を上記金属により被覆したものが挙げられる。また、導電性粒子の全表面を絶縁性の皮膜で被覆したものを用いてもよい。   The conductive particles can be used as long as they are electrically good conductors. Examples thereof include particles in which metal powder such as copper, silver, nickel, or resin is coated with the metal. Moreover, you may use what coat | covered the whole surface of electroconductive particle with the insulating film.

その他の添加組成物として、シランカップリング剤を添加することが好ましい。シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。また、無機フィラーを添加させてもよい。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は特に限定されるものではない。無機フィラーの含有量により、流動性を制御し、粒子捕捉率を向上させることができる。また、ゴム成分なども接合体の応力を緩和させる目的で、適宜使用することができる。   As another additive composition, a silane coupling agent is preferably added. As the silane coupling agent, epoxy, amino, mercapto sulfide, ureido, and the like can be used. Among these, in this Embodiment, an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved. Moreover, you may add an inorganic filler. As the inorganic filler, silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited. Depending on the content of the inorganic filler, the fluidity can be controlled and the particle capture rate can be improved. A rubber component or the like can also be used as appropriate for the purpose of relaxing the stress of the bonded body.

これらACF層11の各構成成分は、NCF層12が最低溶融粘度を示す温度においてACF層11の溶融粘度が押流し層13の溶融粘度よりも大きくなるように配合される。なお、配合の際、これらを溶解させる有機溶剤としては、トルエン、酢酸エチル、又はこれらの混合溶剤、その他各種有機溶剤を用いることができる。   These constituent components of the ACF layer 11 are blended so that the melt viscosity of the ACF layer 11 is greater than the melt viscosity of the swept layer 13 at a temperature at which the NCF layer 12 exhibits the lowest melt viscosity. In addition, as an organic solvent for dissolving them at the time of blending, toluene, ethyl acetate, a mixed solvent thereof, or other various organic solvents can be used.

また、ACF層11の溶融粘度は導電性粒子の粒子捕捉率を向上させる観点から、NCF層12の溶融粘度よりも高いことが好ましい。   The melt viscosity of the ACF layer 11 is preferably higher than the melt viscosity of the NCF layer 12 from the viewpoint of improving the particle capture rate of the conductive particles.

<1−2.NCF層>
NCF層12は、膜形成樹脂と、熱硬化性樹脂と、硬化剤とを含有する。膜形成樹脂、熱硬化性樹脂、及び硬化剤は、ACF層11と同様なものを用いることができる。また、その他の添加組成物として、ACF層と同様に、シランカップリング剤を添加することが好ましい。シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。また、無機フィラーを添加させてもよい。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は特に限定されるものではない。無機フィラーの含有量により、流動性を制御し、粒子捕捉率を向上させることができる。また、ゴム成分なども接合体の応力を緩和させる目的で、適宜使用することができる。
<1-2. NCF layer>
The NCF layer 12 contains a film forming resin, a thermosetting resin, and a curing agent. As the film-forming resin, the thermosetting resin, and the curing agent, those similar to the ACF layer 11 can be used. As other additive composition, it is preferable to add a silane coupling agent as in the case of the ACF layer. As the silane coupling agent, epoxy, amino, mercapto sulfide, ureido, and the like can be used. Among these, in this Embodiment, an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved. Moreover, you may add an inorganic filler. As the inorganic filler, silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited. Depending on the content of the inorganic filler, the fluidity can be controlled and the particle capture rate can be improved. A rubber component or the like can also be used as appropriate for the purpose of relaxing the stress of the bonded body.

これらNCF層12の各構成成分は、NCF層12が最低溶融粘度を示す温度においてNCF層12の溶融粘度が押流し層13の溶融粘度よりも大きくなるように配合される。   These constituent components of the NCF layer 12 are blended so that the melt viscosity of the NCF layer 12 is greater than the melt viscosity of the swept layer 13 at a temperature at which the NCF layer 12 exhibits the lowest melt viscosity.

更に導電性粒子の粒子捕捉率を向上させる観点から、押流し層13、NCF層、ACF層の順に溶融粘度が高くなることが好ましい。   Furthermore, from the viewpoint of improving the particle capture rate of the conductive particles, it is preferable that the melt viscosity becomes higher in the order of the draft layer 13, the NCF layer, and the ACF layer.

<1−3.押流し層>
押流し層13は、膜形成樹脂と、熱硬化性樹脂とを含有する。膜形成樹脂、及び熱硬化性樹脂は、ACF層11と同様なものを用いることができる。また、その他の添加組成物として、ACF層と同様に、シランカップリング剤を添加することが好ましい。シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。また、無機フィラーを添加させてもよい。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は特に限定されるものではない。無機フィラーの含有量により、流動性を制御し、粒子捕捉率を向上させることができる。また、ゴム成分なども接合体の応力を緩和させる目的で、適宜使用することができる。
<1-3. Current layer>
The pushing layer 13 contains a film-forming resin and a thermosetting resin. As the film forming resin and the thermosetting resin, those similar to the ACF layer 11 can be used. As other additive composition, it is preferable to add a silane coupling agent as in the case of the ACF layer. As the silane coupling agent, epoxy, amino, mercapto sulfide, ureido, and the like can be used. Among these, in this Embodiment, an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved. Moreover, you may add an inorganic filler. As the inorganic filler, silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited. Depending on the content of the inorganic filler, the fluidity can be controlled and the particle capture rate can be improved. A rubber component or the like can also be used as appropriate for the purpose of relaxing the stress of the bonded body.

これら押流し層13の各構成成分は、NCF層12が最低溶融粘度を示す温度において、押流し層13の溶融粘度がNCF層12及びACF層11の溶融粘度よりも小さくなるように配合される。具体的な押流し層13の溶融粘度は、1.0×10〜2.5×10Pa・sであることが好ましい。押流し層13の溶融粘度が1.0×10Pa・s以上であることにより、押流し層13の形状を維持することができる。押流し層13の溶融粘度が1.0×10Pa・s未満であると溶融粘度が低すぎる為にフィルム形成に不具合が生じることがあり、2.5×10Pa・sより大きいと溶融粘度が高すぎる為に押流し層13が十分な流動性を確保することができない。また、押流し層13の溶融粘度が2.5×10Pa・s以下であることにより、圧着時の流動性を確保することができ、導電性粒子を押流すことができる。 Each component of the swirling layer 13 is blended so that the melt viscosity of the swirling layer 13 is smaller than the melt viscosity of the NCF layer 12 and the ACF layer 11 at a temperature at which the NCF layer 12 exhibits the lowest melt viscosity. . The specific melt viscosity of the swirling layer 13 is preferably 1.0 × 10 2 to 2.5 × 10 3 Pa · s. When the melt viscosity of the draft layer 13 is 1.0 × 10 2 Pa · s or more, the shape of the draft layer 13 can be maintained. If the melt viscosity of the flow layer 13 is less than 1.0 × 10 2 Pa · s, the melt viscosity may be too low, which may cause problems in film formation, and if it is greater than 2.5 × 10 3 Pa · s. Since the melt viscosity is too high, the swept layer 13 cannot secure sufficient fluidity. Moreover, the fluidity | liquidity at the time of crimping | compression-bonding can be ensured and the electroconductive particle can be swept away because the melt viscosity of the draft layer 13 is 2.5 * 10 < 3 > Pa * s or less.

<1−4.PET層>
PET層14は、例えば、シリコーンなどの剥離剤をPET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methylpentene−1)、PTFE(Polytetrafluoroethylene)などに塗布した積層構造からなり、ACF層11、NCF層12、及び押流し層13の乾燥を防ぐとともに、これらの形状を維持する。
<1-4. PET layer>
The PET layer 14 has a laminated structure in which, for example, a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methylpentene-1), PTFE (Polytetrafluoroethylene), and the like. While preventing the ACF layer 11, the NCF layer 12, and the draft layer 13 from drying, these shapes are maintained.

<2.異方性導電フィルムの製造方法>
次に、上述した異方性導電フィルムの製造方法について説明する。なお、上述した異方性導電フィルムに対応する部分については同一符号を付し、その説明を省略する。
<2. Method for producing anisotropic conductive film>
Next, the manufacturing method of the anisotropic conductive film mentioned above is demonstrated. In addition, about the part corresponding to the anisotropic conductive film mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

本実施の形態における異方性導電フィルムの製造方法は、ACF層11と、NCF層12と、押流し層13とを積層させるものである。具体的には、剥離基材上にACF層11の樹脂組成物を塗布し、乾燥させACF層11を形成し、同様に、NCF層12、及び押流し層13を形成する形成工程と、各層を図1に示す(i)〜(iii)の構成のように張り合わせる張り合わせ工程とを有する。   The method for manufacturing an anisotropic conductive film in the present embodiment is a method in which the ACF layer 11, the NCF layer 12, and the rush current layer 13 are laminated. Specifically, the resin composition of the ACF layer 11 is applied on a release substrate and dried to form the ACF layer 11. Similarly, the NCF layer 12 and the rushing layer 13 are formed, and each layer Are pasted together as in the configurations of (i) to (iii) shown in FIG.

形成工程では、ACF層11、NCF層12、又は押流し層13の樹脂組成物をバーコーター、塗布装置などを用いて剥離基材上に塗布し、剥離基材12上の樹脂組成物を熱オーブン、加熱乾燥装置などを用いて乾燥させ、所定厚さの層を形成する。   In the forming step, the resin composition of the ACF layer 11, the NCF layer 12, or the rushing layer 13 is applied onto the release substrate using a bar coater, a coating apparatus, or the like, and the resin composition on the release substrate 12 is heated. A layer having a predetermined thickness is formed by drying using an oven, a heat drying apparatus, or the like.

張り合わせ工程では、形成工程にて形成された所定厚さのACF層11、NCF層12、及び押流し層13を図1に示す(i)〜(iii)のいずれかの構成で張り合わせ、積層させる。   In the bonding step, the ACF layer 11, the NCF layer 12, and the swirling layer 13 having a predetermined thickness formed in the forming step are bonded and laminated in any one of the configurations (i) to (iii) shown in FIG. .

なお、上述のような製造方法に限られず、剥離基材上に第1層の樹脂組成物を塗布、乾燥させて第1層を形成し、その上に同様にして順次、第2層、第3層を形成してもよい。   In addition, it is not restricted to the above manufacturing methods, The 1st layer resin composition is apply | coated and dried on a peeling base material, a 1st layer is formed on it, and a 2nd layer, a 1st layer are sequentially performed on it similarly. Three layers may be formed.

<3.接続方法>
次に、上述した異方性導電フィルムを用いた電子部品の接続方法について説明する。本実施の形態における電子部品の接続方法は、第1の電子部品の端子上に上述したACF層11と、NCF層12と、押流し層13とを有する異方性導電フィルムを貼付け、この異方性導電フィルム上に第2の電子部品を仮配置させ、第2の電子部品上から加熱押圧装置により押圧し、第1の電子部品の端子と、第2の電子部品の端子とを接続させるものである。これにより、異方性導電フィルムに分散された導電性粒子を介して第1の電子部品の端子と第2の電子部品の端子とが接続された接続体が得られる。
<3. Connection method>
Next, the connection method of the electronic component using the anisotropic conductive film mentioned above is demonstrated. The electronic component connecting method in the present embodiment is performed by attaching an anisotropic conductive film having the ACF layer 11, the NCF layer 12, and the swirling layer 13 to the terminal of the first electronic component. Temporarily disposing the second electronic component on the isotropic conductive film, pressing the second electronic component from the second electronic component with a heat pressing device, and connecting the terminal of the first electronic component and the terminal of the second electronic component Is. Thereby, the connection body by which the terminal of the 1st electronic component and the terminal of the 2nd electronic component were connected via the electroconductive particle disperse | distributed to the anisotropic conductive film is obtained.

本実施の形態では、異方性導電フィルムが、硬化剤を含有しない押流し層13を有することにより、圧着時に速やかに熱溶融して端子間に詰まった導電性粒子を押流し、ショートの発生を抑制することができる。特に、バンプ間スペースが10μm以下のICチップ、千鳥格子バンプを有するICチップなどの微細回路の接続に本実施の形態の異方性導電フィルムを用いることにより、配線間に導電性粒子が挟まるのを防ぐことができ、安定した導通抵抗を得ることができる。   In the present embodiment, since the anisotropic conductive film has the push layer 13 that does not contain a curing agent, the conductive particles quickly melted at the time of pressure bonding and the conductive particles clogged between the terminals are swept away, and a short circuit occurs. Can be suppressed. In particular, by using the anisotropic conductive film of the present embodiment for connection of a fine circuit such as an IC chip having an inter-bump space of 10 μm or less or an IC chip having a staggered lattice bump, conductive particles are sandwiched between wirings. Can be prevented, and a stable conduction resistance can be obtained.

<4.実施例>
以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
<4. Example>
Examples of the present invention will be described below, but the present invention is not limited to these examples.

先ず、表1に示すように、ACF層、NCF層、及び押流し層A〜Cを作製した。   First, as shown in Table 1, an ACF layer, an NCF layer, and a rushing layer A to C were prepared.

[ACF層]
膜形成樹脂としてフェノキシ樹脂(商品名:YP−50、新日鐵化学(株))を20質量部、熱硬化性樹脂として、ビスフェノールA型エポキシ樹脂(商品名:YD−019、新日鐵化学(株))を20質量部、ビスフェノールA型液状エポキシ樹脂(EP828、ジャパンエポキシレジン(株))を40質量部、エポキシ系シランカップリング剤(商品名:A−187、モメンティブ・パフォーマンス・マテリアルズ(株))を2質量部、カチオン重合開始剤として、スルホニウム塩カチオン硬化剤(商品名:SI−60L、三新化学工業(株))を5質量部、樹脂粒子にNi/Auメッキが施された平均粒径3μmの導電性粒子(AU203A、積水化学工業(株))を30質量部配合し、ACF層の樹脂組成物を調製した。これを、剥離処理されたPETにバーコーターを用いて塗布し、70℃のオーブンで5分乾燥させ、所定厚さのACF層を作製した。
[ACF layer]
20 parts by mass of phenoxy resin (trade name: YP-50, Nippon Steel Chemical Co., Ltd.) as the film-forming resin, and bisphenol A type epoxy resin (trade name: YD-019, Nippon Steel Chemical) as the thermosetting resin 20 parts by mass, bisphenol A type liquid epoxy resin (EP828, Japan Epoxy Resin Co., Ltd.) 40 parts by mass, epoxy silane coupling agent (trade name: A-187, Momentive Performance Materials) 2 parts by mass, a cationic polymerization initiator, 5 parts by mass of a sulfonium salt cationic curing agent (trade name: SI-60L, Sanshin Chemical Industry Co., Ltd.), and Ni / Au plating is applied to the resin particles. 30 parts by mass of the conductive particles (AU203A, Sekisui Chemical Co., Ltd.) having an average particle diameter of 3 μm were blended to prepare a resin composition for the ACF layer. This was applied to the peeled PET using a bar coater and dried in an oven at 70 ° C. for 5 minutes to prepare an ACF layer having a predetermined thickness.

[NCF層]
導電性粒子を配合しないこと以外は、ACF層と同様にして所定厚さのNCF層を作製した。
[NCF layer]
An NCF layer having a predetermined thickness was produced in the same manner as the ACF layer except that no conductive particles were blended.

[押流し層A]
膜形成樹脂としてフェノキシ樹脂(商品名:YP−50、新日鐵化学(株))を40質量部、熱硬化性樹脂として、ビスフェノールA型液状エポキシ樹脂(EP828、ジャパンエポキシレジン(株))を40質量部、エポキシ系シランカップリング剤(商品名:A−187、モメンティブ・パフォーマンス・マテリアルズ(株))を2質量部配合し、押流し層Aの樹脂組成物を調製した。これを、剥離処理されたPETにバーコーターを用いて塗布し、70℃のオーブンで乾燥させ、所定厚さの押流し層Aを作製した。
[Swivel layer A]
40 parts by mass of phenoxy resin (trade name: YP-50, Nippon Steel Chemical Co., Ltd.) as a film-forming resin and bisphenol A type liquid epoxy resin (EP828, Japan Epoxy Resin Co., Ltd.) as a thermosetting resin 40 parts by mass and 2 parts by mass of an epoxy-based silane coupling agent (trade name: A-187, Momentive Performance Materials Co., Ltd.) were blended to prepare a resin composition for the rushing layer A. This was applied to the peeled PET using a bar coater, and dried in an oven at 70 ° C. to prepare a scouring layer A having a predetermined thickness.

[押流し層B]
膜形成樹脂としてフェノキシ樹脂(商品名:YP−50、新日鐵化学(株))を20質量部、熱硬化性樹脂として、ビスフェノールA型エポキシ樹脂(商品名:YD−019、新日鐵化学(株))を20質量部、ビスフェノールA型液状エポキシ樹脂(EP828、ジャパンエポキシレジン(株))を40質量部、エポキシ系シランカップリング剤(商品名:A−187、モメンティブ・パフォーマンス・マテリアルズ(株))を2質量部配合し、押流し層Bの樹脂組成物を調製した。これを、剥離処理されたPETにバーコーターを用いて塗布し、80℃のオーブンで乾燥させ、所定厚さの押流し層Bを作製した。
[Casting layer B]
20 parts by mass of phenoxy resin (trade name: YP-50, Nippon Steel Chemical Co., Ltd.) as the film forming resin, and bisphenol A type epoxy resin (trade name: YD-019, Nippon Steel Chemical) as the thermosetting resin 20 parts by mass, bisphenol A type liquid epoxy resin (EP828, Japan Epoxy Resin Co., Ltd.) 40 parts by mass, epoxy silane coupling agent (trade name: A-187, Momentive Performance Materials) 2 parts by mass was blended to prepare a resin composition for the swirling layer B. This was applied to the peeled PET using a bar coater, and dried in an oven at 80 ° C. to produce a rushing layer B having a predetermined thickness.

[押流し層C]
ビスフェノールA型エポキシ樹脂(商品名:YD−019、新日鐵化学(株))を40質量部、ビスフェノールA型液状エポキシ樹脂(EP828、ジャパンエポキシレジン(株))を40質量部、エポキシ系シランカップリング剤(商品名:A−187、モメンティブ・パフォーマンス・マテリアルズ(株))を2質量部配合し、押流し層Cの樹脂組成物を調製した。これを、剥離処理されたPETにバーコーターを用いて塗布し、80℃のオーブンで乾燥させ、所定厚さの押流し層Cを作製した。
[Casting layer C]
40 parts by mass of bisphenol A type epoxy resin (trade name: YD-019, Nippon Steel Chemical Co., Ltd.), 40 parts by mass of bisphenol A type liquid epoxy resin (EP828, Japan Epoxy Resin Co., Ltd.), epoxy silane 2 parts by mass of a coupling agent (trade name: A-187, Momentive Performance Materials Co., Ltd.) was blended to prepare a resin composition for the swirling layer C. This was applied to the peeled PET using a bar coater, and dried in an oven at 80 ° C. to produce a spilled layer C having a predetermined thickness.

<溶融粘度の測定>
回転式レオメータ(TA Instrument社)を用い、所定の測定条件(昇温速度10℃/分、測定圧力5g一定、測定プレート直径8mm)でACF層、NCF層、及び押流し層A〜Cの溶融粘度を測定し、NCF層の最低溶融粘度到達温度T(℃)での溶融粘度を求めた。表1に、T℃でのACF層、NCF層、及び押流し層A〜Cの溶融粘度を示す。
<Measurement of melt viscosity>
Using a rotary rheometer (TA Instrument), melting the ACF layer, the NCF layer, and the swirling layers A to C under predetermined measurement conditions (temperature increase rate 10 ° C./min, measurement pressure 5 g constant, measurement plate diameter 8 mm). The viscosity was measured, and the melt viscosity at the lowest melt viscosity reaching temperature T 0 (° C.) of the NCF layer was determined. Table 1 shows the melt viscosities of the ACF layer, the NCF layer, and the rush layers A to C at T 0 ° C.

Figure 2010278025
Figure 2010278025

次に、ACF層、NCF層、及び押流し層A〜Cを用いて、実施例1〜9及び比較例1の異方性導電フィルムを作製した。   Next, the anisotropic conductive films of Examples 1 to 9 and Comparative Example 1 were prepared using the ACF layer, the NCF layer, and the rushing layers A to C.

[実施例1]
図1に示す構成(i)のように、PET層から順に厚さ10μmの押流し層Cと、厚さ10μmのNCF層と、厚さ10μmのACF層とを張り合わせて積層させ、実施例1の異方性導電フィルムを作製した。
[Example 1]
As in the configuration (i) shown in FIG. 1, a 10 μm-thick swept layer C, a 10 μm-thick NCF layer, and a 10 μm-thick ACF layer are laminated in order from the PET layer, and Example 1 An anisotropic conductive film was prepared.

[実施例2]
図1に示す構成(ii)のように、PET層から順に厚さ10μmのNCF層と、厚さ5μmの押流し層Cと、厚さ10μmのACF層とを張り合わせて積層させ、実施例2の異方性導電フィルムを作製した。
[Example 2]
As in the configuration (ii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, an urging layer C having a thickness of 5 μm, and an ACF layer having a thickness of 10 μm are laminated in order from the PET layer. An anisotropic conductive film was prepared.

[実施例3]
図1に示す構成(ii)のように、PET層から順に厚さ10μmのNCF層と、厚さ10μmの押流し層Aと、厚さ10μmのACF層とを張り合わせて積層させ、実施例3の異方性導電フィルムを作製した。
[Example 3]
As in the configuration (ii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, an urging layer A having a thickness of 10 μm, and an ACF layer having a thickness of 10 μm are laminated and laminated in order from the PET layer. An anisotropic conductive film was prepared.

[実施例4]
図1に示す構成(ii)のように、PET層から順に厚さ10μmのNCF層と、厚さ10μmの押流し層Bと、厚さ10μmのACF層とを張り合わせて積層させ、実施例4の異方性導電フィルムを作製した。
[Example 4]
As in the configuration (ii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, an urging layer B having a thickness of 10 μm, and an ACF layer having a thickness of 10 μm are laminated and laminated in order from the PET layer. An anisotropic conductive film was prepared.

[実施例5]
図1に示す構成(ii)のように、PET層から順に厚さ10μmのNCF層と、厚さ10μmの押流し層Cと、厚さ10μmのACF層とを張り合わせて積層させ、実施例5の異方性導電フィルムを作製した。
[Example 5]
As in the configuration (ii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, an urging layer C having a thickness of 10 μm, and an ACF layer having a thickness of 10 μm are laminated in order from the PET layer. An anisotropic conductive film was prepared.

[実施例6]
図1に示す構成(ii)のように、PET層から順に厚さ10μmのNCF層と、厚さ20μmの押流し層Cと、厚さ10μmのACF層とを張り合わせて積層させ、実施例6の異方性導電フィルムを作製した。
[Example 6]
As in the configuration (ii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, an urging layer C having a thickness of 20 μm, and an ACF layer having a thickness of 10 μm are laminated and laminated in order from the PET layer. An anisotropic conductive film was prepared.

[実施例7]
図1に示す構成(ii)のように、PET層から順に厚さ10μmのNCF層と、厚さ40μmの押流し層Cと、厚さ10μmのACF層とを張り合わせて積層させ、実施例7の異方性導電フィルムを作製した。
[Example 7]
As in the configuration (ii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, an urging layer C having a thickness of 40 μm, and an ACF layer having a thickness of 10 μm are laminated and laminated in order from the PET layer. An anisotropic conductive film was prepared.

[実施例8]
図1に示す構成(ii)のように、PET層から順に厚さ10μmのNCF層と、厚さ60μmの押流し層Cと、厚さ10μmのACF層とを張り合わせて積層させ、実施例8の異方性導電フィルムを作製した。
[Example 8]
As in the configuration (ii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, a current-carrying layer C having a thickness of 60 μm, and an ACF layer having a thickness of 10 μm are laminated together in order from the PET layer. An anisotropic conductive film was prepared.

[実施例9]
図1に示す構成(iii)のように、PET層から順に厚さ10μmのNCF層と、厚さ10μmのACF層と、厚さ10μmの押流し層Cとを張り合わせて積層させ、実施例9の異方性導電フィルムを作製した。
[Example 9]
As in the configuration (iii) shown in FIG. 1, an NCF layer having a thickness of 10 μm, an ACF layer having a thickness of 10 μm, and a swirling layer C having a thickness of 10 μm are laminated and laminated in order from the PET layer. An anisotropic conductive film was prepared.

[比較例1]
図1に示す構成(iv)のように、PET層から順に厚さ10μmのNCF層と、厚さ10μmのACF層とを張り合わせて積層させ、比較例1の異方性導電フィルムを作製した。
[Comparative Example 1]
As in the configuration (iv) shown in FIG. 1, an NCF layer having a thickness of 10 μm and an ACF layer having a thickness of 10 μm were laminated in order from the PET layer, and an anisotropic conductive film of Comparative Example 1 was produced.

<評価>
実施例1〜9及び比較例1の各異方性導電フィルムをガラス基板上にPET層と反対側の面を接触させて配置し、PET層を剥がしてIC(バンプ高さ:15μm、バンプ間スペース:7.5μm)を170℃−50MPa−5secの圧着条件で熱圧着し、接続体を得た。
<Evaluation>
Each anisotropic conductive film of Examples 1 to 9 and Comparative Example 1 was placed on a glass substrate with the surface opposite to the PET layer in contact, and the PET layer was peeled off to remove the IC (bump height: 15 μm, between the bumps) Space: 7.5 μm) was thermocompression bonded under a pressure bonding condition of 170 ° C.-50 MPa-5 sec to obtain a connection body.

このようにして得られた接続体について、ショート数、導通抵抗値及び粒子捕捉数を測定し、評価した。表2に評価結果を示す。なお、ショート数、導通抵抗値及び粒子捕捉数の測定は、次のように行った。   The connection body thus obtained was evaluated by measuring the number of shorts, the conduction resistance value, and the number of trapped particles. Table 2 shows the evaluation results. The number of shorts, conduction resistance value, and number of particles trapped were measured as follows.

[ショート数の測定]
各接続体について、16chの端子間の抵抗値(Ω)を2端子法によって測定し、ショート数(個)を評価した。
[Measure the number of shorts]
About each connection body, the resistance value (ohm) between the terminals of 16ch was measured by the 2 terminal method, and the number of shorts (piece) was evaluated.

[導通抵抗値の測定]
各接合体について、16chの端子間の抵抗値(Ω)を4端子法によって測定し、最大値及び平均値を求めた。
[Measurement of conduction resistance]
About each joined body, the resistance value (ohm) between the terminals of 16ch was measured by the 4-terminal method, and the maximum value and the average value were calculated | required.

[粒子捕捉数の測定]
各接合体について、接合後にバンプ上にある導電性粒子の数(接合後粒子数)を、金属顕微鏡にてカウントすることにより粒子捕捉数を測定した。
[Measurement of the number of trapped particles]
For each bonded body, the number of particles captured on the bump after bonding (the number of particles after bonding) was counted with a metal microscope to measure the number of particles captured.

表2に、実施例1〜9及び比較例1のショート数、導通抵抗値及び粒子捕捉数の評価結果を示す。   Table 2 shows the evaluation results of the number of shorts, the conduction resistance value, and the number of particles trapped in Examples 1 to 9 and Comparative Example 1.

Figure 2010278025
Figure 2010278025

表2から、実施例1〜9は、ACF層、NCF層、及び押流し層A〜Cを有することにより、比較例1に比べて、ショートの発生を抑制し、接続性が向上することが分かった。   From Table 2, Examples 1 to 9 have an ACF layer, an NCF layer, and a current-carrying layer A to C, so that the occurrence of short circuit is suppressed and the connectivity is improved as compared with Comparative Example 1. I understood.

また、実施例1、実施例5、及び実施例9を比較すると、押流し層がACF層とNCF層とに挟まれた構成(ii)とすることにより、ショートの発生が抑制され、低接続抵抗性が損なわれないことが分かった。   In addition, comparing Example 1, Example 5, and Example 9, the structure (ii) in which the current-carrying layer is sandwiched between the ACF layer and the NCF layer suppresses the occurrence of a short circuit and reduces the connection. It was found that the resistance was not impaired.

また、実施例3、実施例4、及び実施例5を比較すると、NCF層及びACF層の溶融粘度よりも低い溶融粘度の押流し層B、Cを使用した実施例4、5は、NCF層及びACF層の溶融粘度よりも高い溶融粘度の押流し層Aを使用した実施例3よりも、ショート数が減少することが分かった。また、押流し層B、Cの溶融粘度より、押流し層の好ましい溶融粘度範囲は、1.0×10〜2.5×10Pa・sであることが分かった。 In addition, when Example 3, Example 4, and Example 5 are compared, Examples 4 and 5 using the current flow layers B and C having a melt viscosity lower than the melt viscosity of the NCF layer and the ACF layer are the NCF layer. It was also found that the number of shorts was reduced as compared with Example 3 using the flowing layer A having a melt viscosity higher than that of the ACF layer. Moreover, it turned out that the preferable melt viscosity range of a forcing layer is 1.0 * 10 < 2 > -2.5 * 10 < 3 > Pa * s from the melt viscosity of the forcing layers B and C. FIG.

また、実施例2、実施例5〜8を比較すると、異方性導電フィルムの総厚み(ACF層+NCF層+押流し層)が、ICのバンプ高さ(15μm)よりも15〜45μm厚いことにより、ショートの発生を抑制し、低接続抵抗性が損なわれないことが分かった。   Further, comparing Example 2 and Examples 5 to 8, the total thickness of the anisotropic conductive film (ACF layer + NCF layer + current flow layer) is 15 to 45 μm thicker than the IC bump height (15 μm). Thus, it was found that the occurrence of short circuit was suppressed and the low connection resistance was not impaired.

11 ACF層、12 NCF層、13 押流し層、14 PRT層   11 ACF layer, 12 NCF layer, 13 Current flow layer, 14 PRT layer

Claims (7)

膜形成樹脂と、熱硬化性樹脂と、硬化剤と、導電性粒子とを含有する導電性粒子含有層と、
膜形成樹脂と、熱硬化性樹脂と、硬化剤とを含有する第1の絶縁性樹脂層と、
膜形成樹脂と、熱硬化性樹脂とを含有し、硬化剤を含有しない第2の絶縁性樹脂層とを有する異方性導電フィルム。
A conductive particle-containing layer containing a film-forming resin, a thermosetting resin, a curing agent, and conductive particles;
A first insulating resin layer containing a film-forming resin, a thermosetting resin, and a curing agent;
An anisotropic conductive film having a film-forming resin and a second insulating resin layer containing a thermosetting resin and containing no curing agent.
前記第2の絶縁性樹脂層は、前記第1の絶縁性樹脂層及び前記導電性粒子含有層に挟持される請求項1記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein the second insulating resin layer is sandwiched between the first insulating resin layer and the conductive particle-containing layer. 前記第2の絶縁性樹脂層の溶融粘度は、前記第1の絶縁性樹脂層が最低溶融粘度を示す温度において、前記第1の絶縁性樹脂層及び前記導電性粒子含有層の溶融粘度よりも低い請求項1又は請求項2記載の異方性導電フィルム。   The melt viscosity of the second insulating resin layer is higher than the melt viscosity of the first insulating resin layer and the conductive particle-containing layer at a temperature at which the first insulating resin layer exhibits the lowest melt viscosity. The anisotropic conductive film of Claim 1 or Claim 2 which is low. 前記第2の絶縁性樹脂層の溶融粘度は、1.0×10〜2.5×10Pa・sである請求項1〜3のいずれかに記載の異方性導電フィルム。 The anisotropic conductive film according to claim 1, wherein the second insulating resin layer has a melt viscosity of 1.0 × 10 2 to 2.5 × 10 3 Pa · s. 膜形成樹脂と、熱硬化性樹脂と、硬化剤と、導電性粒子とを含有する導電性粒子含有層と、
膜形成樹脂と、熱硬化性樹脂と、硬化剤とを含有する第1の絶縁性樹脂層と、
膜形成樹脂と、熱硬化性樹脂とを含有し、硬化剤を含有しない第2の絶縁性樹脂層と
を積層させる異方性導電フィルムの製造方法。
A conductive particle-containing layer containing a film-forming resin, a thermosetting resin, a curing agent, and conductive particles;
A first insulating resin layer containing a film-forming resin, a thermosetting resin, and a curing agent;
A method for producing an anisotropic conductive film comprising laminating a film-forming resin and a second insulating resin layer containing a thermosetting resin and containing no curing agent.
第1の電子部品の端子上に請求項1乃至4のいずれかに記載の異方性導電フィルムを貼付け、
前記異方性導電フィルム上に第2の電子部品を仮配置させ、
前記第2の電子部品上から加熱押圧装置により押圧し、
前記第1の電子部品の端子と、前記第2の電子部品の端子とを接続させる接続方法。
The anisotropic conductive film according to any one of claims 1 to 4 is pasted on a terminal of the first electronic component,
Temporarily disposing a second electronic component on the anisotropic conductive film,
Press with a heating press from above the second electronic component,
A connection method for connecting a terminal of the first electronic component and a terminal of the second electronic component.
請求項6記載の接続方法により製造される接続体。   A connection body manufactured by the connection method according to claim 6.
JP2010192289A 2010-08-30 2010-08-30 Anisotropic conductive film Expired - Fee Related JP5563932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192289A JP5563932B2 (en) 2010-08-30 2010-08-30 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010192289A JP5563932B2 (en) 2010-08-30 2010-08-30 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2010278025A true JP2010278025A (en) 2010-12-09
JP5563932B2 JP5563932B2 (en) 2014-07-30

Family

ID=43424759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192289A Expired - Fee Related JP5563932B2 (en) 2010-08-30 2010-08-30 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP5563932B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141027A1 (en) * 2011-04-14 2012-10-18 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film
JP2015079586A (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Anisotropic conductive film
KR20150050248A (en) 2013-10-31 2015-05-08 제일모직주식회사 Anisotropic conductive film, display device and semiconductor device comprising the same
JP2015167186A (en) * 2014-03-04 2015-09-24 日立化成株式会社 Method of manufacturing connection structure, and connection structure
WO2023053942A1 (en) * 2021-09-30 2023-04-06 デクセリアルズ株式会社 Conductive film, connecting structure, and manufacturing method for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034232A (en) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2008034616A (en) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd Bonding agent for circuit connection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034232A (en) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd Anisotropic conductive film
JP2008034616A (en) * 2006-07-28 2008-02-14 Asahi Kasei Electronics Co Ltd Bonding agent for circuit connection

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141027A1 (en) * 2011-04-14 2012-10-18 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film
JP2012219262A (en) * 2011-04-14 2012-11-12 Sony Chemical & Information Device Corp Anisotropic conductive film
CN103459453A (en) * 2011-04-14 2013-12-18 迪睿合电子材料有限公司 Anisotropic conductive film
JP2015079586A (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Anisotropic conductive film
WO2015056518A1 (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Anisotropic conductive film
CN105594063A (en) * 2013-10-15 2016-05-18 迪睿合株式会社 Anisotropic conductive film
TWI602696B (en) * 2013-10-15 2017-10-21 Dexerials Corp Anisotropic conductive film
US10424538B2 (en) 2013-10-15 2019-09-24 Dexerials Corporation Anisotropic conductive film
KR20150050248A (en) 2013-10-31 2015-05-08 제일모직주식회사 Anisotropic conductive film, display device and semiconductor device comprising the same
KR101659130B1 (en) * 2013-10-31 2016-09-22 제일모직주식회사 Anisotropic conductive film, display device and semiconductor device comprising the same
JP2015167186A (en) * 2014-03-04 2015-09-24 日立化成株式会社 Method of manufacturing connection structure, and connection structure
WO2023053942A1 (en) * 2021-09-30 2023-04-06 デクセリアルズ株式会社 Conductive film, connecting structure, and manufacturing method for same

Also Published As

Publication number Publication date
JP5563932B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
TWI386475B (en) Adhesive film, connecting method, and connected structure
JP4924773B2 (en) Conductive connection material, method for manufacturing electronic component, electronic member with conductive connection material, and electronic component
JP4775377B2 (en) Adhesive film for circuit connection, circuit member connection structure, and circuit member connection method
KR20110066235A (en) Adhesive composition, circuit connecting material using the same, method for connecting circuit members, and circuit connection structure
KR20110099793A (en) Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
CN104106182B (en) Anisotropic conductive connecting material, connection structural bodies, the manufacturing method of connection structural bodies and connection method
JP5563932B2 (en) Anisotropic conductive film
JP2009242508A (en) Adhesive and bonded body
JP4605225B2 (en) Circuit connection material, circuit member connection structure using the same, and manufacturing method thereof
TWI615072B (en) Anisotropic conductive film, connecting method and joined structure
TW201807054A (en) Resin composition comprising conductive particle and electronic apparatus comprising the same
JP5315031B2 (en) Anisotropic conductive film, joined body and method for producing the same
JP7259219B2 (en) Resin composition, cured product thereof, and method for manufacturing semiconductor device
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP2011181467A (en) Method for manufacturing conductive connection sheet, connection method between terminals, method for forming connection terminal, semiconductor device, and electronic device
JP2016072239A (en) Anisotropic conductive film, and connection method
JP6472702B2 (en) Anisotropic conductive film, connection method, and joined body
JP4670859B2 (en) Connection member and electrode connection structure using the same
WO2020203295A1 (en) Adhesive composition
JP2008112732A (en) Connecting method of electrode
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP4760992B2 (en) Connection member and electrode connection structure using the same
JP5544915B2 (en) Conductive connection sheet, connection method between terminals, formation method of connection terminal, semiconductor device and electronic device
JP4670858B2 (en) Repair property imparting method and connecting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140613

R150 Certificate of patent or registration of utility model

Ref document number: 5563932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees