JPH1030082A - Adhesive - Google Patents

Adhesive

Info

Publication number
JPH1030082A
JPH1030082A JP8186268A JP18626896A JPH1030082A JP H1030082 A JPH1030082 A JP H1030082A JP 8186268 A JP8186268 A JP 8186268A JP 18626896 A JP18626896 A JP 18626896A JP H1030082 A JPH1030082 A JP H1030082A
Authority
JP
Japan
Prior art keywords
epoxy resin
adhesive
resin
type
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8186268A
Other languages
Japanese (ja)
Inventor
Hitoaki Date
仁昭 伊達
Yuuko Hozumi
有子 穗積
英士 ▲徳▼平
Eiji Tokuhira
Makoto Usui
誠 臼居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8186268A priority Critical patent/JPH1030082A/en
Publication of JPH1030082A publication Critical patent/JPH1030082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an adhesive stabilized in joining to printed circuit boards mounted with functional elements having a large calorific value in operation and improved in heat reliability at a high temperature by using a specific epoxy resin (mixture) as a main agent so as to increase glass transition temperature of the adhesive. SOLUTION: This adhesive contains a naphthalene-based epoxy resin or a mixture of the epoxy resin with bisphenol A type or F type epoxy resin as a main agent (A). The adhesive is e.g. an anisotropic electroconductive adhesive. The adhesive is obtained by blending the main agent A with (B) a capsule type curing agent obtained by coating a cured material such as imidazole or an acid anhydride with a thermoplastic resin such as acrylic resin, (C) an additive such as silica and (D) a capsule type filler obtained by coating an electroconductive particles such as silver particles with an electrically insulating resin (e.g. a resin obtained by reacting an epoxy resin with an amine compound).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は接着剤に係り、例え
ば配線回路基板等に各種素子を接合するはんだ接合に代
わる素子固着用及び導電性接合用の接着剤に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adhesive, and more particularly to an adhesive for fixing an element and a conductive joint instead of a solder joint for joining various elements to a printed circuit board or the like.

【0002】近年、配線回路基板等に対する各種素子の
はんだ接合に代わる接合方式として、簡便に素子を固
着、或いは電気的に接合することのできる接着剤の適用
が注目され、実用化されている。
In recent years, as an alternative to soldering various elements to a printed circuit board or the like, an adhesive which can easily fix or electrically connect the elements has attracted attention and has been put to practical use.

【0003】一方、そのような接着剤としては、配線回
路基板等に対して動作時の発熱量が比較的大きい高性能
な機能素子の電気的な接合、或いは固着等においても安
定で耐熱性に優れたものが要求されている。
[0003] On the other hand, such an adhesive is stable and heat resistant even in electrical bonding or fixing of a high-performance functional element that generates a relatively large amount of heat during operation to a printed circuit board or the like. Excellent things are required.

【0004】[0004]

【従来の技術】配線回路基板等に対して実装する各種機
能素子の接合材料としては、従来より主にはんだが数多
く用いられているが、回路配線パターンのファイン化、
作業環境や動作環境等にも良好に対処できるはんだに代
わる接合材料として樹脂系、或いは導電性を有する樹脂
系の接着剤が用いられている。
2. Description of the Related Art Conventionally, a large number of solders have been used as a bonding material for various functional elements mounted on a printed circuit board, etc.
Resin-based or conductive resin-based adhesives have been used as a joining material instead of solder, which can satisfactorily cope with working environments and operating environments.

【0005】ところで、前記した各種機能素子の中にも
高性能化に伴って動作時の発熱量が大きくなる傾向にあ
り、またそのような機能素子を含む電子部品を基板に実
装後の信頼性試験の温度条件も150℃程度の高温にす
る要求がある。
Meanwhile, among the above-mentioned various functional elements, the amount of heat generated during operation tends to increase with the advance of performance, and the reliability of electronic components including such functional elements after mounting on a substrate is high. There is also a demand for the temperature condition of the test to be as high as about 150 ° C.

【0006】そのような素子接合用の接着剤としては耐
吸湿性、電気絶縁性等の観点から熱可塑性樹脂系の接着
剤よりも熱硬化性樹脂系の接着剤の方が適しており、そ
の中でも電気的特性、低温速硬化、コスト等から総合的
に評価するとエポキシ樹脂系の接着剤が最も有用であ
る。
As such an adhesive for bonding elements, a thermosetting resin-based adhesive is more suitable than a thermoplastic resin-based adhesive from the viewpoints of moisture absorption resistance, electrical insulation and the like. Among them, epoxy resin-based adhesives are most useful when comprehensively evaluated from electrical characteristics, low-temperature rapid curing, cost, and the like.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記したよ
うな従来のエポキシ樹脂系の接着剤は、一般的にビスフ
ェノールA型のエポキシ樹脂、またはビスフェノールF
型のエポキシ樹脂等の主剤にイミダゾールや酸無水物
(メチルテトラヒドロ無水フタル酸、無水コハク酸な
ど)等からなる硬化剤を混合したものや、これらのもの
に更に導電性フィラー等とを混合したものが大部分であ
り、そのような接着剤のガラス転移温度は130℃以下
のものがほとんどである。
However, the conventional epoxy resin-based adhesive as described above is generally made of bisphenol A type epoxy resin or bisphenol F
Ingredients such as imidazole and acid anhydrides (methyltetrahydrophthalic anhydride, succinic anhydride, etc.) mixed with the main agent such as epoxy resin of the mold type, and those obtained by further mixing these with conductive fillers Most of such adhesives have a glass transition temperature of 130 ° C. or lower.

【0008】従って、このような従来のエポキシ樹脂系
の接着剤で上述の如き動作発熱量の比較的大きい機能素
子を配線回路基板等に接合した場合、高い動作発熱に対
する接合の安定化と、150℃という高温な温度条件で
の信頼性試験とに対応することができないのが実情であ
るという問題があった。
Accordingly, when such a conventional epoxy resin-based adhesive is used to join a functional element having a relatively large amount of operating heat to a printed circuit board or the like as described above, it is possible to stabilize the bonding against high operating heat and achieve a 150 ° C. There is a problem in that it is not possible to cope with a reliability test under a high temperature condition of ℃.

【0009】本発明は上記したような従来の問題点に鑑
み、エポキシ樹脂系の接着剤のガラス転移温度を高める
ことにより、動作発熱量が比較的大きい機能素子の配線
回路基板等に対する接合を安定化させると共に、150
℃程度の高い温度条件での信頼性試験にも十分に対応で
きる耐熱信頼性に優れた新規な接着剤を提供することを
目的とするものである。
In view of the above-mentioned conventional problems, the present invention raises the glass transition temperature of an epoxy resin-based adhesive to stabilize the bonding of a functional element having a relatively large operating heat generation to a printed circuit board or the like. And 150
It is an object of the present invention to provide a novel adhesive excellent in heat resistance and capable of sufficiently responding to a reliability test under a high temperature condition of about ° C.

【0010】[0010]

【課題を解決するための手段】本発明の上記した目的を
達成するため、配線回路基板等に対する動作発熱量が比
較的大きい機能素子の固定や電気的接合等に対しては、
ナフタレン系エポキシ樹脂(ナフタレンを基本骨格に有
するエポキシ樹脂)を主剤とするか、または、ナフタレ
ン系エポキシ樹脂にビスフェノールA型またはビスフェ
ノールF型の少なくとも一つのエポキシ樹脂を混合した
混合物を主剤とし、この主剤に該主剤の樹脂材と反応す
る硬化剤と添加剤とを含有させた接着剤を用いる。
SUMMARY OF THE INVENTION In order to achieve the above object of the present invention, for fixing a functional element having a relatively large amount of operating heat to a printed circuit board or the like or for electrical connection,
The main component is a naphthalene-based epoxy resin (an epoxy resin having naphthalene as a basic skeleton) or a mixture of a naphthalene-based epoxy resin and at least one bisphenol A-type or bisphenol F-type epoxy resin. An adhesive containing a curing agent that reacts with the resin material of the main agent and an additive is used.

【0011】また、ナフタレン系エポキシ樹脂を主剤と
するか、または、ナフタレン系エポキシ樹脂にビスフェ
ノールA型またはビスフェノールF型の少なくとも一つ
のエポキシ樹脂を混合した混合物を主剤とし、この主剤
に硬化物質を熱可塑性樹脂で被覆したカプセル型硬化剤
と、添加剤と、導電性粒子を絶縁性樹脂で被覆したカプ
セル型フィラーとを含有する異方導電性を有する接着剤
を用いるようにする。
Further, a naphthalene-based epoxy resin is used as a main component, or a mixture obtained by mixing at least one bisphenol A type or bisphenol F-type epoxy resin with a naphthalene-based epoxy resin is used as a main component. An adhesive having anisotropic conductivity containing a capsule-type curing agent coated with a plastic resin, an additive, and a capsule-type filler in which conductive particles are coated with an insulating resin is used.

【0012】このような組成の接着剤、或いは異方導電
性の接着剤は、ナフタレン系エポキシ樹脂を主剤とする
か、または、ナフタレン系エポキシ樹脂にビスフェノー
ルA型またはビスフェノールF型の少なくとも一つのエ
ポキシ樹脂に混合した混合物を主剤として用いているの
で、従来のエポキシ樹脂系の接着剤に比べて、そのガラ
ス転移点が少なくとも30℃〜50℃程度高くなり、そ
の高温まで樹脂材の物性変化が抑制されて耐熱性を高め
ることができる。
An adhesive having such a composition or an anisotropic conductive adhesive is mainly composed of a naphthalene-based epoxy resin or at least one of a bisphenol A type and a bisphenol F type epoxy resin. Since the mixture mixed with the resin is used as the main agent, its glass transition point is at least about 30 ° C. to 50 ° C. higher than that of the conventional epoxy resin-based adhesive, and the change in the physical properties of the resin material is suppressed up to the high temperature. Can improve heat resistance.

【0013】また、前記接着剤に基板や被接着材の熱膨
張率に近似のシリカ(SiO2)、或いはアルミナ(Al2O3) 等
の添加剤を添加することで接着剤の低熱膨張率化や加熱
収縮率の緩和が図られ、被接着材との熱膨張差や熱収縮
による接着界面での歪み、接合性の低下や剥離等が抑止
され、基板に対する機能素子等の被接着材の接合が安定
となる。
[0013] The low thermal expansion of the adhesive by adding an additive of the such as silica approximate the adhesive to thermal expansion of the substrate and adherend (SiO 2), or alumina (Al 2 O 3) And the heat shrinkage rate are reduced, distortion at the bonding interface due to the difference in thermal expansion and the heat shrinkage with the material to be bonded, reduction in bonding properties and peeling are suppressed, and the bonding of materials to be bonded such as functional elements to the substrate is suppressed. Bonding becomes stable.

【0014】従って、上記接着剤を発熱量の大きい各種
素子の接合に適用しても、該接着剤の熱膨張係数を基板
や各種素子からなる被接着材に近づけることにより、そ
れらの接合の安定化が実現でき、また前記各種素子を接
合した後の実装基板等を150℃程度の高い温度条件で
行う信頼性試験においても十分に対応させることが可能
となり、良好な接合安定性が得られる。
Therefore, even when the above-mentioned adhesive is applied to the joining of various elements having a large calorific value, the coefficient of thermal expansion of the adhesive is made closer to the substrate or the material to be adhered comprising the various elements, thereby stabilizing the joining. In addition, it is possible to sufficiently cope with a reliability test in which a mounting substrate or the like after bonding the various elements is bonded under a high temperature condition of about 150 ° C., and good bonding stability can be obtained.

【0015】更に、上記の接合安定性の良好な接着剤の
組成に導電性粒子を絶縁性樹脂で被覆したカプセル型フ
ィラーを含有させることにより、微細化が推進されてい
る集積回路チップと実装基板とのファインピッチ接続に
も十分に適用可能であり、安定なファインピッチ接続に
好適な異方導電性の接着剤が実現できる。
Further, by incorporating a capsule-type filler in which conductive particles are coated with an insulating resin into the composition of the adhesive having good bonding stability, an integrated circuit chip and a mounting substrate which are being miniaturized are promoted. Can be sufficiently applied to fine pitch connection, and an anisotropic conductive adhesive suitable for stable fine pitch connection can be realized.

【0016】[0016]

【発明の実施の形態】以下、本発明に係る接着剤と異方
導電性の接着剤の一実施例について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the adhesive according to the present invention and an anisotropic conductive adhesive will be described in detail.

【0017】本実施例では、例えばナフタレン系エポキ
シ樹脂(ナフタレンを基本骨格に有するエポキシ樹脂)
を主剤とし、その主剤の100重量部に対してイミダゾ
ール、酸無水物(メチルテトラヒドロ無水フタル酸、無
水コハク酸など)等の硬化剤、例えばイミダゾールをア
クリル樹脂等の熱可塑性樹脂で被包されたマイクロカプ
セル型の硬化剤の50重量部を混合し、またそれらにシ
リカ(SiO2)粉末からなる添加剤を重量比で40wt%ほど
添加し分散させることによって接着剤が得られる。
In this embodiment, for example, a naphthalene-based epoxy resin (an epoxy resin having naphthalene as a basic skeleton)
And a curing agent such as an imidazole or an acid anhydride (methyltetrahydrophthalic anhydride, succinic anhydride, etc.), for example, imidazole is encapsulated in a thermoplastic resin such as an acrylic resin with respect to 100 parts by weight of the main agent. An adhesive is obtained by mixing 50 parts by weight of a microcapsule-type curing agent, and adding and dispersing about 40% by weight of an additive composed of silica (SiO 2 ) powder thereto.

【0018】そしてこのような接着剤に、更に金、銀、
或いははんだ等の金属微粒子、例えば銀の金属微粒子の
表面をエポキシ樹脂とアミン、或いはテトラエチレンペ
ンタアミンやヘキサメチレンジアミン等のアミン化合物
と反応して得られる絶縁性樹脂で被覆されたマイクロカ
プセル型フィラーを体積比で5 vol%添加して異方導電
性の接着剤を形成する。
Then, such an adhesive is further provided with gold, silver,
Alternatively, a microcapsule-type filler coated with an insulating resin obtained by reacting the surface of fine metal particles such as solder, for example, silver fine metal particles with an epoxy resin and an amine, or an amine compound such as tetraethylenepentamine or hexamethylenediamine. Is added at a volume ratio of 5 vol% to form an anisotropic conductive adhesive.

【0019】このようにして作成された接着剤、或いは
異方導電性接着剤では、ガラス転移温度が従来の接着剤
よりも50℃程度高い181℃の耐熱性を示し、しかも
低熱膨張率化や加熱収縮率の緩和が図られ、その粘度が
1カ月間放置後においてもほんの僅かに増加する程度の
良好なポットライフを有する接合安定性に優れた目的と
するそれぞれの接着剤を得ることができる。
The adhesive or anisotropic conductive adhesive thus prepared has a glass transition temperature of about 181 ° C., which is about 50 ° C. higher than that of the conventional adhesive, and has a low thermal expansion coefficient. The heat-shrinkage ratio is reduced, and it is possible to obtain the respective adhesives having a good pot life such that the viscosity thereof slightly increases even after being left for one month and having excellent bonding stability. .

【0020】因に、表1に示されるようにナフタレン系
エポキシ樹脂(ナフタレン核を基本骨格に有するエポキ
シ樹脂)よりなる100重量部の主剤、ナフタレン系エ
ポキシ樹脂の100重量部とビスフェノールA型エポキ
シ樹脂の50重量部とを混合した主剤、ナフタレン系エ
ポキシ樹脂の100重量部とビスフェノールA型エポキ
シ樹脂の100重量部とを混合した主剤、ナフタレン系
エポキシ樹脂の100重量部とビスフェノールF型エポ
キシ樹脂の50重量部とを混合した主剤、ナフタレン系
エポキシ樹脂の100重量部とビスフェノールF型エポ
キシ樹脂の100重量部とを混合した主剤のそれぞれに
対して、イミダゾールをアクリル樹脂等の熱可塑性樹脂
で被包されたマイクロカプセル型の硬化剤を、主剤の1
00重量部当り50重量部の割合で混合し、これにシリ
カ(SiO2)粉末からなる添加剤を重量比で40wt%と、銀
の金属微粒子の表面をエポキシ樹脂とアミンと反応して
得られる絶縁性樹脂で被覆された導電性付与用のマイク
ロカプセル型フィラーの5vol%とを添加し・分散させ
たサンプルのNo.1, No.2, No.3, No.4, No.5の5種類の
異方導電性接着剤を作成した。
As shown in Table 1, 100 parts by weight of a main agent composed of a naphthalene-based epoxy resin (an epoxy resin having a naphthalene nucleus in a basic skeleton), 100 parts by weight of a naphthalene-based epoxy resin, and a bisphenol A type epoxy resin Of a naphthalene epoxy resin and 100 parts by weight of a bisphenol A type epoxy resin, 100 parts by weight of a naphthalene type epoxy resin and 50 parts by weight of a bisphenol F type epoxy resin The imidazole is encapsulated with a thermoplastic resin such as an acrylic resin for each of the main agent mixed with 100 parts by weight of a naphthalene-based epoxy resin and 100 parts by weight of a bisphenol F type epoxy resin. Microcapsule type curing agent
It is obtained by mixing 50 parts by weight per 100 parts by weight, adding an additive composed of silica (SiO 2 ) powder at a weight ratio of 40 wt%, and reacting the surface of silver metal fine particles with an epoxy resin and an amine. Sample No.1, No.2, No.3, No.4, No.5 of the sample added and dispersed with 5 vol% of the microcapsule type filler for imparting conductivity covered with the insulating resin. Various kinds of anisotropic conductive adhesives were prepared.

【0021】また、それに加えて従来例と同様なビスフ
ェノールA型エポキシ樹脂の100重量部のみの主剤
と、ビスフェノールF型のエポキシ樹脂の100重量部
のみの主剤のそれぞれに、イミダゾールのマイクロカプ
セル型の硬化剤の50重量部を混合し、それにシリカ(S
iO2)粉末よりなる添加剤を重量比で40wt%と、前記導
電性付与用のマイクロカプセル型フィラーの5 vol%と
を添加して分散させた比較用のサンプルのNo.6, No.7の
2種類の異方導電性接着剤を作成した。
In addition, a microcapsule type of imidazole is added to each of the main agent of only 100 parts by weight of bisphenol A type epoxy resin and the main agent of only 100 parts by weight of bisphenol F type epoxy resin as in the conventional example. Mix 50 parts by weight of the curing agent and add silica (S
No. 6 and No. 7 of comparative samples in which an additive composed of iO 2 ) powder was added and dispersed by weight ratio of 40 wt% and 5 vol% of the microcapsule type filler for imparting conductivity. 2 types of anisotropic conductive adhesives were prepared.

【0022】[0022]

【表1】 [Table 1]

【0023】次に、これら本実施例の5種類と従来例の
2種類の異方導電性接着剤のガラス転移点(℃)を測定
した結果を表2に示している。
Next, Table 2 shows the results of measuring the glass transition points (° C.) of the five anisotropic conductive adhesives of this embodiment and the two anisotropic conductive adhesives of the conventional example.

【0024】[0024]

【表2】 [Table 2]

【0025】この表2に示す各異方導電性接着剤のガラ
ス転移点の測定結果から明らかなように、ナフタレン系
エポキシ樹脂のみを主剤とした本発明のサンプルNo.1の
ガラス転移点が、ビスフェノールA型のエポキシ樹脂、
或いはビスフェノールF型のエポキシ樹脂のみを主剤と
した従来タイプの比較サンプルNo.6, No.7に比べて、5
0℃程度と極めて顕著に上昇していることが示されてい
る。
As is clear from the measurement results of the glass transition point of each anisotropic conductive adhesive shown in Table 2, the glass transition point of the sample No. 1 of the present invention containing only the naphthalene-based epoxy resin as the main component was: Bisphenol A type epoxy resin,
Alternatively, compared to the comparative sample No. 6 and No. 7 of the conventional type using only bisphenol F type epoxy resin as the main ingredient,
It is shown that the temperature rises extremely remarkably to about 0 ° C.

【0026】また、ナフタレン系エポキシ樹脂にビスフ
ェノールA型またはビスフェノールF型のエポキシ樹脂
を混合したものを主剤とした本発明の他のサンプルNo.
2, No.3, No.4, No.5のガラス転移点もそれぞれ従来タ
イプの比較サンプルNo.6,No.7に比べて、30℃以上と
著しく上昇していることが示されており、良好な耐熱性
が期待できる。
Further, another sample No. 1 of the present invention containing a mixture of a bisphenol A type epoxy resin or a bisphenol F type epoxy resin with a naphthalene type epoxy resin as a main component.
It has been shown that the glass transition points of No. 2, No. 3, No. 4 and No. 5 are 30 ° C. or more, respectively, as compared with the conventional type comparative samples No. 6 and No. 7, respectively. , Good heat resistance can be expected.

【0027】次に、これら実施例の5種類と従来例の2
種類の異方導電性接着剤の製作直後から15日間と、1
ヵ月間を室温(20℃)で放置した後における粘度の経
時変化を調べた結果を表3に示している。
Next, five types of these embodiments and two types of the conventional example will be described.
15 days immediately after the production of various anisotropic conductive adhesives, 1
Table 3 shows the results obtained by examining the change over time in the viscosity after leaving at room temperature (20 ° C.) for a month.

【0028】[0028]

【表3】 [Table 3]

【0029】この表3に示す各異方導電性接着剤のサン
プルの粘度の経時変化を調べた結果から明らかなよう
に、本発明のサンプルのNo.1〜No.5と従来タイプの比較
サンプルNo.6, No.7のいずれにおいても、製作直後の粘
度に対して室温(20℃)で15日間の放置後の粘度の
増加はほとんどなく、1ヵ月間放置した後でも粘度の増
加が極めて僅かに認められる程度であり、良好なポット
ライフを示している。
As is clear from the results of the time-dependent changes in the viscosity of each anisotropic conductive adhesive sample shown in Table 3, the No. 1 to No. 5 samples of the present invention were compared with the comparative samples of the conventional type. In both No. 6 and No. 7, there was almost no increase in viscosity after standing for 15 days at room temperature (20 ° C.) compared to the viscosity immediately after production, and the viscosity increased extremely even after standing for one month. It is slightly recognized, indicating a good pot life.

【0030】この良好なポットライフは樹脂材の貯蔵寿
命と、硬化剤としてイミダゾールをアクリル樹脂等の熱
可塑性樹脂で被包されたマイクロカプセル型のものを用
いているので、前記主剤に対して硬化剤が直接反応する
ことが妨げられているためでもある。
The good pot life is due to the shelf life of the resin material and the use of a microcapsule type in which imidazole is encapsulated with a thermoplastic resin such as an acrylic resin as a curing agent. This is also because the agent is prevented from directly reacting.

【0031】次に、前記実施例の5種類と従来例の2種
類の異方導電性接着剤を、電極間隔が20μmのAl膜の
櫛型電極パターン上にそれぞれ一定量塗布し、170℃
で1分間と、その後150℃で2時間加熱して硬化した
後、それらを85℃の温度と85%の湿度の環境条件下
で、前記櫛型電極パターンにDC電圧の5Vを200時
間印加して電食試験を行った結果を表4に示している。
Next, a fixed amount of each of the five anisotropic conductive adhesives of the above embodiment and the two anisotropic conductive adhesives of the conventional example was applied on a comb-shaped electrode pattern of an Al film having an electrode interval of 20 μm.
After curing by heating at 150 ° C. for 2 minutes and then at 150 ° C. for 2 hours, a DC voltage of 5 V is applied to the comb-shaped electrode pattern for 200 hours at an environment of 85 ° C. and 85% humidity. Table 4 shows the results of the electrolytic corrosion test.

【0032】[0032]

【表4】 [Table 4]

【0033】この各異方導電性接着剤の電食試験の結果
は表4から明らかなように、いずれのサンプルも製作直
後の絶縁抵抗は1011Ω以上と良好であり、200時間
後の絶縁抵抗もほとんど変化が無いといった良好な耐電
食性を示している。
As is clear from Table 4, the results of the electrolytic corrosion test of each anisotropic conductive adhesive were as follows. All the samples had good insulation resistance immediately after production of 10 11 Ω or more, and the insulation after 200 hours. It shows good electrolytic corrosion resistance such that the resistance hardly changes.

【0034】なお、上記の本実施例と従来例との7種類
の異方導電性接着剤中に存在し、耐電食に影響を及ぼす
Cl- , Na+ , K+ 等の不純物イオン濃度の総合量は20
ppm程度であった。
It should be noted that it is present in the seven kinds of anisotropic conductive adhesives of the above-described embodiment and the conventional example, and has an effect on electric corrosion resistance.
Cl -, Na +, the total amount of the impurity ion concentration of K + and the like 20
ppm.

【0035】次に、前記実施例の5種類と従来例の2種
類の異方導電性接着剤を用いて、ガラスエポキシ基板
(例えば100μmピッチで設けた360端子のパター
ンを有する)の端子パターンにチップを接合したサンプ
ル(樹脂系接着剤の1種類に付き50枚のサンプル)を
作り、これらのサンプルを−65℃〜150℃の温度で
1000サイクル繰り返す条件により温度サイクル試験
を行った結果を表5に示している。
Next, a terminal pattern of a glass epoxy substrate (for example, having a pattern of 360 terminals provided at a pitch of 100 μm) is formed by using the five kinds of anisotropic conductive adhesives of the above embodiment and the two kinds of anisotropic conductive adhesives of the conventional example. Tables show the results of the temperature cycle test under which the chips were bonded (50 samples per type of resin-based adhesive) and these samples were repeated 1000 cycles at a temperature of -65 ° C to 150 ° C. It is shown in FIG.

【0036】[0036]

【表5】 [Table 5]

【0037】この各異方導電性接着剤を用いたサンプル
の温度サイクル試験を行った結果も表5から明らかなよ
うに、ビスフェノールA型エポキシ樹脂、或いは、ビス
フェノールF型エポキシ樹脂のみを主剤とした異方導電
性接着剤の従来例の比較のためのサンプルNo.6, No.7を
用いたものでは、試験枚数50枚中の21〜32枚が樹
脂材料の熱劣化等による導通不良が発生している。
The results of a temperature cycle test of a sample using each of the anisotropic conductive adhesives are also apparent from Table 5. As shown in Table 5, only the bisphenol A type epoxy resin or the bisphenol F type epoxy resin was used as the main component. In the case of using the sample No. 6 and No. 7 for comparison with the conventional example of the anisotropic conductive adhesive, 21 to 32 out of 50 test sheets have poor conduction due to thermal deterioration of the resin material. doing.

【0038】これに対して、ナフタレン系エポキシ樹
脂、または、ナフタレン系エポキシ樹脂にビスフェノー
ルA型またはビスフェノールF型のエポキシ樹脂を混合
した混合物を主剤とした異方導電性接着剤の本発明のサ
ンプルNo.1〜No.5を用いたものでは、そのような導通不
良の発生が全く無く、良好な耐熱性を示す結果が得られ
ている。
On the other hand, the sample No. of the present invention of an anisotropic conductive adhesive containing a naphthalene-based epoxy resin or a mixture of a naphthalene-based epoxy resin and a bisphenol A-type or bisphenol F-type epoxy resin as a main component was used. Nos. .1 to No.5 have no such poor conduction at all, and have obtained results showing good heat resistance.

【0039】なお、上記した実施例で説明した主剤の他
に、例えばナフタレン系エポキシ樹脂にビスフェノール
A型とビスフェノールF型の二つのエポキシ樹脂を混合
した混合物からなる主剤の適用も可能であり、その耐電
食性と耐熱性は上記した実施例と同等の結果が得られ
る。
In addition to the main agent described in the above embodiment, it is also possible to use a main agent composed of a mixture of, for example, a naphthalene-based epoxy resin and two epoxy resins of bisphenol A type and bisphenol F type. The results equivalent to those of the above-described examples are obtained in terms of the electrolytic corrosion resistance and the heat resistance.

【0040】また、100重量部のナフタレン系エポキ
シ樹脂の単体からなる主剤か、または、100重量部の
ナフタレン系エポキシ樹脂に対して50重量部、または
100重量部のビスフェノールA型のエポキシ樹脂、或
いはビスフェノールF型のエポキシ樹脂を混合した主剤
を用いた場合の例について説明したが、本実施例はその
ような例のみに限定されるものではない。
Further, a main agent composed of 100 parts by weight of a naphthalene-based epoxy resin alone, or 50 parts by weight or 100 parts by weight of a bisphenol A type epoxy resin with respect to 100 parts by weight of a naphthalene-based epoxy resin, or Although an example in which a main agent mixed with a bisphenol F type epoxy resin is used has been described, the present embodiment is not limited to such an example.

【0041】例えば、100重量部のビスフェノールA
型のエポキシ樹脂またはビスフェノールF型のエポキシ
樹脂に対して、ナフタレン系エポキシ樹脂の1重量部、
或いは5重量部を混合した2種類の主剤に、それぞれ前
記イミダゾールのマイクロカプセル型の硬化剤を、主剤
の100重量部当り50重量部の割合で混合し、更にシ
リカ(SiO2)粉末よりなる添加剤、導電性付与用のマイク
ロカプセル型フィラーを、前記表1で示す添加量と同量
に添加・分散させて作成した各異方導電性接着剤につい
て前記実施例で行った各種の特性試験と同様の試験を行
った結果、ガラス転移点については、ナフタレン系エポ
キシ樹脂の混合量が1重量部の主剤を用いた異方導電性
接着剤は140℃、同じく5重量部の主剤を用いた異方
導電性接着剤が150℃であった。
For example, 100 parts by weight of bisphenol A
1 part by weight of a naphthalene-based epoxy resin with respect to a type epoxy resin or a bisphenol F type epoxy resin,
Alternatively, the imidazole microcapsule type curing agent is mixed with 50 parts by weight per 100 parts by weight of the main agent, respectively, and mixed with two types of main agents in which 5 parts by weight are mixed, and further added with silica (SiO 2 ) powder. Each of the anisotropic conductive adhesives prepared by adding and dispersing a microcapsule-type filler for imparting conductivity to the same amount as shown in Table 1 above was used for various property tests performed in the above Examples. As a result of the same test, the glass transition point was found to be 140 ° C. for the anisotropic conductive adhesive using 1 part by weight of the naphthalene-based epoxy resin, and 5 parts by weight for the anisotropic conductive adhesive. The temperature of the conductive adhesive was 150 ° C.

【0042】粘度の経時変化及び電食試験では、いずれ
の主剤を用いた異方導電性接着剤においても上記した実
施例の試験結果と同等の結果が得られた。温度サイクル
試験では、ナフタレン系エポキシ樹脂の混合量が1重量
部の主剤を用いた異方導電性接着剤では試験サンプル5
0枚中の11枚に樹脂材料の熱劣化等による導通不良が
発生したが、5重量部の主剤を用いた異方導電性接着剤
ではそのような導通不良の発生は見られず、良好な耐熱
性が得られることが確認できた。
In the time-dependent changes in viscosity and in the electrolytic corrosion test, the same results as the test results of the above-mentioned Examples were obtained with the anisotropic conductive adhesives using any of the base agents. In the temperature cycle test, test sample 5 was used for an anisotropic conductive adhesive using a base material containing 1 part by weight of a naphthalene-based epoxy resin.
Eleven of the 0 sheets suffered from poor conduction due to thermal degradation of the resin material, but no such poor conduction was observed with an anisotropic conductive adhesive using 5 parts by weight of the base material. It was confirmed that heat resistance was obtained.

【0043】以上のような試験結果より、100重量部
のビスフェノールA型のエポキシ樹脂、またはビスフェ
ノールF型のエポキシ樹脂に対するナフタレン系エポキ
シ樹脂の混合量は5重量部以上とすることが望ましい。
From the above test results, it is desirable that the mixing amount of the naphthalene epoxy resin with respect to 100 parts by weight of the bisphenol A type epoxy resin or bisphenol F type epoxy resin is 5 parts by weight or more.

【0044】また、上記した実施例では各主剤の100
重量部に対して50重量部のイミダゾールのマイクロカ
プセル型の硬化剤を混合した場合の例について説明した
が、本実施例はそのような例に限定されるものではな
く、例えばそのイミダゾールのマイクロカプセル型の硬
化剤の主剤100重量部に対する混合量を、1重量部、
5重量部、100重量部、110重量部と変化させて混
合し、それ以外のシリカ(SiO2)粉末よりなる添加剤、導
電性付与用のマイクロカプセル型フィラーは前記表1で
示す添加量と同量に添加して作成した各異方導電性接着
剤について前記実施例で行った各種の特性試験と同様の
試験を行った結果、前記主剤に対する硬化剤が1重量部
と110重量部とを混合した各異方導電性接着剤は、該
硬化剤の混合量の不足や過剰により完全に硬化が行われ
ず、ゴム状の半硬化物となる。しかし前記主剤に対する
硬化剤が5重量部と100重量部とを混合した各異方導
電性接着剤では、上記した実施例の試験結果と同等の好
結果が得られているので、前記主剤に対する硬化剤の混
合量は5〜100重量部とすることが望ましい。
Further, in the above-mentioned embodiment, 100
Although an example in which 50 parts by weight of imidazole microcapsule type curing agent is mixed with respect to parts by weight has been described, the present embodiment is not limited to such an example, and for example, the imidazole microcapsule is used. The mixing amount of the mold curing agent with respect to 100 parts by weight of the main agent is 1 part by weight,
5 parts by weight, 100 parts by weight, and 110 parts by weight were mixed and mixed. Other additives made of silica (SiO 2 ) powder and microcapsule type filler for imparting conductivity were added in the amounts shown in Table 1 above. As a result of performing the same tests as the various property tests performed in the above examples for each anisotropic conductive adhesive prepared by adding the same amount, the curing agent for the main agent was 1 part by weight and 110 parts by weight. Each of the mixed anisotropic conductive adhesives is not completely cured due to an insufficient or excessive mixing amount of the curing agent, and becomes a rubber-like semi-cured material. However, with each anisotropic conductive adhesive obtained by mixing 5 parts by weight and 100 parts by weight of the curing agent for the main agent, a good result equivalent to the test result of the above-described embodiment was obtained. The mixing amount of the agent is desirably 5 to 100 parts by weight.

【0045】更に、上記した実施例では各主剤に対して
40wt%のシリカ(SiO2)粉末からなる添加剤を添加した
場合の例について説明したが、本実施例はそのような例
に限定されるものではなく、例えば主剤に対するシリカ
(SiO2)粉末からなる添加剤の添加量を、1wt%、5wt
%、80wt%、90wt%と変化させて添加し、それ以外
のイミダゾールのマイクロカプセル型の硬化剤を、主剤
の100重量部当り50重量部の割合で混合し、更に導
電性付与用のマイクロカプセル型フィラーは前記表1で
示す添加量と同量に添加・分散させて作成した各異方導
電性接着剤について前記実施例で行った各種の特性試験
と同様の試験を行った結果、先ず、前記主剤に対してシ
リカ(SiO2)粉末からなる添加剤を90wt%も添加するこ
とは添加過剰により接着剤の製作を困難にしている。
Further, in the above-described embodiment, an example was described in which an additive consisting of 40 wt% silica (SiO 2 ) powder was added to each base material, but this embodiment is not limited to such an example. Not silica, for example
The additive amount of the additive consisting of (SiO 2 ) powder is 1 wt%, 5 wt%
%, 80% by weight, and 90% by weight, and other imidazole-based microcapsule-type curing agents are mixed at a ratio of 50 parts by weight per 100 parts by weight of the base material, and further microcapsules for imparting conductivity. As a result of performing the same tests as the various property tests performed in the above examples for the anisotropic conductive adhesive prepared by adding and dispersing the mold filler in the same amount as shown in Table 1 above, Adding as much as 90% by weight of an additive composed of silica (SiO 2 ) powder to the base material makes it difficult to produce an adhesive due to excessive addition.

【0046】また、主剤に対するシリカ(SiO2)粉末から
なる添加剤を1wt%、5wt%、80wt%と変化して添加
した各異方導電性接着剤では、上記した実施例で実施し
たガラス転移点、粘度の経時変化及び電食試験の結果と
同等の結果が得られている。
In addition, in each anisotropic conductive adhesive in which an additive composed of silica (SiO 2 ) powder was added to the main component in the amounts of 1 wt%, 5 wt%, and 80 wt%, the glass transition performed in the above-described embodiment was performed. The results equivalent to the results of the point, the change of viscosity with time and the electrolytic corrosion test were obtained.

【0047】そして、前記主剤に対するシリカ(SiO2)粉
末からなる添加剤を5wt%と80wt%と添加した各異方
導電性接着剤は温度サイクル試験において、上記した実
施例の試験結果と同等の好結果が得られているが、前記
添加剤を1wt%添加した異方導電性接着剤はこの温度サ
イクル試験で試験サンプル50枚中の3枚に樹脂材料の
熱劣化等による導通不良が発生した。
Each of the anisotropic conductive adhesives containing 5 wt% and 80 wt% of an additive composed of silica (SiO 2 ) powder with respect to the above-mentioned base material was subjected to the same temperature cycle test as the test results of the above-described embodiment. Although good results were obtained, in the anisotropic conductive adhesive to which 1% by weight of the additive was added, conduction failure due to thermal deterioration of the resin material occurred in three of the 50 test samples in this temperature cycle test. .

【0048】このような試験結果より、前記主剤に対す
るシリカ(SiO2)粉末からなる添加剤の添加量は5〜80
wt%とすることが望ましく、添加剤としてもシリカ(SiO
2)粉末の代わりにアルミナ(Al2O3) 、炭化珪素 (SiC)、
窒化珪素(Si3N4) 等の粉末を用いるようにしても、その
異方導電性接着剤のガラス転移点、粘度の経時変化、電
食試験による耐電食性及び温度サイクル試験による耐熱
性は上記した実施例と同等な好結果が得られている。
According to the test results, the amount of the additive composed of silica (SiO 2 ) powder to the above-mentioned base material was 5 to 80.
wt%, and silica (SiO
2 ) Instead of powder, alumina (Al 2 O 3 ), silicon carbide (SiC),
Even if a powder such as silicon nitride (Si 3 N 4 ) is used, the glass transition point of the anisotropic conductive adhesive, the change with time of viscosity, the electric corrosion resistance by an electric corrosion test and the heat resistance by a temperature cycle test are as described above. A good result equivalent to that of the working example obtained is obtained.

【0049】更に、例えば前記異方導電性接着剤のサン
プルNo.1, No.2, No.3, No.3, No.5に含まれるCl- ,Na
+ , K+ 等の不純物イオン濃度の総量をそれぞれ50p
pmと60ppmとに含有させたものを用いて前記した
と同様なガラス転移点、粘度の経時変化、電食試験及び
熱サイクル試験を行った結果、いずれの異方導電性接着
剤も含まれる前記不純物イオン濃度の総量の違いに関係
なく、ガラス転移点、粘度の経時変化及び熱サイクル試
験では、上記した実施例と同様にガラス転移点は変わら
ず、粘度の経時変化もほとんど無く、温度サイクル試験
では、いずれのサンプルにも熱劣化等による導通不良の
発生は全く無いといった好結果が得られている。
Further, for example, Cl , Na contained in the sample No. 1, No. 2, No. 3, No. 3, No. 5 of the anisotropic conductive adhesive described above.
+ , K +, etc. The total amount of impurity ions
pm and the same glass transition point as described above using those contained in 60 ppm, the results of a change in viscosity over time, an electrolytic corrosion test and a heat cycle test, and any anisotropic conductive adhesive Regardless of the difference in the total amount of impurity ion concentration, in the glass transition point, the time-dependent change in viscosity and the heat cycle test, the glass transition point does not change and there is almost no time-dependent change in the viscosity as in the above-described examples, and the temperature cycle test is performed. As a result, good results were obtained in which no conduction failure occurred due to thermal degradation or the like in any of the samples.

【0050】しかし、電食試験では不純物イオン濃度の
総量を60ppm含んだ異方導電性接着剤の各サンプル
において絶縁抵抗が60時間後に108 Ω以下に低下し
て絶縁不良を起こしているが、一方、不純物イオン濃度
を50ppm含んだ異方導電性接着剤の各サンプルでは
製作直後と200時間後の絶縁抵抗にほとんど変化が無
いといった耐電食性を有していることが確認できた。
However, in the electrolytic corrosion test, in each sample of the anisotropic conductive adhesive containing the total amount of impurity ions at 60 ppm, the insulation resistance dropped to 10 8 Ω or less after 60 hours, causing insulation failure. On the other hand, it was confirmed that each sample of the anisotropic conductive adhesive containing the impurity ion concentration of 50 ppm had the electrolytic corrosion resistance such that there was almost no change in the insulation resistance immediately after the production and after 200 hours.

【0051】従って、以上の各実施例の各種試験の測定
結果から、本発明の異方導電性接着剤における主剤とし
ては、ナフタレン系エポキシ樹脂の単体のみ、或いはビ
スフェノールA型、またはビスフェノールF型のエポキ
シ樹脂の100重量部に対してナフタレン系エポキシ樹
脂を5重量部以上とし、マイクロカプセル型の硬化剤は
主剤100重量部に対する混合量を5〜100重量部、
同じくシリカ(SiO2)粉末等からなる添加剤の添加量は5
〜80wt%、含有する不純物イオン濃度の総量を50p
pm以下とすることが最適であり、当該接着剤の低膨張
率化と優れた耐熱性と耐電食性とを高めることができ
る。
Therefore, from the measurement results of the various tests in each of the above examples, the main agent in the anisotropic conductive adhesive of the present invention was a simple naphthalene epoxy resin or a bisphenol A type or a bisphenol F type. The naphthalene-based epoxy resin is 5 parts by weight or more based on 100 parts by weight of the epoxy resin, and the microcapsule-type curing agent is mixed in an amount of 5 to 100 parts by weight based on 100 parts by weight of the main agent.
Similarly, the additive amount of the additive such as silica (SiO 2 ) powder is 5
~ 80wt%, total amount of impurity ion concentration is 50p
pm or less is optimal, and it is possible to reduce the coefficient of expansion of the adhesive, and to enhance the excellent heat resistance and electric corrosion resistance.

【0052】よって、配線回路基板と動作時に発熱量の
比較的大きい機能素子との確実な電気的な接合と信頼性
の良い固着が実現できる。また、比較的高温で用いる部
品構成体の部品同士の接合工程にも適用でき、極めて有
利である。
Therefore, it is possible to realize reliable electrical bonding and reliable fixing between the printed circuit board and the functional element that generates a relatively large amount of heat during operation. In addition, it can be applied to a joining process of components of a component component used at a relatively high temperature, which is extremely advantageous.

【0053】[0053]

【発明の効果】以上の説明から明らかなように、本発明
に係る接着剤によれば、ガラス転移点が向上し、耐熱性
及び耐電食性を高めることができ、また添加剤の添加に
よる低膨張率化によって基板や各種素子等の被接着材に
近づけることができるので、熱膨張や熱収縮が緩和され
接着界面での歪み、接合性の低下や剥離等が抑止され、
基板に対する機能素子等の被接着材の接合が安定とな
る。
As is apparent from the above description, according to the adhesive of the present invention, the glass transition point can be improved, the heat resistance and the electrolytic corrosion resistance can be improved, and the low expansion due to the addition of the additive can be achieved. Since the substrate can be brought closer to the material to be bonded, such as a substrate or various elements, the thermal expansion and thermal shrinkage are alleviated, and the distortion at the bonding interface, a decrease in bonding property and peeling are suppressed,
The bonding of the material to be bonded such as a functional element to the substrate becomes stable.

【0054】従って、上記接着剤を発熱量の大きい各種
素子の接合に適用しても、その接合の安定化が実現で
き、また前記各種素子を接合した後の実装基板等を15
0℃程度の高い温度条件で行う信頼性試験にも十分に対
応可能となり、良好な接合安定性が得られる。
Therefore, even if the above-mentioned adhesive is applied to the bonding of various elements generating a large amount of heat, the bonding can be stabilized, and the mounting substrate or the like after the bonding of the various elements can be used.
It is possible to sufficiently cope with a reliability test performed under a high temperature condition of about 0 ° C., and good bonding stability can be obtained.

【0055】更に、上記の接合安定性の良好な接着剤の
組成に導電性粒子を絶縁性樹脂で被覆したカプセル型フ
ィラーを含有させた異方導電性接着剤は、微細化が推進
されている集積回路チップと実装基板とのファインピッ
チ接続に適用して極めて有利であり、実用上優れた効果
を奏する。
Further, miniaturization of an anisotropic conductive adhesive in which a capsule type filler in which conductive particles are coated with an insulating resin is added to the composition of the adhesive having good bonding stability is promoted. The present invention is extremely advantageous when applied to fine pitch connection between an integrated circuit chip and a mounting substrate, and has a practically excellent effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲徳▼平 英士 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 臼居 誠 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor ▲ Toku ▼ Eiji 4-1-1 1-1 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Fujitsu Limited (72) Inventor Makoto Usui Upper Nakahara-ku, Kawasaki-shi, Kanagawa 4-1-1 Odanaka Fujitsu Limited

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ナフタレン系エポキシ樹脂からなる主
剤、または、ナフタレン系エポキシ樹脂にビスフェノー
ルA型またはビスフェノールF型の少なくとも一つのエ
ポキシ樹脂を混合した混合物とからなる主剤を含むこと
を特徴とする接着剤。
An adhesive characterized in that it comprises a main agent comprising a naphthalene epoxy resin or a mixture comprising a mixture of a naphthalene epoxy resin and at least one bisphenol A type or bisphenol F type epoxy resin. .
【請求項2】 ナフタレン系エポキシ樹脂からなる主
剤、または、ナフタレン系エポキシ樹脂にビスフェノー
ルA型またはビスフェノールF型の少なくとも一つのエ
ポキシ樹脂を混合した混合物とからなる主剤と、硬化物
質を熱可塑性樹脂で被覆したカプセル型硬化剤と、添加
剤と、導電性粒子を絶縁性樹脂で被覆したカプセル型フ
ィラーとを含むことを特徴とする接着剤。
2. A main agent comprising a naphthalene-based epoxy resin or a mixture of a naphthalene-based epoxy resin and at least one bisphenol A-type or bisphenol F-type epoxy resin, and a hardening substance comprising a thermoplastic resin. An adhesive comprising: a coated capsule-type curing agent; an additive; and a capsule-type filler in which conductive particles are coated with an insulating resin.
JP8186268A 1996-07-16 1996-07-16 Adhesive Pending JPH1030082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8186268A JPH1030082A (en) 1996-07-16 1996-07-16 Adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8186268A JPH1030082A (en) 1996-07-16 1996-07-16 Adhesive

Publications (1)

Publication Number Publication Date
JPH1030082A true JPH1030082A (en) 1998-02-03

Family

ID=16185325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8186268A Pending JPH1030082A (en) 1996-07-16 1996-07-16 Adhesive

Country Status (1)

Country Link
JP (1) JPH1030082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238483A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same
JP2005225980A (en) * 2004-02-13 2005-08-25 Harima Chem Inc Electrically conductive adhesive
KR100530519B1 (en) * 1998-02-17 2006-04-21 주식회사 새 한 Manufacturing method of adhesive tapes for the electronic parts
US20120141802A1 (en) * 2010-12-06 2012-06-07 Dong Seon Uh Optical member comprising anisotropic conductive film
US9548141B2 (en) 2009-09-14 2017-01-17 Dexerials Corporation Light-reflective anisotropic conductive adhesive and light-emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547212A (en) * 1991-08-21 1993-02-26 Oki Electric Ind Co Ltd Single-fluid type conductive adhesive
JPH07216336A (en) * 1994-02-03 1995-08-15 Sumitomo Electric Ind Ltd Adhesive composition for flexible printed wiring board
JPH07252460A (en) * 1994-03-16 1995-10-03 Fujitsu Ltd Adhesive
JPH083529A (en) * 1994-06-16 1996-01-09 Soken Chem & Eng Co Ltd Adhesive having anisotropic electrical conductivity and adhesive sheet having anisotropic electrical conductivity
JPH08148830A (en) * 1994-11-21 1996-06-07 Sumitomo Bakelite Co Ltd Manufacture of multilayered printed wiring board
JPH08148829A (en) * 1994-11-21 1996-06-07 Sumitomo Bakelite Co Ltd Manufacture of multilayered printed wiring board
JPH08228053A (en) * 1995-02-21 1996-09-03 Nippon Mektron Ltd Printed board
JPH08315885A (en) * 1995-05-16 1996-11-29 Hitachi Chem Co Ltd Circuit connecting material
JPH09165435A (en) * 1995-12-14 1997-06-24 Sumitomo Bakelite Co Ltd Anisotropic conductive film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547212A (en) * 1991-08-21 1993-02-26 Oki Electric Ind Co Ltd Single-fluid type conductive adhesive
JPH07216336A (en) * 1994-02-03 1995-08-15 Sumitomo Electric Ind Ltd Adhesive composition for flexible printed wiring board
JPH07252460A (en) * 1994-03-16 1995-10-03 Fujitsu Ltd Adhesive
JPH083529A (en) * 1994-06-16 1996-01-09 Soken Chem & Eng Co Ltd Adhesive having anisotropic electrical conductivity and adhesive sheet having anisotropic electrical conductivity
JPH08148830A (en) * 1994-11-21 1996-06-07 Sumitomo Bakelite Co Ltd Manufacture of multilayered printed wiring board
JPH08148829A (en) * 1994-11-21 1996-06-07 Sumitomo Bakelite Co Ltd Manufacture of multilayered printed wiring board
JPH08228053A (en) * 1995-02-21 1996-09-03 Nippon Mektron Ltd Printed board
JPH08315885A (en) * 1995-05-16 1996-11-29 Hitachi Chem Co Ltd Circuit connecting material
JPH09165435A (en) * 1995-12-14 1997-06-24 Sumitomo Bakelite Co Ltd Anisotropic conductive film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530519B1 (en) * 1998-02-17 2006-04-21 주식회사 새 한 Manufacturing method of adhesive tapes for the electronic parts
JP2004238483A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Anisotropic electrically conductive coating material and anisotropic electrically conductive film using the same
JP2005225980A (en) * 2004-02-13 2005-08-25 Harima Chem Inc Electrically conductive adhesive
WO2005078034A1 (en) * 2004-02-13 2005-08-25 Harima Chemicals, Inc. Conductive adhesive
US7524893B2 (en) 2004-02-13 2009-04-28 Harima Chemicals, Inc. Conductive adhesive
US9548141B2 (en) 2009-09-14 2017-01-17 Dexerials Corporation Light-reflective anisotropic conductive adhesive and light-emitting device
US20120141802A1 (en) * 2010-12-06 2012-06-07 Dong Seon Uh Optical member comprising anisotropic conductive film
US9389338B2 (en) * 2010-12-06 2016-07-12 Cheil Industries, Inc. Optical member comprising anisotropic conductive film

Similar Documents

Publication Publication Date Title
CN100511490C (en) Conductive materials with electrical stability for use in electronics devices
JP3837858B2 (en) Conductive adhesive and method of using the same
JPH10335389A (en) Semiconductor device and sheet-shaped sealing material used for the same
JPH1030082A (en) Adhesive
JPS62145602A (en) Conductive resin paste
JP2000003987A (en) Thermally conductive resin paste
SE522253C2 (en) Semiconductor Capsule, Semiconductor Enclosure Procedure and Enclosure for Use in Semiconductor Enclosure
JP3695226B2 (en) One-part thermosetting resin composition
KR100594343B1 (en) Thermosetting adhesive material
JP2003147279A (en) Conductive adhesive and circuit board using the same for semiconductor, or the like
JP3572778B2 (en) adhesive
JP2000319622A (en) Electrically conductive adhesive and circuit board using this as material for connecting components
JP2680412B2 (en) Anisotropic conductive film
JPH07252460A (en) Adhesive
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP3484957B2 (en) Conductive adhesive
JPH01189806A (en) Conductive resin paste
JP2720343B2 (en) Conductive paste
JP2596663B2 (en) Conductive resin paste for semiconductors
JPH07138549A (en) Conductive adhesive
JP2002222833A (en) Conductive adhesive, and electronic component package and its manufacturing method
JPH0567672B2 (en)
JPH01159908A (en) Thermosetting silver paste composition with excellent heat resistance
JPH0447604A (en) Conductive resin composition
JP2001107020A (en) Electrically conductive adhesive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912