JP2004238483A - Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same - Google Patents

Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same Download PDF

Info

Publication number
JP2004238483A
JP2004238483A JP2003028957A JP2003028957A JP2004238483A JP 2004238483 A JP2004238483 A JP 2004238483A JP 2003028957 A JP2003028957 A JP 2003028957A JP 2003028957 A JP2003028957 A JP 2003028957A JP 2004238483 A JP2004238483 A JP 2004238483A
Authority
JP
Japan
Prior art keywords
solvent
anisotropic conductive
film
conductive film
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003028957A
Other languages
Japanese (ja)
Other versions
JP5204365B2 (en
Inventor
Masamichi Yamamoto
正道 山本
Hideki Kashiwabara
秀樹 柏原
Hideaki Toshioka
英昭 年岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003028957A priority Critical patent/JP5204365B2/en
Publication of JP2004238483A publication Critical patent/JP2004238483A/en
Application granted granted Critical
Publication of JP5204365B2 publication Critical patent/JP5204365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an anisotropic electrically conductive coating material for use in semiconductor equipment, printed circuit boards, and the like, and to prepare an anisotropic electrically conductive film using the same. <P>SOLUTION: The coating material mainly comprises electrically conductive metallic particles comprising fine metallic powder in the form of joining granular metallic particles in a chain-like fashion, a resin, a latent curing agent and a solvent, and has 1-50 Pa.s in viscosity at normal temperatures. In this coating material, the solvent is preferably such one as to be 0.1-5 in relative evaporation rate when putting that of n-butyl acetate as 1, more preferably such as to be 8-12 in SP value, concretely comprising a cyclic ether. The oriented anisotropic electrically conductive film is obtained by magnetic field application while the residual solvent content is regulated to ≤2 wt.% in the film formation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体機器やプリント回路基板等に用いられる異方性導電塗料及びそれを用いてなる異方性導電膜に関する。
【0002】
【従来の技術】
半導体素子等を小型電機部品に取り付けたり、プリント基板を接続する際に、異方性導電材料が用いられる。異方性導電材料は、導電性微粒子をバインダー樹脂に混合して膜状にした異方性導電膜がよく使われる。これらの使用方法は、微小な電極間に異方性導電膜を挟み、圧着すると、異方性導電膜中の導電性物質が電極間で繋がりあい、回路を形成すると共に、電極同士を接着させるものである。
ところが、電気機器や電子部品が小型化するにつれ、基板等の配線が微細になることによる接続部の抵抗が問題化している。また、一方では、プラズマディスプレイ用の素子等は、大電流による駆動が必要となるため、電流容量を大きく取る等の工夫が進められている。
【0003】
これらの問題に対し、その解決手段として、圧着時に実質的に流動しない耐熱樹脂層中に0.2〜1000μmの粒子径を持つ導電性微粒子を分散させた例がある(特許文献1参照)。具体的には、ポリイミド膜に金メッキしたニッケルの粒子を分散させ、その両側にエポキシ樹脂等の接着用フィルムを載せた例がある。
また、固形状エポキシ樹脂と液状エポキシ樹脂の双方を用い、これに硬化剤と、粒子状の樹脂に金属メッキした導電性粒子とを加えたものを、溶解性パラメータ(SP値)が8以上9以下の有機溶剤で溶解したものを用いた異方性導電膜の例もある(特許文献2参照)。
【0004】
【特許文献1】
特開2000−3621号公報 (請求項1、0035)
【特許文献2】
特開平9−25467号公報 (0014〜0018、0033〜0035)
【0005】
【発明が解決しようとする課題】
従来技術のような手段による異方性導電材料は、異方性導電塗料として保管する場合は、加えられている有機溶剤の蒸発が押さえられる組成になっていることが、必須要件であり、それが保管寿命を長くする。ところが、その塗料を用いて異方性導電膜を形成する段階においては、作業時間の問題から、乾燥を早くすることが好ましい。
また、異方性導電膜として保管する場合は、既に溶剤が大部分除去された状態であるが、該導電膜を使用する際に、溶融し硬化することにより、接着が強固となるように、潜在硬化剤を含めておくのが良い。
【0006】
【課題を解決するための手段】
本発明の一つは、粒状の金属粒子が鎖状に繋がった形状を有する金属微粉末を含む導電性金属粒子、樹脂、潜在性硬化剤及び溶剤を主成分とし、常温における粘度が1Pa・s以上50Pa・s以下の範囲である異方性導電塗料である。該溶剤の下式1で表される相対蒸発速度(V)が、酢酸n−ブチルを1としたときに、0.1以上5以下であると、該塗料を製膜する際に好ましく処理できる。
式1:V=ΣaiVi (ai:i成分の重量分率、Vi:i成分の相対蒸発速度)
即ち、蒸発速度を好ましい範囲に設定することにより、作業性を向上する。
こうした蒸発速度を得るためには、使用する樹脂と溶剤の相溶性が関わってくる。絶縁性樹脂としてエポキシ系樹脂やアクリル系樹脂が使用されるが、これらの樹脂の溶解パラメータ(SP)は約10であるため、SP値が8〜12の範囲である溶剤を用いるのが好ましい。特に好ましくは、その溶剤が環状エーテルを含有するとよい。
【0007】
一方、使用する導電性金属粒子には、粒状の金属粒子が鎖状に繋がった形状を有する金属微粉末が含まれているものを用いる。このような形状の金属微粉末を用い、製膜時に磁場を加えることにより、金属微粉末は方向性をもった状態で異方性導電膜となるため、球状もしくは鱗片状のものに比べ、比較的少量の導電性金属粒子を用いて、十分な性能を得ることが出来る。
【0008】
また、本発明のもう一つの異方性導電膜は、前記した異方性導電津量を乾燥して一旦フィルム化して用いる場合が通常であるが、この乾燥した後のフィルム中の残存溶剤量が、2重量%以下であるとよい。また、乾燥時には、フィルムの厚み方向に磁場をかけつつ乾燥すると、塗料中の金属微粉末が配向するので好ましい。
【0009】
【発明の実施の形態】
本発明に用いる樹脂は、使用時において接着剤として用いることから、有機溶剤に溶解し、加熱により有機溶剤を乾燥した後、樹脂被膜形状を保つものが好ましい。また、異方性導電膜として使用するため、基板等を接続する時点で加熱による樹脂変形と共に、あらかじめ添加された潜在性硬化剤と反応して硬化するものとして選択するのが良い。具体的には、エポキシ系樹脂またはアクリル系樹脂を選択するのが良い。
【0010】
本発明に用いる導電性金属粒子は、球状、鱗片状、偏平状のような形状でも使用できるが、アスペクト比の大きな磁性金属粒子を用いるのが好ましい。特に本発明には、微小な金属粒子が鎖状に繋がった形状を有するものを含んだ導電性金属粒子を用いるとよい。このような形状の金属粒子は、磁性金属を三価チタンイオンの存在するアルカリ溶液中で後記する液相還元法を用いることにより得られる。粒子径が数百nm以下で、その粒子が繋がりあって数μmになったものである。このような形状であると、接着剤を皮膜化する際に磁場を加えることにより、フィルムの厚み方向に配向でき、少量の添加で大きな導通性を得ることが出来る。また、配向により導電性粒子を少量とすることが出来るため、接し合う隣接電極への短絡等の危険性を減少できる。さらに、金属粒子の単位が小さいため、接着剤中での分離沈降も起きにくい。なお、このような磁性金属の表面に導電性の良い金属を被覆した複合金属微粉を用いることも好ましい。
【0011】
本発明に用いる潜在性硬化剤は、塗料の段階では効果を必要とせず、導電膜の中に含まれ、導電膜を電極に接着する時点で硬化剤として利用するものである。即ち、塗料を乾燥して導電膜にする温度では反応せず、接着時の温度で反応する温度感応型硬化剤を意味する。溶剤の蒸発温度にも影響するため、100℃以上で反応する硬化剤が好ましい。特に好ましくは、100℃以上で反応するマイクロカプセル型潜在性硬化剤を用いるとよい。
【0012】
本発明に使用する溶剤は、前記樹脂を溶解すると共に、異方性導電膜に形成する際に加熱により蒸発飛散する。その際に膜形成させるための条件が必要である。これには塗料の常温における粘度が大きく作用する。常温で塗布した際に粘度が1Pa・s未満であると乾燥時の高温で流動し、膜表面が平坦になりにくく、かつ所望の膜厚みを得にくくなる。また、常温での塗料粘度が50Pa・sを越えると、製膜時の発泡を押さえることが出来ず、膜表面も平坦になりにくい。且つ塗料内の金属微粒子を磁場で配向させようとしても、粘度が大きいと配向しにくくなる。以上により、塗料粘度は常温で1Pa・s以上50Pa・s以下であるのがよい。
【0013】
また、加熱による蒸発速度を、早くすれば作業がはかどるが、出来る被膜が気泡を含むようであれば、品質上好ましくない。
本発明では、前記蒸発速度が酢酸n−ブチルの常温での蒸発速度を1として、これに対する相対蒸発速度が0.1以上、5以下であるものが好ましい結果を得ることを見いだした。この相対蒸発速度は、ASTM D3539にその測定法と共に記載されており、酢酸n−ブチルの常温での蒸発速度を1として基準としている。この相対蒸発速度が0.1未満であると、蒸発が緩慢なため作業時間を長くさせる。また、蒸発を早めるために加熱温度を上昇させると、あらかじめ配合されている潜在性硬化剤に悪影響を及ぼす。作業時間を短くすれば、出来上がった被膜中の残存溶剤が多くなるため、基板等を接着する際に気泡不良等の原因になる。また、相対蒸発速度が5を越えると、蒸発が早まるため、形成される被膜表面からの乾燥が早く、表面がフィルム化することにより、内部からの溶剤が抜けられず、気泡発生の原因となる。この気泡は、出来上がった被膜中に存在すると、基板等を接着する際に、加熱によるガス膨張で接着を阻害する原因になる。以上から、使用する溶剤の相対蒸発速度が、0.1以上、5以下の溶剤を用いるのが好ましい。
【0014】
なお、式1で示す相対蒸発速度の計算方法は、複数の溶剤を使用する場合であり、単独使用の場合は、測定値もしくは文献値を用いればよい。複数の溶剤を使用する場合は、使用する溶剤の重量分率aiと相対蒸発速度Viを掛け合わせた値を、加えることにより、使用する複数の溶剤を混合した場合の相対蒸発速度Vを得ることが出来る。
【0015】
また、樹脂の溶解性において、使用する樹脂はエポキシ系樹脂もしくはアクリル系樹脂を選択するのが良い。これらの樹脂の溶解パラメーター(SP)が約10であるので、これらの樹脂にあったSPを有する溶剤を選択するのが好ましい。本発明では、SPが8以上、12以下の溶剤を用いると好ましい結果を得ることが出来る。SPが8未満であったり、12を越えると、樹脂の溶解が不十分であり、多量の溶剤が必要になる等の問題を生ずる。このような塗料は、皮膜化する際に被膜の厚みコントロールが難しく、且つ出来上がった被膜が柚肌になったりする等、品質上の問題が起こりやすい。
ここで、使用する溶剤を複数用いる場合のSP値は、各溶剤のSP値とその溶剤の体積分率を掛け合わせたものを加えることにより計算できる。ただし、溶剤同士が均一に混合できることが必要である。
【0016】
特に好ましい溶剤としては環状エーテルを用いるとよい。環状エーテルはエポキシ系樹脂やアクリル系樹脂を良く溶かし、潜在性硬化剤や導電性金属粒子に対して安定であり、好適に使用できる。具体的には、ジオキサン、テトラヒドロフラン、テトラヒドロピランが好ましい。もちろん、これらを含む2種以上の複合溶剤であっても構わない。
【0017】
こうして出来た異方性導電塗料を用いて、異方性導電膜を形成する。異方性導電膜を形成する際には、特に皮膜中の残存溶剤量が皮膜の特性を左右する。本発明における異方性導電膜には、残存溶剤が多くとも2重量%以下にするのが好ましい。2重量%を越える残存溶剤量であると、吸湿しやすくなり、その結果として基板等への接続不良が増加する。
【0018】
また、溶剤乾燥時において、皮膜の厚み方向に磁場を加えると、塗料中の導電性金属微粉末が配向するので好ましい。この場合は、粒状の金属粒子が鎖状に繋がった形状を有する金属微粉末が、磁性を有する必要がある。またアスペクト比の大きな粒子であることが必要である。磁場を加えることで、出来た異方性導電膜を厚み方向に圧着する際、粒子が厚み方向に配向しているため、圧着作業が確実になる。また、配向により、厚み方向から見た導電性金属微粉末の見かけ密度は小さく、被膜断面方向から見た導電性金属微粉末の見かけ密度は大きくなる。すなわち、厚み方向への導電性は大きいが、被膜断面方向への導電性は小さくなる。結果として、圧着時に隣り合う電極への漏電が起きにくくなる。
【0019】
なお、本発明に使用する好ましい導電性金属微粉末は、以下のような液相還元法によって得ることが出来る。
磁性体金属塩化物と、錯化剤(クエン酸ナトリウムなど)を水溶液として用意する。別途、四塩化チタンを水溶液として用意し、これを陰極電解法により還元し、チタンイオンの一部を三価チタンイオンにする。以上の水溶液を約70℃に加温した後混合し、これにアンモニア水を加えて撹拌すると数分後に磁性体金属微粉末が析出する。磁性体金属は、Fe、Co、Niであるが、これらの合金を作製する場合は、合金を形成させる元素の塩化物、硫酸化物、硝酸化物等を最初に加えておけばよい。また、複合化する場合は、複合化させる元素の塩化物、硫酸化物、硝酸化物等の水溶液と、錯化剤水溶液と、前記三価チタンイオンを含む水溶液を用い、混合した後、アンモニア水を加え、これに前記析出物を投入することにより、前記析出物の表面に、複合化させる金属が析出する。複合化させる金属は、Cu、Ag、Au等の導電性が大きい金属元素を選択するとよい。
【0020】
【実施例】
以下に本発明の実施例を示すが、実施例は本発明の効果を示すものであり、本発明を限定するものではない。
(配合例1)導電性金属微粒子に、液相還元法で得られたNiの微粉を用いた。このNi微粉は、粒径が約300nmの微粒子が鎖状に繋がり、長さが10〜13μmのものを主体とする金属微粉末である。
絶縁性樹脂には、固形のエポキシ樹脂(エピコート(登録商標)1009;ジャパンエポキシレジン株製)を用い、これに潜在性硬化剤を加える。潜在性硬化剤は、マイクロカプセル型潜在性硬化剤(HX3721;旭化成エポキシ株製)を用いた。
溶剤には、ジオキサン(相対蒸発速度1.6,SP値9.7)を用いた。
まず、溶剤に絶縁性樹脂を溶解し、常温(25℃)での粘度が15Pa・sの溶液とした(樹脂/溶剤=60/40)。これに絶縁性樹脂/潜在性硬化剤/導電性金属微粒子=80/19/1となる比率で潜在性硬化剤と導電性金属微粒子を添加し、均一になるまで混合し、異方性導電塗料を得た。
【0021】
(配合例2)溶剤に、テトラヒドロフラン(相対蒸発速度4.8,SP値9.5)を用いた(樹脂/溶剤=60/40)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
(配合例3)溶剤に、ジオキサン/アセトン=50/50の混合溶剤(相対蒸発速度3.6,SP値ジオキサン9.7、アセトン9.8)を用いた(樹脂/溶剤=60/40)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
(配合例4)溶剤にジオキサンを用いた(樹脂/溶剤=30/70)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は5Pa・sであった。
(配合例5)溶剤にジオキサンを用いた(樹脂/溶剤=70/30)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は45Pa・sであった。
【0022】
(配合例6)溶剤に、n−酢酸ブチル(相対蒸発速度1.0,SP値8.4)を用いた(樹脂/溶剤40)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
(配合例7)溶剤にエチレングリコールモノエチルエーテル(相対蒸発速度0.4,SP値11.8)を用いた(樹脂/溶剤=50/50)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
(配合例8)溶剤に、エタノール(相対蒸発速度1.5、SP値7.6)を用いた(樹脂/溶剤=20/80)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
(配合例9)溶剤に、ジエチレングリコールモノエチルエーテルアセテート(相対蒸発速度0.001、SP値9.4)を用いた(樹脂/溶剤=60/40)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
【0023】
(配合例10)溶剤に、ジエチルエーテル(相対蒸発速度11,SP値7.6)を用いた(樹脂/溶剤=60/40)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
(配合例11)溶剤に、ヘキサン(相対蒸発速度7.2、SP値7.2)をもちいた(樹脂/溶剤=15/85)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。
(配合例12)溶剤に、ジオキサン/ジエチルエーテル=50/50の混合溶剤(相対蒸発速度6.3、SP値ジオキサン9.7,ジエチルエーテル7.6)を用いた(樹脂/溶剤=45/55)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は15Pa・sであった。混合溶剤のSP値は8.6相当である。
(配合例13)溶剤に、ジオキサンを用いた(樹脂/溶剤=20/80)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は0.5Pa・sであった。
(配合例14)溶剤に、ジオキサンを用いた(樹脂/溶剤=75/25)。他は、配合例1と同様にして異方性導電塗料を得た。常温での粘度は60Pa・sであった。
【0024】
(配合例15)導電性金属粒子に、平均粒径5μmの球状Ni粒子を用いた。また、樹脂/硬化剤/導電性金属粒子=60/15/25の重量比とした。その他は配合例1と同様にして異方性導電塗料を得た。
【0025】
以上の15種類の異方性導電塗料を作製した。この塗料を用いて後述する評価をすると共に、異方性導電膜を作製し、その評価を併せて行った。
膜の作製には、離型処理したPETフィルムを用い、これに最終厚み40μmを目標に異方性導電塗料を塗布した。
加温乾燥中は膜厚方向に磁束密度40000μTの磁場をかけておいた。乾燥後、皮膜中の残存溶剤量を重量変化から求め、残存溶剤量が1.5重量%となるように乾燥時間を変化させた。
なお、配合例1の塗料を用いて乾燥時間を変え、残存溶剤量が5重量%になる時点のサンプルを用意し、これを(配合例16)とした。
また、配合例1の塗料を用意し、乾燥固化する間、磁場をかけずにおいたサンプルを用意し、これを(配合例17)とした。
各配合例における皮膜の乾燥時間及びポットライフ、出来た皮膜の問題点(気泡の有無、接続信頼性)について調査した結果を、表1に示す。なお、評価の判断は以下に示す。
【0026】
(乾燥時間の評価)
各配合例に用いた溶剤の沸点により、乾燥温度は異なるため、乾燥温度の判断を以下のようにした。
使用した溶剤の沸点が110℃以下の時は、その沸点から10℃下げた温度を採用。使用した溶剤の沸点が110℃を越える場合は、沸点に関係なく100℃とする。これは、配合中の潜在性硬化剤が100℃を越えると反応するためである。
この判断により採用した乾燥温度を用い、乾燥を進め、残存溶剤量が目標値に達する時間を、乾燥時間とした。その結果を表1に示す。表1における記号の評価基準は以下の通りである。
◎:乾燥時間が20分以下で、概観も問題ないもの。
○:乾燥時間が20分を越え、30分以下であり、概観も問題ないもの。
△:乾燥時間が30分を越えるか、概観が良くないもの。
【0027】
(ポットライフの評価)
出来た塗料を冷暗所に保管し、定期的に取り出し異方性導電膜を作製し、これを用いてフレキシブルプリント回路(以下FPCと略)とガラス基板とを接着させた。その後の接着強度を90度剥離法でチェックし、接着強度が1kg/cm以下になった時点を、塗料のポットライフとした。結果を表1に示す。なお、表1における記号の判断基準は以下の通りである。
◎:ポットライフが3ヶ月以上ある。
○:ポットライフが1ヶ月を越え、3ヶ月未満である。
△:ポットライフが1ヶ月未満である。
【0028】
(気泡の有無)
作製された異方性導電膜を光学顕微鏡で観察し、1cmあたりの気泡の数を数えた。気泡が多いものは、異方性導電膜として使用する際に、接続不良になりやすい。結果を表1に示す。なお、表1における記号の判断基準は以下の通りである。
◎:気泡がほとんど見られず、1cmでの気泡数は1個未満。概観も良い。
○:1cmあたりの気泡数が1個以上、3個未満。概観も良い。
△:1cmあたりの気泡数が3個以上、概観は難がある。
【0029】
(接続信頼性)
幅25μm、長さ50μm、厚み9μmのAu電極が25μm間隔で配列されている電極を有するFPCを用意した。この電極パターン上に前記配合例を用いて作製した異方性導電膜を載せた。さらにその上にAl膜を蒸着したガラス基板を載せ、100℃に加熱し、Au電極の1電極あたり10gの加重を加え接着した。この試料を接続抵抗計測用試料とした。接続抵抗の計測値は、隣り合う2つのAu電極間の抵抗を計測し、その値を1/2したものを用いた。
次に、同じFPCと異方性導電膜のペアに、Al膜のないガラス基板を載せ、100℃に加熱し、Au電極の1電極あたり10gの加重を加え接着した。この試料を絶縁抵抗計測用試料とした。絶縁抵抗の計測値は、隣り合う2つのAu電極間の抵抗値を用いた。
以上の用意された試料を、温度85℃、湿度85%RHに保った恒温恒湿槽に入れ、500時間放置した。その後、取り出して室温状態で抵抗測定を行った。その結果を表1に示す。なお、表1における記号の判断基準は以下の通りである。
良否の基準を、接続抵抗が1Ω以下を良好とし、1Ωを越える場合を不良と判断。また、絶縁抵抗は、100MΩを越える場合を良好とし、100MΩ以下の場合は、不良と判断。
◎:不良発生率0%。
○:不良発生率1%以下。
△:不良発生率が1%を越える。
【0030】
【表1】

Figure 2004238483
【0031】
表1に示すように、異方性導電塗料の配合例13及び14は粘度が1Pa・s未満か50Pa・s以上であるため、導電膜にした際に良好な導電膜を得ることが出来なかった。このことから、異方性導電塗料は常温(25℃)粘度が1Pa・s以上50Pa・s以下の範囲として用いるのがよい。その他の配合例は導電性膜を作製できた。
【0032】
相対蒸発速度が0.001である溶剤を用いた配合例9は導電膜の形成は出来るが、乾燥時間が長く作業性に劣る。そしてポットライフとしても短期間で使用できなくなるため、好ましくない。逆に相対蒸発速度が11である溶剤を用いた配合例10は、導電膜の形成時間は短時間となり、且つポットライフもかなり長くあるが、乾燥時間が短すぎ、気泡を含んでしまうため好ましくない。同様に相対蒸発速度が5を越える溶剤を用いた配合例11と12は、導電膜形成は可能であるが、蒸発速度が大きいため、気泡を含みやすく不良を発生しやすい。このような場合は、作業時間は長くなるが、乾燥温度を下げ使用するとよい。以上から相対蒸発速度が0.1以上5以下の範囲にある溶剤を用いると、作業性も良くポットライフも使用上問題とならない範囲にあり、好ましい。
【0033】
SP値が8以上12以下の範囲にない溶剤を用いた配合例8は、導電膜を形成できるが、樹脂の溶解性が良くないため、溶剤量を増やした結果、乾燥時間が長くなり、できた導電膜も外観が良くない。特にポットライフは短くなる。別の配合例10と11は、相対蒸発速度が大きいこともあり、使用は可能であるが、導電膜形成時に気泡を巻き込み易いため、異方性導電膜として使用する際に、不良が発生しやすい。その他の配合例1〜7については、問題なく使用できる異方性導電膜を得ている。塗料の乾燥時に適当な乾燥ができ、塗料としてのポットライフもかなり長いため、冷所に保管して繰り返し使うことが出来る。また、作製した異方性導電膜は金属微粉末が膜の厚み方向に配向しているため隣接回路との絶縁抵抗も大きく、電極間の接続抵抗も十分小さくなっている。その中でも特に好ましい配合例は、環状エーテルを溶剤に用いた配合例1〜5である。
【0034】
配合例15は配合例1に用いた、粒状の金属粒子が鎖状に繋がった形状を有する金属微粉末を主体とする導電性金属粒子の代わりに、平均粒径5μmの球状Ni粒子を用いた配合例である。異方性導電膜として使用するためには、金属粒子の量を多く配合した。その結果として表2に示すように、導電性は維持できるものの、隣接する電極との抵抗不足による不良が多くなった。
また、導電膜とする際に、膜中の残存溶剤量を1.5%目標で乾燥したが、配合例1を用いて、残存溶剤量が5%とする配合例16を作製した。この試料の接続信頼性を計測した結果、表2に示すように不良率が18%となり、膜中の残存溶剤量は2%以下としておくのがよい。この不良原因は、残存溶剤が空気中の水分を吸収する結果、接続不良を引き起こしていることが確認された。
配合例17は、配合例1の塗料を製膜する際、磁場をかけずに製膜したものであるが、表2に示すように、導通性不十分による不良が多発した。
【0035】
【表2】
Figure 2004238483
【0036】
【発明の効果】
本発明の異方性導電塗料及びそれを用いた異方性導電膜は、塗料において作業性がよく、長期安定性を有し、膜において不良発生要因となる気泡を含みにくく、かつ電極間の接続信頼性が大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anisotropic conductive paint used for a semiconductor device, a printed circuit board, and the like, and an anisotropic conductive film using the same.
[0002]
[Prior art]
When attaching a semiconductor element or the like to a small electric component or connecting a printed circuit board, an anisotropic conductive material is used. As the anisotropic conductive material, an anisotropic conductive film in which conductive fine particles are mixed with a binder resin to form a film is often used. In these usage methods, when an anisotropic conductive film is sandwiched between minute electrodes and pressed, the conductive material in the anisotropic conductive film is connected between the electrodes to form a circuit and adhere the electrodes. Things.
However, as electrical devices and electronic components have been miniaturized, the resistance of the connection part due to the fine wiring of the substrate and the like has become a problem. On the other hand, devices for plasma displays and the like need to be driven by a large current, and contrivances such as increasing the current capacity are being made.
[0003]
As a solution to these problems, there is an example in which conductive fine particles having a particle diameter of 0.2 to 1000 μm are dispersed in a heat-resistant resin layer which does not substantially flow during pressure bonding (see Patent Document 1). Specifically, there is an example in which gold-plated nickel particles are dispersed in a polyimide film, and an adhesive film such as an epoxy resin is placed on both sides thereof.
Further, a mixture of a solid epoxy resin and a liquid epoxy resin, to which a curing agent and metal-plated conductive particles are added, is used, and the solubility parameter (SP value) is 8 or more and 9 or more. There is also an example of an anisotropic conductive film using one dissolved in the following organic solvent (see Patent Document 2).
[0004]
[Patent Document 1]
JP 2000-3621 (Claim 1, 0035)
[Patent Document 2]
JP-A-9-25467 (0014-0018, 0033-0035)
[0005]
[Problems to be solved by the invention]
Anisotropic conductive material by means such as the prior art, when stored as an anisotropic conductive paint, it is an essential requirement that the composition is such that the evaporation of the added organic solvent is suppressed. Increases the shelf life. However, at the stage of forming an anisotropic conductive film using the paint, it is preferable to speed up drying from the viewpoint of work time.
Also, when stored as an anisotropic conductive film, the solvent is already largely removed, but when using the conductive film, by melting and curing, so that the adhesion is strong, It is good to include a latent curing agent.
[0006]
[Means for Solving the Problems]
One of the present inventions is mainly composed of conductive metal particles containing fine metal powder having a shape in which granular metal particles are connected in a chain, a resin, a latent curing agent and a solvent, and has a viscosity of 1 Pa · s at room temperature. The anisotropic conductive paint has a range of 50 Pa · s or less. When the relative evaporation rate (V) represented by the following formula 1 of the solvent is 0.1 or more and 5 or less when n-butyl acetate is 1, processing can be preferably performed when forming the coating film. .
Formula 1: V = ΣaiVi (ai: weight fraction of i component, Vi: relative evaporation rate of i component)
That is, the workability is improved by setting the evaporation rate in a preferable range.
In order to obtain such an evaporation rate, the compatibility between the resin used and the solvent is involved. An epoxy resin or an acrylic resin is used as the insulating resin. However, since the solubility parameter (SP) of these resins is about 10, it is preferable to use a solvent having an SP value in the range of 8 to 12. Particularly preferably, the solvent contains a cyclic ether.
[0007]
On the other hand, as the conductive metal particles to be used, those containing metal fine powder having a shape in which granular metal particles are connected in a chain are used. By using a metal fine powder of such a shape and applying a magnetic field during film formation, the metal fine powder becomes an anisotropic conductive film in a directional state. Sufficient performance can be obtained using a very small amount of conductive metal particles.
[0008]
In addition, another anisotropic conductive film of the present invention is generally used when the above-described anisotropic conductive amount is dried to form a film once, and the amount of residual solvent in the film after the drying is usually used. Is preferably 2% by weight or less. Further, at the time of drying, it is preferable to dry while applying a magnetic field in the thickness direction of the film because the metal fine powder in the paint is oriented.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the resin used in the present invention is used as an adhesive at the time of use, it is preferable that the resin be dissolved in an organic solvent, dried by heating, and then maintain the resin film shape. In addition, since it is used as an anisotropic conductive film, it is preferable to select a material that reacts with a latent curing agent added in advance and cures together with resin deformation by heating when a substrate or the like is connected. Specifically, it is preferable to select an epoxy resin or an acrylic resin.
[0010]
The conductive metal particles used in the present invention can be used in a shape such as a sphere, a scale, and a flat shape, but it is preferable to use magnetic metal particles having a large aspect ratio. In particular, in the present invention, it is preferable to use conductive metal particles including those having a shape in which minute metal particles are connected in a chain. The metal particles having such a shape can be obtained by using a liquid phase reduction method described later in a magnetic metal in an alkaline solution containing trivalent titanium ions. The particle diameter is several hundred nm or less, and the particles are connected to each other to become several μm. With such a shape, the film can be oriented in the thickness direction of the film by applying a magnetic field when the adhesive is formed into a film, and large conductivity can be obtained with a small amount of addition. In addition, since the conductive particles can be reduced in a small amount depending on the orientation, the risk of a short circuit to the adjacent electrode in contact can be reduced. Further, since the unit of the metal particles is small, separation and sedimentation in the adhesive hardly occurs. Note that it is also preferable to use a composite metal fine powder in which the surface of such a magnetic metal is coated with a metal having good conductivity.
[0011]
The latent curing agent used in the present invention does not require any effect at the paint stage, is included in the conductive film, and is used as a curing agent when the conductive film is bonded to the electrode. That is, it means a temperature-sensitive curing agent that does not react at the temperature at which the paint is dried to form a conductive film, but reacts at the temperature at the time of bonding. A curing agent that reacts at 100 ° C. or higher is preferable because it affects the evaporation temperature of the solvent. It is particularly preferable to use a microcapsule-type latent curing agent that reacts at 100 ° C. or higher.
[0012]
The solvent used in the present invention dissolves the resin and evaporates and disperses by heating when forming the anisotropic conductive film. At that time, conditions for forming a film are necessary. This has a great effect on the viscosity of the paint at room temperature. If the viscosity is less than 1 Pa · s when applied at room temperature, it will flow at a high temperature during drying, making it difficult for the film surface to become flat and obtain a desired film thickness. If the paint viscosity at room temperature exceeds 50 Pa · s, foaming during film formation cannot be suppressed, and the film surface is hardly flat. In addition, even if an attempt is made to orient the metal fine particles in the paint by a magnetic field, if the viscosity is large, it becomes difficult to orient. As described above, it is preferable that the viscosity of the paint be 1 Pa · s or more and 50 Pa · s or less at room temperature.
[0013]
Further, if the evaporation rate by heating is increased, the work is accelerated. However, if the resulting film contains bubbles, it is not preferable in terms of quality.
In the present invention, it has been found that a preferable result is obtained when the relative evaporation rate with respect to the evaporation rate of n-butyl acetate at normal temperature is 1 or more and 0.1 or less. This relative evaporation rate is described in ASTM D3539 together with its measurement method, and is based on the evaporation rate of n-butyl acetate at room temperature as 1. If the relative evaporation rate is less than 0.1, the evaporation time is slow and the working time is lengthened. In addition, if the heating temperature is increased in order to accelerate the evaporation, the latent curing agent that has been added in advance is adversely affected. If the working time is shortened, the amount of the solvent remaining in the completed film increases, which may cause defective bubbles when bonding the substrate or the like. On the other hand, if the relative evaporation rate exceeds 5, the evaporation is accelerated, so that the drying from the surface of the formed film is quick, and the surface is formed into a film, so that the solvent cannot be removed from the inside and causes bubbles. . When these bubbles are present in the completed coating film, they cause gas expansion due to heating to hinder the bonding when bonding the substrate or the like. From the above, it is preferable to use a solvent having a relative evaporation rate of the solvent used of 0.1 or more and 5 or less.
[0014]
The method of calculating the relative evaporation rate shown in Equation 1 is for a case where a plurality of solvents are used, and when used alone, a measured value or a literature value may be used. When a plurality of solvents are used, a value obtained by multiplying the weight fraction ai of the solvent to be used by the relative evaporation rate Vi is added to obtain a relative evaporation rate V when the plurality of solvents to be used are mixed. Can be done.
[0015]
Further, in terms of solubility of the resin, it is preferable to select an epoxy resin or an acrylic resin as a resin to be used. Since the solubility parameter (SP) of these resins is about 10, it is preferable to select a solvent having an SP that is appropriate for these resins. In the present invention, a preferable result can be obtained by using a solvent having an SP of 8 or more and 12 or less. If the SP is less than 8 or more than 12, problems such as insufficient dissolution of the resin and the necessity of a large amount of solvent arise. Such a paint tends to cause quality problems such as difficulty in controlling the thickness of the coating when the coating is formed, and the resulting coating having a yuzu skin.
Here, the SP value when a plurality of solvents are used can be calculated by adding a value obtained by multiplying the SP value of each solvent by the volume fraction of the solvent. However, it is necessary that the solvents can be uniformly mixed.
[0016]
As a particularly preferred solvent, a cyclic ether may be used. The cyclic ether dissolves the epoxy resin or the acrylic resin well, is stable to the latent curing agent and the conductive metal particles, and can be used preferably. Specifically, dioxane, tetrahydrofuran, and tetrahydropyran are preferable. Of course, two or more composite solvents containing these may be used.
[0017]
An anisotropic conductive film is formed using the anisotropic conductive paint thus obtained. When forming an anisotropic conductive film, the amount of the solvent remaining in the film particularly affects the characteristics of the film. In the anisotropic conductive film of the present invention, the residual solvent is preferably at most 2% by weight. When the amount of the residual solvent exceeds 2% by weight, moisture is easily absorbed, and as a result, poor connection to a substrate or the like increases.
[0018]
When drying the solvent, it is preferable to apply a magnetic field in the thickness direction of the film, since the conductive metal fine powder in the paint is oriented. In this case, the metal fine powder having a shape in which the granular metal particles are connected in a chain needs to have magnetism. Further, it is necessary that the particles have a large aspect ratio. By applying a magnetic field, when the resulting anisotropic conductive film is pressed in the thickness direction, the particles are oriented in the thickness direction, so that the pressing operation is ensured. Further, the apparent density of the conductive metal fine powder viewed from the thickness direction is small and the apparent density of the conductive metal fine powder viewed from the coating cross-sectional direction is increased by the orientation. That is, the conductivity in the thickness direction is large, but the conductivity in the cross section direction of the coating film is small. As a result, leakage of current to adjacent electrodes during crimping is less likely to occur.
[0019]
The preferred conductive metal fine powder used in the present invention can be obtained by the following liquid phase reduction method.
A magnetic metal chloride and a complexing agent (such as sodium citrate) are prepared as an aqueous solution. Separately, titanium tetrachloride is prepared as an aqueous solution, which is reduced by a cathodic electrolysis method to convert a part of titanium ions into trivalent titanium ions. After heating the above aqueous solution to about 70 ° C. and mixing, adding aqueous ammonia to the mixture and stirring, a magnetic metal fine powder precipitates after a few minutes. The magnetic metal is Fe, Co, or Ni. When these alloys are manufactured, chlorides, sulfates, nitrates, and the like of the elements that form the alloy may be added first. In the case of complexing, an aqueous solution of chloride, sulfate, nitrate, or the like of the element to be complexed, an aqueous solution of a complexing agent, and an aqueous solution containing the trivalent titanium ion are used, and then mixed. In addition, by adding the precipitate to this, the metal to be composited is deposited on the surface of the precipitate. As the metal to be composited, a metal element having high conductivity such as Cu, Ag, or Au is preferably selected.
[0020]
【Example】
Examples of the present invention will be described below, but the examples show the effects of the present invention and do not limit the present invention.
(Formulation Example 1) Ni fine powder obtained by a liquid phase reduction method was used as conductive metal fine particles. The Ni fine powder is a metal fine powder mainly composed of fine particles having a particle diameter of about 300 nm connected in a chain and having a length of 10 to 13 μm.
As the insulating resin, a solid epoxy resin (Epicoat (registered trademark) 1009; manufactured by Japan Epoxy Resin Co., Ltd.) is used, and a latent curing agent is added thereto. As the latent curing agent, a microcapsule-type latent curing agent (HX3721; manufactured by Asahi Kasei Epoxy Corporation) was used.
Dioxane (relative evaporation rate 1.6, SP value 9.7) was used as the solvent.
First, an insulating resin was dissolved in a solvent to obtain a solution having a viscosity of 15 Pa · s at normal temperature (25 ° C.) (resin / solvent = 60/40). The latent hardener and the conductive metal fine particles are added to the mixture in a ratio of insulating resin / latent curing agent / conductive metal fine particles = 80/19/1, and mixed until uniform, and then mixed with the anisotropic conductive paint. Got.
[0021]
(Compounding Example 2) Tetrahydrofuran (relative evaporation rate 4.8, SP value 9.5) was used as a solvent (resin / solvent = 60/40). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
(Formulation Example 3) A mixed solvent of dioxane / acetone = 50/50 (relative evaporation rate 3.6, SP value dioxane 9.7, acetone 9.8) was used as the solvent (resin / solvent = 60/40). . Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
(Formulation Example 4) Dioxane was used as a solvent (resin / solvent = 30/70). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 5 Pa · s.
(Formulation Example 5) Dioxane was used as a solvent (resin / solvent = 70/30). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 45 Pa · s.
[0022]
(Formulation Example 6) n-butyl acetate (relative evaporation rate 1.0, SP value 8.4) was used as a solvent (resin / solvent 40). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
(Formulation Example 7) Ethylene glycol monoethyl ether (relative evaporation rate 0.4, SP value 11.8) was used as a solvent (resin / solvent = 50/50). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
(Compounding Example 8) Ethanol (relative evaporation rate 1.5, SP value 7.6) was used as a solvent (resin / solvent = 20/80). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
(Compounding Example 9) Diethylene glycol monoethyl ether acetate (relative evaporation rate 0.001, SP value 9.4) was used as a solvent (resin / solvent = 60/40). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
[0023]
(Formulation Example 10) Diethyl ether (relative evaporation rate 11, SP value 7.6) was used as a solvent (resin / solvent = 60/40). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
(Formulation Example 11) Hexane (relative evaporation rate 7.2, SP value 7.2) was used as a solvent (resin / solvent = 15/85). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s.
(Formulation Example 12) A mixed solvent of dioxane / diethyl ether = 50/50 (relative evaporation rate 6.3, SP value dioxane 9.7, diethyl ether 7.6) was used as the solvent (resin / solvent = 45 /). 55). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 15 Pa · s. The SP value of the mixed solvent is equivalent to 8.6.
(Formulation Example 13) Dioxane was used as a solvent (resin / solvent = 20/80). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 0.5 Pa · s.
(Formulation Example 14) Dioxane was used as a solvent (resin / solvent = 75/25). Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained. The viscosity at room temperature was 60 Pa · s.
[0024]
(Formulation Example 15) Spherical Ni particles having an average particle size of 5 µm were used as the conductive metal particles. The weight ratio of resin / hardener / conductive metal particles was 60/15/25. Otherwise in the same manner as in Formulation Example 1, an anisotropic conductive paint was obtained.
[0025]
The above 15 kinds of anisotropic conductive paints were produced. Using the paint, an evaluation described later was made, an anisotropic conductive film was prepared, and the evaluation was also performed.
For the production of the film, a release-treated PET film was used, and an anisotropic conductive paint was applied to this film with a target of a final thickness of 40 μm.
During the heating and drying, a magnetic field having a magnetic flux density of 40,000 μT was applied in the film thickness direction. After drying, the amount of the remaining solvent in the film was determined from the change in weight, and the drying time was changed so that the amount of the remaining solvent was 1.5% by weight.
The drying time was changed using the paint of Formulation Example 1, and a sample at the time when the amount of the residual solvent became 5% by weight was prepared and designated as (Formulation Example 16).
In addition, a sample of Preparation Example 1 was prepared and a magnetic field was not applied during drying and solidification, and a sample was prepared (Formulation Example 17).
Table 1 shows the results of investigations on the drying time and pot life of the film and the problems (bubble presence, connection reliability) of the formed film in each formulation example. The evaluation is shown below.
[0026]
(Evaluation of drying time)
Since the drying temperature differs depending on the boiling point of the solvent used in each formulation example, the drying temperature was determined as follows.
When the boiling point of the solvent used is 110 ° C. or lower, a temperature lowered by 10 ° C. from the boiling point is adopted. When the boiling point of the used solvent exceeds 110 ° C., the temperature is set to 100 ° C. regardless of the boiling point. This is because the latent curing agent in the compound reacts when it exceeds 100 ° C.
The drying was carried out using the drying temperature adopted by this judgment, and the time during which the residual solvent amount reached the target value was taken as the drying time. Table 1 shows the results. The evaluation criteria for the symbols in Table 1 are as follows.
◎: The drying time was 20 minutes or less, and the appearance was no problem.
:: Drying time was longer than 20 minutes and shorter than 30 minutes, and the appearance was not problematic.
Δ: Drying time exceeds 30 minutes or appearance is not good.
[0027]
(Evaluation of pot life)
The resulting paint was stored in a cool and dark place and periodically taken out to produce an anisotropic conductive film, which was used to bond a flexible printed circuit (hereinafter abbreviated as FPC) to a glass substrate. Thereafter, the adhesive strength was checked by a 90-degree peeling method, and the time when the adhesive strength became 1 kg / cm or less was defined as the pot life of the paint. Table 1 shows the results. The criteria for the symbols in Table 1 are as follows.
A: Pot life is 3 months or more.
:: The pot life is longer than 1 month and shorter than 3 months.
Δ: Pot life is less than one month.
[0028]
(With or without air bubbles)
The produced anisotropic conductive film was observed with an optical microscope, and the number of bubbles per 1 cm 2 was counted. When using as an anisotropic conductive film, those having many air bubbles are liable to cause connection failure. Table 1 shows the results. The criteria for the symbols in Table 1 are as follows.
:: Almost no bubbles were observed, and the number of bubbles in 1 cm 2 was less than 1. Good overview.
○: The number of bubbles per 1 cm 2 is 1 or more and less than 3. Good overview.
Δ: The number of bubbles per 1 cm 2 is 3 or more, and the appearance is difficult.
[0029]
(Connection reliability)
An FPC having electrodes in which Au electrodes having a width of 25 μm, a length of 50 μm, and a thickness of 9 μm were arranged at intervals of 25 μm was prepared. On this electrode pattern, the anisotropic conductive film produced by using the above-mentioned composition example was placed. Further, a glass substrate on which an Al film was vapor-deposited was placed thereon, heated to 100 ° C., and bonded by applying a load of 10 g per Au electrode. This sample was used as a sample for connection resistance measurement. The measured value of the connection resistance was obtained by measuring the resistance between two adjacent Au electrodes and halving the measured value.
Next, a glass substrate without an Al film was placed on the same pair of the FPC and the anisotropic conductive film, heated to 100 ° C., and bonded by applying a load of 10 g per Au electrode. This sample was used as a sample for insulation resistance measurement. As a measured value of the insulation resistance, a resistance value between two adjacent Au electrodes was used.
The sample prepared above was placed in a thermo-hygrostat kept at a temperature of 85 ° C. and a humidity of 85% RH, and left for 500 hours. Then, it was taken out and subjected to resistance measurement at room temperature. Table 1 shows the results. The criteria for the symbols in Table 1 are as follows.
The criterion of pass / fail was judged to be good when the connection resistance was 1Ω or less, and judged to be bad when the connection resistance exceeded 1Ω. Also, the insulation resistance is judged to be good when it exceeds 100 MΩ, and is judged to be bad when it is 100 MΩ or less.
A: Defect occurrence rate 0%.
:: The defect occurrence rate is 1% or less.
Δ: The defect occurrence rate exceeds 1%.
[0030]
[Table 1]
Figure 2004238483
[0031]
As shown in Table 1, since the viscosity of Formulation Examples 13 and 14 of the anisotropic conductive paint is less than 1 Pa · s or 50 Pa · s or more, a good conductive film cannot be obtained when the conductive film is formed. Was. For this reason, it is preferable that the anisotropic conductive paint has a normal temperature (25 ° C.) viscosity of 1 Pa · s to 50 Pa · s. In other formulation examples, a conductive film could be produced.
[0032]
Formulation Example 9 using a solvent having a relative evaporation rate of 0.001 can form a conductive film, but has a long drying time and poor workability. And it is not preferable because the pot life cannot be used in a short period of time. Conversely, Formulation Example 10 using a solvent having a relative evaporation rate of 11 is preferable because the formation time of the conductive film is short and the pot life is considerably long, but the drying time is too short and bubbles are contained. Absent. Similarly, in Formulation Examples 11 and 12 using a solvent having a relative evaporation rate of more than 5, a conductive film can be formed, but since the evaporation rate is high, bubbles are likely to be contained and defects are likely to occur. In such a case, although the working time is prolonged, it is preferable to use a lower drying temperature. From the above, it is preferable to use a solvent having a relative evaporation rate in the range of 0.1 or more and 5 or less, since the workability is good and the pot life is in a range where there is no problem in use.
[0033]
Formulation Example 8 using a solvent having an SP value not in the range of 8 or more and 12 or less can form a conductive film, but the solubility of the resin is not good. The conductive film also has poor appearance. Especially the pot life is shortened. The other formulation examples 10 and 11 may be used because the relative evaporation rate is high, but air bubbles are easily involved during the formation of the conductive film, so that when used as an anisotropic conductive film, defects occur. Cheap. For the other formulation examples 1 to 7, anisotropic conductive films that can be used without any problem were obtained. The paint can be dried properly when dried, and the pot life of the paint is quite long, so it can be stored in a cool place and used repeatedly. In addition, in the produced anisotropic conductive film, since the metal fine powder is oriented in the thickness direction of the film, the insulation resistance with the adjacent circuit is large, and the connection resistance between the electrodes is sufficiently small. Among them, particularly preferred formulation examples are Formulation Examples 1 to 5 using a cyclic ether as a solvent.
[0034]
In Formulation Example 15, spherical Ni particles having an average particle size of 5 μm were used instead of the conductive metal particles used in Formulation Example 1, which was mainly composed of fine metal powder having a shape in which granular metal particles were connected in a chain. This is a formulation example. For use as an anisotropic conductive film, a large amount of metal particles was blended. As a result, as shown in Table 2, although conductivity could be maintained, failures due to insufficient resistance between adjacent electrodes increased.
In addition, when forming the conductive film, the amount of the residual solvent in the film was dried at a target of 1.5%. Using Formulation Example 1, Formulation Example 16 in which the remaining solvent amount was 5% was produced. As a result of measuring the connection reliability of this sample, as shown in Table 2, the defect rate is 18%, and the amount of the residual solvent in the film is preferably 2% or less. It has been confirmed that the cause of this failure is that the residual solvent absorbs moisture in the air, resulting in poor connection.
In Formulation Example 17, when the coating material of Formulation Example 1 was formed, a film was formed without applying a magnetic field. As shown in Table 2, defects due to insufficient conductivity occurred frequently.
[0035]
[Table 2]
Figure 2004238483
[0036]
【The invention's effect】
The anisotropic conductive paint of the present invention and the anisotropic conductive film using the same have good workability in the paint, have long-term stability, are unlikely to contain air bubbles that may cause a defect in the film, and have a property between the electrodes. High connection reliability.

Claims (6)

粒状の金属粒子が鎖状に繋がった形状を有する金属微粉末を含む導電性金属粒子、樹脂、潜在性硬化剤及び溶剤を主成分とし、常温における粘度が1Pa・s以上50Pa・s以下の範囲である異方性導電塗料。Conductive metal particles containing fine metal powder having a shape in which granular metal particles are connected in a chain, a resin, a latent curing agent and a solvent as main components, and a viscosity at room temperature of 1 Pa · s or more and 50 Pa · s or less. Anisotropic conductive paint. 前記溶剤において、式1で表される相対蒸発速度(V)が、酢酸n−ブチルを1としたときに、0.1以上5以下である請求項1に記載の異方性導電塗料。
式1:V=ΣaiVi (ai:i成分の重量分率、Vi:i成分の相対蒸発速度)
2. The anisotropic conductive paint according to claim 1, wherein a relative evaporation rate (V) represented by Formula 1 in the solvent is 0.1 or more and 5 or less when n-butyl acetate is set to 1. 3.
Formula 1: V = ΣaiVi (ai: weight fraction of i component, Vi: relative evaporation rate of i component)
前記溶剤の、溶解パラメータ(SP)が8〜12の範囲であることを特徴とする請求項1に記載の異方性導電塗料。The anisotropic conductive paint according to claim 1, wherein a solubility parameter (SP) of the solvent is in a range of 8 to 12. 前記溶剤には、環状エーテルが含まれる、請求項1又は2に記載の異方性導電塗料。The anisotropic conductive paint according to claim 1, wherein the solvent includes a cyclic ether. 請求項1乃至4のいずれかに記載の異方性導電塗料を用いて導電膜を作製した時に、残留溶剤量が導電膜の2重量%以下である、異方性導電膜。An anisotropic conductive film, wherein the amount of a residual solvent is 2% by weight or less of the conductive film when the conductive film is produced using the anisotropic conductive paint according to claim 1. 請求項1乃至4のいずれかに記載の異方性導電塗料を用いて導電膜を製膜する際に、膜の厚み方向に磁場をかけた状態で膜を形成してなる異方性導電膜。An anisotropic conductive film formed by applying a magnetic field in the thickness direction of the film when forming the conductive film using the anisotropic conductive paint according to claim 1. .
JP2003028957A 2003-02-06 2003-02-06 Anisotropic conductive paint and anisotropic conductive film using the same Expired - Fee Related JP5204365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028957A JP5204365B2 (en) 2003-02-06 2003-02-06 Anisotropic conductive paint and anisotropic conductive film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028957A JP5204365B2 (en) 2003-02-06 2003-02-06 Anisotropic conductive paint and anisotropic conductive film using the same

Publications (2)

Publication Number Publication Date
JP2004238483A true JP2004238483A (en) 2004-08-26
JP5204365B2 JP5204365B2 (en) 2013-06-05

Family

ID=32956264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028957A Expired - Fee Related JP5204365B2 (en) 2003-02-06 2003-02-06 Anisotropic conductive paint and anisotropic conductive film using the same

Country Status (1)

Country Link
JP (1) JP5204365B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249342A (en) * 2005-03-14 2006-09-21 Sumitomo Electric Ind Ltd Adhesive composition and anisotropic conductive adhesive using the same
EP2166544A1 (en) * 2008-09-22 2010-03-24 Teamchem Company Anisotropic conductive material
US7785494B2 (en) 2007-08-03 2010-08-31 Teamchem Company Anisotropic conductive material
JP2011012210A (en) * 2009-07-03 2011-01-20 Nof Corp Conductive hard coat film and antireflection film
JP2011132541A (en) * 2011-03-22 2011-07-07 Sumitomo Electric Ind Ltd Adhesive composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102165264B1 (en) * 2013-10-10 2020-10-13 삼성전자 주식회사 Non-conductive film comprising zinc particle, Non-conductive paste comprising zinc particle, semiconductor package comprising the same, and method of manufacturing the same
KR102258616B1 (en) 2018-01-10 2021-05-28 주식회사 엘지화학 Method of manufacturing insulating film for semiconductor package and insulating film for semiconductor package using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186413A (en) * 1986-02-12 1987-08-14 住友ベークライト株式会社 Anisotropic conductive film
JPH0280484A (en) * 1988-09-16 1990-03-20 Casio Comput Co Ltd Conductive adhesive and bonding process
JPH05117419A (en) * 1991-10-30 1993-05-14 Sumitomo Bakelite Co Ltd Anisotropically conductive film
JPH05247424A (en) * 1992-01-10 1993-09-24 Minnesota Mining & Mfg Co <3M> Adhesive composition for anisotropic electroconductive membrane
JPH0925467A (en) * 1995-07-12 1997-01-28 Sony Chem Corp Anisotropic electroconductive film
JPH09115335A (en) * 1995-10-18 1997-05-02 Sony Chem Corp Anisotropic conductive adhesive film
JPH1030082A (en) * 1996-07-16 1998-02-03 Fujitsu Ltd Adhesive
JP2002001096A (en) * 2000-06-22 2002-01-08 Fuji Photo Film Co Ltd Method for producing chain-like metal colloidal dispersion
JP2002003746A (en) * 2000-06-16 2002-01-09 Sumitomo Osaka Cement Co Ltd Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2002298654A (en) * 2001-01-24 2002-10-11 Kaken Tec Kk Conductive powder and conductive composite

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186413A (en) * 1986-02-12 1987-08-14 住友ベークライト株式会社 Anisotropic conductive film
JPH0280484A (en) * 1988-09-16 1990-03-20 Casio Comput Co Ltd Conductive adhesive and bonding process
JPH05117419A (en) * 1991-10-30 1993-05-14 Sumitomo Bakelite Co Ltd Anisotropically conductive film
JPH05247424A (en) * 1992-01-10 1993-09-24 Minnesota Mining & Mfg Co <3M> Adhesive composition for anisotropic electroconductive membrane
JPH0925467A (en) * 1995-07-12 1997-01-28 Sony Chem Corp Anisotropic electroconductive film
JPH09115335A (en) * 1995-10-18 1997-05-02 Sony Chem Corp Anisotropic conductive adhesive film
JPH1030082A (en) * 1996-07-16 1998-02-03 Fujitsu Ltd Adhesive
JP2002003746A (en) * 2000-06-16 2002-01-09 Sumitomo Osaka Cement Co Ltd Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2002001096A (en) * 2000-06-22 2002-01-08 Fuji Photo Film Co Ltd Method for producing chain-like metal colloidal dispersion
JP2002298654A (en) * 2001-01-24 2002-10-11 Kaken Tec Kk Conductive powder and conductive composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249342A (en) * 2005-03-14 2006-09-21 Sumitomo Electric Ind Ltd Adhesive composition and anisotropic conductive adhesive using the same
US7785494B2 (en) 2007-08-03 2010-08-31 Teamchem Company Anisotropic conductive material
EP2166544A1 (en) * 2008-09-22 2010-03-24 Teamchem Company Anisotropic conductive material
JP2011012210A (en) * 2009-07-03 2011-01-20 Nof Corp Conductive hard coat film and antireflection film
JP2011132541A (en) * 2011-03-22 2011-07-07 Sumitomo Electric Ind Ltd Adhesive composition

Also Published As

Publication number Publication date
JP5204365B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5030196B2 (en) Adhesive for circuit connection
JP4401294B2 (en) Conductive adhesive and circuit using the same
JP2007091959A (en) Anisotropically conductive adhesive
JP2007269959A (en) Electroconductive adhesive, electronic device and method for producing the same
TW201011088A (en) Conductive adhesive and LED substrate using it
JP2005225980A (en) Electrically conductive adhesive
TWI588237B (en) Conductive adhesive
JP2008094908A (en) Adhesive for electrode connection
JP2008097922A (en) Adhesive for electrode connection
JP3837858B2 (en) Conductive adhesive and method of using the same
JP4928021B2 (en) Conductive adhesive and circuit using the same
JP2007317563A (en) Circuit connecting adhesive
EP2592127A1 (en) Anisotropic conductive adhesive, process for producing same, connection structure, and process for producing same
JP5204365B2 (en) Anisotropic conductive paint and anisotropic conductive film using the same
JP2006299025A (en) Epoxy resin composition
JP3879749B2 (en) Conductive powder and method for producing the same
JP2005290241A (en) Film-like adhesive
JP2005146044A (en) Anisotropic conductive adhesive
JP5609492B2 (en) Electronic component and manufacturing method thereof
JP2001143529A (en) Conductive bonding agent by cream solder mixing and bonding method using the same
JP4867805B2 (en) Adhesive for electrode connection
JP2004071467A (en) Connecting material
JP2009037928A (en) Adhesive for electrode connection
JP5273514B2 (en) Electrode connecting adhesive and method for producing the same
JP2006176716A (en) Adhesive for connecting circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5204365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees