JP3572778B2 - adhesive - Google Patents

adhesive Download PDF

Info

Publication number
JP3572778B2
JP3572778B2 JP03242196A JP3242196A JP3572778B2 JP 3572778 B2 JP3572778 B2 JP 3572778B2 JP 03242196 A JP03242196 A JP 03242196A JP 3242196 A JP3242196 A JP 3242196A JP 3572778 B2 JP3572778 B2 JP 3572778B2
Authority
JP
Japan
Prior art keywords
epoxy resin
type epoxy
bisphenol
anisotropic conductive
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03242196A
Other languages
Japanese (ja)
Other versions
JPH09227849A (en
Inventor
仁昭 伊達
有子 穗積
英士 ▲徳▼平
誠 臼居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP03242196A priority Critical patent/JP3572778B2/en
Publication of JPH09227849A publication Critical patent/JPH09227849A/en
Application granted granted Critical
Publication of JP3572778B2 publication Critical patent/JP3572778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Description

【0001】
【発明の属する技術分野】
本発明は接着剤に係り、更に詳細には配線回路基板等に各種素子を接合するはんだ接合の代わりに用いる導電性接合及び素子固定用の接着剤に関するものである。
【0002】
近年、配線回路基板等に対する各種素子のはんだ接合に代わる接合方式として、簡便に素子を電気的に接合、或いは固定することのできる接着剤の適用が注目され、実用化されている。
【0003】
一方、そのような接着剤としては動作時の発熱量が比較的大きい機能素子の電気的な接合、或いは固定に対しても安定で耐熱性に優れたものが要求されている。
【0004】
【従来の技術】
配線回路基板等に対して実装する各種機能素子の接合材料としては、従来より主にはんだが数多く用いられているが、回路パターンのファイン化、作業環境や動作環境等にも良好に対処できるはんだに代わる接合材料として樹脂系、或いは導電性を有する樹脂系の接着剤が用いられている。
【0005】
ところが、前記した各種機能素子の中にも高性能化に伴って動作時の発熱量が比較的大きくなる傾向のものがあり、またそのような機能素子を含む電子部品の実装基板の信頼性試験の温度条件も150℃程度の高温にする要求がある。
【0006】
そのような素子接合用の接着剤としては耐吸湿性、電気絶縁性等の観点から熱可塑性樹脂系の接着剤よりも熱硬化性樹脂系の接着剤の方が適しており、その中でも電気的特性、低温速硬化、コスト等から総合的に評価するとエポキシ樹脂系の接着剤が最も有用である。
【0007】
【発明が解決しようとする課題】
ところで、上記したような従来の素子接合用のエポキシ樹脂系の接着剤は、ビスフェノールA型のエポキシ樹脂、またはビスフェノールF型のエポキシ樹脂等の主剤にイミダゾールや酸無水物(メチルテトラヒドロ無水フタル酸、無水コハク酸など)等からなる硬化剤と導電性フィラーとを混合したものが大部分であり、そのような接着剤のガラス転移温度は130℃以下のものがほとんどである。
【0008】
従って、従来のエポキシ樹脂系の接着剤で上述の如き動作発熱量が比較的大きい機能素子を配線回路基板等に接合した場合、そのような高い動作発熱に対する接合の安定化と、150℃程度の高温な温度条件での信頼性試験とに対応することができないという問題があった。
【0009】
本発明は上記したような従来の問題点に鑑み、エポキシ樹脂系の接着剤のガラス転移温度を高めることにより、動作発熱量が比較的大きい機能素子の配線回路基板等に対する接合を安定化させると共に、150℃程度の高い温度条件での信頼性試験にも対応できる耐熱性に優れた新規な接着剤を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の上記した目的を達成するため、配線回路基板等に対する動作発熱量が比較的大きい機能素子の固定や電気的接合等にはビスフェノールF型のエポキシ樹脂の100重量部に対しビスフェノールS型のエポキシ樹脂を1.0〜120重量部を配合したエポキシ樹脂と硬化剤と有する接着剤を用いる。
【0011】
またビスフェノールS型エポキシ樹脂ビスフェノールF型のエポキシ樹脂に溶解した主剤と、硬化物質を熱可塑性樹脂で被覆したカプセル型硬化剤と、導電性粒子を絶縁性樹脂で被覆したカプセル型フィラーとを混合・分散して作成した異方性導電接着剤を用いても良い
【0012】
このような組成の異方性導電接着剤はビスフェノールF型のエポキシ樹脂ビスフェノールS型のエポキシ樹脂溶解させたものを主剤として用いることにより、従来のエポキシ樹脂系の接着剤よりもガラス転移点が15℃〜20℃程度高くなり、耐熱性を高めることができる。
【0013】
従って、上記接着剤を発熱量の大きい各種素子の接合に適用した場合、その接合の安定化が実現でき、また素子を接合した実装基板等の150℃程度の高い温度条件での信頼性試験にも十分に対応することが可能となる。
【0014】
【発明の実施の形態】
以下図面を用いて本発明の実施例について詳細に説明する。
図1は本発明に係る異方性導電接着剤の一実施例を説明するための拡大模式図である。
【0015】
本実施例では図示のように、例えばビスフェノールF型のエポキシ樹脂の100gにビフェニル型のエポキシ樹脂の25gとビスフェノールS型のエポキシ樹脂の25gとを溶解・混合させて主剤1を得る。
【0016】
次に該主剤1に、イミダゾール、酸無水物(メチルテトラヒドロ無水フタル酸、無水コハク酸など)等の硬化剤、例えば本実施例ではイミダゾール2aをアクリル樹脂等の熱可塑性樹脂2bで被包されたマイクロカプセル型の硬化剤2の75gと、金、銀、或いははんだ等の金属微粒子、例えば本実施例では銀の金属微粒子3aの表面をエポキシ樹脂とアミン、或いはテトラエチレンペンタアミンやヘキサメチレンジアミン等のアミン化合物と反応して得られる絶縁性樹脂3bで被覆されたマイクロカプセル型フィラー3を体積比で5 vol%添加して混合・分散させる。
【0017】
このようにして作成された接着剤は、ガラス転移温度が従来の接着剤より15℃程度高い153℃の耐熱性の良好な目的とする異方性導電接着剤を得ることができる。
【0018】
因に、表1に示されるようにビスフェノールF型のエポキシ樹脂の100重量部に対して、ビフェニル型のエポキシ樹脂の50重量部を溶解・混合させた主剤、ビスフェノールS型のエポキシ樹脂の50重量部とを溶解・混合させた主剤、ビフェニル型のエポキシ樹脂の25重量部とビスフェノールS型のエポキシ樹脂の25重量部とを溶解・混合させた主剤のそれぞれに、前記マイクロカプセル型の硬化剤の50重量部及び導電性付与用のマイクロカプセル型フィラーの5 vol%とを混合・分散させたサンプルNo.1, No.2, No.3と、従来例と同様にビスフェノールA型のエポキシ樹脂の100重量部のみの主剤と、ビスフェノールF型のエポキシ樹脂の100重量部のみの主剤のそれぞれに、前記マイクロカプセル型の硬化剤の50重量部及び導電性付与用のマイクロカプセル型フィラーの5 vol%とを混合・分散させた比較サンプルのNo.4, No.5の5種類の異方性導電接着剤を作成した。
【0019】
【表1】

Figure 0003572778
【0020】
次にこれら5種類の異方性導電接着剤のガラス転移点(℃)を測定した結果と、該5種類の異方性導電接着剤の製剤直後から1ヵ月放置後における粘度の経時変化を調べた結果とを表2に示す。
【0021】
【表2】
Figure 0003572778
【0022】
この表2に示す各異方性導電接着剤のガラス転移点の測定結果から明らかなように、ビスフェノールF型のエポキシ樹脂と、ビフェニル型のエポキシ樹脂、またはビスフェノールS型のエポキシ樹脂のいずれか一方、或いは両方とを溶解した混合物を主剤とした本発明のサンプルNo.1, No.2, No.3のガラス転移点は、ビスフェノールA型のエポキシ樹脂、或いはビスフェノールF型のエポキシ樹脂のみを主剤とした従来タイプの比較サンプルNo.4, No.5に比べて、15℃以上に上昇し、良好な耐熱性が期待できる。
【0023】
また、前記5種類の異方性導電接着剤を用いたサンプルの粘度の経時変化を調べた結果は同様に表2から明らかなように、本発明のサンプルNo.1, No.2, No.3と従来タイプの比較サンプルNo.4, No.5のいずれも製剤直後の粘度に対して室温(20℃)で1ヵ月放置した後の粘度の増加がほとんどなく、良好なポットライフを示している。
【0024】
次に、前記5種類の異方性導電接着剤を、例えば電極間隔が20μmのAl膜の櫛型電極パターン上にそれぞれ一定量塗布し、170℃で1分間と、その後150℃で2時間加熱して硬化した後、それらを85℃の温度と85%の湿度の環境条件下で、前記櫛型電極パターンにDC5Vを印加して200時間保持する電食試験を行った結果と、
前記5種類の異方性導電接着剤を用いて、ガラスエポキシ基板(例えば100μmピッチで設けた360端子を有する)にチップを接合したサンプル(樹脂系接着剤の1種類に付き500枚)を作り、これらのサンプルを−65℃〜150℃の温度で500サイクル繰り返す条件により熱サイクル試験を行った結果とを表3に示す。
【0025】
なお、上記5種類の異方性導電接着剤中に存在し、その存在濃度によっては電食に影響のあるCl, Na, K等の不純物イオン濃度の合計値は20ppm程度であった。
【0026】
【表3】
Figure 0003572778
【0027】
この各異方性導電接着剤の電食試験の結果は表3から明らかなように、いずれのサンプルも製剤直後の絶縁抵抗は1011Ω以上と良好であり、200時間後の絶縁抵抗もほとんど変化が無いといった耐電食性を示している。
【0028】
また、前記5種類の異方性導電接着剤を用いたサンプルの熱サイクル試験を行った結果も同様に表3から明らかなように、ビスフェノールA型のエポキシ樹脂、或いはビスフェノールF型のエポキシ樹脂のみを主剤とした従来タイプの比較サンプルNo.4, No.5を用いたものでは、いずれも約半数乃至はそれ以上の数が樹脂の熱劣化等により導通不良となっている。
【0029】
これに対してビスフェノールF型のエポキシ樹脂と、ビフェニル型のエポキシ樹脂、またはビスフェノールS型のエポキシ樹脂のいずれか一方、或いは両方とを溶解した混合物を主剤とした異方性導電接着剤の本発明のサンプルNo.1, No.2, No.3を用いたものは、そのような導通不良の発生が全く無く、極めて良好な耐熱性を示す結果が得られている。
【0030】
次に、本発明に係る異方性導電接着剤の他の実施例を詳細に説明する。
本実施例では、表4に示されるようにビスフェノールF型のエポキシ樹脂の100重量部に対してビフェニル型のエポキシ樹脂の配合量を0.1重量部,1.0重量部,50重量部,120重量部,130重量部と変化させて溶解・混合させた各主剤と、ビスフェノールF型のエポキシ樹脂の100重量部に対してビスフェノールS型のエポキシ樹脂の配合量を0.1重量部,1.0重量部,50重量部,120重量部,130重量部と変化させて溶解・混合させた各主剤のそれぞれに前記マイクロカプセル型の硬化剤の50重量部と導電性付与用のマイクロカプセル型フィラーの5 vol%とを混合・分散させたサンプル No.11〜No.20 の10種類の異方性導電接着剤を作成した。
【0031】
【表4】
Figure 0003572778
【0032】
次にこれらサンプル No.11〜No.20 の10種類の異方性導電接着剤のガラス転移点(℃)を測定した結果を表5に示す。
【0033】
【表5】
Figure 0003572778
【0034】
前記した各異方性導電接着剤のガラス転移点の測定結果は、表5から明らかなように、ビスフェノールF型のエポキシ樹脂の100重量部とビフェニル型のエポキシ樹脂、或いはビスフェノールS型のエポキシ樹脂の0.1重量部とを溶解した混合物を主剤とした異方性導電接着剤のサンプルNo.11, No.16以外のサンプル No.12〜No.15 とNo .17〜No.20 のガラス転移点は、前記従来タイプのエポキシ樹脂系の接着剤と比較して12℃以上に上昇し、147℃から160℃と高められている。
【0035】
また、前記10種類の異方性導電接着剤を用いたサンプルの粘度の経時変化を調べた結果、ビスフェノールF型のエポキシ樹脂の100重量部とビフェニル型のエポキシ樹脂、或いはビスフェノールS型のエポキシ樹脂の130重量部とを溶解した混合物を主剤とした異方性導電接着剤のサンプルNo.15, No.20のポットライフは常温(20℃)で1時間程度であったが、その他のサンプル No.11〜No.14 と No.16〜No.19 のポットライフは常温(20℃)で24時間から1ヵ月後でも良好なポットライフが得られることが確認できた。
【0036】
更に、前記10種類の異方性導電接着剤を用いたサンプルの電食試験を前記した電食試験と同様な方法により実施した結果、表2のサンプル No.1〜 No.3の例と同様に、いずれのサンプルも製剤直後の絶縁抵抗は1011Ω以上で200時間後の絶縁抵抗もほとんど変化が無いといった耐電食性を示した。
【0037】
更に、前記10種類の異方性導電接着剤を用いたサンプルの熱サイクル試験を前記した熱サイクル試験と同様な方法により実施した結果、ビスフェノールF型のエポキシ樹脂の100重量部とビフェニル型のエポキシ樹脂、或いはビスフェノールS型のエポキシ樹脂の0.1重量部とを溶解した混合物を主剤とした異方性導電接着剤のサンプルNo.11 では試験数500枚中で98枚、サンプルNo.16 では試験数500枚中で136枚が樹脂の熱劣化等によって導通不良を発生している。
【0038】
しかし、その他のサンプル No.12〜No.15 と No.17〜No.20 を用いたものはそのような導通不良の発生が全く無く、極めて良好な耐熱性を有している。
更に、例えば前記異方性導電接着剤のサンプルNo.12, No.13, No.14 に含まれるCl,Na , K等の不純物イオン濃度をそれぞれ50ppmと60ppmとしたものを用いて前記したと同様な粘度の経時変化の調査と電食試験及び熱サイクル試験を行った結果、粘度の経時変化はほとんど無く、熱サイクル試験では、いずれのサンプルにも熱劣化等による導通不良の発生は全く無かった。
【0039】
しかし、電食試験では不純物イオン濃度を60ppmとした異方性導電接着剤のサンプルを用いたものの絶縁抵抗が60時間後に10Ω以下に低下して絶縁不良を起こしているが、不純物イオン濃度を50ppmとした異方性導電接着剤のサンプルを用いたものでは製剤直後と200時間後の絶縁抵抗にほとんど変化が無いといった耐電食性を有していることが判明した。
【0040】
従って、以上の各実施例の各種測定及び試験結果から、本発明の異方性導電接着剤の主剤としては、ビスフェノールF型のエポキシ樹脂の100重量部に対してビフェニル型のエポキシ樹脂、或いはビスフェノールS型のエポキシ樹脂の配合量を1.0〜120重量部とし、含有する不純物イオン濃度を50ppm以下とすることが最適であり、優れた耐電食性と耐熱性を高めることができる。
【0041】
なお、以上の実施例では異方性導電接着剤の主剤として、主にビスフェノールF型のエポキシ樹脂に対してビフェニル型、或いはビスフェノールS型のエポキシ樹脂を配合した場合の例について説明したが、本実施例はそのような例に限定されるものではなく、例えば粘性は多少高くなるが、ビスフェノールA型のエポキシ樹脂に対してビフェニル型、或いはビスフェノールS型のエポキシ樹脂を配合した主剤を用いた異方性導電接着剤によっても上記実施例と同様な効果が得られる。
【0042】
図2(a),(b) は本発明に係る異方性導電接着剤の一適用例を順に示す要部断面図である。
本実施例では先ず図2(a) に示すように、配線回路基板11上の各配線端部に設けた基板側電極12に、チップ21をそのチップ側電極22に設けたバンプ23を介して接合する場合、前記基板側電極12を備えた配線回路基板11上に異方性導電接着剤10を所定量だけ滴下する。
【0043】
該異方性導電接着剤10としては、例えば図1に示すようなビスフェノールF型のエポキシ樹脂の100gにビフェニル型のエポキシ樹脂の25gとビスフェノールS型のエポキシ樹脂の25gとを溶解・混合させた主剤1にイミダゾールからなるマイクロカプセル型の硬化剤2の75gと銀の金属微粒子を含むマイクロカプセル型フィラー3とを体積比で5 vol%添加して混合・分散させたものである。
【0044】
次に、前記異方性導電接着剤10が滴下された配線回路基板11上の基板側電極12に対してチップ21をそのチップ側電極22に対向するように位置決めする。
次に、前記配線回路基板11に対してチップ21を例えば約30g/bumpの押圧力により矢印方向に押圧することにより、基板側電極12とチップ側電極22との間に入り込んでいた異方性導電接着剤10中のマイクロカプセル型フィラー3のカプセル部分が壊れて内部の金属微粒子が流出し、その金属微粒子が図2(b) に示すように基板側電極12とチップ側電極22間で挟まれてその両者のみが選択的に電気的な接合が行われる。
【0045】
その状態を維持した接合構成体を約170℃で30秒間程度加熱することによって前記異方性導電接着剤10が溶融すると共に、該異方性導電接着剤10中のイミダゾールからなるマイクロカプセル型の硬化剤2のカプセル部分も溶解して該硬化剤2と主剤1が混合し硬化反応が行われる。
【0046】
従って、硬化された異方性導電接着剤10により配線回路基板11上にチップ21が電気的な接合と機械的に固着化され、用いられた異方性導電接着剤10の耐電食性、耐熱性が従来のものよりも優れているので、確実な電気的な接合と信頼性の良い固着が実現できる。
【0047】
なお、以上の実施例では本発明の異方性導電接着剤を、配線回路基板と動作時に発熱量の比較的大きい機能素子との接合等に用いた場合の例について説明しているが、本発明はそのような例に限定されるものではなく、例えば比較的高温で用いる部品構成体の部品同士の接合工程にも適用して極めて有利である。
【0048】
【発明の効果】
以上の説明から明らかなように、本発明に係る接着剤によれば、ビスフェノールF型のエポキシ樹脂100重量部に対しビスフェノールS型のエポキシ樹脂の配合量1.0〜120重量部とした主剤を用いることにより、優れた耐電食性と耐熱性を高めることができる。
【0049】
従って、動作時の発熱量の比較的大きい機能素子の配線回路基板への接合を安定化させることが可能となると共に、素子実装基板の150℃程度の高い温度条件での信頼性試験にも十分に対応できる等、実用上優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る異方性導電接着剤の一実施例を示す拡大模式図である。
【図2】本発明に係る異方性導電接着剤の一適用例を順に示す要部断面図である。
【符号の説明】
1 主剤
2 マイクロカプセル型の硬化剤
2a イミダゾール
2b 熱可塑性樹脂
3 マイクロカプセル型フィラー
3a 金属微粒子
3b 絶縁性樹脂
10 異方性導電接着剤
11 配線回路基板
12 基板側電極
21 チップ
22 チップ側電極
23 バンプ
24 導電接合部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adhesive, and more particularly to a conductive bonding and element fixing adhesive used in place of solder bonding for bonding various elements to a printed circuit board or the like.
[0002]
2. Description of the Related Art In recent years, as an alternative to soldering various elements to a printed circuit board or the like, application of an adhesive capable of easily electrically connecting or fixing the elements has attracted attention and has been put to practical use.
[0003]
On the other hand, such an adhesive is required to be stable and excellent in heat resistance with respect to electrical bonding or fixing of a functional element having a relatively large amount of heat generated during operation.
[0004]
[Prior art]
Many solders have been used as a bonding material for various functional elements mounted on printed circuit boards and the like. A resin-based adhesive or a resin-based adhesive having conductivity is used as a bonding material in place of the above.
[0005]
However, among the various functional elements described above, there is a tendency that the amount of heat generated during operation tends to be relatively large in accordance with high performance, and a reliability test of a mounting board of an electronic component including such a functional element has been performed. Is required to be as high as about 150 ° C.
[0006]
As such an adhesive for element bonding, a thermosetting resin-based adhesive is more suitable than a thermoplastic resin-based adhesive from the viewpoints of moisture absorption resistance, electric insulation, and the like. An epoxy resin-based adhesive is most useful when comprehensively evaluated from the characteristics, low-temperature rapid curing, cost, and the like.
[0007]
[Problems to be solved by the invention]
By the way, the conventional epoxy resin adhesive for element bonding as described above is prepared by adding imidazole or acid anhydride (methyltetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, bisphenol A type epoxy resin or bisphenol F type epoxy resin) to a main agent such as bisphenol A type epoxy resin or bisphenol F type epoxy resin. In most cases, a mixture of a curing agent such as succinic anhydride) and a conductive filler is mixed, and most of such adhesives have a glass transition temperature of 130 ° C. or lower.
[0008]
Therefore, when a functional element having a relatively large operational heat generation as described above is bonded to a printed circuit board or the like with a conventional epoxy resin-based adhesive, stabilization of the bond against such high operational heat generation and a temperature of about 150 ° C. There was a problem that it was not possible to cope with a reliability test under a high temperature condition.
[0009]
In view of the above-described conventional problems, the present invention increases the glass transition temperature of an epoxy resin-based adhesive, stabilizes the bonding of a functional element having a relatively large operating heat generation to a printed circuit board and the like, and It is an object of the present invention to provide a novel adhesive excellent in heat resistance that can cope with a reliability test under a high temperature condition of about 150 ° C.
[0010]
[Means for Solving the Problems]
In order to achieve the above object of the present invention, it is necessary to fix a functional element having a relatively large operating heat generation to a printed circuit board or the like or to electrically connect the functional element to a bisphenol F type epoxy resin with respect to 100 parts by weight of a bisphenol F type epoxy resin. An adhesive having an epoxy resin containing 1.0 to 120 parts by weight of the above epoxy resin and a curing agent is used.
[0011]
Further, the main agent obtained by dissolving bisphenol S type epoxy resin bisphenol F type epoxy resin, a capsule type curing agent the curing agent was coated with a thermoplastic resin, conductive particles and a capsule filler coated with an insulating resin May be used.
[0012]
The anisotropic conductive adhesive having such a composition has a higher glass transition than a conventional epoxy resin-based adhesive by using a bisphenol F-type epoxy resin in which a bisphenol S-type epoxy resin is dissolved as a main component. The point increases by about 15 ° C. to 20 ° C., and the heat resistance can be increased.
[0013]
Therefore, when the above-mentioned adhesive is applied to the bonding of various elements having a large calorific value, the bonding can be stabilized, and it can be used for a reliability test under a high temperature condition of about 150 ° C. such as a mounting board on which the elements are bonded. Can also be adequately dealt with.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an enlarged schematic view for explaining one embodiment of the anisotropic conductive adhesive according to the present invention.
[0015]
In this embodiment, as shown in the figure, for example, 25 g of a biphenyl type epoxy resin and 25 g of a bisphenol S type epoxy resin are dissolved and mixed in 100 g of a bisphenol F type epoxy resin to obtain a main agent 1.
[0016]
Next, a curing agent such as imidazole and acid anhydride (eg, methyltetrahydrophthalic anhydride, succinic anhydride, etc.), for example, imidazole 2a in this embodiment was encapsulated in a thermoplastic resin 2b such as an acrylic resin. 75 g of the microcapsule type curing agent 2 and metal fine particles of gold, silver, solder, or the like, for example, in this embodiment, the surface of the silver metal fine particles 3a is coated with an epoxy resin and an amine, tetraethylene pentaamine, hexamethylene diamine, or the like. The microcapsule-type filler 3 coated with the insulating resin 3b obtained by reacting with the amine compound is added at 5 vol% in volume ratio and mixed and dispersed.
[0017]
With the adhesive thus produced, an anisotropic conductive adhesive having a desired heat resistance of 153 ° C. having a glass transition temperature higher by about 15 ° C. than that of the conventional adhesive can be obtained.
[0018]
As shown in Table 1, 50 parts by weight of a biphenyl type epoxy resin was dissolved and mixed with 100 parts by weight of a bisphenol F type epoxy resin, and 50 parts by weight of a bisphenol S type epoxy resin. Parts of the microcapsule-type curing agent were dissolved and mixed in each of the main agents in which 25 parts by weight of a biphenyl type epoxy resin and 25 parts by weight of a bisphenol S type epoxy resin were dissolved and mixed. Sample No. 50 in which 50 parts by weight and 5 vol% of a microcapsule-type filler for imparting conductivity were mixed and dispersed. 1, No. 2, No. 3, and 50% by weight of the microcapsule-type curing agent in each of the main agent of only 100 parts by weight of the bisphenol A type epoxy resin and the main agent of only 100 parts by weight of the bisphenol F type epoxy resin as in the conventional example. No. of a comparative sample obtained by mixing and dispersing 5 parts by volume of a microcapsule-type filler for imparting conductivity with the same. 4, No. 5, five kinds of anisotropic conductive adhesives were prepared.
[0019]
[Table 1]
Figure 0003572778
[0020]
Next, the results of measuring the glass transition point (° C.) of these five types of anisotropic conductive adhesives and the time-dependent changes in the viscosity of the five types of anisotropic conductive adhesives immediately after preparation and after standing for one month were examined. The results are shown in Table 2.
[0021]
[Table 2]
Figure 0003572778
[0022]
As is clear from the measurement results of the glass transition point of each anisotropic conductive adhesive shown in Table 2, one of bisphenol F type epoxy resin, biphenyl type epoxy resin, and bisphenol S type epoxy resin , Or a mixture of both of them as a main component, the sample No. of the present invention. 1, No. 2, No. The glass transition point of Comparative Sample No. 3 of the conventional type containing only bisphenol A-type epoxy resin or bisphenol F-type epoxy resin as a main component was determined. 4, No. As compared with No. 5, the temperature rises to 15 ° C. or more, and good heat resistance can be expected.
[0023]
In addition, as is clear from Table 2, the results of examining the change over time in the viscosity of the sample using the five types of anisotropic conductive adhesives are shown in Table 2. 1, No. 2, No. 3 and the comparative sample No. of the conventional type. 4, No. All of the samples No. 5 showed almost no increase in viscosity after being left at room temperature (20 ° C.) for one month with respect to the viscosity immediately after preparation, indicating a good pot life.
[0024]
Next, a fixed amount of each of the above-mentioned five anisotropic conductive adhesives is applied onto, for example, a comb-shaped electrode pattern of an Al film having an electrode interval of 20 μm, and heated at 170 ° C. for 1 minute and then at 150 ° C. for 2 hours. After curing, they were subjected to an electrolytic corrosion test in which DC 5 V was applied to the comb-shaped electrode pattern and held for 200 hours under environmental conditions of a temperature of 85 ° C. and a humidity of 85%,
Using the five kinds of anisotropic conductive adhesives, a sample (500 pieces per one kind of resin adhesive) in which a chip is bonded to a glass epoxy substrate (for example, having 360 terminals provided at a pitch of 100 μm) is prepared. Table 3 shows the results of a heat cycle test performed on these samples under the condition of repeating 500 cycles at a temperature of -65 ° C to 150 ° C.
[0025]
In addition, the total value of the impurity ion concentrations of Cl , Na + , K +, and the like, which exist in the above five kinds of anisotropic conductive adhesives and affect electrolytic corrosion depending on the concentration, was about 20 ppm. .
[0026]
[Table 3]
Figure 0003572778
[0027]
As is clear from Table 3, the results of the electrolytic corrosion test of each of the anisotropic conductive adhesives are as follows. In each sample, the insulation resistance immediately after the preparation is as good as 10 11 Ω or more, and the insulation resistance after 200 hours is almost zero. It shows electrical corrosion resistance such that there is no change.
[0028]
In addition, the results of a heat cycle test of the sample using the five types of anisotropic conductive adhesives are also apparent from Table 3, and as shown in Table 3, only the bisphenol A type epoxy resin or the bisphenol F type epoxy resin was used. Comparative Sample No. 4, No. In the case of using No. 5, in each case, about half or more of them have poor conduction due to thermal deterioration of the resin.
[0029]
On the other hand, the present invention relates to an anisotropic conductive adhesive comprising, as a main ingredient, a mixture in which a bisphenol F type epoxy resin and a biphenyl type epoxy resin or a bisphenol S type epoxy resin or both are dissolved. Sample No. 1, No. 2, No. In the case of using No. 3, there was no occurrence of such poor conduction, and a result showing extremely good heat resistance was obtained.
[0030]
Next, another embodiment of the anisotropic conductive adhesive according to the present invention will be described in detail.
In this example, as shown in Table 4, the compounding amount of the biphenyl type epoxy resin was 0.1 part by weight, 1.0 part by weight, 50 parts by weight, and 100 parts by weight of the bisphenol F type epoxy resin. 0.1 parts by weight of bisphenol S type epoxy resin and 0.1 parts by weight of bisphenol F type epoxy resin with respect to 100 parts by weight of bisphenol F type epoxy resin. 50 parts by weight of the microcapsule-type curing agent and a microcapsule type for imparting conductivity were added to each of the main ingredients which were dissolved and mixed in the amounts of 0.0, 50, 120 and 130 parts by weight. Sample No. 1 in which 5 vol% of the filler was mixed and dispersed. 11-No. 20 kinds of anisotropic conductive adhesives were prepared.
[0031]
[Table 4]
Figure 0003572778
[0032]
Next, these sample Nos. 11-No. Table 5 shows the results of measuring the glass transition points (° C.) of the ten kinds of anisotropic conductive adhesives of No. 20.
[0033]
[Table 5]
Figure 0003572778
[0034]
As is clear from Table 5, the measurement results of the glass transition point of each of the anisotropic conductive adhesives described above are 100 parts by weight of bisphenol F type epoxy resin and biphenyl type epoxy resin or bisphenol S type epoxy resin. Of an anisotropic conductive adhesive containing a mixture obtained by dissolving 0.1 part by weight of 11, No. Sample No. other than 16 12-No. 15 and No. 17-No. The glass transition point of No. 20 rises to 12 ° C. or more as compared with the conventional epoxy resin-based adhesive, and is raised from 147 ° C. to 160 ° C.
[0035]
Further, as a result of examining the change over time of the viscosity of the sample using the ten kinds of anisotropic conductive adhesives, it was found that 100 parts by weight of bisphenol F type epoxy resin and biphenyl type epoxy resin or bisphenol S type epoxy resin were used. Of the anisotropic conductive adhesive containing a mixture obtained by dissolving 130 parts by weight of 15, No. The pot life of Sample No. 20 was about 1 hour at room temperature (20 ° C.), but other Sample Nos. 11-No. 14 and No. 16-No. As for the pot life of No. 19, it was confirmed that a good pot life could be obtained even after 24 hours to one month at normal temperature (20 ° C.).
[0036]
Further, an electrolytic corrosion test of the sample using the ten kinds of anisotropic conductive adhesives was performed by the same method as the above-described electrolytic corrosion test. 1 to No. 1; As in the case of Example 3, all the samples exhibited electrolytic corrosion resistance such that the insulation resistance immediately after preparation was 10 11 Ω or more and the insulation resistance after 200 hours hardly changed.
[0037]
Further, as a result of performing a heat cycle test of the sample using the ten kinds of anisotropic conductive adhesives by the same method as the heat cycle test described above, 100 parts by weight of bisphenol F type epoxy resin and biphenyl type epoxy resin were obtained. Sample No. 1 of an anisotropic conductive adhesive containing a resin or a mixture in which 0.1 part by weight of a bisphenol S type epoxy resin is dissolved. In sample No. 11, 98 sheets out of 500 sheets were tested, and sample No. In the case of No. 16, 136 out of 500 test pieces showed poor conduction due to thermal deterioration of the resin.
[0038]
However, other sample Nos. 12-No. 15 and No. 17-No. No. 20 has no such poor conduction and has extremely good heat resistance.
Further, for example, the sample No. 12, No. 13, No. Investigation of time-dependent changes in viscosity, electrolytic corrosion test, and heat cycle test were performed using the samples in which the concentration of impurity ions such as Cl , Na + , and K + contained in No. 14 was 50 ppm and 60 ppm, respectively. As a result, there was almost no change in viscosity over time, and in the heat cycle test, no conduction failure occurred due to thermal deterioration or the like in any of the samples.
[0039]
However, in the electrolytic corrosion test, although the sample of the anisotropic conductive adhesive having the impurity ion concentration of 60 ppm was used, the insulation resistance was reduced to 10 8 Ω or less after 60 hours, causing insulation failure. It was found that a sample using an anisotropic conductive adhesive having a concentration of 50 ppm had an electrolytic corrosion resistance such that there was almost no change in insulation resistance immediately after preparation and after 200 hours.
[0040]
Therefore, from the various measurements and test results of each of the above examples, the main agent of the anisotropic conductive adhesive of the present invention is a biphenyl type epoxy resin or a bisphenol type epoxy resin based on 100 parts by weight of a bisphenol F type epoxy resin. It is optimal that the compounding amount of the S-type epoxy resin is 1.0 to 120 parts by weight and the concentration of impurity ions contained is 50 ppm or less, so that excellent electric corrosion resistance and heat resistance can be enhanced.
[0041]
Note that, in the above-described embodiment, an example in which a biphenyl type or a bisphenol S type epoxy resin is mainly blended with a bisphenol F type epoxy resin as a main agent of the anisotropic conductive adhesive has been described. The embodiment is not limited to such an example. For example, although the viscosity may be slightly higher, a difference is obtained using a base material obtained by blending a biphenyl type or bisphenol S type epoxy resin with a bisphenol A type epoxy resin. The same effect as in the above embodiment can be obtained by the isotropic conductive adhesive.
[0042]
2 (a) and 2 (b) are cross-sectional views of main parts sequentially showing one application example of the anisotropic conductive adhesive according to the present invention.
In this embodiment, first, as shown in FIG. 2A, the chip 21 is connected to the board-side electrode 12 provided at each wiring end on the printed circuit board 11 via the bump 23 provided on the chip-side electrode 22. In the case of joining, a predetermined amount of the anisotropic conductive adhesive 10 is dropped on the printed circuit board 11 provided with the board-side electrode 12.
[0043]
As the anisotropic conductive adhesive 10, for example, 100 g of a bisphenol F type epoxy resin as shown in FIG. 1 was prepared by dissolving and mixing 25 g of a biphenyl type epoxy resin and 25 g of a bisphenol S type epoxy resin. 75% of a microcapsule-type curing agent 2 made of imidazole and a microcapsule-type filler 3 containing fine silver metal particles are added to the main agent 1 at a volume ratio of 5 vol%, and mixed and dispersed.
[0044]
Next, the chip 21 is positioned so as to face the chip-side electrode 22 with respect to the substrate-side electrode 12 on the printed circuit board 11 on which the anisotropic conductive adhesive 10 has been dropped.
Next, the chip 21 is pressed against the printed circuit board 11 in a direction indicated by an arrow with a pressing force of, for example, about 30 g / bump, thereby anisotropically penetrating between the substrate-side electrode 12 and the chip-side electrode 22. The capsule portion of the microcapsule type filler 3 in the conductive adhesive 10 is broken, and the fine metal particles inside flow out, and the fine metal particles are sandwiched between the substrate side electrode 12 and the chip side electrode 22 as shown in FIG. Then, only both of them are selectively electrically connected.
[0045]
The anisotropic conductive adhesive 10 is melted by heating the joined structure maintaining the state at about 170 ° C. for about 30 seconds, and a microcapsule type of imidazole in the anisotropic conductive adhesive 10 is used. The capsule portion of the curing agent 2 is also dissolved, and the curing agent 2 and the main agent 1 are mixed to perform a curing reaction.
[0046]
Therefore, the chip 21 is electrically bonded and mechanically fixed on the printed circuit board 11 by the cured anisotropic conductive adhesive 10, and the used anisotropic conductive adhesive 10 has the electric corrosion resistance and heat resistance. Are more excellent than conventional ones, so that reliable electrical bonding and reliable fixing can be realized.
[0047]
In the above embodiment, an example is described in which the anisotropic conductive adhesive of the present invention is used for bonding a printed circuit board to a functional element having a relatively large amount of heat generated during operation. The present invention is not limited to such an example, and is very advantageous when applied to, for example, a joining step of components of a component component used at a relatively high temperature.
[0048]
【The invention's effect】
As apparent from the above description, according to the adhesive according to the present invention, a 1.0 to 120 parts by weight the amount of the epoxy resin of bisphenol S with respect to 100 parts by weight of bisphenol F type epoxy resin By using the main component, excellent electric corrosion resistance and heat resistance can be enhanced.
[0049]
Therefore, it is possible to stabilize the bonding of the functional element having a relatively large heat value during operation to the printed circuit board, and it is also sufficient for the reliability test of the element mounting board at a high temperature condition of about 150 ° C. It has excellent practical effects, for example,
[Brief description of the drawings]
FIG. 1 is an enlarged schematic view showing one embodiment of an anisotropic conductive adhesive according to the present invention.
FIG. 2 is a cross-sectional view of a main part showing one application example of the anisotropic conductive adhesive according to the present invention in order.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main agent 2 Microcapsule type hardener 2a Imidazole 2b Thermoplastic resin 3 Microcapsule type filler 3a Metal fine particle 3b Insulating resin 10 Anisotropic conductive adhesive 11 Wiring circuit board 12 Substrate side electrode 21 Chip 22 Chip side electrode 23 Bump 24 Conductive joint

Claims (1)

配線回路基板に各種素子を固定するためのエポキシ樹脂と硬化剤とを有する接着剤において、
前記エポキシ樹脂がビスフェノールF型のエポキシ樹脂の100重量部に対しビスフェノールS型のエポキシ樹脂を1.0〜120重量部を配合したことを特徴とする接着剤。
In an adhesive having an epoxy resin and a curing agent for fixing various elements to the printed circuit board,
Adhesive wherein the epoxy resin is blended with 1.0 to 120 parts by weight of bisphenol S type epoxy resin relative to 100 parts by weight of bisphenol F type epoxy resin.
JP03242196A 1996-02-20 1996-02-20 adhesive Expired - Fee Related JP3572778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03242196A JP3572778B2 (en) 1996-02-20 1996-02-20 adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03242196A JP3572778B2 (en) 1996-02-20 1996-02-20 adhesive

Publications (2)

Publication Number Publication Date
JPH09227849A JPH09227849A (en) 1997-09-02
JP3572778B2 true JP3572778B2 (en) 2004-10-06

Family

ID=12358495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03242196A Expired - Fee Related JP3572778B2 (en) 1996-02-20 1996-02-20 adhesive

Country Status (1)

Country Link
JP (1) JP3572778B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581156B2 (en) * 1999-05-14 2010-11-17 株式会社デンソー Conductive adhesive and circuit board using the same as component connection material
KR100507633B1 (en) * 2002-09-27 2005-08-10 한국화학연구원 Bisphenol-a/bisphenol-s hybrid epoxy resin compositions
US8124232B2 (en) * 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
JP5617210B2 (en) 2009-09-14 2014-11-05 デクセリアルズ株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
CN102870208B (en) 2010-04-01 2015-07-01 株式会社村田制作所 Electronic component and method for producing same
JP6307966B2 (en) * 2014-03-25 2018-04-11 日立化成株式会社 Adhesive composition, anisotropic conductive adhesive composition, circuit connection material and connector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064838B2 (en) * 1989-10-31 1994-01-19 住友ベークライト株式会社 Adhesive composition
JP2906612B2 (en) * 1990-08-10 1999-06-21 富士通株式会社 Microcapsule type conductive adhesive and bonding method
JPH05239426A (en) * 1992-03-03 1993-09-17 Yokohama Rubber Co Ltd:The Adhesive composition
JPH0669257A (en) * 1992-08-21 1994-03-11 Hitachi Chem Co Ltd Adhesive for semiconductor element and semiconductor device
JPH06322350A (en) * 1993-03-17 1994-11-22 Fujitsu Ltd Conductive adhesive, its production and method for bonding semiconductor chip

Also Published As

Publication number Publication date
JPH09227849A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
Jagt Reliability of electrically conductive adhesive joints for surface mount applications: a summary of the state of the art
US6270363B1 (en) Z-axis compressible polymer with fine metal matrix suspension
KR100229581B1 (en) Electrically conductive paste materials and applications
JP5311772B2 (en) Adhesive film
Jagt et al. Electrically conductive adhesives: A prospective alternative for SMD soldering?
US20040079464A1 (en) Manufacturing method for electric device
CN101416568A (en) Components joining method and components joining structure
US20010021547A1 (en) Bonding materials
Lu et al. Novel conductive adhesives for surface mount applications
US6197222B1 (en) Lead free conductive composites for electrical interconnections
JP3572778B2 (en) adhesive
KR101464807B1 (en) Adhesive film
Rorgren et al. Reliability assessment of isotropically conductive adhesive joints in surface mount applications
KR100940764B1 (en) Anisotropically electroconductive connection body and method for forming it
JPH1030082A (en) Adhesive
JP2905121B2 (en) Anisotropic conductive adhesive film
JPS608377A (en) Anisotropically electrically-conductive adhesive
JP2002338932A (en) Adhesive
Cao et al. Formulation and characterization of anisotropic conductive adhesive paste for microelectronics packaging applications
JP2720343B2 (en) Conductive paste
JPH0521157B2 (en)
JP4378788B2 (en) IC chip connection method
JPH01226161A (en) Connection of semiconductor chip
JP3148008B2 (en) Method of connecting substrate and chip using conductive adhesive
JPH08253745A (en) Adhesive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees