JP3189988B2 - Insulating resin paste - Google Patents

Insulating resin paste

Info

Publication number
JP3189988B2
JP3189988B2 JP17974192A JP17974192A JP3189988B2 JP 3189988 B2 JP3189988 B2 JP 3189988B2 JP 17974192 A JP17974192 A JP 17974192A JP 17974192 A JP17974192 A JP 17974192A JP 3189988 B2 JP3189988 B2 JP 3189988B2
Authority
JP
Japan
Prior art keywords
compound
paste
weight
insulating resin
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17974192A
Other languages
Japanese (ja)
Other versions
JPH0625512A (en
Inventor
勉 今井
増雄 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP17974192A priority Critical patent/JP3189988B2/en
Publication of JPH0625512A publication Critical patent/JPH0625512A/en
Application granted granted Critical
Publication of JP3189988B2 publication Critical patent/JP3189988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Die Bonding (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシリカフィラー、エポキ
シ樹脂、硬化剤、及び可撓性付与剤よりなる絶縁樹脂ペ
ーストでIC,LSI等の半導体素子を金属フレーム等
に接着する絶縁樹脂ペーストに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating resin paste comprising a silica filler, an epoxy resin, a curing agent, and a flexibility-imparting agent for bonding a semiconductor element such as an IC or LSI to a metal frame or the like. It is.

【0002】[0002]

【従来の技術】エレクトロニクス業界の最近の著しい発
展により、トランジスター、IC、LSI、超LSIと
進化してきており、これらの半導体素子に於ける回路の
集積度が急激に増大すると共に大量生産が可能となり、
これらを用いた半導体製品の普及に伴って、その量産に
於ける作業性の向上並びにコストダウンが重要な問題と
なってきた。従来は半導体素子を金属フレームなどの導
体にAu−Si共晶法により接合し、次いでハーメチッ
クシールによって封止して、半導体製品とするのが普通
であった。しかし量産時の作業性、コストの面より、樹
脂封止法が開発され、現在は、一般化されている。これ
に伴い、マウント工程に於けるAu−Si共晶法の改良
としてハンダ材料や樹脂ペースト即ちマウント用樹脂に
よる方法が取り上げられるようになった。
2. Description of the Related Art Recent remarkable developments in the electronics industry have evolved into transistors, ICs, LSIs, and VLSIs, and the degree of integration of circuits in these semiconductor devices has rapidly increased and mass production has become possible. ,
With the spread of semiconductor products using these, improvement in workability and cost reduction in mass production have become important issues. Conventionally, it has been common practice to bond a semiconductor element to a conductor such as a metal frame by an Au-Si eutectic method, and then to seal it with a hermetic seal to obtain a semiconductor product. However, in view of workability and cost during mass production, a resin encapsulation method has been developed and is now generally used. Along with this, a method using a solder material or a resin paste, that is, a mounting resin has come to be taken as an improvement of the Au-Si eutectic method in the mounting step.

【0003】しかし、ハンダ法では信頼性が低いこと、
素子の電極の汚染を起こし易いこと等が欠点とされ、高
熱伝導性を要するパワートランジスター、パワーICの
素子に使用が限られている。これに対しマウント用樹脂
はハンダ法に較べ、作業性に於いても信頼性等に於いて
も優れており、中でもフィラーとしてシリカ粉末を用い
た絶縁樹脂ペーストは貴金属を全く用いていないため、
安価であり特に絶縁性を要する用途での需要が増大して
いる。
However, the solder method has low reliability,
The disadvantage is that the electrodes of the element are liable to be contaminated, and the use thereof is limited to power transistors and power IC elements that require high thermal conductivity. On the other hand, the mounting resin is superior in workability and reliability as compared with the soldering method.In particular, the insulating resin paste using silica powder as a filler does not use any precious metal,
There is an increasing demand for applications that are inexpensive and require insulation in particular.

【0004】一方近年、従来用いられてきたリードフレ
ームである42合金フレームが高価なことよりコストダ
ウンの目的から銅フレームが用いられるようになり、
また、IC等の集積度の高密度化により、チップが大型
化してきており、チップの大きさが約4〜5mm角より大
きくなると、IC等の組立工程での加熱により、チップ
の熱膨張率と銅フレームの熱膨張率との差からの歪によ
りチップのクラックや反りによる特性不良が問題となっ
てきている。
On the other hand, in recent years, a copper frame has been used for the purpose of cost reduction due to the high cost of a 42 alloy frame which is a lead frame conventionally used.
Also, chips are becoming larger due to the increase in the degree of integration of ICs and the like. When the size of a chip becomes larger than about 4 to 5 mm square, the coefficient of thermal expansion of the chip is increased by heating in the assembly process of the IC and the like. Due to the difference between the coefficient of thermal expansion of the copper frame and the coefficient of thermal expansion of the copper frame, defects in characteristics due to cracks and warpage of the chip have become a problem.

【0005】即ちこれは、チップの材料であるシリコン
等の熱膨張率が3×10-6/℃であるのに対し、42合
金フレームでは8×10-6/℃であるが、銅フレームで
は20×10-6/℃と大きくなる為である。これに対
し、マウント法としてエポキシ系絶縁樹脂ペーストで
は、弾性率が大きく、チップと銅フレームとの歪を吸収
するに至らなかった。この対策として絶縁樹脂ペースト
中のシリカフィラー量を少なくし、低弾性率化を図る方
法があるがペーストの揺変度が低くなり、デスペンス塗
布時にペーストのたれや糸引きが発生し作業性が悪くな
る。作業性改良方法としてシリカフィラーに超微粒子の
シリカ粉末を併用すると、初期の作業性は改良できる
が、表面のシラノール基が樹脂成分と徐々に水素結合し
粘度及び揺変度の低下が起こり時間の経過と共に作業性
が悪化してくる欠点があった。
That is, the thermal expansion coefficient of silicon or the like, which is the material of the chip, is 3 × 10 −6 / ° C., whereas that of the 42 alloy frame is 8 × 10 −6 / ° C. This is because it becomes as large as 20 × 10 −6 / ° C. On the other hand, the epoxy insulating resin paste used as the mounting method has a large elastic modulus and does not absorb the distortion between the chip and the copper frame. As a countermeasure, there is a method of reducing the amount of silica filler in the insulating resin paste to reduce the modulus of elasticity.However, the degree of fluctuation of the paste is reduced, and the workability is deteriorated due to dripping of the paste and stringing during dispensing. Become. When ultrafine silica powder is used in combination with the silica filler as a workability improvement method, the initial workability can be improved, but the silanol groups on the surface gradually form hydrogen bonds with the resin component, and the viscosity and thixotropic degree decrease. There was a drawback that workability deteriorated over time.

【0006】また可撓性付与剤であるエポキシ基を有す
るポリブタジエン化合物を添加して、硬化物の弾性率を
小さくすることはすでに知られている(特開昭63−1
61015号公報)が、エポキシ基を有するポリブタジ
エン化合物は粘度が高く、これを添加した配合物の粘度
は高くなる欠点があり、配合物の生産性を低下させ、か
つ接着性、耐湿性が悪いので、用いるポリブタジエン化
合物の添加量には限界があった。
It is already known to add a polybutadiene compound having an epoxy group, which is a flexibility imparting agent, to reduce the elastic modulus of a cured product (JP-A-63-1).
However, the polybutadiene compound having an epoxy group has a high viscosity, and the viscosity of the compound to which the compound is added is high, which lowers the productivity of the compound and has poor adhesion and moisture resistance. However, the amount of the polybutadiene compound used was limited.

【0007】[0007]

【発明が解決しようとする課題】本発明は揺変度が高
く、ディスペンサ塗布時の作業性に優れ、かつ作業時の
経時変化がなく、IC等の大型チップと銅フレームとの
組合せでもチップクラックや反りによるIC等の特性不
良が起こらず、かつポリブタジエン化合物添加による併
用効果を最大限有効に活用した絶縁樹脂ペーストを提供
するものである。
DISCLOSURE OF THE INVENTION The present invention has a high degree of shaking, is excellent in workability at the time of dispenser application, does not change over time during work, and is capable of cracking chips even when a large chip such as an IC is combined with a copper frame. It is an object of the present invention to provide an insulating resin paste in which characteristic defects such as an IC due to warpage do not occur and the combined effect of the addition of a polybutadiene compound is utilized most effectively.

【0008】[0008]

【課題を解決するための手段】本発明は(A)一次粒子
の平均粒径が2〜50nmで表面のシラノール基の50%
以上を下記式(1)で示される有機珪素化合物と反応さ
せた疎水性の超微粒子シリカ粉末を平均粒径1〜20μ
mで最大粒径50μm以下のシリカフィラー中に10〜
50重量%含有するシリカフィラー、(B)ビスフェノ
ールF及び潜在性アミン化合物、(C)常温で液状のエ
ポキシ樹脂及び(D)エポキシ基を有するポリブタジエ
ン化合物を必須成分とし、全組成物中にシリカフィラー
(A)を10〜30重量%、エポキシ基を有するポリブ
タジエン化合物(D)を3〜20重量%含有する絶縁樹
脂ペーストである。 Si(R)m(X)n (1) m+n=4 R:メチル、エチル、ブチル、オクチル基 X:Cl,Br,OCH3 ,OH
According to the present invention, there is provided (A) a primary particle having an average particle size of 2 to 50 nm and 50% of silanol groups on the surface.
The above is reacted with an organosilicon compound represented by the following formula (1) to obtain a hydrophobic ultrafine silica powder having an average particle diameter of 1 to 20 μm.
m in a silica filler having a maximum particle size of 50 μm or less.
A silica filler containing 50% by weight, (B) bisphenol F and a latent amine compound, (C) an epoxy resin liquid at room temperature and (D) a polybutadiene compound having an epoxy group are essential components. An insulating resin paste containing 10 to 30% by weight of (A) and 3 to 20% by weight of a polybutadiene compound (D) having an epoxy group. Si (R) m (X) n (1) m + n = 4 R: methyl, ethyl, butyl, octyl group X: Cl, Br, OCH 3 , OH

【0009】本発明に用いるシリカフィラーは一次粒子
の平均粒径が2〜50nmでシラノール基の50%以上を
式(1)の有機珪素化合物で表面処理した疎水性の超微
粒子シリカ粉末を平均粒径1〜20μmで最大粒径50
μm以下の全シリカフィラー中に10〜50重量%含有
するものである。一次粒子の平均粒径が2nm未満だとか
さ密度が小さくなるため空気中に舞い易く秤量などの仕
込みが困難であり、ペースト混練時においても均一に混
練できず、かたまりのまま残存しやすいため好ましくな
い。50nmを超えると揺変度があがらずペーストのた
れ、糸引き等の作業性の向上が望めない。又使用する超
微粒子シリカ粉末が表面処理を施していない通常のシリ
カ粉末又は50%以上が式(1)の有機珪素化合物で表
面処理を施していないシリカ粉末だと表面のシラノール
基が樹脂ペースト中の樹脂成分と徐々に水素結合を取り
はじめ、粘度及び揺変度の低下が起こり作業性の低下に
つながるため好ましくない。又全シリカフィラー中の疎
水性超微粒子シリカ粉末が10重量%より少ないと、ペ
ーストの揺変度が小さすぎるのため、ペーストのたれや
糸引が発生し作業性が悪くなる。50重量%より多いと
ペーストの粘度が上がりすぎ、実用的でない。全組成物
中のシリカフィラーの含有量は10〜30重量%であ
る。10重量%未満だとマウント後の接着強度が不足し
30重量%より多いと硬化物の低弾性率化が望めない。
又シリカフィラーの平均粒径が1μm以下だと粘度が高
くなり、20μm以上だと塗布又は硬化時に樹脂分が流
出するのでブリーディングが発生するため好ましくな
い。最大粒径が50μm以上だとディスペンサーでペー
ストを塗布する時ニードルの出口を塞ぎ長時間の連続使
用ができない。
The silica filler used in the present invention is a hydrophobic ultrafine silica powder whose primary particles have an average particle diameter of 2 to 50 nm and at least 50% of silanol groups are surface-treated with an organosilicon compound of the formula (1). Maximum particle size 50 with 1-20μm diameter
It is one containing 10 to 50% by weight in all the silica fillers having a size of not more than μm. When the average particle size of the primary particles is less than 2 nm, the bulk density is small, so that it is easy to fly in the air, and it is difficult to prepare such as weighing. Absent. If it exceeds 50 nm, the degree of sloshing does not increase, and improvement in workability such as dripping of the paste and stringing cannot be expected. When the ultrafine silica powder to be used is ordinary silica powder without surface treatment or 50% or more of the silica powder without surface treatment with the organosilicon compound of the formula (1), silanol groups on the surface are contained in the resin paste. The resin component gradually starts to form a hydrogen bond, and the viscosity and the degree of thixotropicity decrease, leading to a reduction in workability. On the other hand, if the amount of the hydrophobic ultrafine silica powder in the total silica filler is less than 10% by weight, the thixotropic degree of the paste is too small, causing dripping of the paste and stringing, resulting in poor workability. If it is more than 50% by weight, the viscosity of the paste becomes too high, which is not practical. The content of the silica filler in the entire composition is 10 to 30% by weight. If it is less than 10% by weight, the adhesive strength after mounting is insufficient, and if it is more than 30% by weight, a low elastic modulus of the cured product cannot be expected.
When the average particle size of the silica filler is 1 μm or less, the viscosity increases, and when the average particle size is 20 μm or more, bleeding occurs because a resin component flows out during coating or curing, which is not preferable. If the maximum particle size is 50 μm or more, the outlet of the needle is blocked when applying the paste with a dispenser, so that long-time continuous use cannot be performed.

【0010】また、本発明に用いる硬化剤としてのビス
フェノールFは、エポキシ基と反応する水酸基を1分子
に2個有するいわゆる2官能性硬化剤であるため、例え
ばフェノールノボラックのような多官能性硬化剤と比べ
硬化物の架橋密度が低く、低弾性率である硬化物が得ら
れ、その結果非常に応力緩和性に優れている。ビスフェ
ノールFの配合物の硬化物の物性を十分に発現するには
多く配合する必要があり、その結果配合物の粘度が高く
なる。従ってビスフェノールFが有する低弾性率の特性
を最大限発揮し、かつ実用に供せられるペースト粘度に
するにはビスフェノールFより当量の小さい潜在性アミ
ン化合物を併用すると良い。これにより、配合物の粘度
を低く押さえられ、また潜在性であるため保存性にも優
れた実用に供せられるペーストを得ることができる。潜
在性アミン化合物としては、アジピン酸ヒドラジド、ド
デカン酸ジヒドラジド、イソフタル酸ヒドラジド、P−
オキシ安息香酸ジヒドラジド等のカルボン酸ヒドラジド
やジシアンジアミド等がある。
[0010] Further, bisphenol F as a curing agent used in the present invention is a so-called bifunctional curing agent having two hydroxyl groups which react with an epoxy group in one molecule, and thus is a multifunctional curing agent such as phenol novolak. As compared with the agent, a cured product having a lower crosslink density and a lower elastic modulus is obtained, and as a result, it is very excellent in stress relaxation. In order to sufficiently exhibit the physical properties of the cured product of the bisphenol F compound, it is necessary to mix a large amount of the compound, and as a result, the viscosity of the compound increases. Therefore, in order to maximize the properties of the low elastic modulus possessed by bisphenol F and make the paste viscosity practically usable, it is preferable to use a latent amine compound having an equivalent weight smaller than that of bisphenol F. As a result, it is possible to obtain a paste which can keep the viscosity of the compound low and is practically excellent in storability due to its potential. As latent amine compounds, adipic hydrazide, dodecanoic dihydrazide, isophthalic hydrazide, P-
Examples include carboxylic acid hydrazide such as oxybenzoic acid dihydrazide and dicyandiamide.

【0011】本発明に用いる可撓性付与剤は、エポキシ
基を有するポリブタジエン化合物である。一般にポリブ
タジエン化合物は弾性率が低く、接着性や耐湿性が劣
る。また粘度が高く配合物の生産性が悪くなり、得られ
るペーストの粘度も高くなる。接着性、耐湿性に優れた
エポキシ樹脂にエポキシ基を有するポリブタジエン化合
物を添加することにより、硬化物の弾性率が低く、応力
緩和性、接着性、耐湿性に優れたペーストが得られる。
ポリブタジエン化合物中にエポキシ基を有していること
が重要であり、エポキシ樹脂の硬化剤であるビスフェノ
ールF及び潜在性アミン化合物と反応しないと硬化時に
エポキシ樹脂とポリブタジエン化合物の分離が発生し硬
化物が均一にならない。エポキシ基を有するポリブタジ
エン化合物は全組成物中に3〜20重量%含有すること
が好ましく、3重量%未満だと応力緩和性が得られず、
20重量%を越えると配合物の粘度が高くなり生産性が
低下し、接着性、耐湿性も悪くなる。このため可撓性付
与剤のみの添加で得られる硬化物の弾性率には限界があ
り、粘度も高くなる傾向にある。
The flexibility-imparting agent used in the present invention is a polybutadiene compound having an epoxy group. In general, polybutadiene compounds have a low elastic modulus and poor adhesion and moisture resistance. In addition, the viscosity is high, the productivity of the compound is poor, and the viscosity of the obtained paste is also high. By adding a polybutadiene compound having an epoxy group to an epoxy resin having excellent adhesiveness and moisture resistance, a paste having a low elasticity of a cured product and having excellent stress relaxation, adhesiveness and moisture resistance can be obtained.
It is important that the polybutadiene compound has an epoxy group, and if it does not react with the epoxy resin curing agent bisphenol F and the latent amine compound, separation of the epoxy resin and the polybutadiene compound occurs during curing, and the cured product becomes Not uniform. The polybutadiene compound having an epoxy group is preferably contained in the entire composition in an amount of 3 to 20% by weight, and if it is less than 3% by weight, stress relaxation cannot be obtained,
If it exceeds 20% by weight, the viscosity of the composition becomes high, the productivity decreases, and the adhesion and the moisture resistance deteriorate. For this reason, there is a limit to the elastic modulus of the cured product obtained by adding only the flexibility-imparting agent, and the viscosity tends to increase.

【0012】硬化剤をビスフェノールFと潜在性アミン
化合物の使用に限定し、エポキシ基を有するポリブタジ
エン化合物の添加と組み合わせることにより、従来の限
界以上の硬化物の低弾性率化がはかれる。またビスフェ
ノールFと潜在性アミン化合物の硬化剤は粘度が低いた
め、ポリブタジエン化合物の粘度への影響を無くした絶
縁樹脂ペーストを得ることができる。本発明に用いるエ
ポキシ樹脂は常温で液状のものに限定しているが、常温
で液状のものでないとシリカフィラーとの混練において
溶剤を必要とするため、気泡発生の原因となり接着強度
を低下させる。
By limiting the curing agent to the use of bisphenol F and a latent amine compound and combining it with the addition of a polybutadiene compound having an epoxy group, it is possible to lower the elastic modulus of the cured product beyond the conventional limit. Further, since the curing agent of bisphenol F and the latent amine compound has a low viscosity, it is possible to obtain an insulating resin paste without affecting the viscosity of the polybutadiene compound. The epoxy resin used in the present invention is limited to a liquid at room temperature. However, if it is not liquid at room temperature, a solvent is required for kneading with a silica filler, which causes air bubbles to occur and reduces the adhesive strength.

【0013】本発明に用いるエポキシ樹脂としては、例
えばビスフェノールA、ビスフェノールF、フェノール
ノボラックとエピクロルヒドリンとの反応で得られるジ
グリシジルエーテルで常温で液状のもの、ビニルシクロ
ヘキセンジオキシド、ジシクロペンタジエンジオキシ
ド、アリサイクリックジエポキシ−アジペイトのような
脂環式エポキシ、更にはn−ブチルグリシジルエーテ
ル、バーサティック酸グリシジルエステル、スチレンオ
キサイド、フェニルグリシジルエーテル、クレジルグリ
シジルエーテル、ジシクロペンタジエンジエポキシドの
ような通常エポキシ樹脂の希釈剤として用いられるもの
がある。本発明の製造例としては、各成分を予備混合
し、三本ロールを用いて混練し、ペーストを得、真空下
脱泡する方法等がある。
The epoxy resin used in the present invention includes, for example, bisphenol A, bisphenol F, diglycidyl ether obtained by the reaction of phenol novolak with epichlorohydrin, which is liquid at normal temperature, vinylcyclohexene dioxide, dicyclopentadiene dioxide, Alicyclic epoxies, such as alicyclic diepoxy-adipate, and also normal, such as n-butyl glycidyl ether, glycidyl versatate, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, dicyclopentadiene diepoxide Some are used as diluents for epoxy resins. As a production example of the present invention, there is a method in which each component is preliminarily mixed, kneaded using a three-roll mill, a paste is obtained, and degassing is performed under vacuum.

【0014】以下実施例で本発明を具体的に説明する。
配合割合は重量部で示す。
Hereinafter, the present invention will be described in detail with reference to Examples.
The mixing ratio is shown in parts by weight.

【0015】実施例1〜5 平均粒径が3μmの球状無定形シリカ粉末(以下球状シ
リカ)と一次粒子の平均粒径が12nmで、かつ表面のシ
ラノール基の約70%をジメチルジクロロシランで処理
した疎水性の超微粒子シリカ粉末(以下疎水性シリカ
A)及びビスフェノールAとエピクロルヒドリンとの反
応により得られるジグリシジルエーテル(エポキシ当量
180で常温で液状)とビスフェノールF及びイソフタ
ル酸ヒドラジド又はジシアンジアミドとエポキシ基を有
するポリブタジエン化合物(品名Poly bd R−45E
PT:出光石油化学(株))とクレジルグリシジルエー
テルとを表1に示す割合で配合し三本ロールで混練して
絶縁樹脂ペーストを得た。この絶縁樹脂ペーストを真空
チャンバーにて2mmHg、30分間脱泡した後、以下
の方法により各特性を評価した。評価結果を表1に示
す。
Examples 1 to 5 Spherical amorphous silica powder having an average particle diameter of 3 μm (hereinafter referred to as “spherical silica”), primary particles having an average particle diameter of 12 nm, and about 70% of the silanol groups on the surface were treated with dimethyldichlorosilane. Hydrophobic ultrafine silica powder (hereinafter referred to as hydrophobic silica A), diglycidyl ether (liquid at room temperature with an epoxy equivalent of 180) obtained by the reaction of bisphenol A with epichlorohydrin, bisphenol F and isophthalic hydrazide or dicyandiamide and epoxy group Polybutadiene compound having the formula (Poly bd R-45E)
PT: Idemitsu Petrochemical Co., Ltd.) and cresyl glycidyl ether were blended in the ratio shown in Table 1 and kneaded with three rolls to obtain an insulating resin paste. After degassing the insulating resin paste in a vacuum chamber at 2 mmHg for 30 minutes, each characteristic was evaluated by the following methods. Table 1 shows the evaluation results.

【0016】実施例6 使用する超微粒子シリカ粉末として一次粒子の平均粒径
が12nmで、かつ表面のシラノール基の約55%をオク
チルトリメトキシシランで処理した疎水性の超微粒子シ
リカ粉末(以下疎水性シリカB)を用いた。他は実施例
1〜5と同様にして絶縁樹脂ペーストを作製し評価し
た。結果を表1に示す。
Example 6 As the ultrafine silica powder to be used, a hydrophobic ultrafine silica powder having an average primary particle diameter of 12 nm and about 55% of the silanol groups on the surface treated with octyltrimethoxysilane (hereinafter referred to as "hydrophobic silica powder"). Silica (B) was used. Except for this, an insulating resin paste was prepared and evaluated in the same manner as in Examples 1 to 5. Table 1 shows the results.

【0017】比較例1〜8 表1に示す配合割合で実施例と同様にして絶縁樹脂ペー
ストを得た。比較例5では一次粒子の平均粒径が約12
nmで表面処理を施していない超微粒子シリカ粉末(以下
親水シリカ)を用い、比較例6、8では硬化剤としてフ
ェノールノボラック(軟化点110℃、水酸基当量10
5)を用い、比較例4では可撓性付与剤としてエポキシ
基を有しないポリブタジエン化合物(品名Poly bd R
−45HT:出光石油化学(株)製)を用いた。評価結
果を表1に示す。
Comparative Examples 1 to 8 Insulating resin pastes were obtained in the same proportions as in the examples at the compounding ratios shown in Table 1. In Comparative Example 5, the average primary particle size was about 12
In Comparative Examples 6 and 8, phenol novolak (softening point 110 ° C., hydroxyl equivalent 10
5), and in Comparative Example 4, a polybutadiene compound having no epoxy group (product name Poly bd R) was used as a flexibility-imparting agent.
-45HT: manufactured by Idemitsu Petrochemical Co., Ltd.). Table 1 shows the evaluation results.

【0018】〔評価方法〕 チップ歪 銅フレーム上に銀ペーストを塗布したシリコンチップ
(サイズ6×12×0.3mm)をマウントして200
℃、1時間オーブン中で硬化した。これを表面粗さ計に
てチップの両端を結ぶ線上から垂直にチップの反りの頂
上までの高さを測定した。 接着強度 銅フレーム上に銀ペーストをデイスペンスし2mm角のシ
リコンチップを載せ、200℃で1時間オーブン中で硬
化させた後、350℃熱盤上で20秒放置後テンション
ゲージでチップをはじきチップが破壊した強度又は剥が
れた強度を測定した。 E型粘度 E型粘度計で温度25±1℃で回転速度2.5rpm.
3度コーンを用いて測定した。 揺変度 次式に従い0.5rpmと2.5rpmでの粘度の比を
もって揺変度とした。 揺変度=0.5rpmの粘度/2.5rpmの粘度 糸引き性 サンプル中に直径3mmφのピンを深さ5mmまで沈めてそ
れを300mm/分の速度で引き上げペーストが切れた時
の高さを測定した。 ペーストのたれ 内径1.0mmのニードルをつけたシリンジにペースト5
mlを入れニードルを下にして試験管立てに垂直に置き3
0分後ニードルの先端にたれたペーストの重量を測定し
た。
[Evaluation Method] Chip Strain A silicon chip (size 6 × 12 × 0.3 mm) coated with a silver paste was mounted on a copper frame, and 200
Cured in an oven at 1 ° C for 1 hour. The height from the line connecting the both ends of the chip to the top of the warpage of the chip was measured by a surface roughness meter. Adhesive strength A silver paste is dispensed on a copper frame, a 2 mm square silicon chip is placed, and cured in an oven at 200 ° C. for 1 hour, and then left on a 350 ° C. hot plate for 20 seconds. The broken or peeled strength was measured. E-type viscosity E-type viscometer at a temperature of 25 ± 1 ° C. and a rotation speed of 2.5 rpm.
The measurement was performed using a cone three times. Fluctuation degree According to the following formula, the ratio of the viscosity at 0.5 rpm and 2.5 rpm was defined as the pliability degree. Fluctuation degree = viscosity of 0.5 rpm / viscosity of 2.5 rpm Stringing property A pin having a diameter of 3 mmφ was sunk into a sample to a depth of 5 mm, pulled up at a speed of 300 mm / min, and the height of the paste when it was cut It was measured. Paste 5 Paste 5 into a syringe with a needle with an inner diameter of 1.0 mm.
Fill the tube vertically with the needle down and the needle down.
After 0 minute, the weight of the paste dropped on the tip of the needle was measured.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の絶縁樹脂ペーストは揺変度が高
く塗布作業性が良好で、かつ作業時の経時変化がなく生
産性が良好で接着性、耐湿性に優れ、硬化物の弾性率が
低く、銅、42合金等の金属フレーム、セラミック基
板、ガラス、エポキシ等の有機基板へのIC等の半導体
素子の接着に用いることができる。特に銅フレームへの
大型チップの接着に適しており銅フレームとシリコンチ
ップの熱膨張率の差に基づくIC等の特性不良を防ぐこ
とができ、従来になかった応力緩和性に優れたマウント
用絶縁樹脂ペーストである。
Industrial Applicability The insulating resin paste of the present invention has a high degree of thixotropicity, a good coating workability, no change over time during work, good productivity, excellent adhesion and moisture resistance, and an elastic modulus of a cured product. And can be used for bonding a semiconductor element such as an IC to an organic substrate such as a metal frame such as copper or 42 alloy, a ceramic substrate, glass, or epoxy. In particular, it is suitable for bonding large chips to a copper frame, and can prevent poor characteristics of ICs etc. due to the difference in the coefficient of thermal expansion between the copper frame and the silicon chip. It is a resin paste.

フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 3/40 H01B 3/40 Z H01L 21/52 H01L 21/52 E (56)参考文献 特開 平4−356934(JP,A) 特開 昭61−261365(JP,A) 特開 平4−275325(JP,A) 特開 平4−185631(JP,A) 特開 昭62−105450(JP,A) 特開 平5−59158(JP,A) 特開 平4−126714(JP,A) 特開 平4−332754(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08L 63/00 - 63/10 C08L 9/00 C08K 3/36 C08K 9/06 C08G 59/56 H01L 21/52 H01B 3/40 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01B 3/40 H01B 3/40 Z H01L 21/52 H01L 21/52 E (56) References JP-A-4-356934 (JP, A) JP-A-61-261365 (JP, A) JP-A-4-275325 (JP, A) JP-A-4-185631 (JP, A) JP-A-62-105450 (JP, A) JP-A-5-59158 ( JP, A) JP-A-4-126714 (JP, A) JP-A-4-332754 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08L 63/00-63/10 C08L 9/00 C08K 3/36 C08K 9/06 C08G 59/56 H01L 21/52 H01B 3/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)一次粒子の平均粒径が2〜50nm
で表面のシラノール基の50%以上を下記式(1)で示
される有機珪素化合物と反応させた疎水性の超微粒子シ
リカ粉末を平均粒径1〜20μmで最大粒径50μm以
下のシリカフィラー中に10〜50重量%含有するシリ
カフィラー、(B)ビスフェノールF及び潜在性アミン
化合物、(C)常温で液状のエポキシ樹脂及び(D)エ
ポキシ基を有するポリブタジエン化合物を必須成分と
し、全組成物中にシリカフィラー(A)を10〜30重
量%、エポキシ基を有するポリブタジエン化合物(D)
を3〜20重量%含有することを特徴とする絶縁樹脂ペ
ースト。 Si(R)m(X)n (1) m+n=4 R:メチル、エチル、ブチル、オクチル基 X:Cl,Br,OCH3 ,OH
(A) The primary particles have an average particle size of 2 to 50 nm.
The ultrafine silica powder obtained by reacting at least 50% of the silanol groups on the surface with an organosilicon compound represented by the following formula (1) in a silica filler having an average particle size of 1 to 20 μm and a maximum particle size of 50 μm or less. A silica filler containing 10 to 50% by weight, (B) bisphenol F and a latent amine compound, (C) an epoxy resin liquid at room temperature and (D) a polybutadiene compound having an epoxy group are essential components, and the total composition is 10 to 30% by weight of silica filler (A), polybutadiene compound having epoxy group (D)
3 to 20% by weight of an insulating resin paste. Si (R) m (X) n (1) m + n = 4 R: methyl, ethyl, butyl, octyl group X: Cl, Br, OCH 3 , OH
JP17974192A 1992-07-07 1992-07-07 Insulating resin paste Expired - Fee Related JP3189988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17974192A JP3189988B2 (en) 1992-07-07 1992-07-07 Insulating resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17974192A JP3189988B2 (en) 1992-07-07 1992-07-07 Insulating resin paste

Publications (2)

Publication Number Publication Date
JPH0625512A JPH0625512A (en) 1994-02-01
JP3189988B2 true JP3189988B2 (en) 2001-07-16

Family

ID=16071060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17974192A Expired - Fee Related JP3189988B2 (en) 1992-07-07 1992-07-07 Insulating resin paste

Country Status (1)

Country Link
JP (1) JP3189988B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042546A1 (en) 2007-09-21 2009-04-01 Ricoh Company, Ltd. Paste composition, insulating film, multilyer interconnection structure, printed-circuit board, image display device, and manufacturing method of paste composition
WO2015102978A1 (en) * 2014-01-02 2015-07-09 Henkel IP & Holding GmbH Film containing nano-particulate filler

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238340B2 (en) * 1996-12-04 2001-12-10 住友ベークライト株式会社 Liquid epoxy resin sealing material
DE10302416A1 (en) 2003-01-21 2004-07-29 Röhm GmbH & Co. KG Polymerization adhesive, useful for the bonding of matt objects, comprises a silicic acid powder with two average particle size ranges
JP2004327559A (en) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd Electronic component binder
US7015260B2 (en) * 2003-06-04 2006-03-21 E.I. Du Pont De Nemours And Company High temperature polymeric materials containing corona resistant composite filler, and methods relating thereto
JP2006169288A (en) 2004-12-13 2006-06-29 Tdk Corp Adhesive and method for bonding thin sheet to flat sheet
DE102006017592A1 (en) * 2006-04-13 2007-10-18 Wacker Chemie Ag Rheology control of strongly basic liquids
JP5555990B2 (en) * 2008-08-22 2014-07-23 住友ベークライト株式会社 Resin composition and semiconductor device manufactured using resin composition
JP2015083663A (en) * 2013-09-11 2015-04-30 三菱日立パワーシステムズ株式会社 Electric insulation resin composition and cured product thereof as well as coil, stator, rotating machine and high-voltage equipment using the same
WO2015178359A1 (en) * 2014-05-19 2015-11-26 テイ・エス テック株式会社 Vehicle seat
CN108350150B (en) * 2015-06-16 2021-09-10 亨斯迈先进材料许可(瑞士)有限公司 Epoxy resin composition
JPWO2017098566A1 (en) * 2015-12-07 2018-08-30 株式会社日立製作所 Electrical insulation material for high voltage equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2042546A1 (en) 2007-09-21 2009-04-01 Ricoh Company, Ltd. Paste composition, insulating film, multilyer interconnection structure, printed-circuit board, image display device, and manufacturing method of paste composition
WO2015102978A1 (en) * 2014-01-02 2015-07-09 Henkel IP & Holding GmbH Film containing nano-particulate filler
US10519343B2 (en) 2014-01-02 2019-12-31 Henkel IP & Holding GmbH Pre-applied underfill film containing nano-particulate filler for 3DIC applications, compositions useful for the preparation thereof, and uses thereof

Also Published As

Publication number Publication date
JPH0625512A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JP3189988B2 (en) Insulating resin paste
JP2935919B2 (en) Insulating resin paste
JPH0995651A (en) Electroconductive resin paste
JP2007142117A (en) Die-bonding paste and semiconductor device using same
JP2603375B2 (en) Conductive resin paste for semiconductors
JP2974902B2 (en) Conductive resin paste
JPH07161740A (en) Conductive resin paste for semiconductor
JP2009177003A (en) Adhesive agent composition, semiconductor device and production method
JPH10237157A (en) Liquid resin composition, and semiconductor apparatus made by using the same
JP2501258B2 (en) Insulating resin paste
JP2641349B2 (en) Insulating resin paste
JPH04223007A (en) Conductive resin paste for semiconductor
JPH0967553A (en) Resin paste for die bonding
JPH04222887A (en) Insulating resin paste
JP2000336244A (en) Liquid sealing resin composition and semiconductor device using the composition
JP2004359830A (en) Electroconductive adhesive composition
JP2596663B2 (en) Conductive resin paste for semiconductors
JP3095106B2 (en) Conductive resin paste
JP3719855B2 (en) Resin paste for semiconductor
JP2001214041A (en) Insulating paste
JP3608908B2 (en) Resin paste for semiconductor
JP3261845B2 (en) Semiconductor device
JP2798565B2 (en) Conductive resin paste for semiconductors
JPH06184278A (en) Electrically conductive resin paste for semiconductor
JP2002134530A (en) Resin paste for semiconductor, manufacturing method thereof, and semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees