JP2012186448A - Anisotropic conductive film - Google Patents
Anisotropic conductive film Download PDFInfo
- Publication number
- JP2012186448A JP2012186448A JP2012004002A JP2012004002A JP2012186448A JP 2012186448 A JP2012186448 A JP 2012186448A JP 2012004002 A JP2012004002 A JP 2012004002A JP 2012004002 A JP2012004002 A JP 2012004002A JP 2012186448 A JP2012186448 A JP 2012186448A
- Authority
- JP
- Japan
- Prior art keywords
- anisotropic conductive
- zeolite
- conductive film
- average particle
- particle size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/04—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R11/00—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
- H01R11/01—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/10—Adhesives in the form of films or foils without carriers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
- C09J9/02—Electrically-conducting adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/16—Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2203/00—Applications of adhesives in processes or use of adhesives in the form of films or foils
- C09J2203/326—Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/408—Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29199—Material of the matrix
- H01L2224/2929—Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L2224/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
- H01L2224/29001—Core members of the layer connector
- H01L2224/29099—Material
- H01L2224/29198—Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
- H01L2224/29298—Fillers
- H01L2224/29299—Base material
- H01L2224/293—Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
- H01L2224/83851—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/07802—Adhesive characteristics other than chemical not being an ohmic electrical conductor
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Non-Insulated Conductors (AREA)
- Adhesive Tapes (AREA)
- Wire Bonding (AREA)
Abstract
Description
本発明は、電子部品の端子同士を異方性導電接続するために有用な異方性導電フィルムに関する。 The present invention relates to an anisotropic conductive film useful for anisotropic conductive connection between terminals of an electronic component.
配線材料として、絶縁性接着剤に導電性粒子が分散した異方性導電フィルムが使用されている。異方性導電フィルムとしては、密着性がよく低温速硬化するものが望ましく、そのためにラジカル重合性のアクリル系バインダーにシランカップリング剤を使用することが提案されている(特許文献1)。 An anisotropic conductive film in which conductive particles are dispersed in an insulating adhesive is used as a wiring material. As the anisotropic conductive film, a film having good adhesion and capable of rapid curing at a low temperature is desirable. For this purpose, it has been proposed to use a silane coupling agent for a radical polymerizable acrylic binder (Patent Document 1).
異方性導電フィルムに用いるシランカップリング剤としては官能基の異なる種々のものが知られている。しかしながら、いずれのシランカップリング剤も、異方性導電フィルムを長期間保管すると空気中の水分により加水分解し、部分的縮合によりオリゴマー化し、水酸基が減少して異方性導電フィルムの密着力が低下するという問題点を有する。 Various silane coupling agents used for anisotropic conductive films have different functional groups. However, any of the silane coupling agents hydrolyzes with moisture in the air when the anisotropic conductive film is stored for a long period of time, and is oligomerized by partial condensation, reducing the hydroxyl groups and improving the adhesion of the anisotropic conductive film. It has the problem of being lowered.
一方、異方性導電フィルムで導通接続した接続構造体では、通電により電極から金属イオンが溶出してマイグレーションを起こす場合があり、かかる金属イオンの濃度を低下させてマイグレーションの発生を防止するために、異方性導電フィルムを構成する絶縁性接着剤中に無機イオン交換体を含有させることが提案されている(特許文献2)。しかしながら、無機イオン交換体を含有させても、異方性導電フィルム中の余分な水分を取り除くことはできず、異方性導電フィルムを長期間保管した後の接着性の低下は解消されていない。 On the other hand, in a connection structure that is conductively connected with an anisotropic conductive film, metal ions may elute from the electrode when energized, causing migration, and in order to reduce the concentration of such metal ions and prevent migration from occurring In addition, it has been proposed to include an inorganic ion exchanger in the insulating adhesive constituting the anisotropic conductive film (Patent Document 2). However, even if an inorganic ion exchanger is contained, excess moisture in the anisotropic conductive film cannot be removed, and the decrease in adhesion after storing the anisotropic conductive film for a long time has not been eliminated. .
上述の従来技術に対し、本発明は、水分による接着性の低下が抑制され、保存安定性に優れた異方性導電フィルムを提供することを目的とする。 In contrast to the above-described conventional technology, an object of the present invention is to provide an anisotropic conductive film in which a decrease in adhesiveness due to moisture is suppressed and excellent in storage stability.
本発明者は、異方性導電フィルムを構成する絶縁性接着剤中に特定のゼオライトを含有させると、ゼオライトに水分が捕捉され、異方性導電フィルムの保存安定性が向上することを見出した。 The present inventor has found that when a specific zeolite is contained in the insulating adhesive constituting the anisotropic conductive film, moisture is trapped in the zeolite and the storage stability of the anisotropic conductive film is improved. .
即ち、本発明は、導電性粒子がシランカップリング剤を含有する絶縁性接着剤に分散した異方性導電フィルムであって、ゼオライトの含有率が1〜20wt%、該ゼオライトの平均細孔径が3〜5オングストロームであり、ゼオライトの平均粒子径が導電性粒子の平均粒子径よりも小さい異方性導電フィルムを提供する。 That is, the present invention is an anisotropic conductive film in which conductive particles are dispersed in an insulating adhesive containing a silane coupling agent, the zeolite content is 1 to 20 wt%, and the average pore diameter of the zeolite is Provided is an anisotropic conductive film having an average particle diameter of 3 to 5 angstroms and smaller than the average particle diameter of conductive particles.
また、本発明は、上述の異方性導電フィルムを用いた異方性導電接続方法や、それによる異方性導電接続体を提供する。 Moreover, this invention provides the anisotropic conductive connection method using the above-mentioned anisotropic conductive film, and the anisotropic conductive connection body by it.
本発明の異方性導電フィルムは、それを構成する絶縁性接着剤中に平均細孔径が3〜5オングストロームのゼオライト粒子を含有しているので、異方性導電フィルム中の余分な水分が吸着される。このため、異方性導電フィルムを構成する絶縁性接着剤中にシランカップリング剤が含まれていても、その加水分解が防止される。したがって、異方性導電フィルムを長期間保管した後でも十分な接着強度を維持することができる。 The anisotropic conductive film of the present invention contains zeolite particles having an average pore diameter of 3 to 5 angstroms in the insulating adhesive constituting the film, so that excess moisture in the anisotropic conductive film is adsorbed. Is done. For this reason, even if the silane coupling agent is contained in the insulating adhesive constituting the anisotropic conductive film, the hydrolysis is prevented. Therefore, sufficient adhesive strength can be maintained even after the anisotropic conductive film has been stored for a long time.
また、本発明の異方性導電フィルムに含有されるゼオライト粒子の平均粒子径は、異方性導電フィルムに含有される導電性粒子の平均粒子径よりも小さいため、導電性粒子による端子間の導通がゼオライト粒子によって阻害されることはなく、長期間保存後においても初期の低い導通抵抗を得ることができる。 Moreover, since the average particle diameter of the zeolite particles contained in the anisotropic conductive film of the present invention is smaller than the average particle diameter of the conductive particles contained in the anisotropic conductive film, The conduction is not hindered by the zeolite particles, and an initial low conduction resistance can be obtained even after long-term storage.
以下、本発明を具体的に説明する。
本発明の異方性導電フィルムは、絶縁性接着剤中に特定の細孔径のゼオライトを含有することを特徴としている。ゼオライトは、アルミノケイ酸塩を骨格とする多孔質の結晶性物質である。ゼオライトには特定の組成を有する合成ゼオライトと、天然ゼオライトと、産業廃棄物を原料として生産される人工ゼオライトがあるが、本発明においては、細孔径や粒子径の制御の点から合成ゼオライトを使用することが好ましい。
Hereinafter, the present invention will be specifically described.
The anisotropic conductive film of the present invention is characterized by containing a zeolite having a specific pore size in an insulating adhesive. Zeolite is a porous crystalline substance having an aluminosilicate framework. Zeolite includes synthetic zeolite with a specific composition, natural zeolite, and artificial zeolite produced using industrial waste as a raw material. In the present invention, synthetic zeolite is used from the viewpoint of control of pore diameter and particle diameter. It is preferable to do.
合成ゼオライトは、アルミノシリケートの含水金属塩から形成されており、その含水金属塩を加熱脱水することで、空洞となった細孔が形成され、平均細孔径を3〜5オングストローム、より好ましくは約3オングストローム程度とする。平均細孔径を約3オングストロームとすることにより、細孔に水分子が吸着され、約4オングストロームとすることにより、硬化阻害を引き起こすおそれのある硫化水素や、接着力の低下を引き起こすおそれのあるエチルアルコールが吸着され、約5オングストロームとすることにより、接着力の低下を引き起こすおそれのあるパラフィン類やオレフィン類が吸着される。これに対し、平均細孔径が5オングストロームよりも大きくなると、水分子以外の分子が過度に吸着されるために、水分子の吸着性が低下する。したがって、異方性導電フィルムを形成する絶縁性接着剤中に平均細孔径が3〜5オングストローム、より好ましくは約3オングストロームの合成ゼオライトを含有させることが、絶縁性接着剤中の余分な水分を合成ゼオライトに吸収させ、接続信頼性を向上させる点で好ましい。 Synthetic zeolite is formed from a hydrous metal salt of aluminosilicate, and the hydrous metal salt is heated and dehydrated to form pores that become cavities, with an average pore diameter of 3 to 5 angstroms, more preferably about It should be about 3 angstroms. By setting the average pore diameter to about 3 angstroms, water molecules are adsorbed to the pores, and by setting the average pore diameter to about 4 angstroms, hydrogen sulfide that may cause curing inhibition or ethyl that may cause a decrease in adhesive strength By adsorbing alcohol to about 5 angstroms, paraffins and olefins that may cause a decrease in adhesive strength are adsorbed. On the other hand, when the average pore diameter is larger than 5 angstroms, molecules other than water molecules are excessively adsorbed, so that the adsorptivity of water molecules decreases. Therefore, inclusion of synthetic zeolite having an average pore diameter of 3 to 5 angstroms, more preferably about 3 angstroms, in the insulating adhesive forming the anisotropic conductive film can reduce excess moisture in the insulating adhesive. It is preferable in that it is absorbed into the synthetic zeolite and the connection reliability is improved.
合成ゼオライトの種類としては、特に制限はなく、通常吸着剤、触媒等として用いられるものを使用することができる。例えば、A型ゼオライト、フォージャサイト型ゼオライト(X型、Y型ゼオライト)、L型ゼオライト、モルデナイト型ゼオライト、MFI型ゼオライト(ZSM−5型ゼオライト)、8型ゼオライト等を用いることができる。合成ゼオライトの具体例としては、モレキュラーシーブス3A,4A,5A(ユニオン昭和(株)製)などをあげることができる。 There is no restriction | limiting in particular as a kind of synthetic zeolite, What is normally used as an adsorbent, a catalyst, etc. can be used. For example, A type zeolite, faujasite type zeolite (X type, Y type zeolite), L type zeolite, mordenite type zeolite, MFI type zeolite (ZSM-5 type zeolite), type 8 zeolite and the like can be used. Specific examples of the synthetic zeolite include molecular sieves 3A, 4A, and 5A (manufactured by Union Showa Co., Ltd.).
本発明においては、ゼオライトの平均粒子径を、異方性導電フィルムに含有させる導電性粒子の平均粒子径よりも小さくする。好ましくはゼオライトの平均粒子径を、異方性導電フィルムに含有させる導電性粒子の平均粒子径の10〜80%とする。これは、ゼオライトの平均粒子径が導電性粒子の平均粒子径以上であると、異方性導電フィルムの圧着時に導電性粒子を十分に押し込むことが困難になり、接続抵抗が大きくなるからである。具体的には、ゼオライトの好ましい平均粒子径は0.1μm〜8μmであり、導電性粒子の好ましい平均粒子径は1μm〜10μmである。なお、ゼオライトの平均粒子径を5μm以下とすると、導電性粒子の平均粒子径をゼオライトの平均粒子径よりも大きくすることがより容易となり、ゼオライト粒子を含有させない場合に比べて接続抵抗が大きくなることを防止することがより容易となる。 In the present invention, the average particle size of the zeolite is made smaller than the average particle size of the conductive particles contained in the anisotropic conductive film. Preferably, the average particle size of the zeolite is 10 to 80% of the average particle size of the conductive particles contained in the anisotropic conductive film. This is because, when the average particle size of the zeolite is equal to or larger than the average particle size of the conductive particles, it becomes difficult to sufficiently push the conductive particles during pressure bonding of the anisotropic conductive film, and the connection resistance increases. . Specifically, the preferable average particle diameter of zeolite is 0.1 μm to 8 μm, and the preferable average particle diameter of conductive particles is 1 μm to 10 μm. If the average particle diameter of the zeolite is 5 μm or less, it becomes easier to make the average particle diameter of the conductive particles larger than the average particle diameter of the zeolite, and the connection resistance becomes larger than when no zeolite particles are contained. It becomes easier to prevent this.
異方性導電フィルムにおけるゼオライトの含有率は1〜20wt%、好ましくは5〜15wt%とする。ゼオライトの含有率が少なすぎるとゼオライトによる水分の吸着効果を十分に得ることができず、反対に多すぎると接続抵抗が高くなる。 The content of zeolite in the anisotropic conductive film is 1 to 20 wt%, preferably 5 to 15 wt%. If the content of zeolite is too small, the water adsorption effect by zeolite cannot be sufficiently obtained, and conversely if too large, the connection resistance increases.
本発明の異方性導電フィルムは、絶縁性接着剤がシランカップリング剤を含有し、ゼオライトが分散している他は、絶縁性接着剤の組成や、それに分散させる導電性粒子について特に制限はない。例えば、絶縁性接着剤は、膜形成樹脂、液状エポキシ化合物(硬化成分)あるいはアクリルモノマー(硬化成分)、硬化剤等と、シランカップリング剤から構成することができる。 The anisotropic conductive film of the present invention is not particularly limited with respect to the composition of the insulating adhesive and the conductive particles dispersed therein, except that the insulating adhesive contains a silane coupling agent and the zeolite is dispersed. Absent. For example, the insulating adhesive can be composed of a film-forming resin, a liquid epoxy compound (curing component) or acrylic monomer (curing component), a curing agent, and the like, and a silane coupling agent.
ここで、膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。 Here, examples of the film-forming resin include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. Can be used in combination. Among these, a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.
液状エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ノボラック型エポキシ化合物、それらの変性エポキシ化合物、脂環式エポキシ化合物などを挙げることができ、これらの2種以上を併用することができる。この場合、硬化剤としては、ポリアミン、イミダゾール等のアニオン系硬化剤やスルホニウム塩などのカチオン系硬化剤、フェノール系硬化剤等の潜在性硬化剤を挙げることができる。 Examples of the liquid epoxy compound include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, novolac type epoxy compounds, modified epoxy compounds thereof, alicyclic epoxy compounds, and the like. Can do. In this case, examples of the curing agent include anionic curing agents such as polyamines and imidazoles, cationic curing agents such as sulfonium salts, and latent curing agents such as phenolic curing agents.
アクリルモノマーとしては、エチル(メタ)アクリレート等を上げることができる。この場合、硬化剤(ラジカル重合開始剤)としては、有機過酸化物、アゾビスブチロニトリル等を挙げることができる。 Examples of the acrylic monomer include ethyl (meth) acrylate. In this case, examples of the curing agent (radical polymerization initiator) include organic peroxides and azobisbutyronitrile.
シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。 Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.
絶縁性接着剤には、必要に応じて充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを配合することができる。 A filler, a softening agent, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, and the like can be blended with the insulating adhesive as necessary.
一方、絶縁性接着剤に分散させる導電性粒子としては、金属粒子や、樹脂粒子の表面に金属メッキを施したもの等を使用することができる。 On the other hand, as the conductive particles dispersed in the insulating adhesive, metal particles, those obtained by performing metal plating on the surface of the resin particles, or the like can be used.
絶縁性接着剤に対する導電性粒子の配合割合は、導電性粒子が少なすぎると導通信頼性が低下し、多すぎると異方導電性が低下するので、導電性粒子を好ましくは0.1〜20wt%、より好ましくは0.2〜10wt%とする。 The blending ratio of the conductive particles with respect to the insulating adhesive is such that the conductive reliability decreases when the conductive particles are too small, and the anisotropic conductivity decreases when the conductive particles are too large, so the conductive particles are preferably 0.1 to 20 wt%, More preferably, the content is 0.2 to 10 wt%.
異方性導電フィルムは、上述の絶縁性接着剤に導電性粒子を分散させ、得られた分散物を離型フィルム上に製膜することにより製造することができる。 The anisotropic conductive film can be produced by dispersing conductive particles in the above-described insulating adhesive and forming the obtained dispersion on a release film.
本発明の異方性導電フィルムは、従来の異方性導電フィルムと同様に、フレキシブル基板、リジッド基板、電子部品等の接続すべき端子間に配置し、端子間を加圧しつつ、加熱、UV照射等を行い、端子間を電気的、機械的に接続する異方性導電接続に使用することができ、これにより高い接続信頼性を有する異方性導電接続体の製造が可能となる。本発明は、かかる接続体も包含する。 The anisotropic conductive film of the present invention is disposed between terminals to be connected, such as a flexible substrate, a rigid substrate, and an electronic component, as in the case of a conventional anisotropic conductive film. Irradiation or the like can be performed and used for an anisotropic conductive connection in which terminals are electrically and mechanically connected. This makes it possible to manufacture an anisotropic conductive connection body having high connection reliability. The present invention also includes such a connection body.
以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
比較例1
フェノキシ樹脂(YP50、新日化エポキシ製造(株)製)60重量部とラジカル重合性樹脂(EB-600、ダイセル・サイテック(株)製)35重量部、反応開始剤(パーヘキサC、日油(株)製)2重量部、シランカップリング剤(A-187、モメンティブ・パフォーマンスマテリアルズ(同)製)2重量部を混合して絶縁性接着剤を得、これに平均粒径5μmの導電性粒子(AUL705,積水化学工業(株)製)を分散させ、剥離フィルム上に塗布し、オーブンで乾燥し、導電性粒子密度10000個/mm2、厚さ15μmの異方性導電フィルムを製造した。
Comparative Example 1
60 parts by weight of a phenoxy resin (YP50, manufactured by Shin-Nippon Epoxy Manufacturing Co., Ltd.) and 35 parts by weight of a radical polymerizable resin (EB-600, manufactured by Daicel Cytec Co., Ltd.), a reaction initiator (Perhexa C, NOF ( 2 parts by weight) and 2 parts by weight of silane coupling agent (A-187, manufactured by Momentive Performance Materials, Inc.) are mixed to obtain an insulating adhesive. Particles (AUL705, manufactured by Sekisui Chemical Co., Ltd.) were dispersed, coated on a release film, and dried in an oven to produce an anisotropic conductive film having a conductive particle density of 10,000 particles / mm 2 and a thickness of 15 μm. .
実施例1〜5
有効細孔径が3オングストロームのゼオライト(ゼオラムA-3、東ソー(株)製)を減圧乾燥し、水分を揮発させ、粉砕した後に、篩を用いて分級した。得られたゼオライト粒子は平均粒子径3.5μmであった。
このゼオライト粒子を表1に示す割合で絶縁性接着剤に加える以外は比較例1と同様にして実施例1〜5の異方性導電フィルムを製造した。
Examples 1-5
Zeolite with an effective pore size of 3 angstroms (Zeoram A-3, manufactured by Tosoh Corporation) was dried under reduced pressure to evaporate water, pulverized, and classified using a sieve. The obtained zeolite particles had an average particle size of 3.5 μm.
Anisotropic conductive films of Examples 1 to 5 were produced in the same manner as in Comparative Example 1 except that the zeolite particles were added to the insulating adhesive at a ratio shown in Table 1.
実施例6
有効細孔径が4オングストロームのゼオライト(ゼオラムA-4、東ソー(株)製)を減圧乾燥し、水分を揮発させ、粉砕した後に、篩を用いて分級し、平均粒子径3.0μmのゼオライト粒子を調製した。
このゼオライト粒子を表1に示す割合で絶縁性接着剤に加える以外は比較例1と同様にして実施例6の異方性導電フィルムを製造した。
Example 6
Zeolite with an effective pore size of 4 Angstroms (Zeoram A-4, manufactured by Tosoh Corporation) is dried under reduced pressure, volatilized and crushed, and then classified using a sieve to obtain zeolite particles with an average particle size of 3.0 μm. Prepared.
An anisotropic conductive film of Example 6 was produced in the same manner as in Comparative Example 1 except that the zeolite particles were added to the insulating adhesive in the ratio shown in Table 1.
実施例7
有効細孔径が5オングストロームのゼオライト(ゼオラムA-5、東ソー(株)製)を減圧乾燥し、水分を揮発させ、粉砕した後に、篩を用いて分級し、平均粒子径3.0μmのゼオライト粒子を調製した。
このゼオライト粒子を表1に示す割合で絶縁性接着剤に加える以外は比較例1と同様にして実施例7の異方性導電フィルムを製造した。
Example 7
Zeolite with an effective pore size of 5 angstroms (Zeoram A-5, manufactured by Tosoh Corporation) is dried under reduced pressure, volatilized and crushed, and then classified using a sieve to obtain zeolite particles with an average particle size of 3.0 μm. Prepared.
An anisotropic conductive film of Example 7 was produced in the same manner as in Comparative Example 1 except that the zeolite particles were added to the insulating adhesive in the ratio shown in Table 1.
比較例2
有効細孔径が3オングストロームのゼオライト(ゼオラムA-3、東ソー(株)製)を減圧乾燥し、水分を揮発させ、粉砕した後に、篩を用いて分級し、平均粒子径10μmのゼオライト粒子を調製した。
このゼオライト粒子を表1に示す割合で絶縁性接着剤に加える以外は比較例1と同様にして比較例2の異方性導電フィルムを製造した。
Comparative Example 2
Zeolite with an effective pore size of 3 angstroms (Zeoram A-3, manufactured by Tosoh Corporation) is dried under reduced pressure to evaporate water, pulverized, and classified using a sieve to prepare zeolite particles with an average particle size of 10 μm did.
An anisotropic conductive film of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the zeolite particles were added to the insulating adhesive in the ratio shown in Table 1.
比較例3
ゼオライトに代えて平均粒子径3.5μmのシリカ粒子(HPS-3500、東亞合成(株)製)を5.0wt%含有させる以外は実施例1と同様にして比較例3の異方性導電フィルムを製造した。
Comparative Example 3
An anisotropic conductive film of Comparative Example 3 was produced in the same manner as in Example 1 except that 5.0 wt% of silica particles (HPS-3500, manufactured by Toagosei Co., Ltd.) having an average particle size of 3.5 μm were contained instead of zeolite. did.
評価
実施例1〜7及び比較例1〜3で得た異方性導電フィルムについて、(a)接続抵抗と(b)接着強度を次のようにして測定した。また、異方性導電フィルムを85℃、85%RHに500時間おく保存安定性加速試験を行った後に、同様に(a)接続抵抗と(b)接着強度を測定した。これらの結果を表1に示す。
Evaluation About the anisotropic conductive film obtained in Examples 1-7 and Comparative Examples 1-3, (a) connection resistance and (b) adhesive strength were measured as follows. In addition, after performing an accelerated storage stability test in which the anisotropic conductive film was placed at 85 ° C. and 85% RH for 500 hours, (a) connection resistance and (b) adhesive strength were measured in the same manner. These results are shown in Table 1.
(a)接続抵抗の測定方法
評価用基材としてソニーケミカル&インフォメーションデバイス社(株)製COF(50μmピッチ、Cu8μm厚-Snメッキ、ポリイミド38μm厚-Sperflex基材)と評価用ITOベタガラスを用意した。そして、ITOベタガラスに、1.5mmにスリットした異方性導電フィルムを緩衝材150μm厚テフロン(登録商標)を用いたツール幅1.5mmの仮圧着機にて70℃、1MPa、1secにて仮圧着し、次いで、COFを同圧着機にて80℃、0.5MPa、0.5secで仮固定し、最後に190℃、3MPa、10secでツール幅1.5mmの本圧着機で圧着し、実装体を作成した。
この実装体について、接続抵抗値をデジタルマルチメータ(横河電機(株)製)を用いて四端子法(電流1mA)で測定した。
(a) Measuring method of connection resistance As a base material for evaluation, COF (50 μm pitch, Cu 8 μm thickness-Sn plating, polyimide 38 μm thickness-Sperflex base material) manufactured by Sony Chemical & Information Device Co., Ltd. and ITO solid glass for evaluation were prepared. . Then, an anisotropic conductive film slit to 1.5 mm was temporarily crimped onto ITO solid glass at 70 ° C, 1 MPa, 1 sec using a temporary crimping machine with a tool width of 1.5 mm using a buffer material of 150 µm thick Teflon (registered trademark). Subsequently, the COF was temporarily fixed at 80 ° C., 0.5 MPa, and 0.5 sec with the same crimping machine, and finally was crimped with a main crimping machine having a tool width of 1.5 mm at 190 ° C., 3 MPa, and 10 sec.
About this mounting body, the connection resistance value was measured by a four-terminal method (current 1 mA) using a digital multimeter (manufactured by Yokogawa Electric Corporation).
(b)接着強度の測定方法
ITOベタガラスに代えてノンアルカリベタガラスを用いて(a)と同様に実装体を作成し、その実装体の接着強度を、引っ張り試験機(AND社製)を用いて測定した。この場合、測定速度は50mm/secでCOFを90°で引き上げたときの接着強度を測定した。
(b) Measuring method of adhesive strength Using a non-alkali solid glass instead of the ITO solid glass, a mounting body is prepared in the same manner as in (a), and the tensile strength of the mounting body is measured using a tensile tester (manufactured by AND). Measured. In this case, the adhesive strength was measured when the measurement speed was 50 mm / sec and the COF was pulled up at 90 °.
表1から、ゼオライトを含有しない比較例1の異方性導電フィルムでは、保存安定性加速試験後に接着強度が大きく低下すること、導電性粒子よりも粒径の大きいゼオライトを含有した比較例2の異方性導電フィルムでは、圧着時に導電性粒子を十分に押し込めないので接続抵抗が高いこと、ゼオライトに代えてシリカを含有させた比較例3の異方性導電フィルムでも保存安定性加速試験後の接着強度が大きく低下すること、これに対し、導電性粒子よりも粒径が小さいゼオライトを含有する実施例1〜7の異方性導電フィルムでは、保存安定性加速試験後においても接着強度が高く、接続抵抗が十分に低いこと、特に、ゼオライトの平均細孔径が3オングストロームでゼオライトの含有量が5〜15wt%である実施例2、4の異方性導電フィルムでは、接続抵抗が低く、保存安定性加速試験後の接着強度に優れ、接続信頼性が高いことがわかる。 From Table 1, in the anisotropic conductive film of Comparative Example 1 containing no zeolite, the adhesive strength greatly decreased after the storage stability acceleration test, and Comparative Example 2 containing zeolite having a particle size larger than the conductive particles. The anisotropic conductive film has high connection resistance because the conductive particles cannot be fully pushed in at the time of pressure bonding, and the anisotropic conductive film of Comparative Example 3 containing silica instead of zeolite after the storage stability acceleration test. On the other hand, the anisotropic conductive films of Examples 1 to 7 containing zeolite having a smaller particle size than the conductive particles have a high adhesive strength even after the storage stability acceleration test. The anisotropic conductive film of Examples 2 and 4 having a sufficiently low connection resistance, in particular, having an average pore diameter of 3 angstroms and a zeolite content of 5 to 15 wt% In connection resistance is low, excellent adhesive strength after storage stability acceleration test, it can be seen that a high connection reliability.
Claims (6)
該ゼオライトの平均細孔径が3〜5オングストロームであり、
ゼオライトの平均粒子径が導電性粒子の平均粒子径よりも小さい異方性導電フィルム。 An anisotropic conductive film in which conductive particles are dispersed in an insulating adhesive containing a silane coupling agent, the zeolite content is 1 to 20 wt%,
The zeolite has an average pore size of 3 to 5 angstroms,
An anisotropic conductive film in which the average particle size of zeolite is smaller than the average particle size of conductive particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012004002A JP2012186448A (en) | 2011-02-17 | 2012-01-12 | Anisotropic conductive film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011031753A JP2011102404A (en) | 2011-02-17 | 2011-02-17 | Anisotropic conductive film |
JP2011031753 | 2011-02-17 | ||
JP2012004002A JP2012186448A (en) | 2011-02-17 | 2012-01-12 | Anisotropic conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012186448A true JP2012186448A (en) | 2012-09-27 |
Family
ID=44192855
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011031753A Pending JP2011102404A (en) | 2011-02-17 | 2011-02-17 | Anisotropic conductive film |
JP2012004002A Pending JP2012186448A (en) | 2011-02-17 | 2012-01-12 | Anisotropic conductive film |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011031753A Pending JP2011102404A (en) | 2011-02-17 | 2011-02-17 | Anisotropic conductive film |
Country Status (5)
Country | Link |
---|---|
JP (2) | JP2011102404A (en) |
KR (1) | KR20140001730A (en) |
CN (1) | CN103384904B (en) |
TW (1) | TW201246236A (en) |
WO (1) | WO2012111365A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014162990A1 (en) | 2013-04-02 | 2014-10-09 | 昭和電工株式会社 | Conductive adhesive, anisotropic conductive film and electronic devices using both |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6119718B2 (en) * | 2013-11-19 | 2017-04-26 | デクセリアルズ株式会社 | Anisotropic conductive film and connection structure |
JP2016060761A (en) * | 2014-09-16 | 2016-04-25 | デクセリアルズ株式会社 | Anisotropic conductive adhesive, and method for producing connection structure |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04355004A (en) * | 1991-05-30 | 1992-12-09 | Shin Etsu Polymer Co Ltd | Thermosetting anisotropic conductive adhesive film and manufacture thereof |
JPH07307179A (en) * | 1994-05-13 | 1995-11-21 | Shin Etsu Polymer Co Ltd | Insulating adhesive composition for heat seal connector and manufacture thereof |
JPH10245528A (en) * | 1997-03-03 | 1998-09-14 | Hitachi Chem Co Ltd | Anisotropically conductive joint member |
JPH11232929A (en) * | 1998-02-13 | 1999-08-27 | Rohm Co Ltd | Anisotropic conductive resin and semiconductor device having the anisotropic conductive resin |
KR20060087712A (en) * | 2005-01-31 | 2006-08-03 | 삼성전자주식회사 | Liquid crystal display |
JP2006249342A (en) * | 2005-03-14 | 2006-09-21 | Sumitomo Electric Ind Ltd | Adhesive composition and anisotropic conductive adhesive using the same |
JP2007317563A (en) * | 2006-05-26 | 2007-12-06 | Sumitomo Electric Ind Ltd | Circuit connecting adhesive |
JP2008222786A (en) * | 2007-03-09 | 2008-09-25 | Asahi Kasei Electronics Co Ltd | Anisotropic conductive adhesive film for circuit connection |
JP2009073872A (en) * | 2007-09-19 | 2009-04-09 | Toray Ind Inc | Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4788036B2 (en) * | 2000-11-29 | 2011-10-05 | 日立化成工業株式会社 | Film adhesive for circuit connection, circuit terminal connection structure, and circuit terminal connection method |
JP4201519B2 (en) * | 2002-04-01 | 2008-12-24 | スリーエム イノベイティブ プロパティズ カンパニー | Cationic polymerizable adhesive composition and anisotropic conductive adhesive composition |
JP2005285573A (en) * | 2004-03-30 | 2005-10-13 | Optrex Corp | Display device and its manufacturing method |
CN101689518A (en) * | 2007-07-11 | 2010-03-31 | 日立化成工业株式会社 | Adhesive for circuit member connection |
KR101471232B1 (en) * | 2007-09-19 | 2014-12-09 | 도레이 카부시키가이샤 | Adhesive composition for electronic components and adhesive sheet for electronic components using the same |
JP2009091566A (en) * | 2007-09-19 | 2009-04-30 | Toray Ind Inc | Adhesive composition and adhesive sheet using it |
JP5569121B2 (en) * | 2009-05-29 | 2014-08-13 | 日立化成株式会社 | Adhesive composition, circuit member connecting adhesive sheet, and method for manufacturing semiconductor device |
JP5495097B2 (en) * | 2009-06-26 | 2014-05-21 | 株式会社リコー | Image display device |
-
2011
- 2011-02-17 JP JP2011031753A patent/JP2011102404A/en active Pending
-
2012
- 2012-01-12 CN CN201280000376.1A patent/CN103384904B/en not_active Expired - Fee Related
- 2012-01-12 KR KR1020127011523A patent/KR20140001730A/en not_active Application Discontinuation
- 2012-01-12 WO PCT/JP2012/050480 patent/WO2012111365A1/en active Application Filing
- 2012-01-12 JP JP2012004002A patent/JP2012186448A/en active Pending
- 2012-02-03 TW TW101103487A patent/TW201246236A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04355004A (en) * | 1991-05-30 | 1992-12-09 | Shin Etsu Polymer Co Ltd | Thermosetting anisotropic conductive adhesive film and manufacture thereof |
JPH07307179A (en) * | 1994-05-13 | 1995-11-21 | Shin Etsu Polymer Co Ltd | Insulating adhesive composition for heat seal connector and manufacture thereof |
JPH10245528A (en) * | 1997-03-03 | 1998-09-14 | Hitachi Chem Co Ltd | Anisotropically conductive joint member |
JPH11232929A (en) * | 1998-02-13 | 1999-08-27 | Rohm Co Ltd | Anisotropic conductive resin and semiconductor device having the anisotropic conductive resin |
KR20060087712A (en) * | 2005-01-31 | 2006-08-03 | 삼성전자주식회사 | Liquid crystal display |
JP2006249342A (en) * | 2005-03-14 | 2006-09-21 | Sumitomo Electric Ind Ltd | Adhesive composition and anisotropic conductive adhesive using the same |
JP2007317563A (en) * | 2006-05-26 | 2007-12-06 | Sumitomo Electric Ind Ltd | Circuit connecting adhesive |
JP2008222786A (en) * | 2007-03-09 | 2008-09-25 | Asahi Kasei Electronics Co Ltd | Anisotropic conductive adhesive film for circuit connection |
JP2009073872A (en) * | 2007-09-19 | 2009-04-09 | Toray Ind Inc | Adhesive composition for electronic equipment and adhesive sheet for electronic equipment using the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014162990A1 (en) | 2013-04-02 | 2014-10-09 | 昭和電工株式会社 | Conductive adhesive, anisotropic conductive film and electronic devices using both |
US9701874B2 (en) | 2013-04-02 | 2017-07-11 | Showa Denko K.K. | Conductive adhesive, anisotropic conductive film, and electronic device using same |
Also Published As
Publication number | Publication date |
---|---|
WO2012111365A1 (en) | 2012-08-23 |
JP2011102404A (en) | 2011-05-26 |
TW201246236A (en) | 2012-11-16 |
CN103384904B (en) | 2016-04-13 |
KR20140001730A (en) | 2014-01-07 |
CN103384904A (en) | 2013-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4780197B2 (en) | Coated particle, method for producing the same, anisotropic conductive adhesive composition using coated particle, and anisotropic conductive adhesive film | |
JP5099284B2 (en) | Anisotropic connection sheet material | |
JP5644067B2 (en) | Insulation coated conductive particles | |
CN1950912A (en) | Adhesive for connecting circuit | |
WO2014189028A1 (en) | Conductive material and connected structure | |
TW201239909A (en) | Conductive particle, conductive particle manufacturing method, anisotropic conductive material, and connective structure | |
TWI811444B (en) | Adhesive composition | |
JP2012186448A (en) | Anisotropic conductive film | |
JP5565176B2 (en) | Composition, cured product thereof, and electronic device | |
JP2011181525A (en) | Anisotropic conductive material | |
JP5471504B2 (en) | Anisotropic conductive film | |
CN110982074A (en) | Normal-temperature curing tackifier system, preparation method and pouring sealant using same | |
JP2008179682A (en) | Anisotropically electroconductive adhesive and electric installation | |
TW200304935A (en) | Cationic polymerizable adhesive composition and anisotropically electroconductive adhesive composition | |
KR20150050009A (en) | Anisotropic conductive film and the semiconductor device using thereof | |
JP2007204673A (en) | Epoxy resin composition, electroconductive adhesive by using the same and anisotropic electroconductive film | |
JP2011105861A (en) | Circuit-connecting material and connected structure | |
CN110922937A (en) | Organosilicon heat-conducting encapsulating silica gel with excellent performance | |
CN110607052A (en) | Prepreg, laminated board and printed circuit board | |
KR20100055492A (en) | Adhesives with thermal conductivity enhanced by mixed silver fillers | |
JP2010024384A (en) | Anisotropically electroconductive composition | |
WO2012137335A1 (en) | Circuit connection material and use thereof, and connecting structure and method for producing same | |
JP5796232B2 (en) | Conductive particles, anisotropic conductive materials, and connection structures | |
KR101731677B1 (en) | A composition for use of anisotropic conductive film, anisotropic conductive film, and semiconductor device | |
JP5365816B2 (en) | Insulation coated conductive particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151030 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160426 |