JPH0567672B2 - - Google Patents

Info

Publication number
JPH0567672B2
JPH0567672B2 JP11346987A JP11346987A JPH0567672B2 JP H0567672 B2 JPH0567672 B2 JP H0567672B2 JP 11346987 A JP11346987 A JP 11346987A JP 11346987 A JP11346987 A JP 11346987A JP H0567672 B2 JPH0567672 B2 JP H0567672B2
Authority
JP
Japan
Prior art keywords
curing
item
adhesive
temperature heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11346987A
Other languages
Japanese (ja)
Other versions
JPS63278987A (en
Inventor
Masaaki Ootake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Iko Co Ltd
Original Assignee
Sekisui Iko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Iko Co Ltd filed Critical Sekisui Iko Co Ltd
Priority to JP11346987A priority Critical patent/JPS63278987A/en
Publication of JPS63278987A publication Critical patent/JPS63278987A/en
Publication of JPH0567672B2 publication Critical patent/JPH0567672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 発明の目的 [産業上の利用分野] 本発明は、リードワイヤーの接点接着、磁気・
セラミツクの充填封入、シルクスクリーン印刷、
回路基板の補修、成形カーボンと金属の接着、各
種電子素子をリードフレームやアルミナ基板への
接着、PTCと金属の面接着、ネサガラス間の接
着等多用途に供される二液式低温加熱硬化型導電
性エポキシ系接着剤に関する。 [従来の技術] この種二液式導電性エポキシ系接着剤は、従来
ハンダづけができなかつたプラスチツク類(エポ
キシ・フエノール樹脂等)の導電接着や液晶表示
管に使うネサガラスの接着、マイクロモーターに
使うリン青銅とカーボンブラシの接着、水晶振動
子、Sdcメーターなどのリード線接着等に欠くこ
とができない材料である。 特に半導体工業における最近の発展はめざまし
く、次々にICやLSIが開発され、量産化され続け
ているが、これ等の半導体チツプ(シリコンウエ
ハー)のリードフレームへの接着には従来Au−
Si共晶による方法がとられていたが、低コスト
化・生産性向上を目的としてエポキシ樹脂に銀粉
を混練した導電性接着剤が多用されるようにな
り、現在ダイボンデイング方式の中で最も有力視
されている。 しかしながらこの種従来の二液式高温加熱型導
電性エポキシ系接着剤は銀含有量が70〜90重量%
が一般的であり銀フイラーエポキシ樹脂と硬化剤
の混合比を1:1又は1:2として希釈溶剤に
SHシンナーを用いており、粘度が10万〜20万
CPSを示し硬化条件も100℃〜130℃×1H(時間)
か150℃×0.5Hであり、粘度が高く混練性は悪く
接着力に関係する濡れ性も悪い。即ちエポキシ系
導電性接着剤の配合設計をする際、通常、原料エ
ポキシ樹脂の粘度が高いため銀フイラーと混練し
た場合さらに粘度が上昇し、マイクロデイスペン
サー、シルクスクリーン印刷等による塗布作業性
がいちじるしく悪くなる場合があるため溶剤を配
合しなければならず、その結果被塗物を面接着す
る場合、溶剤が含まれていると加熱硬化した際、
硬化剤が発砲しその結果として特性劣化(導電性
のバラツキ、接着強度の低下)が起り易く、電子
部品の組立接着に使われる導電性接着剤には無溶
剤が望ましいこと、また気密性の高い部品内で用
いる場合微量の揮発分がスイツチ接点部や金属部
に悪い影響を及ぼす場合があるため注意が必要で
あること、特にICやLSIのダイボンデイング用の
ものにはアウトガスがないものが要求されること
等を知りながら粘度低下のため溶剤を使用せざる
を得ず、リード線の接着のようにオープン状態で
接着する場合は溶剤の添加による粘度調整で作業
性が改善されると言えどもIC関係の接着や半導
体素子の接着は面接着が多く、また接着後は合成
樹脂等で気密封止されるので残留溶剤による不良
原因となり、溶剤含有接着剤は好ましくない。 加えて硬化温度が高温加熱硬化型でしかも長時
間加熱しなければならないため接着自体の劣化変
質のため引張り剪断強度も29〜62Kg/cm2の値しか
示さず、さらに致命的欠陥は接着対象やその周辺
の電子部品群に熱的悪影響を及ぼし電気的特性を
悪化する欠点である。 [発明が解決しようとする問題点] 本発明は従来の欠点に鑑み接着剤粘度を低めて
混練性を高め、接着力を増大する濡れ性および延
展性を良好にして低硬化温度と短時間加熱の硬化
条件に大幅に改善し接着時の熱的悪影響を可及的
に抑制した二液式低温加熱硬化型導電性エポキシ
系接着剤を提供せんとするものである。 (2) 発明の構成 [問題点を解決するための手段] 本発明の二液式低温加熱硬化型導電性エポキシ
系接着剤は、導電性フイラーとして粒径5〜
30μmの銀フイラーとこれを分散混練したバイン
ダー樹脂との重量比を90〜75:10〜25としフエニ
グリシジルエーテル等の適量の反応性希釈剤を加
えたビスフエノールA系銀フイラーエポキシ樹脂
に、使用に当り添加するトリエチレンテトラアミ
ン等の脂肪族ポリアミン系硬化剤との重量%を前
記ビスフエノールA系銀フイラーエポキシ樹脂
100部に対し2〜3部として、1万〜5万CPSに
低粘度化しかつ硬化温度を50℃〜80℃にすること
により接着力を増強してなる。 [実施例] 本発明の実施例を以下に説明する。 本発明の二液式低温加熱硬化型導電性エポキシ
系接着剤は、銀フイラーのエポキシ樹脂(以下主
剤とも言う)ポリアミン硬化型であつて粘度1万
〜5万CPSのクリーム状のペーストで作業性が良
く、揮発性溶剤を全く含まないため、硬化の際収
縮がなく、硬化後の性能は高い導電性と強い接着
力を持ち、さらに充填、封入に対しても適正を有
する。 主剤となるバインダー役のエポキシ樹脂は、粘
度の調整および硬化樹脂に可撓性を付与する反応
性希釈剤によつて調整された低粘度の液体であ
る。 エポキシ樹脂はビスフエノールA系をベースと
して、その基本構造は次に示す通りである。
(1) Purpose of the invention [Industrial field of application] The present invention relates to lead wire contact adhesion, magnetic
Ceramic filling, silk screen printing,
A two-component low-temperature heat-curing type that can be used for a variety of purposes, such as repairing circuit boards, adhering molded carbon to metal, adhering various electronic elements to lead frames and alumina substrates, surface adhesion of PTC and metal, and adhesion between Nesa glass. Related to conductive epoxy adhesive. [Prior art] This type of two-component conductive epoxy adhesive can be used for conductive bonding of plastics (epoxy, phenolic resin, etc.) that could not be soldered in the past, for bonding Nesa glass used in liquid crystal display tubes, and for micro motors. It is an indispensable material for adhering phosphor bronze and carbon brushes, and for adhering lead wires for crystal resonators, SDC meters, etc. Recent developments in the semiconductor industry in particular have been remarkable, with ICs and LSIs being developed one after another and being mass-produced.
Previously, a method using Si eutectic was used, but in order to reduce costs and improve productivity, conductive adhesives made by mixing silver powder into epoxy resin have come into widespread use, and are currently the most popular die bonding method. being watched. However, this type of conventional two-component high-temperature heating conductive epoxy adhesive has a silver content of 70 to 90% by weight.
is common, and the mixing ratio of silver filler epoxy resin and curing agent is 1:1 or 1:2 and the diluting solvent is
Uses SH thinner and has a viscosity of 100,000 to 200,000
Indicates CPS and curing conditions are 100℃~130℃×1H (hour)
The temperature is 150°C x 0.5 hours, and the viscosity is high, and the kneading properties are poor, and the wettability related to adhesive strength is also poor. In other words, when designing the composition of epoxy conductive adhesives, the viscosity of the raw material epoxy resin is usually high, so when it is kneaded with silver filler, the viscosity increases further, making application workability with micro-dispensers, silk screen printing, etc. Solvents must be added as this may cause deterioration, and as a result, when surface adhesion is applied to the object to be coated, if a solvent is included, when heated and cured,
The curing agent tends to foam, resulting in property deterioration (variation in conductivity, decrease in adhesive strength), so it is desirable that conductive adhesives used for assembling and bonding electronic components be solvent-free and highly airtight. When used in components, care must be taken as trace amounts of volatile matter may have a negative effect on switch contacts and metal parts.In particular, products for die bonding of ICs and LSIs must be free of outgassing. Solvents have no choice but to be used to reduce viscosity, knowing that the viscosity will be reduced, and even though workability can be improved by adjusting the viscosity by adding a solvent when gluing in an open state, such as when bonding lead wires. Adhesives related to ICs and semiconductor elements are often surface-adhesive, and after adhesion, they are hermetically sealed with a synthetic resin or the like, which can cause defects due to residual solvent, so solvent-containing adhesives are not preferred. In addition, since the curing temperature is a high temperature heat curing type and it must be heated for a long time, the adhesive itself deteriorates and deteriorates, resulting in a tensile shear strength of only 29 to 62 kg/ cm2 . This is a drawback in that it has an adverse thermal effect on surrounding electronic components and deteriorates their electrical characteristics. [Problems to be Solved by the Invention] In view of the conventional drawbacks, the present invention lowers the adhesive viscosity to improve kneading properties, improves wettability and spreadability to increase adhesive strength, and achieves a low curing temperature and short heating time. The purpose of the present invention is to provide a two-component low temperature heat-curable conductive epoxy adhesive which has significantly improved curing conditions and suppresses as much as possible adverse thermal effects during adhesion. (2) Structure of the invention [Means for solving the problems] The two-component low-temperature heat-curing conductive epoxy adhesive of the present invention has a particle size of 5 to 5 as a conductive filler.
Bisphenol A-based silver filler epoxy resin with a weight ratio of 30 μm silver filler and binder resin dispersed and kneaded is 90-75:10-25, and an appropriate amount of reactive diluent such as pheniglycidyl ether is added. The weight percentage of the aliphatic polyamine curing agent such as triethylenetetraamine added during use of the bisphenol A-based silver filler epoxy resin
By adding 2 to 3 parts per 100 parts, the viscosity is lowered to 10,000 to 50,000 CPS, and the curing temperature is set to 50 to 80°C to increase adhesive strength. [Example] Examples of the present invention will be described below. The two-component low-temperature heat-curing conductive epoxy adhesive of the present invention is a polyamine-curing type of silver filler epoxy resin (hereinafter also referred to as the main ingredient), and is a cream-like paste with a viscosity of 10,000 to 50,000 CPS and is easy to work with. Since it contains no volatile solvents, there is no shrinkage during curing, and after curing it has high conductivity and strong adhesive strength, and is also suitable for filling and encapsulation. The epoxy resin that serves as the main binder is a low-viscosity liquid adjusted with a reactive diluent that adjusts the viscosity and imparts flexibility to the cured resin. The epoxy resin is based on bisphenol A, and its basic structure is as shown below.

【化】 主剤と混合される導電体、即ちエポキシ樹脂と
精密に混練り分散を行なう粒径5〜30μm好まし
くは5〜10μmの銀粉には電解銀粉並びに還元銀
粉を用いるが主剤に対する銀フイラーの配分重量
比は10〜25:90〜75、好ましくは17:83である。 電解銀粉は、電気銀を再電解して樹枝状に析出
させたもので、純度が高く成形性が良好な銀粉末
である。 また還元銀粉は、銀塩水流液にホルマリン等の
還元剤を加えて還元析出させて、これを乾燥し粉
粒状として得られたものを用いる。 これ等の銀粉の性状としては、粒度がこまかく
分散性にすぐれ、凝集力がないこと等が要求され
る。 硬化剤は、一般的には混合物の粘度、可使時間
(ポツトライフ)、硬化条件、並びに接着力等を基
準に選定されさらにカブレ等が生じにくく少量で
硬化反応が行ない得るトリエチレンテトラアミン
等の脂肪族ポリアミン系硬化剤が用いられる。 トリエチレンテトラアミン(TTA=
triethylene tetramine)の化学構造式は次に示
す通りである。 H2N CH2 CH2N CH2 CH2N CH2CH2
NH2 所で混合される主剤と硬化剤は化学反応によつ
て硬化が行なわれるが、硬化反応に化学当量が必
要となる。つまりエポキシ樹脂のエポキシ基とポ
リアミンのアミン基が過不足なく結合し三次元的
な強い構造になるにはそれぞれの化学当量が算出
されなければならないが、主剤樹脂100部に対し
て硬化剤の量を変えた時の接着力の試験結果であ
る相関特性線図を第1図に示す。 当該第1図に基づき主剤100部(重量)に対し
硬化剤2部(重量)を最適基準値として算出し
た。従つて第1図に示すように、混合される主剤
と硬化剤の配分比が基準値より多過ぎても少な過
ぎても接着力に影響が見られる。 [発明の特性] 導電性接着剤に要求される基本特性は銀フイラ
ーの形状例えばウロコ状および粒径による導電性
と樹脂による接着強度である。この2つの特性が
経時で劣化せずに長期の信頼性を保つことが重要
である。 本発明の特性の試験例を以下に説明する。 一般的性状 次の第1表に示す通りである。
[Chemical] Electrolytic silver powder and reduced silver powder are used for the silver powder with a particle size of 5 to 30 μm, preferably 5 to 10 μm, which is precisely kneaded and dispersed with the conductor mixed with the base material, that is, the epoxy resin, but the proportion of silver filler to the base material is The weight ratio is 10-25:90-75, preferably 17:83. Electrolytic silver powder is produced by re-electrolyzing electrolytic silver to precipitate it in a dendritic form, and is a silver powder with high purity and good moldability. Further, the reduced silver powder is obtained by adding a reducing agent such as formalin to a silver salt aqueous solution, reducing and precipitating it, and drying this to obtain a powder. The properties of these silver powders include fine particle size, excellent dispersibility, and no cohesion. The curing agent is generally selected based on the viscosity of the mixture, pot life, curing conditions, adhesive strength, etc., and triethylenetetraamine, etc., which does not cause blistering and can perform the curing reaction in small amounts, is generally selected. An aliphatic polyamine curing agent is used. Triethylenetetraamine (TTA=
The chemical structural formula of triethylene tetramine is as shown below. H 2 N CH 2 CH 2 N CH 2 CH 2 N CH 2 CH 2
The main agent and curing agent that are mixed at the NH 2 site undergo curing through a chemical reaction, and chemical equivalence is required for the curing reaction. In other words, in order for the epoxy groups of the epoxy resin and the amine groups of the polyamine to combine in just the right amount and form a three-dimensional strong structure, the chemical equivalents of each must be calculated, but the amount of curing agent must be calculated based on 100 parts of the base resin. Figure 1 shows a correlation characteristic diagram that is the test result of adhesive strength when Based on FIG. 1, 2 parts (by weight) of the curing agent was calculated as the optimum standard value for 100 parts (by weight) of the main agent. Therefore, as shown in FIG. 1, if the distribution ratio of the base agent and curing agent to be mixed is too much or too little than the standard value, the adhesive strength will be affected. [Characteristics of the Invention] The basic characteristics required of a conductive adhesive are conductivity due to the shape of the silver filler, such as scale-like shape and particle size, and adhesive strength due to the resin. It is important that these two characteristics do not deteriorate over time and maintain long-term reliability. Test examples of the characteristics of the present invention will be explained below. General properties As shown in Table 1 below.

【表】 硬化条件 加熱温度と時間の組合せによつて決定され、例
えば常温(25℃)でも硬化は進むが時間は48時間
以上を要し、しかも導電度は満足する結果を得ら
れない。 従つて最低でも50℃以上の加熱を必要とする。 主剤:硬化剤=100:2で混合した場合の試験
結果を次の第2表に示す。
[Table] Curing conditions are determined by the combination of heating temperature and time. For example, curing proceeds at room temperature (25°C), but it takes more than 48 hours, and the conductivity is not satisfactory. Therefore, heating to at least 50°C is required. Table 2 below shows the test results when the base resin: curing agent was mixed at a ratio of 100:2.

【表】 但し*印は所定の温度に達した時の加熱時間で
ある。 さらに主剤:硬化剤=100:2の配合比で混合
した場合の硬化温度と体積固有抵抗の関係を第2
図に、また低温加熱50℃において加熱時間を変え
た場合の導電度の関係を第3図にそれぞれ示す。 接着強度 主剤:硬化剤=100:2の配合比で混合し硬化
条件として80℃×15分、常温24時間放置後に測定
した場合の試験結果を次の第3表に示す。
[Table] However, the * mark indicates the heating time when the specified temperature is reached. Furthermore, the relationship between curing temperature and volume resistivity when mixed at a blending ratio of base resin: curing agent = 100:2 is shown in the second graph.
Figure 3 shows the relationship between conductivity when heating at a low temperature of 50°C and varying the heating time. Adhesive Strength The following Table 3 shows the test results when the materials were mixed at a blending ratio of base resin: curing agent = 100:2 and were measured after being left at room temperature for 24 hours at 80°C for 15 minutes as curing conditions.

【表】 但し*印は接着剤層内部の破壊をいう。 耐熱性 190℃の耐熱試験では接着強度はほとんど変ら
ない。 主剤:硬化剤=100:2の配合比で混合し硬化
条件として80℃×15分、常温24時間放置後に耐熱
性試験をおこなつた結果を次の第4表に示す。
[Table] However, * indicates damage inside the adhesive layer. Heat Resistance In a heat resistance test at 190℃, the adhesive strength remains almost unchanged. Table 4 shows the results of a heat resistance test after mixing at a blending ratio of main ingredient: curing agent = 100:2, curing conditions at 80°C for 15 minutes, and leaving it at room temperature for 24 hours.

【表】 但し試料はスチール/スチールを接着した。 温度と強度の関係 主剤:硬化剤=100:2の配合比で混合し硬化
条件として80℃×15分、常温24時間放置後に測定
した場合における各温度と1時間30分常温放置後
の強度試験結果を第4図に示す。 塗厚・幅と体積固有抵抗の関係 主剤:硬化剤=100:2の配合比で混合し硬化
条件として80℃×15分、常温24時間放置後の測定
試験結果を次の第5表に示す。
[Table] However, the sample was steel/steel bonded. Relationship between temperature and strength Main agent: hardening agent = 100:2 mixture ratio, curing condition: 80℃ x 15 minutes, strength test after being left at room temperature for 24 hours and measured at each temperature and after being left at room temperature for 1 hour and 30 minutes The results are shown in Figure 4. Relationship between coating thickness/width and volume resistivity The following Table 5 shows the measurement test results after mixing base resin: curing agent at a mixing ratio of 100:2 and curing at 80°C for 15 minutes and leaving it at room temperature for 24 hours. .

【表】 但し試料は基板PMMA(アクリル板)に塗る。 [発明の使用法] 本発明接着剤の使用例を以下に説明する。 良い性能を発揮させるためには主剤と硬化剤を
正しく計量し、良く撹拌混合することが肝要であ
る。 混合比 主剤:硬化剤=100:2(重量%) 混合の目安 主剤……1g 硬化剤……1滴(約0.02g) 両者を良く混ぜる。 硬化条件(基準値) 50℃×2時間……1.5×10-2Ω−cm 80℃×15分……5×10-4Ω−cm ポツトライフの持続 新らしく所定量の主剤:硬化剤を混合し、すみ
やかに冷凍を行なう。例えば−20℃の冷凍庫へ
120時間(5日間)放置して、のち取り出し撹拌
しながら常温に戻し通常の硬化手続に従つて使用
した結果性能に異常は認められなかつた。 溶剤による粘度の調整 デイマペンシングの都合上、止む無くさらに粘
度の調整を必要とするときは本発明の混合物へ5
%(重量)までトルエン、または酢酸エチルで希
釈することができる。 (3) 発明の効果 かくして本発明の接着剤は、低温加熱50〜80
℃で硬化が行なわれる。クリーム状ペーストで
混合し易く、ダレがない。硬化後の収縮がなく
充填・封入に適する。安定した高い導電性が得
られる。接着力が強く多くの新素材に適合す
る。耐熱・耐湿性にすぐれている。溶剤によ
り粘度の調整ができる。デイスペンス性が良
い。肉盛り隠蔽力に優れている。棚寿命が長
く常温で約1カ年間有効である等の従来品に比べ
て種々の特徴を有する。 本発明は、低温硬化かつ短時間加熱であるた
め、接着剤自体および接着対象部品や周辺の部品
に熱的悪影響を及ぼすことなく品質保持と信頼性
を高め概して従来品に比べ接着強度を20%以上向
上ししかも作業性を改善して省エネ、省コストを
果し量産体制を確立し得る等電子工業界等に優れ
た技術革新インパクト効果を与える。
[Table] However, the sample is applied to the substrate PMMA (acrylic board). [How to Use the Invention] Examples of how to use the adhesive of the present invention will be described below. In order to achieve good performance, it is important to accurately measure the base agent and curing agent and stir and mix them well. Mixing ratio: Main agent: Hardening agent = 100:2 (wt%) Mixing guide: Main agent: 1g Hardening agent: 1 drop (approximately 0.02g) Mix both well. Curing conditions (standard value) 50℃ x 2 hours...1.5 x 10 -2 Ω-cm 80℃ x 15 minutes... 5 x 10 -4 Ω-cm Sustaining pot life As new, mix a predetermined amount of main ingredient: curing agent Then, freeze it immediately. For example, put it in a -20℃ freezer.
After leaving it for 120 hours (5 days), it was taken out and returned to room temperature while stirring, and used according to the normal curing procedure. No abnormality was observed in the performance. Adjustment of viscosity using a solvent If further adjustment of the viscosity is unavoidably necessary due to the convenience of deimapensing, use the mixture of the present invention5.
% (by weight) with toluene or ethyl acetate. (3) Effects of the invention Thus, the adhesive of the present invention can be heated at a low temperature of 50 to 80°C.
Curing takes place at °C. It is a creamy paste that is easy to mix and does not drip. Suitable for filling and encapsulation as there is no shrinkage after curing. Stable and high conductivity can be obtained. It has strong adhesion and is compatible with many new materials. Excellent heat and moisture resistance. Viscosity can be adjusted using solvent. Good dispensability. Excellent concealment power. It has various features compared to conventional products, such as a long shelf life and being effective for about one year at room temperature. Since the present invention cures at a low temperature and heats for a short time, it maintains quality and reliability without adversely affecting the adhesive itself, the parts to be bonded, or surrounding parts, and generally increases adhesive strength by 20% compared to conventional products. In addition, it has an excellent technological innovation impact effect on the electronic industry, such as improving workability, saving energy and cost, and establishing a mass production system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例において樹脂100部
に対して硬化剤の量を変えたときの接着力相関特
性線図、第2図は同・硬化温度と体積固有抵抗の
相関特性線図、第3図は同・低温加熱50℃におい
て加熱時間を変えた場合の導電度の相関特性線
図、第4図は同・各温度と1時間30分常温放置後
の引張り剪断強度との相関特性線図である。
Figure 1 is an adhesive force correlation characteristic diagram when the amount of curing agent is varied with respect to 100 parts of resin in an example of the present invention, and Figure 2 is a correlation characteristic diagram between curing temperature and volume resistivity. , Figure 3 is a correlation characteristic diagram of conductivity when heating time is varied at the same low temperature heating of 50℃, Figure 4 is the correlation between each temperature and tensile shear strength after being left at room temperature for 1 hour and 30 minutes. It is a characteristic line diagram.

Claims (1)

【特許請求の範囲】 1 導電性フイラーとして粒径5〜30μmの銀フ
イラーとこれを分散混練したバインダー樹脂との
重量比を90〜75:10〜25とし適量の反応性希釈剤
を加えたビスフエノールA系銀フイラーエポキシ
樹脂に、使用に当り添加する脂肪族ポリアミン系
硬化剤との重量%を前記ビスフエノールA系銀フ
イラーエポキシ樹脂100部に対し2〜3部として、
低粘度化しかつ硬化温度を50℃〜80℃にすること
により接着力を増強してなる二液式低温加熱硬化
型導電性エポキシ系接着剤 2 反応性希釈剤としては、フエニグリシジルエ
ーテルを採用してなる特許請求の範囲第1項記載
の二液式低温加熱硬化型導電性エポキシ系接着剤 3 脂肪族ポリアミン系硬化剤としては、トリエ
チレンテトラアミンを採用してなる特許請求の範
囲第1項又は第2項記載の二液式低温加熱硬化型
導電性エポキシ系接着剤 4 低粘度化は、混練性が高くかつ接着力増大の
濡れ性が良好な1万〜5万CPSとしてなる特許請
求の範囲第1項,第2項又は第3項記載の二液式
低温加熱硬化型導電性エポキシ系接着剤。
[Claims] 1 A silver filler with a particle size of 5 to 30 μm as a conductive filler and a binder resin obtained by dispersing and kneading the silver filler in a weight ratio of 90 to 75:10 to 25 and an appropriate amount of a reactive diluent added. The weight percentage of the aliphatic polyamine curing agent added to the phenol A-based silver filler epoxy resin during use is 2 to 3 parts per 100 parts of the bisphenol A-based silver filler epoxy resin,
Two-component low-temperature heat-curing conductive epoxy adhesive 2 with lower viscosity and increased adhesive strength by curing temperature between 50°C and 80°C Phenyglycidyl ether is used as the reactive diluent A two-component low-temperature heat-curable conductive epoxy adhesive 3 according to claim 1, wherein triethylenetetraamine is used as the aliphatic polyamine curing agent. A two-component low-temperature heat-curable conductive epoxy adhesive according to item 4 or item 2. The lower viscosity is a patent claim of 10,000 to 50,000 CPS, which has high kneading properties and good wettability for increasing adhesive strength. A two-component low-temperature heat-curable conductive epoxy adhesive according to item 1, item 2, or item 3.
JP11346987A 1987-05-12 1987-05-12 Two-pack low-temperature curable electroconductive epoxy adhesive Granted JPS63278987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11346987A JPS63278987A (en) 1987-05-12 1987-05-12 Two-pack low-temperature curable electroconductive epoxy adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11346987A JPS63278987A (en) 1987-05-12 1987-05-12 Two-pack low-temperature curable electroconductive epoxy adhesive

Publications (2)

Publication Number Publication Date
JPS63278987A JPS63278987A (en) 1988-11-16
JPH0567672B2 true JPH0567672B2 (en) 1993-09-27

Family

ID=14613040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11346987A Granted JPS63278987A (en) 1987-05-12 1987-05-12 Two-pack low-temperature curable electroconductive epoxy adhesive

Country Status (1)

Country Link
JP (1) JPS63278987A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041104C (en) * 1994-04-27 1998-12-09 丁秀福 Binder of glass wool and face decoration material
JPH1143643A (en) * 1997-04-11 1999-02-16 Shimizu Corp Low out-gas paint
DE60123256T2 (en) * 2001-10-29 2007-09-13 Ceratizit Luxembourg Sarl Process for the gel casting of shaped bodies made of ceramic, glass or metal powder
CN113004807A (en) * 2021-03-11 2021-06-22 无锡帝科电子材料股份有限公司 Thermosetting conductive adhesive and preparation method thereof

Also Published As

Publication number Publication date
JPS63278987A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
EP1944346B1 (en) Anisotropic conductive adhesive
US7588698B2 (en) Circuit connecting adhesive
TWI664223B (en) Resin composition for electrode formation, wafer-type electronic component, and manufacturing method thereof
KR101530401B1 (en) Anisotropically conductive adhesive
US5744533A (en) Adhesive composition for bonding a semiconductor device
US4908086A (en) Low-cost semiconductor device package process
JP3189988B2 (en) Insulating resin paste
CN103170757A (en) Solder paste and preparation method thereof
JPH0567672B2 (en)
KR100594343B1 (en) Thermosetting adhesive material
JP2018135422A (en) Hot-melt adhesive composition and laminate
JP2003147279A (en) Conductive adhesive and circuit board using the same for semiconductor, or the like
JP2680412B2 (en) Anisotropic conductive film
JP3981341B2 (en) Anisotropic conductive adhesive
JPH1030082A (en) Adhesive
JPH04222887A (en) Insulating resin paste
WO1997020898A1 (en) Adhesive, process for the preparation thereof, and process for mounting components
JPH07138549A (en) Conductive adhesive
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP3484957B2 (en) Conductive adhesive
JP3685591B2 (en) Conductive paste
JP2001107020A (en) Electrically conductive adhesive
JPH01159908A (en) Thermosetting silver paste composition with excellent heat resistance
JP3595944B2 (en) Method for producing anisotropic conductive film
JP2005071817A (en) Anisotropic conductive film