JP2006249342A - Adhesive composition and anisotropic conductive adhesive using the same - Google Patents

Adhesive composition and anisotropic conductive adhesive using the same Download PDF

Info

Publication number
JP2006249342A
JP2006249342A JP2005070324A JP2005070324A JP2006249342A JP 2006249342 A JP2006249342 A JP 2006249342A JP 2005070324 A JP2005070324 A JP 2005070324A JP 2005070324 A JP2005070324 A JP 2005070324A JP 2006249342 A JP2006249342 A JP 2006249342A
Authority
JP
Japan
Prior art keywords
epoxy resin
adhesive
adhesive composition
inorganic filler
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005070324A
Other languages
Japanese (ja)
Other versions
JP4760066B2 (en
Inventor
Hideaki Toshioka
英昭 年岡
Masamichi Yamamoto
正道 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005070324A priority Critical patent/JP4760066B2/en
Publication of JP2006249342A publication Critical patent/JP2006249342A/en
Application granted granted Critical
Publication of JP4760066B2 publication Critical patent/JP4760066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive composition capable of suppressing thermal expansion under a high temperature and high humidity condition, and enhancing humidity resistance without deterioration of fundamental characteristics such as adhesiveness and conductivity/insulating property, etc. <P>SOLUTION: This adhesive composition comprises an epoxy resin, a silane-modified epoxy resin containing an alkoxy group, an inorganic filler and a latent hardener as essential ingredients, wherein an amount of formulation of the silane-modified epoxy resin containing the alkoxy group is ≥0.01 wt% and ≤20 wt% based on the total amount of the epoxy resin. The adhesive can be applied for use requiring high reliability because of less changes in characteristics when used under the high temperature and high humidity condition for a long period of time due to a low thermal expansion coefficient and a low humidity expansion coefficient. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子材料用途に適した接着剤組成物に関するものであり、具体的には、異方導電性接着剤、電子部品や半導体チップの封止剤、アンダーフィル樹脂硬化物等として使用することができる接着剤組成物及びそれを用いた異方導電性接着剤に関するものである。   The present invention relates to an adhesive composition suitable for use in electronic materials, and specifically used as an anisotropic conductive adhesive, a sealant for electronic parts and semiconductor chips, a cured underfill resin, and the like. The present invention relates to an adhesive composition that can be used and an anisotropic conductive adhesive using the same.

近年の電子機器の小型化、高機能化の流れの中で、構成部品内の接続端子の微小化が進んでいる。このため、エレクトロニクス実装分野においては、そのような端子間の接続を容易に行える種々の接着剤が使用されている。例えばICチップとフレキシブルプリント配線板(FPC)、ICチップとITO(Indium−Tin−Oxide)電極回路が形成されたガラス基板等の接合に、回路接続用の接着剤として異方導電性接着剤が使用されている。   In recent years, electronic devices have been miniaturized and highly functionalized, and connection terminals in components have been miniaturized. For this reason, in the field of electronics mounting, various adhesives that can easily connect such terminals are used. For example, an anisotropic conductive adhesive is used as an adhesive for circuit connection to the bonding of an IC chip and a flexible printed wiring board (FPC), a glass substrate on which an IC chip and an ITO (Indium-Tin-Oxide) electrode circuit are formed. in use.

異方導電性接着剤は絶縁性の接着剤組成物中に導電性粒子を分散させたフィルム状またはペースト状の接着剤であり、接続対象の間に挟まれ、加熱、加圧されて接続対象を接着する。すなわち、加熱、加圧により異方導電性接着剤中の接着剤組成物が流動し、それぞれの接続対象上の相対峙する電極間の間隙を封止すると同時に導電性粒子の一部が対峙する電極間に噛み込まれて電気的接続が達成される。異方導電性接着剤においては、厚み方向に相対峙する電極間の抵抗(導通抵抗)を低くするという導通性能と、面方向に隣り合う電極間の抵抗(絶縁抵抗)を高くするという絶縁性能が必要とされている。   An anisotropic conductive adhesive is a film-like or paste-like adhesive in which conductive particles are dispersed in an insulating adhesive composition, and is sandwiched between connection targets, heated and pressurized to be connected. Glue. That is, the adhesive composition in the anisotropic conductive adhesive flows by heating and pressurizing, sealing the gaps between the electrodes facing each other on the connection object, and at the same time, part of the conductive particles oppose each other. An electrical connection is achieved by biting between the electrodes. In anisotropic conductive adhesives, the conduction performance that lowers the resistance (conduction resistance) between the electrodes facing each other in the thickness direction and the insulation performance that raises the resistance (insulation resistance) between adjacent electrodes in the plane direction. Is needed.

このような異方導電性接着剤を構成する絶縁性の接着剤組成物としては、主にエポキシ系の熱硬化性樹脂組成物が用いられている。例えばエポキシ樹脂等の熱硬化性樹脂と硬化剤を組み合わせたものが広く使用されている。   As an insulating adhesive composition constituting such an anisotropic conductive adhesive, an epoxy-based thermosetting resin composition is mainly used. For example, a combination of a thermosetting resin such as an epoxy resin and a curing agent is widely used.

また異方導電性接着剤は液晶表示装置(LCD)等の精密機器周辺の接続に使用されるため高い信頼性が要求されている。そこで導通/絶縁性能に加え、耐環境性が求められており、たとえば高温高湿試験やヒートサイクル試験等によりその性能を評価している。ここで異方導電性接着剤に使用されるエポキシ樹脂系の接着剤組成物は分子内に水酸基を含むため吸水性が高く、高温高湿試験で接続不良を生じる場合がある等、耐湿性に課題がある。また接着剤組成物は基板材料に比べると熱膨張率が高いため、ヒートサイクル試験下では基板と接着剤との熱膨張率の差に基づくストレスが接続部に生じ、接続部での接続抵抗が増大する場合がある。   In addition, anisotropic conductive adhesives are required to have high reliability because they are used for connection around precision equipment such as a liquid crystal display (LCD). Therefore, environmental resistance is required in addition to conduction / insulation performance, and the performance is evaluated by, for example, a high-temperature and high-humidity test or a heat cycle test. Here, the epoxy resin-based adhesive composition used for the anisotropic conductive adhesive has high water absorption because it contains a hydroxyl group in the molecule, and may cause poor connection in a high temperature and high humidity test. There are challenges. Also, since the adhesive composition has a higher coefficient of thermal expansion than the substrate material, stress based on the difference in thermal expansion coefficient between the substrate and the adhesive is generated in the connection part under the heat cycle test, and the connection resistance at the connection part is reduced. May increase.

そこで、熱膨張率の低減及び耐湿性向上のため、接着剤組成物中に無機フィラーを添加する方法が提案されている。特許文献1には、接着剤樹脂組成物100重量部に無機質充填剤を5〜200重量部含有することを特徴とする回路部材接続用接着剤が開示されている。また特許文献2には、エポキシ樹脂、潜在性硬化剤、無機フィラー及びポリエーテルスルホンからなり、該エポキシ樹脂と該潜在性硬化剤と該ポリエーテルスルホンの合計量100部あたり、該無機フィラーの含有量が5〜900重量部であるエポキシ樹脂系シート状接着剤組成物が開示されている。   Therefore, a method of adding an inorganic filler to the adhesive composition has been proposed in order to reduce the coefficient of thermal expansion and improve the moisture resistance. Patent Document 1 discloses an adhesive for connecting circuit members, wherein 100 parts by weight of the adhesive resin composition contains 5 to 200 parts by weight of an inorganic filler. Patent Document 2 includes an epoxy resin, a latent curing agent, an inorganic filler, and a polyethersulfone. The total content of the epoxy resin, the latent curing agent, and the polyethersulfone contains 100 parts of the inorganic filler. An epoxy resin sheet adhesive composition whose amount is 5 to 900 parts by weight is disclosed.

一方、エポキシ樹脂の耐熱性を向上するために、アルコキシ基含有シラン変性エポキシ樹脂と、エポキシ樹脂用硬化剤を含有することを特徴とするシラン変性エポキシ樹脂組成物が提案されている(特許文献3)。アルコキシ基含有シラン変性エポキシ樹脂は、ビスフェノール型エポキシ樹脂と、アルコキシシラン部分縮合物とを脱アルコール縮合反応させて得られる樹脂であり、硬化剤と開環・架橋反応するエポキシ硬化部位と、加水分解・縮合反応するゾル−ゲル硬化部位を有している。これをエポキシ樹脂用硬化剤と混合して反応させることで、エポキシ−シリカハイブリッド硬化物が得られる。   On the other hand, in order to improve the heat resistance of an epoxy resin, a silane-modified epoxy resin composition characterized by containing an alkoxy group-containing silane-modified epoxy resin and a curing agent for epoxy resin has been proposed (Patent Document 3). ). An alkoxy group-containing silane-modified epoxy resin is a resin obtained by subjecting a bisphenol-type epoxy resin and an alkoxysilane partial condensate to a dealcoholization condensation reaction, an epoxy curing site that undergoes ring-opening / crosslinking reaction with a curing agent, and hydrolysis. -It has a sol-gel curing site that undergoes a condensation reaction. An epoxy-silica hybrid cured product is obtained by mixing and reacting with a curing agent for epoxy resin.

特開平11−61088号公報JP-A-11-61088 特開2000−204324号公報JP 2000-204324 A 特開2002−179762号公報JP 2002-179762 A

接着剤組成物中に無機フィラーを添加する方法では、接着剤組成物中の樹脂成分と無機フィラーの界面での密着性が不十分であることから、熱膨張や湿度膨張の抑制効果が充分に得られないという問題がある。この対策として無機フィラーの表面をシランカップリング剤処理することが一般的に行われているが、無機フィラーの粒径が小さくなるとフィラー表面を均一に処理することが難しく、二次凝集を起こすことが多い。例えば異方導電性接着剤においては、粗大な無機フィラーを使用すると、粗大粒子が対向電極間に噛み込まれて接続不良が生じる場合があり、粒径の小さい無機フィラーを使用する必要があり、耐熱性・耐湿性向上と接続性能の両者を満足させることは難しかった。   In the method of adding an inorganic filler in the adhesive composition, the adhesiveness at the interface between the resin component and the inorganic filler in the adhesive composition is insufficient, so the effect of suppressing thermal expansion and humidity expansion is sufficient. There is a problem that it cannot be obtained. As a countermeasure against this, the surface of the inorganic filler is generally treated with a silane coupling agent. However, when the particle size of the inorganic filler is reduced, it is difficult to uniformly treat the filler surface and secondary aggregation occurs. There are many. For example, in an anisotropic conductive adhesive, if a coarse inorganic filler is used, coarse particles may be caught between the counter electrodes, resulting in poor connection, and it is necessary to use an inorganic filler with a small particle size, It was difficult to satisfy both heat resistance and moisture resistance improvement and connection performance.

アルコキシ基含有シラン変性エポキシ樹脂を用いたエポキシ−シリカハイブリッド硬化物では、上記の様なフィラーと樹脂界面の問題は生じない。しかし、ゾル−ゲル硬化触媒としてオクチル酸錫等の金属系触媒を添加する必要があり、電子材料用途に使用する際にはマイグレーション等の問題を生じる可能性がある。またゾル−ゲル硬化反応を進行させるためには80℃〜120℃と比較的高温での加熱が必要となる。しかしこの温度ではエポキシ硬化剤とエポキシ基の反応が進行してしまい、必要な接着特性が得られない。これを防ぐためには反応温度が高い、いわゆる高温硬化型のエポキシ硬化剤を使用することが考えられるが、高温硬化型の硬化剤を使用すると、低温・短時間での接着を行えず、接着工程でのコストが高くなる。更に、アルコキシ基含有シラン変性エポキシ樹脂のゾル−ゲル硬化部位はゲル化しやすいため、接着剤組成物中の配合量を増やすことができない。このため、エポキシ−シリカハイブリッド硬化物のみでは、耐熱性・耐湿性向上効果に必要なシリカ含有量が得られない。   In the epoxy-silica hybrid cured product using the alkoxy group-containing silane-modified epoxy resin, the problem of the filler-resin interface as described above does not occur. However, it is necessary to add a metal catalyst such as tin octylate as a sol-gel curing catalyst, which may cause problems such as migration when used for electronic materials. In order to advance the sol-gel curing reaction, heating at a relatively high temperature of 80 ° C. to 120 ° C. is required. However, at this temperature, the reaction between the epoxy curing agent and the epoxy group proceeds, and the necessary adhesive properties cannot be obtained. In order to prevent this, it is conceivable to use a so-called high-temperature curing type epoxy curing agent with a high reaction temperature. However, if a high-temperature curing type curing agent is used, the bonding process cannot be performed at a low temperature and in a short time. The cost at is high. Furthermore, since the sol-gel curing site of the alkoxy group-containing silane-modified epoxy resin is easily gelled, the blending amount in the adhesive composition cannot be increased. For this reason, the silica content required for the effect of improving heat resistance and moisture resistance cannot be obtained with only the epoxy-silica hybrid cured product.

本発明は、上記の問題を解決し、接着性、導通/絶縁性能等の基本特性を損なうことなく、高温高湿条件下での熱膨張を抑制し、かつ耐湿性を向上することのできる接着剤組成物を提供することを課題とする。   The present invention solves the above-mentioned problems, suppresses thermal expansion under high-temperature and high-humidity conditions, and improves moisture resistance without impairing basic properties such as adhesion and conduction / insulation performance. It is an object to provide an agent composition.

本発明者は、アルコキシ基含有シラン変性エポキシ樹脂の特性に着目し、これと無機フィラーとを組み合わせることで上記課題が達成されることを見出し、本発明を完成した。   The present inventor has paid attention to the characteristics of the alkoxy group-containing silane-modified epoxy resin and found that the above problems can be achieved by combining this with an inorganic filler, thereby completing the present invention.

本発明は、(1)エポキシ樹脂、(2)アルコキシ基含有シラン変性エポキシ樹脂、(3)無機フィラー、(4)潜在性硬化剤を必須成分とする接着剤組成物であって、前記アルコキシ基含有シラン変性樹脂の配合量がエポキシ樹脂の合計重量の0.01重量%以上20重量%以下であることを特徴とする接着剤組成物である(請求項1)。   The present invention is an adhesive composition comprising (1) an epoxy resin, (2) an alkoxy group-containing silane-modified epoxy resin, (3) an inorganic filler, and (4) a latent curing agent as essential components, the alkoxy group The adhesive composition is characterized in that the amount of the silane-modified resin is 0.01% by weight or more and 20% by weight or less of the total weight of the epoxy resin (Claim 1).

また本発明は、上記の接着剤組成物と導電性粒子を混合したことを特徴とする異方導電性接着剤である(請求項6)。   Moreover, this invention is an anisotropic conductive adhesive characterized by mixing said adhesive composition and electroconductive particle (Claim 6).

アルコキシ基含有シラン変性エポキシ樹脂には、前述したように、エポキシ硬化部位とゾル−ゲル硬化部位が存在する。ここで、ゾル−ゲル硬化部位は一般式(a)で示される構造を持つ。(式中、Rはアルキル基を示し、nの平均繰り返し単位数は1〜10である。) As described above, the alkoxy group-containing silane-modified epoxy resin has an epoxy curing site and a sol-gel curing site. Here, the sol-gel curing site has a structure represented by the general formula (a). (In the formula, R represents an alkyl group, and the average number of repeating units of n is 1 to 10.)

Figure 2006249342
Figure 2006249342

ゾル−ゲル硬化部位のアルコキシ基は、加水分解することで無機フィラー表面の水酸基と脱水縮合しやすいという性質を持ち、無機フィラーとの結合力が強い。このため、エポキシ樹脂、無機フィラー、潜在性硬化剤を必須成分とする接着剤組成物中にアルコキシ基含有シラン変性エポキシ樹脂を添加することで、樹脂成分と無機フィラーの界面の密着力を向上することができ、その結果、無機フィラーの分散性と耐熱・耐湿特性を両立できる接着剤組成物を得ることができる。   The alkoxy group at the sol-gel curing site has a property of being easily dehydrated and condensed with a hydroxyl group on the surface of the inorganic filler by hydrolysis, and has a strong bonding force with the inorganic filler. For this reason, the adhesive force at the interface between the resin component and the inorganic filler is improved by adding the alkoxy group-containing silane-modified epoxy resin to the adhesive composition containing the epoxy resin, the inorganic filler, and the latent curing agent as essential components. As a result, an adhesive composition that can achieve both the dispersibility of the inorganic filler and the heat and humidity resistance properties can be obtained.

このようなアルコキシ基含有シラン変性エポキシ樹脂としては、トリメトキシシラン変性ビスフェノールA型エポキシ樹脂、トリエトキシシラン変性ビスフェノールA型エポキシ樹脂等が使用できる。エポキシ骨格としてはビスフェノールA型、F型、S型等が挙げられる。   As such an alkoxy group-containing silane-modified epoxy resin, a trimethoxysilane-modified bisphenol A-type epoxy resin, a triethoxysilane-modified bisphenol A-type epoxy resin, or the like can be used. Examples of the epoxy skeleton include bisphenol A type, F type, and S type.

アルコキシ基含有シラン変性エポキシ樹脂の添加量は、エポキシ樹脂の合計重量の0.01重量%以上20重量%以下とする必要がある。0.01重量%以下であると、樹脂成分と無機フィラーとの密着性向上効果が得られない。また20重量%以上であると、ゲル化が起こりやすくなり、接着剤組成物の保存安定性が劣る。更に好ましい範囲は0.5重量%以上10重量%以下である。尚、エポキシ樹脂の合計重量とは、アルコキシ基含有シラン変性エポキシ樹脂も含めたエポキシ樹脂全体の総量である。   The addition amount of the alkoxy group-containing silane-modified epoxy resin needs to be 0.01 wt% or more and 20 wt% or less of the total weight of the epoxy resin. If it is 0.01% by weight or less, the effect of improving the adhesion between the resin component and the inorganic filler cannot be obtained. On the other hand, if it is 20% by weight or more, gelation tends to occur, and the storage stability of the adhesive composition is poor. A more preferable range is 0.5 wt% or more and 10 wt% or less. The total weight of the epoxy resin is the total amount of the entire epoxy resin including the alkoxy group-containing silane-modified epoxy resin.

無機フィラーの配合量が多いほど接着剤組成物の吸水率は低くなり、耐湿性を向上することができる。しかし無機フィラーの配合量が多すぎると接着性が低下し、また端子間に噛み込まれる無機フィラー量も多くなるため導通抵抗が高くなるという問題が生じる。このため無機フィラーの配合量はエポキシ樹脂の合計重量の0.5重量%以上30重量%以下であることが好ましい。請求項2はこの好ましい態様に該当する。更に好ましい無機フィラーの配合量はエポキシ樹脂の合計重量の5重量%以上20重量%以下である。   The greater the blending amount of the inorganic filler, the lower the water absorption of the adhesive composition, and the moisture resistance can be improved. However, if the amount of the inorganic filler is too large, the adhesiveness is lowered, and the amount of the inorganic filler bitten between the terminals is increased, resulting in a problem that the conduction resistance is increased. For this reason, it is preferable that the compounding quantity of an inorganic filler is 0.5 to 30 weight% of the total weight of an epoxy resin. Claim 2 corresponds to this preferred embodiment. A more preferable blending amount of the inorganic filler is 5% by weight or more and 20% by weight or less of the total weight of the epoxy resin.

更に、狭ピッチ電極間の接続を行うためには、回路接続用接着剤中の導電性粒子を配向させることが効果的であるが、接着剤中に無機フィラーを混合すると導電性粒子の配向が阻害される可能性がある。しかし平均粒径が500nm以下の無機フィラーを選択することで、このような配向の阻害という問題を生じることなく、耐湿性向上に必要な量の無機フィラーを配合することができる。   Furthermore, in order to connect between narrow pitch electrodes, it is effective to orient the conductive particles in the circuit connecting adhesive. However, when an inorganic filler is mixed in the adhesive, the conductive particles are oriented. May be hindered. However, by selecting an inorganic filler having an average particle size of 500 nm or less, an inorganic filler in an amount necessary for improving moisture resistance can be blended without causing such a problem of inhibition of orientation.

無機フィラーの配合量が多いほど接着剤の吸水率は低くなり、耐湿性を向上することができる。しかし無機フィラーの配合量が多すぎると接着性が低下し、また端子間に噛み込まれる無機フィラー量も多くなるため導通抵抗が高くなるという問題が生じる。このため無機フィラーの配合量はエポキシ樹脂の合計重量の0.5重量%以上30重量%以下であることが好ましい。請求項2はこの好ましい態様に該当する。更に好ましい無機フィラーの配合量はエポキシ樹脂の合計重量の5重量%以上20重量%以下である。   The greater the blending amount of the inorganic filler, the lower the water absorption rate of the adhesive, and the moisture resistance can be improved. However, if the amount of the inorganic filler is too large, the adhesiveness is lowered, and the amount of the inorganic filler bitten between the terminals is increased, resulting in a problem that the conduction resistance is increased. For this reason, it is preferable that the compounding quantity of an inorganic filler is 0.5 to 30 weight% of the total weight of an epoxy resin. Claim 2 corresponds to this preferred embodiment. A more preferable blending amount of the inorganic filler is 5% by weight or more and 20% by weight or less of the total weight of the epoxy resin.

無機フィラーの粒径は特に限定されないが、異方導電性接着剤等の電子材料用途での使用を考慮すると、平均粒径が1μm以下であり、かつ最大粒径が3μm以下であることが好ましい。平均粒径が小さくなるにつれて無機フィラーの表面積が大きくなり、エポキシ樹脂との相互作用を高めることができ、結果として少ない配合量で耐湿性向上、熱膨張率低減という効果を得ることができるからである。また最大粒径が3μm以下であれば粗大粒子による接続不良を生じることなく、安定的に接続できる。請求項3はこの好ましい態様に該当する。更に無機フィラーの平均粒径が500nm以下であると、耐湿性向上効果に優れ、好ましい。平均粒径の下限は特に制限しないが、作業性を考慮すると3nm以上とするのが好ましい。   Although the particle size of the inorganic filler is not particularly limited, it is preferable that the average particle size is 1 μm or less and the maximum particle size is 3 μm or less in consideration of use in electronic materials such as anisotropic conductive adhesives. . As the average particle size decreases, the surface area of the inorganic filler increases and the interaction with the epoxy resin can be increased. As a result, the effect of improving moisture resistance and reducing the thermal expansion coefficient can be obtained with a small amount of blending. is there. If the maximum particle size is 3 μm or less, connection can be made stably without causing connection failure due to coarse particles. Claim 3 corresponds to this preferred embodiment. Furthermore, it is excellent in the moisture resistance improvement effect that the average particle diameter of an inorganic filler is 500 nm or less, and is preferable. The lower limit of the average particle size is not particularly limited, but is preferably 3 nm or more in consideration of workability.

本発明の無機フィラーとしては、シリカ、アルミナ、酸化チタン等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、複合酸化物、等公知のものを使用することができる。無機フィラーとしてシリカフィラー又はアルミナフィラーを使用すると、熱膨張率低減効果と絶縁性向上効果が優れ、好ましい。請求項4はこの好ましい態様に該当する。   As the inorganic filler of the present invention, known ones such as metal oxides such as silica, alumina and titanium oxide, hydroxides such as aluminum hydroxide, magnesium hydroxide and calcium hydroxide, and complex oxides may be used. it can. When silica filler or alumina filler is used as the inorganic filler, the effect of reducing the coefficient of thermal expansion and the effect of improving insulation are excellent, which is preferable. Claim 4 corresponds to this preferred embodiment.

本発明に使用するエポキシ樹脂は、特に限定されないが、ビスフェノールA、F、S、AD等を骨格とするビスフェノール型エポキシ樹脂等の他、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等が例示される。また高分子量エポキシ樹脂であるフェノキシ樹脂を用いることもできる。   The epoxy resin used in the present invention is not particularly limited, but other than bisphenol type epoxy resins having skeletons of bisphenol A, F, S, AD, etc., naphthalene type epoxy resins, novolac type epoxy resins, biphenyl type epoxy resins, Examples include dicyclopentadiene type epoxy resins. A phenoxy resin which is a high molecular weight epoxy resin can also be used.

エポキシ樹脂の分子量は、接着剤組成物に要求される性能を考慮して適宜選択することができる。分子量が高くなるとフィルム形成性が高く、また接続温度における樹脂の溶融粘度を高くでき、異方導電性接着剤として使用した場合に導電性粒子の配向を乱さずに接続できる効果がある。一方、低分子量のエポキシ樹脂を使用すると、架橋密度が高まって耐熱性が向上すると共に、樹脂の凝集力が高まるため接着力が高くなるという効果が得られる。従って、分子量が15000以上の高分子量エポキシ樹脂と分子量が2000以下の低分子量エポキシ樹脂を組み合わせて使用すると性能のバランスが取れて好ましい。高分子量エポキシ樹脂と低分子量エポキシ樹脂の配合割合は、適宜選択することができる。   The molecular weight of the epoxy resin can be appropriately selected in consideration of the performance required for the adhesive composition. When the molecular weight is high, the film-forming property is high and the melt viscosity of the resin at the connection temperature can be increased. When used as an anisotropic conductive adhesive, there is an effect that the connection can be made without disturbing the orientation of the conductive particles. On the other hand, when a low molecular weight epoxy resin is used, the crosslink density is increased and the heat resistance is improved, and the cohesive force of the resin is increased, so that the adhesive strength is increased. Accordingly, it is preferable to use a combination of a high molecular weight epoxy resin having a molecular weight of 15000 or more and a low molecular weight epoxy resin having a molecular weight of 2000 or less in order to balance the performance. The mixing ratio of the high molecular weight epoxy resin and the low molecular weight epoxy resin can be appropriately selected.

本発明において使用される潜在性硬化剤は、低温での貯蔵安定性に優れ、室温ではほとんど硬化反応を起こさないが、加熱等により所定の条件とすると速やかに硬化反応を行う硬化剤である。潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、アミンイミド、ポリアミン系、第3級アミン、アルキル尿素系等のアミン系、ジシアンジアミド等、及びこれらの変性物が例示され、これらは単独または2種以上の混合物として使用出来る。   The latent curing agent used in the present invention is a curing agent that is excellent in storage stability at low temperatures and hardly undergoes a curing reaction at room temperature, but rapidly undergoes a curing reaction under predetermined conditions by heating or the like. Examples of latent curing agents include imidazoles, hydrazides, boron trifluoride-amine complexes, amine imides, polyamines, tertiary amines, alkyl ureas and other amines, dicyandiamide, and modified products thereof. These can be used alone or as a mixture of two or more.

前記の潜在性硬化剤中でも、イミダゾール系潜在性硬化剤が好ましく使用される。イミ
ダゾール系潜在性硬化剤としては、公知のイミダゾール系潜在性硬化剤を使用することが
でき、具体的にはイミダゾール化合物のエポキシ樹脂との付加物が例示される。イミダゾール化合物としては、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-プロピルイミダゾール、2-ドデシルイミダゾール、2-フェニルイミダゾール、2-フェ
ニル-4-メチルイミダゾール、4-メチルイミダゾールが例示される。
Among the latent curing agents, an imidazole latent curing agent is preferably used. As the imidazole-based latent curing agent, a known imidazole-based latent curing agent can be used, and specifically, an adduct of an imidazole compound with an epoxy resin is exemplified. Examples of the imidazole compound include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-propylimidazole, 2-dodecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 4-methylimidazole.

さらに、これらの潜在性硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質や、ニッケル、銅等の金属薄膜及びケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは長期保存性と速硬化性という矛盾した特性の両立をより充分に達成するため好ましい。従って、マイクロカプセル型イミダゾール系潜在性硬化剤が特に好ましい。   Further, these latent curing agents are coated with a polymer material such as polyurethane or polyester, a metal thin film such as nickel or copper, and an inorganic material such as calcium silicate and microencapsulated. This is preferable in order to more fully achieve the contradictory properties of fast curability. Therefore, a microcapsule type imidazole-type latent curing agent is particularly preferable.

前記エポキシ樹脂と潜在性硬化剤の配合割合は、エポキシ樹脂の合計重量に対し、5〜40重量%とするのが好ましい。潜在性硬化剤の割合が5重量%より少ない場合、硬化速度が低下し、硬化が不十分になる場合がある。また40重量%より多い場合、未反応の硬化剤が残留しやすくなり、耐熱、耐湿性を低下させる場合がある。   The blending ratio of the epoxy resin and the latent curing agent is preferably 5 to 40% by weight with respect to the total weight of the epoxy resin. When the ratio of the latent curing agent is less than 5% by weight, the curing rate may decrease and curing may be insufficient. On the other hand, when the amount is more than 40% by weight, unreacted curing agent tends to remain, which may reduce heat resistance and moisture resistance.

本発明の接着剤組成物には、本発明の趣旨を損なわない範囲で、前記の必須成分に加えて、他の熱硬化性樹脂、熱可塑性樹脂等を添加することが可能である。また硬化促進剤、重合抑制剤、増感剤、シランカップリング剤、難燃化剤、チキソトロピック剤等の添加剤を含有しても良い。   In the adhesive composition of the present invention, other thermosetting resins, thermoplastic resins, and the like can be added in addition to the essential components as long as the gist of the present invention is not impaired. Moreover, you may contain additives, such as a hardening accelerator, a polymerization inhibitor, a sensitizer, a silane coupling agent, a flame retardant, and a thixotropic agent.

本発明の接着剤組成物は前記の各成分を混合することにより得ることができる。例えば前記エポキシ樹脂、アルコキシ基含有シラン変性エポキシ樹脂、潜在性硬化剤等を溶媒に溶解した溶液中に無機フィラーを分散させることで液状の接着剤組成物が得られる。またこの分散溶液をロールコーター等で塗工して薄い膜を形成し、その後溶媒を乾燥等により除去することによりフィルム状の接着剤が得られる。膜の厚みは特に限定されないが、通常10〜50μmである。   The adhesive composition of the present invention can be obtained by mixing the aforementioned components. For example, a liquid adhesive composition can be obtained by dispersing an inorganic filler in a solution obtained by dissolving the epoxy resin, alkoxy group-containing silane-modified epoxy resin, latent curing agent and the like in a solvent. Moreover, this dispersion solution is applied with a roll coater or the like to form a thin film, and then the solvent is removed by drying or the like, whereby a film-like adhesive is obtained. Although the thickness of a film | membrane is not specifically limited, Usually, it is 10-50 micrometers.

本発明は更に、上記接着剤組成物と導電性粒子を混合したことを特徴とする異方導電性接着剤を提供する。導電粒子としては、金、銀、銅、ニッケル及びそれらの合金などの金属粒子、カーボン等が挙げられる。又、非導電性のガラス、セラミック、プラスチック、金属酸化物等の核の表面に、金属やITO等を被覆して導電層を形成したものでも良い。   The present invention further provides an anisotropic conductive adhesive, wherein the adhesive composition and conductive particles are mixed. Examples of the conductive particles include metal particles such as gold, silver, copper, nickel, and alloys thereof, and carbon. Also, a non-conductive glass, ceramic, plastic, metal oxide or other core surface may be formed by coating a metal, ITO, or the like to form a conductive layer.

導電性粒子として、径と長さの比(アスペクト比)が5以上の導電性粒子を用いると、導電性粒子の配合量を増やすことなく導通抵抗を低くすることができ、良好な電気的接続を達成出来ると共に、面方向の絶縁抵抗をより高く保つことが出来、好ましい。請求項6はこの好ましい態様に該当する。導電性粒子のアスペクト比は、CCD顕微鏡観察等の方法により直接測定する。断面が円でない粒子の場合は、断面の最大長さを径としてアスペクト比を求める。また、導電性粒子は必ずしもまっすぐな形状を有する必要はなく、多少の曲がりや枝分かれがあっても問題なく使用できる。この場合は導電性粒子の最大長を長さとしてアスペクト比を求める。アスペクト比が5以上の導電性粒子としては、市販の針状導電性粒子を使用することができる。また微細な金属粒子を多数つなげて針状に形成したものも好ましく使用できる。アスペクト比が10〜100であると更に好ましい。   When conductive particles having a diameter to length ratio (aspect ratio) of 5 or more are used as the conductive particles, the conduction resistance can be lowered without increasing the blending amount of the conductive particles, and good electrical connection can be achieved. Can be achieved, and the insulation resistance in the surface direction can be kept higher, which is preferable. Claim 6 corresponds to this preferred embodiment. The aspect ratio of the conductive particles is directly measured by a method such as CCD microscope observation. In the case of particles having a non-circular cross section, the aspect ratio is obtained using the maximum length of the cross section as a diameter. In addition, the conductive particles do not necessarily have a straight shape, and can be used without any problem even if they are slightly bent or branched. In this case, the aspect ratio is obtained with the maximum length of the conductive particles as the length. Commercially available acicular conductive particles can be used as the conductive particles having an aspect ratio of 5 or more. In addition, it is also possible to preferably use those formed by connecting a large number of fine metal particles into a needle shape. More preferably, the aspect ratio is 10 to 100.

微細な金属粒子を形成する金属としては、Fe、Ni、Co等の強磁性を有する金属の単体又は強磁性金属を含む複合体が挙げられる。強磁性を有する金属を用いると、それ自体が有する磁性により配向し、また後述するように磁場を用いて導電粒子の配向を行うことができる。   Examples of the metal that forms fine metal particles include a single metal having ferromagnetism such as Fe, Ni, Co, or a composite containing a ferromagnetic metal. When a metal having ferromagnetism is used, it is oriented by its own magnetism, and the conductive particles can be oriented using a magnetic field as will be described later.

異方導電性接着剤の形状をフィルム形状とし、上記のアスペクト比が5以上の導電性粒子をフィルムの厚み方向に配向させると、異方導電性がさらに向上するので好ましい。請求項7はこの好ましい態様に該当する。導電性粒子をフィルムの厚み方向に配向させる方法は特に限定されないが、前記のような強磁性を有する導電性粒子を用いる場合は、導電性粒子を樹脂用液中に分散し、得られた分散溶液を下地面と交差する方向に磁場を印加した下地上に塗布して、該導電性粒子を配向させ、下地上で溶媒の除去等により固化、硬化させて配向を固定する方法が好ましく例示される。フィルムの厚みは特に限定されないが、通常10〜50μmである。   It is preferable to make the anisotropic conductive adhesive into a film shape and to orient the conductive particles having an aspect ratio of 5 or more in the thickness direction of the film because the anisotropic conductivity is further improved. Claim 7 corresponds to this preferable mode. The method for orienting the conductive particles in the thickness direction of the film is not particularly limited, but when using the conductive particles having ferromagnetism as described above, the conductive particles are dispersed in the resin solution, and the obtained dispersion is obtained. A method of fixing the orientation by applying the solution on a base to which a magnetic field is applied in a direction crossing the base surface, orienting the conductive particles, solidifying and curing by removing the solvent on the base, and the like is preferably exemplified. The Although the thickness of a film is not specifically limited, Usually, it is 10-50 micrometers.

導電性粒子の配合量は、回路接続用接着剤の全体積に対して0.01〜30体積%の範囲から選ばれ、用途により使い分ける。過剰な導電性粒子による面方向の絶縁性能低下を防ぐためには、0.01〜10体積%とするのがより好ましい。   The compounding quantity of electroconductive particle is selected from the range of 0.01-30 volume% with respect to the whole volume of the adhesive agent for circuit connection, and uses properly by use. In order to prevent a decrease in insulation performance in the surface direction due to excessive conductive particles, the content is more preferably 0.01 to 10% by volume.

本発明は、耐熱性、耐湿性の優れた接着剤組成物を提供する。本発明の接着剤組成物は、高温高湿の環境下で長時間使用されてもその特性の変化が少なく、高い信頼性が要求される用途に使用することができる。   The present invention provides an adhesive composition having excellent heat resistance and moisture resistance. The adhesive composition of the present invention has little change in properties even when used for a long time in a high-temperature and high-humidity environment, and can be used for applications requiring high reliability.

次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。   Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.

(実施例1)
(塗工溶液の作製)
エポキシ樹脂として平均分子量約60000のフェノキシ樹脂[東都化成(株)製YP−50]、平均分子量約2900のビスフェノールA型固形エポキシ樹脂[ジャパンエポキシレジン(株)製、エピコート1007]、平均分子量約400のビスフェノールA型液状エポキシ樹脂[大日本インキ化学工業(株)製エピクロン850]と、アルコキシ基含有シラン変性エポキシ樹脂として、トリメトキシシラン変性ビスフェノールA型エポキシ樹脂[荒川化学工業(株)製コンポセランE201]、潜在性硬化剤としてマイクロカプセル型イミダゾール系硬化剤[旭化成エポキシ(株)製、ノバキュアHX3941]とを、重量比で40/20/39/1/35の割合で用い、これらをγ−ブチロラクトンに溶解し固形分60%の樹脂組成物溶液を作製した。ここに無機フィラーとして平均粒径20nmの球状シリカ粒子をエポキシ樹脂の合計重量に対して15重量%となるように加え、3本ロールによる混練を行って均一な溶液とした。更に導電性粒子として、3μmから11μmまでの鎖長分布を有する直鎖状ニッケル微粒子(平均粒径200nmのニッケル微粒子が直鎖状に連結したもの。アスペクト比:15〜55)を、固形分の総量(樹脂組成物+無機フィラー+ニッケル粉末)に対して1体積%となるように添加し、遠心ミキサーを用いて攪拌することで均一分散し、接着剤用の塗工溶液を調製した。
Example 1
(Preparation of coating solution)
As an epoxy resin, a phenoxy resin having an average molecular weight of about 60000 [YP-50 manufactured by Toto Kasei Co., Ltd.], a bisphenol A type solid epoxy resin having an average molecular weight of about 2900 [Epicoat 1007 manufactured by Japan Epoxy Resin Co., Ltd.], an average molecular weight of about 400 Bisphenol A type liquid epoxy resin [Epiclon 850 manufactured by Dainippon Ink and Chemicals, Inc.] and trimethoxysilane modified bisphenol A type epoxy resin [composeran E201 manufactured by Arakawa Chemical Industries, Ltd.] as an alkoxy group-containing silane modified epoxy resin. As a latent curing agent, a microcapsule type imidazole curing agent [manufactured by Asahi Kasei Epoxy Co., Ltd., NovaCure HX3941] was used at a weight ratio of 40/20/39/1/35, and these were used as γ-butyrolactone Resin composition having a solid content of 60% To prepare a liquid. Here, spherical silica particles having an average particle diameter of 20 nm as an inorganic filler were added so as to be 15% by weight with respect to the total weight of the epoxy resin, and kneading with three rolls was performed to obtain a uniform solution. Further, as the conductive particles, linear nickel fine particles having a chain length distribution of 3 μm to 11 μm (in which nickel fine particles having an average particle diameter of 200 nm are connected in a linear form. Aspect ratio: 15 to 55) It added so that it might become 1 volume% with respect to the total amount (resin composition + inorganic filler + nickel powder), and uniformly disperse | distributed by stirring using a centrifugal mixer, and the coating solution for adhesive agents was prepared.

(フィルム状異方導電性接着剤の作製)
上記で調整した塗工溶液を、離型処理したPETフィルム上にドクターナイフを用いて塗布した後、磁束密度100mTの磁場中、60℃で30分間乾燥、固化させることによって、膜中の直鎖状粒子が磁場方向(フィルムの厚み方向)に配向した、厚み25μmのフィルム状の異方導電性接着剤を作製した。
(Production of film-like anisotropic conductive adhesive)
The coating solution prepared above is applied onto a release-treated PET film using a doctor knife, and then dried and solidified in a magnetic field with a magnetic flux density of 100 mT at 60 ° C. for 30 minutes, whereby a linear chain in the film is obtained. A film-like anisotropic conductive adhesive having a thickness of 25 μm was prepared in which the shaped particles were oriented in the magnetic field direction (film thickness direction).

(接続抵抗評価)
幅15μm、長さ100μm、高さ16μmの金メッキバンプが15μm間隔で726個配列されたICチップと、幅20μm、スペース10μmで同数のITO電極が形成されたガラス基板とを用意した。このICチップと回路基板との間に前記で得られ異方導電性接着剤フィルムを挟み、200℃に加熱しながら、1バンプ当たり20gfの圧力で20秒間加圧して熱接着させ、ICとガラス基板との接合体を得た。この接合体の726個の電極のうち、ITO電極、異方導電性接着剤、及び金バンプを介して接続された連続する32個の抵抗値を四端子法により求め、その値を32で除することによって1電極当たりの接続抵抗を求めた。この評価を10回繰り返し、接続抵抗の平均値を求めた。
(Connection resistance evaluation)
An IC chip in which 726 gold plated bumps having a width of 15 μm, a length of 100 μm, and a height of 16 μm were arranged at intervals of 15 μm, and a glass substrate on which the same number of ITO electrodes were formed with a width of 20 μm and a space of 10 μm were prepared. The anisotropic conductive adhesive film obtained above is sandwiched between the IC chip and the circuit board, and heated to 200 ° C. for 20 seconds with a pressure of 20 gf per bump for 20 seconds to thermally bond the IC and glass. A joined body with the substrate was obtained. Of the 726 electrodes of this bonded body, 32 consecutive resistance values connected via ITO electrode, anisotropic conductive adhesive, and gold bump are obtained by the four-terminal method, and the value is divided by 32. Thus, the connection resistance per electrode was obtained. This evaluation was repeated 10 times, and the average value of the connection resistance was obtained.

(耐熱・耐湿試験)
前記のICとガラス基板との接合体を温度85℃、湿度85%に設定した恒温恒湿槽内に投入し、100時間経過後に取り出し、再び前記と同様にして接続抵抗の平均値を求めた。その結果を表1に示す。
(保存安定性評価)
上記で作製した異方導電性接着剤について、粘弾性測定装置(レオメトリック社製ARES)を用いて50℃から200℃までの溶融粘度を測定しその最低値を求めた。さらに、この試料を25℃の室温下に放置し、溶融粘度の最低値が10倍を越えるまでの時間を調べ、これをライフとした。
(Heat and humidity resistance test)
The joined body of the IC and the glass substrate was put into a constant temperature and humidity chamber set at a temperature of 85 ° C. and a humidity of 85%, taken out after 100 hours, and the average value of the connection resistance was obtained again in the same manner as described above. . The results are shown in Table 1.
(Storage stability evaluation)
About the anisotropic conductive adhesive produced above, the melt viscosity from 50 ° C. to 200 ° C. was measured using a viscoelasticity measuring device (ARES manufactured by Rheometric Co., Ltd.), and the minimum value was obtained. Furthermore, this sample was allowed to stand at room temperature of 25 ° C., and the time until the minimum value of the melt viscosity exceeded 10 times was examined.

(実施例2)
導電性粒子として、平均粒径が5μmである、金被覆をした球状樹脂粒子を用い、磁場を印加せずに乾燥、固化させたこと以外は実施例1と同様にして厚みが25μmのフィルム状の異方導電性接着剤を作製し、接続抵抗評価、耐熱・耐湿試験及びライフ評価を行った。その結果を表1に示す。
(Example 2)
As conductive particles, spherical resin particles with an average particle diameter of 5 μm and coated with gold were used and dried and solidified without applying a magnetic field. An anisotropic conductive adhesive was prepared, and connection resistance evaluation, heat and humidity resistance test, and life evaluation were performed. The results are shown in Table 1.

(比較例1)
フェノキシ樹脂、固形エポキシ樹脂、液状エポキシ樹脂、シラン変性エポキシ樹脂及び潜在性硬化剤の配合割合を40/20/40/0/35としたこと以外は実施例1と同様にして厚みが25μmのフィルム状の異方導電性接着剤を作製し、接続抵抗評価、耐熱・耐湿試験及びライフ評価を行った。その結果を表1に示す。
(Comparative Example 1)
A film having a thickness of 25 μm in the same manner as in Example 1 except that the blending ratio of phenoxy resin, solid epoxy resin, liquid epoxy resin, silane-modified epoxy resin, and latent curing agent was 40/20/40/0/35. An anisotropic conductive adhesive was prepared, and connection resistance evaluation, heat / moisture resistance test and life evaluation were performed. The results are shown in Table 1.

(比較例2)
フェノキシ樹脂、固形エポキシ樹脂、液状エポキシ樹脂、シラン変性エポキシ樹脂及び潜在性硬化剤の配合割合を40/20/15/25/35としたこと以外は実施例1と同様にして厚みが25μmのフィルム状の異方導電性接着剤を作製し、接続抵抗評価、耐熱・耐湿試験及び及びライフ評価を行った。その結果を表1に示す。
(Comparative Example 2)
A film having a thickness of 25 μm in the same manner as in Example 1 except that the blending ratio of phenoxy resin, solid epoxy resin, liquid epoxy resin, silane-modified epoxy resin, and latent curing agent was 40/20/15/25/35 An anisotropic conductive adhesive was prepared, and connection resistance evaluation, heat / moisture resistance test, and life evaluation were performed. The results are shown in Table 1.

Figure 2006249342
Figure 2006249342

表1の結果は、本発明(実施例)の異方導電性接着剤を用いて接着された場合は、高温高湿の環境下に長時間置かれた場合でも接続抵抗値の増加は小さく、優れた耐熱・耐湿性が達成できることを示している。一方、アルコキシ基含有シラン変性エポキシ樹脂を添加していない比較例1では、高温高湿試験後の抵抗値の増加率が大きい。またアルコキシ基含有シラン変性エポキシ樹脂の配合量を、エポキシ樹脂の合計重量の25重量%とした比較例2においては、抵抗値の増加率が大きくなると共に、ライフが短くなっている。この結果から明らかなように、本発明例の接着剤組成物を用いることにより、優れた耐熱耐湿性を達成することができ、高い信頼性が得られる。   The results of Table 1 show that when bonded using the anisotropic conductive adhesive of the present invention (Example), the increase in connection resistance value is small even when placed in a high temperature and high humidity environment for a long time. It shows that excellent heat and humidity resistance can be achieved. On the other hand, in Comparative Example 1 in which no alkoxy group-containing silane-modified epoxy resin was added, the increase rate of the resistance value after the high temperature and high humidity test was large. Further, in Comparative Example 2 in which the blending amount of the alkoxy group-containing silane-modified epoxy resin is 25% by weight of the total weight of the epoxy resin, the increase rate of the resistance value is increased and the life is shortened. As is apparent from this result, by using the adhesive composition of the present invention example, excellent heat and humidity resistance can be achieved, and high reliability can be obtained.

Claims (7)

(1)エポキシ樹脂、(2)アルコキシ基含有シラン変性エポキシ樹脂(3)無機フィラー(4)潜在性硬化剤、を必須成分とする接着剤組成物であって、前記アルコキシ基含有シラン変性エポキシ樹脂の配合量が、エポキシ樹脂の合計重量の0.01重量%以上20重量%以下であることを特徴とする接着剤組成物。   An adhesive composition comprising (1) an epoxy resin, (2) an alkoxy group-containing silane-modified epoxy resin, (3) an inorganic filler, and (4) a latent curing agent, the alkoxy group-containing silane-modified epoxy resin. The adhesive composition is characterized in that the blending amount is 0.01% by weight or more and 20% by weight or less of the total weight of the epoxy resin. 前記無機フィラーの配合量が、エポキシ樹脂の合計重量の0.5重量%以上30重量%以下であることを特徴とする請求項1に記載の接着剤組成物。   The adhesive composition according to claim 1, wherein the amount of the inorganic filler is 0.5 wt% or more and 30 wt% or less of the total weight of the epoxy resin. 前記無機フィラーの平均粒径が1μm以下であり、かつ最大粒径が3μm以下であることを特徴とする請求項1又は2に記載の接着剤組成物。   The adhesive composition according to claim 1 or 2, wherein the inorganic filler has an average particle size of 1 µm or less and a maximum particle size of 3 µm or less. 前記無機フィラーがシリカフィラー又はアルミナフィラーである請求項1〜3のいずれかに記載の接着剤組成物。   The adhesive composition according to any one of claims 1 to 3, wherein the inorganic filler is a silica filler or an alumina filler. 請求項1乃至4に記載の接着剤組成物と導電性粒子を混合したことを特徴とする異方導電性接着剤。   An anisotropic conductive adhesive, wherein the adhesive composition according to claim 1 and conductive particles are mixed. 前記導電性粒子が、径と長さの比(アスペクト比)が5以上の導電性粒子であることを特徴とする請求項5に記載の異方導電性接着剤。   The anisotropic conductive adhesive according to claim 5, wherein the conductive particles are conductive particles having a diameter to length ratio (aspect ratio) of 5 or more. 形状がフィルム状であり、前記導電性粒子がフィルムの厚み方向に配向していることを特徴とする請求項6に記載の異方導電性接着剤。
The anisotropic conductive adhesive according to claim 6, wherein the shape is a film, and the conductive particles are oriented in the thickness direction of the film.
JP2005070324A 2005-03-14 2005-03-14 Anisotropic conductive adhesive Expired - Fee Related JP4760066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070324A JP4760066B2 (en) 2005-03-14 2005-03-14 Anisotropic conductive adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070324A JP4760066B2 (en) 2005-03-14 2005-03-14 Anisotropic conductive adhesive

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011062163A Division JP5267958B2 (en) 2011-03-22 2011-03-22 Adhesive composition

Publications (2)

Publication Number Publication Date
JP2006249342A true JP2006249342A (en) 2006-09-21
JP4760066B2 JP4760066B2 (en) 2011-08-31

Family

ID=37090158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070324A Expired - Fee Related JP4760066B2 (en) 2005-03-14 2005-03-14 Anisotropic conductive adhesive

Country Status (1)

Country Link
JP (1) JP4760066B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061086A1 (en) * 2005-11-25 2007-05-31 Zeon Corporation Curable resin composition and use thereof
JP2008084545A (en) * 2006-09-25 2008-04-10 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP2008094908A (en) * 2006-10-10 2008-04-24 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP2008308519A (en) * 2007-06-12 2008-12-25 Sumitomo Electric Ind Ltd Adhesive for connecting electrode
JP2009132798A (en) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd Adhesive for connecting electrode and method for producing the same
JP2010141265A (en) * 2008-12-15 2010-06-24 Sumitomo Electric Ind Ltd Connection structure and connection method of printed circuit board
JP2011195751A (en) * 2010-03-23 2011-10-06 Hoden Seimitsu Kako Kenkyusho Ltd Method for producing rust-preventing insulation coating material composition for light metal alloy member and method for coating the same
JP2012186448A (en) * 2011-02-17 2012-09-27 Sony Chemical & Information Device Corp Anisotropic conductive film
WO2019074058A1 (en) * 2017-10-12 2019-04-18 富士フイルム株式会社 Anisotropic conductive film, and laminate
WO2019074064A1 (en) * 2017-10-12 2019-04-18 富士フイルム株式会社 Anisotropic conductive film, and laminate
CN113388235A (en) * 2021-06-28 2021-09-14 华南理工大学 Humidity-heat-resistant high-dielectric-constant epoxy resin composite material and preparation method thereof
CN114250043A (en) * 2020-09-22 2022-03-29 起翔有限公司 Self-fluxing conductive connecting material, bonding module comprising same and manufacturing method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189174A (en) * 1983-04-12 1984-10-26 Sumitomo Bakelite Co Ltd Heat-resistant electrical insulating paint composition
JPS61283628A (en) * 1985-06-07 1986-12-13 Hitachi Chem Co Ltd Production of prepreg for printed wiring board
JPS62186413A (en) * 1986-02-12 1987-08-14 住友ベークライト株式会社 Anisotropic conductive film
JPH03111464A (en) * 1989-09-26 1991-05-13 Matsushita Electric Works Ltd Thermosetting resin adhesive for printed wiring board
JPH04348121A (en) * 1990-08-27 1992-12-03 Fujitsu Ltd Epoxy resin composition
JPH09147946A (en) * 1995-11-21 1997-06-06 Hitachi Chem Co Ltd Connection member for circuit
JPH10168282A (en) * 1996-12-12 1998-06-23 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin composition
JPH1161088A (en) * 1997-08-25 1999-03-05 Hitachi Chem Co Ltd Adhesive for connecting circuit member
JP2000080153A (en) * 1998-09-04 2000-03-21 Ajinomoto Co Inc Curable resin composition
JP2000204324A (en) * 1999-01-08 2000-07-25 Nagase Chiba Kk Epoxy resin-based sheet-like adhesive composition
JP2001123050A (en) * 1999-10-29 2001-05-08 Nippon Mitsubishi Oil Corp Epoxy resin composition and semiconductor device
JP2002012818A (en) * 2000-06-27 2002-01-15 Arakawa Chem Ind Co Ltd Coating composition
JP2002179762A (en) * 2000-12-08 2002-06-26 Arakawa Chem Ind Co Ltd Silane-modified epoxy resin composition and cured product thereof
JP2002275445A (en) * 2001-03-22 2002-09-25 Arakawa Chem Ind Co Ltd Adhesive for printed circuit
WO2004039885A1 (en) * 2002-11-01 2004-05-13 Mitsui Chemicals, Inc. Sealant composition for liquid crystal and process for producing liquid-crystal display panel with the same
JP2004238483A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189174A (en) * 1983-04-12 1984-10-26 Sumitomo Bakelite Co Ltd Heat-resistant electrical insulating paint composition
JPS61283628A (en) * 1985-06-07 1986-12-13 Hitachi Chem Co Ltd Production of prepreg for printed wiring board
JPS62186413A (en) * 1986-02-12 1987-08-14 住友ベークライト株式会社 Anisotropic conductive film
JPH03111464A (en) * 1989-09-26 1991-05-13 Matsushita Electric Works Ltd Thermosetting resin adhesive for printed wiring board
JPH04348121A (en) * 1990-08-27 1992-12-03 Fujitsu Ltd Epoxy resin composition
JPH09147946A (en) * 1995-11-21 1997-06-06 Hitachi Chem Co Ltd Connection member for circuit
JPH10168282A (en) * 1996-12-12 1998-06-23 Sumitomo Bakelite Co Ltd Semiconductor sealing epoxy resin composition
JPH1161088A (en) * 1997-08-25 1999-03-05 Hitachi Chem Co Ltd Adhesive for connecting circuit member
JP2000080153A (en) * 1998-09-04 2000-03-21 Ajinomoto Co Inc Curable resin composition
JP2000204324A (en) * 1999-01-08 2000-07-25 Nagase Chiba Kk Epoxy resin-based sheet-like adhesive composition
JP2001123050A (en) * 1999-10-29 2001-05-08 Nippon Mitsubishi Oil Corp Epoxy resin composition and semiconductor device
JP2002012818A (en) * 2000-06-27 2002-01-15 Arakawa Chem Ind Co Ltd Coating composition
JP2002179762A (en) * 2000-12-08 2002-06-26 Arakawa Chem Ind Co Ltd Silane-modified epoxy resin composition and cured product thereof
JP2002275445A (en) * 2001-03-22 2002-09-25 Arakawa Chem Ind Co Ltd Adhesive for printed circuit
WO2004039885A1 (en) * 2002-11-01 2004-05-13 Mitsui Chemicals, Inc. Sealant composition for liquid crystal and process for producing liquid-crystal display panel with the same
JP2004238483A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061086A1 (en) * 2005-11-25 2007-05-31 Zeon Corporation Curable resin composition and use thereof
JP2008084545A (en) * 2006-09-25 2008-04-10 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP2008094908A (en) * 2006-10-10 2008-04-24 Sumitomo Electric Ind Ltd Adhesive for electrode connection
JP2008308519A (en) * 2007-06-12 2008-12-25 Sumitomo Electric Ind Ltd Adhesive for connecting electrode
JP2009132798A (en) * 2007-11-30 2009-06-18 Sumitomo Electric Ind Ltd Adhesive for connecting electrode and method for producing the same
JP2010141265A (en) * 2008-12-15 2010-06-24 Sumitomo Electric Ind Ltd Connection structure and connection method of printed circuit board
JP2011195751A (en) * 2010-03-23 2011-10-06 Hoden Seimitsu Kako Kenkyusho Ltd Method for producing rust-preventing insulation coating material composition for light metal alloy member and method for coating the same
JP2012186448A (en) * 2011-02-17 2012-09-27 Sony Chemical & Information Device Corp Anisotropic conductive film
WO2019074058A1 (en) * 2017-10-12 2019-04-18 富士フイルム株式会社 Anisotropic conductive film, and laminate
WO2019074064A1 (en) * 2017-10-12 2019-04-18 富士フイルム株式会社 Anisotropic conductive film, and laminate
JPWO2019074064A1 (en) * 2017-10-12 2020-11-26 富士フイルム株式会社 Anisotropic conductive film and laminate
JPWO2019074058A1 (en) * 2017-10-12 2020-12-17 富士フイルム株式会社 Anisotropic conductive film and laminate
CN114250043A (en) * 2020-09-22 2022-03-29 起翔有限公司 Self-fluxing conductive connecting material, bonding module comprising same and manufacturing method thereof
JP2022051651A (en) * 2020-09-22 2022-04-01 フライ アップ カンパニー リミテッド Self-sealing conductive connection paste, bonding module comprising the same, and method for producing the same
JP7168940B2 (en) 2020-09-22 2022-11-10 フライ アップ カンパニー リミテッド SELF-SEALED CONDUCTIVE CONNECTION PASTE, BONDING MODULE CONTAINING THE SAME, AND MANUFACTURING METHOD THEREOF
CN114250043B (en) * 2020-09-22 2024-03-12 起翔有限公司 Self-welding conductive connecting material, bonding die block comprising self-welding conductive connecting material and manufacturing method of bonding die block
CN113388235A (en) * 2021-06-28 2021-09-14 华南理工大学 Humidity-heat-resistant high-dielectric-constant epoxy resin composite material and preparation method thereof

Also Published As

Publication number Publication date
JP4760066B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4760066B2 (en) Anisotropic conductive adhesive
JP5030196B2 (en) Adhesive for circuit connection
TWI383405B (en) Anisotropic conductive adhesive
JP4816750B2 (en) Connection method of printed wiring board
WO2010073885A1 (en) Film adhesive and anisotropic conductive adhesive
JP2007112949A (en) Anisotropic conductive adhesive
JP5267958B2 (en) Adhesive composition
JP4556936B2 (en) Adhesive for electrode connection
JP2008094908A (en) Adhesive for electrode connection
JPH08315885A (en) Circuit connecting material
JP2007056209A (en) Adhesive for circuit connection
JP4572562B2 (en) Film adhesive
JP2007317563A (en) Circuit connecting adhesive
JP2010024416A (en) Adhesive for connecting electrodes
JP4867805B2 (en) Adhesive for electrode connection
JP2006176716A (en) Adhesive for connecting circuit
JP2009037928A (en) Adhesive for electrode connection
JP2005294086A (en) Film glue
JP2009108158A (en) Anisotropically conductive film
JP2010280871A (en) Film-like adhesive and film-like anisotropically conductive adhesive
JP2008084545A (en) Adhesive for electrode connection
JP2010135576A (en) Printed wiring board, and method of manufacturing printed wiring board
JP2010135122A (en) Electrode connecting adhesive
KR20030086450A (en) Adhesive for Bonding Circuit and Circuit Board Connected by Using the Same
JP2011233921A (en) Connection structure of printed wiring boards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees