JPH04222887A - Insulating resin paste - Google Patents

Insulating resin paste

Info

Publication number
JPH04222887A
JPH04222887A JP41817690A JP41817690A JPH04222887A JP H04222887 A JPH04222887 A JP H04222887A JP 41817690 A JP41817690 A JP 41817690A JP 41817690 A JP41817690 A JP 41817690A JP H04222887 A JPH04222887 A JP H04222887A
Authority
JP
Japan
Prior art keywords
paste
curing agent
silica filler
epoxy resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41817690A
Other languages
Japanese (ja)
Inventor
Hikari Okubo
光 大久保
Masuo Mizuno
水野 増雄
Takashi Suzuki
隆 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP41817690A priority Critical patent/JPH04222887A/en
Publication of JPH04222887A publication Critical patent/JPH04222887A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Abstract

PURPOSE:To obtain the subject paste having excellent applicability and stress- relaxation property in the application with a dispenser and useful for the bonding of a semiconductor element such as IC and LSI to a metallic frame by using a specific silica filler, a specific epoxy resin and a curing agent as essential components. CONSTITUTION:The objective paste can be produced by preliminarily mixing (A) 10-30wt.% of a silica filler containing 10-50wt.% of ultrafine silica powder having an average primary particle size of 2-50nm, (B) an epoxy resin exhibiting liquid nature at ordinary temperature (e.g. bisphenol A cresylglycidyl ether), (C) a curing agent (e.g. phenolic resin hardener combined with dicyandiamide) and, as necessary, (D) other additives (e.g. curing agent, cure accelerator and pigment), kneading the mixture with a three-roll mill and defoaming in vacuum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はIC、LSI等の半導体
素子を金属フレーム等に接着する絶縁ペーストに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating paste for bonding semiconductor elements such as ICs and LSIs to metal frames and the like.

【0002】0002

【従来の技術】エレクトロニクス業界の最近の著しい発
展により、トランジスター、IC、LSI、超LSIと
進化してきており、これら半導体素子に於ける回路の集
積度が急激に増大すると共に大量生産が可能となり、こ
れらを用いた半導体製品の普及に伴って、その量産に於
ける作業性の向上並びにコストダウンが重要な問題とな
ってきた。従来は半導体素子を金属フレームなどの導体
にAu−Si共晶法により接合し、次いでハーメチック
シールによって封止して、半導体製品とするのが普通で
あった。しかし量産時の作業性、コストの面より、樹脂
封止法が開発され、現在は、一般化されている。これに
伴い、マウント工程に於けるAu−Si共晶法の改良と
してハンダ材料や導電性樹脂ペーストや絶縁ペーストと
いったマウント用樹脂による方法が取り上げられるよう
になった。
[Background Art] With the recent remarkable development of the electronics industry, transistors, ICs, LSIs, and VLSIs have evolved.The degree of circuit integration in these semiconductor devices has rapidly increased, and mass production has become possible. With the spread of semiconductor products using these semiconductors, improving workability and reducing costs in mass production have become important issues. Conventionally, it has been common to bond a semiconductor element to a conductor such as a metal frame by the Au-Si eutectic method, and then seal it with a hermetic seal to produce a semiconductor product. However, from the viewpoint of workability and cost during mass production, a resin sealing method was developed and is now common. Along with this, as an improvement to the Au-Si eutectic method in the mounting process, methods using mounting resins such as solder materials, conductive resin pastes, and insulating pastes have been taken up.

【0003】しかし、ハンダ法では信頼性が低いこと、
素子の電極を汚染を起こし易いこと等が欠点とされ、高
熱伝導性を要するパワートランジスター、パワーICの
素子に使用が限られている。これに対しマウント用樹脂
はハンダ法に較べ、作業性に於いても信頼性等に於いて
も優れており、その需要が急激に増大している。中でも
、シリカ粉末を用いた絶縁ペーストは貴金属を全く用い
ていないため安価であり、特に導電性を必要としない用
途での需要が増大している。
However, the reliability of the soldering method is low;
The drawback is that it tends to contaminate the electrodes of the device, and its use is limited to power transistors and power IC devices that require high thermal conductivity. On the other hand, mounting resins are superior in terms of workability and reliability compared to soldering methods, and the demand for them is rapidly increasing. Among these, insulating pastes using silica powder are inexpensive because they do not use any noble metals, and demand is increasing, especially for applications that do not require electrical conductivity.

【0004】更に最近、IC等の集積度の高密度化によ
り、チップが大型化してきており、一方従来用いられて
きたリードフームである42合金フレームが高価なこと
より、コストダウンの目的から銅フレームが用いられる
ようになってきた。ここで、IC等のチップの大きさが
約4〜5mm角より、大きくなるとマウント法としてA
u−Si共晶法を用いた場合には組立工程での加熱によ
りチップと銅フレームの熱膨張率の差に基づくチップの
クラックや反りが発生しこれに起因する特性不良が問題
となっている。
[0004]Furthermore, recently, chips have become larger due to the higher integration density of ICs, etc. On the other hand, since the conventionally used 42 alloy frame, which is the lead frame, is expensive, copper frames are being used for cost reduction purposes. has come to be used. Here, if the size of the chip such as IC is larger than about 4 to 5 mm square, the mounting method is A.
When the u-Si eutectic method is used, cracks and warpage of the chip occur due to the difference in thermal expansion coefficient between the chip and the copper frame due to heating during the assembly process, resulting in poor characteristics. .

【0005】即ちこれは、チップの材料であるシリコン
等の熱膨張率が3×10−6/℃であるのに対し、42
合金フレームでは8×10−6/℃であるが、銅フレー
ムでは20×10−6/℃と大きくなる為である。これ
に対し、マウント法としてマウント用樹脂を用いること
が考えられるが、従来のエポキシ樹脂ペーストでは、熱
硬化性樹脂で三次元硬化する為、弾性率が大きく、チッ
プと銅フレームとの歪を吸収するに至らなかった。一方
、線状高分子タイプのポリイミド樹脂系ではエポキシ樹
脂に較べ弾性率が小さく、チップの反りは改良される。 しかし、ポリイミド樹脂をマウント用樹脂として用いる
には、作業性の点から、N−メチル−2−ピロリドン、
N、N−ジメチルホルムアルド等の多量の極性溶剤に溶
解して、粘度を低くしなければならない。この時の溶剤
量は、マウント樹脂中の30重量%以上にもなり、チッ
プと金属フレームとの接着に用いた場合、硬化加熱時の
溶剤の抜け跡として硬化物中にボイドが生成し、接着強
度低下、電気伝導及び熱伝導不良の原因となり、信頼性
面から好ましくない。
In other words, while the coefficient of thermal expansion of silicon, etc., which is the chip material, is 3 × 10-6/°C, this is 42
This is because, while it is 8 x 10-6/°C for an alloy frame, it is as large as 20 x 10-6/°C for a copper frame. On the other hand, it is possible to use mounting resin as a mounting method, but since conventional epoxy resin paste is three-dimensionally cured with thermosetting resin, it has a high elastic modulus and absorbs the strain between the chip and the copper frame. I wasn't able to do it. On the other hand, linear polymer type polyimide resins have a lower elastic modulus than epoxy resins, and chip warpage is improved. However, in order to use polyimide resin as a mounting resin, N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone,
It must be dissolved in a large amount of a polar solvent such as N,N-dimethyl formalde to reduce its viscosity. The amount of solvent at this time is over 30% by weight in the mount resin, and when used to bond the chip and metal frame, voids are generated in the cured product as traces of solvent leakage during curing heating, and the adhesive This is unfavorable from a reliability standpoint since it causes a decrease in strength and poor electrical and thermal conduction.

【0006】また絶縁樹脂ペーストにおいて、低弾性率
化を試みる目的でシリカフィラー含有率を30重量%以
下にするとペーストの揺変度が小さくなりすぎ、ペース
トのたれ、糸引き等が発生し好ましくなかった。
Furthermore, in an insulating resin paste, if the silica filler content is lower than 30% by weight for the purpose of lowering the elastic modulus, the thixotropy of the paste becomes too small, which is undesirable because paste sag, stringiness, etc. occur. Ta.

【0007】[0007]

【発明が解決しようとする課題】本発明は揺変性が高く
、ディスペンサー塗布時の作業に優れ、IC等の大型チ
ップと銅フレームとの組合せでもチップクラックやチッ
プの反りによるIC等の特性不良が起らない絶縁ペース
トを提供するものである。
[Problems to be Solved by the Invention] The present invention has high thixotropy and is excellent in workability during dispenser coating, and even when a large chip such as an IC and a copper frame is combined, there will be no characteristic defects in the IC etc. due to chip cracks or warping of the chip. This provides an insulating paste that does not cause electrical damage.

【0008】[0008]

【課題を解決するための手段】本発明はシリカフィラー
(A)と常温で液状のエポキシ樹脂(B)および硬化剤
(C)とを必須成分とし、該成分中にシリカフィラー(
A)を10〜30重量%含有し、シリカフィラー中の1
0〜50重量%が一次粒子の平均粒径が2〜50nmの
超微粒子シリカ粉末からなる絶縁樹脂ペーストで、作業
性が良好でかつ硬化物の弾性率が小さく、チップと銅フ
レームとの熱膨張率の差による歪みを吸収し、応力緩和
に優れているものである。
[Means for Solving the Problems] The present invention includes a silica filler (A), an epoxy resin (B) that is liquid at room temperature, and a curing agent (C) as essential components, and contains silica filler (
A) containing 10 to 30% by weight, 1 in the silica filler
An insulating resin paste consisting of 0 to 50% by weight of ultrafine silica powder with an average primary particle diameter of 2 to 50 nm.It has good workability, has a small elastic modulus of the cured product, and has low thermal expansion between the chip and the copper frame. It absorbs the strain caused by the difference in rate and is excellent in stress relaxation.

【0009】本発明に用いるエポキシ樹脂は常温で液状
のものに限定してあるが、常温で液状のものでないとシ
リカフィラーとの混練において、溶剤を必要とする。溶
剤は気泡発生の原因となり、硬化物の接着強度を低下さ
せてしまう。
The epoxy resin used in the present invention is limited to one that is liquid at room temperature, but if it is not liquid at room temperature, a solvent will be required for kneading with the silica filler. Solvents cause bubble generation and reduce the adhesive strength of the cured product.

【0010】本発明に用いるエポキシ樹脂としては、例
えばビスフェノールA、ビスフェノールF、フェノール
ノボラックとエピクロルヒドリンとの反応で得られるジ
グリシジルエーテルで常温で液状のもの、ビニルシクロ
ヘキセンジオキシド、ジシクロペンタジエンジオキシド
、アリサイクリックジエポキシーア  ジペイトのよう
な脂環式エポキシ、更にはn−ブチルグリシジルエーテ
ル、バーサティック酸グリシジルエステル、スチレンオ
キサイド、フェニルグリシジルエーテル、クレジルグリ
シジルエーテル、ジシクロペンタジエンジエポキシドの
ような通常エポキシ樹脂の希釈剤として用いられるもの
がある。
Epoxy resins used in the present invention include, for example, bisphenol A, bisphenol F, diglycidyl ether obtained by the reaction of phenol novolak and epichlorohydrin, which is liquid at room temperature, vinylcyclohexene dioxide, dicyclopentadiene dioxide, Alicyclic epoxies such as alicyclic diepoxy dipate, as well as conventional epoxies such as n-butyl glycidyl ether, versatic acid glycidyl ester, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, and dicyclopentadiene diepoxide. Some are used as diluents for epoxy resins.

【0011】また硬化剤としては特に限定されないがフ
ェノール樹脂系硬化剤とジシアンジアミド、アジピン酸
ヒドラジド等の潜在型アミン化合物の併用が好ましい。 更に、本発明においては、必要に応じ、硬化促進剤、顔
料、染料、消泡剤等の添加剤を用いることもできる。
Although the curing agent is not particularly limited, it is preferable to use a phenolic resin curing agent in combination with a latent amine compound such as dicyandiamide or adipic acid hydrazide. Furthermore, in the present invention, additives such as curing accelerators, pigments, dyes, antifoaming agents, etc. can also be used as necessary.

【0012】本発明に用いるシリカフィラーは平均粒径
が1μm以上、20μm以下の溶融および/または粉砕
シリカ粉末および一次粒子の平均粒子径が2〜50nm
の超微粒子シリカ粉末からなり、全シリカフィラー中の
超微粒子シリカ粉末は10〜50重量%である。更にシ
リカフィラーと常温で液状のエポキシ樹脂および、硬化
剤からなる組成物中に10〜30重量%のシリカフィラ
ーを含有する。
The silica filler used in the present invention includes fused and/or ground silica powder with an average particle size of 1 μm or more and 20 μm or less, and primary particles with an average particle size of 2 to 50 nm.
The amount of ultrafine silica powder in the total silica filler is 10 to 50% by weight. Furthermore, 10 to 30% by weight of silica filler is contained in the composition consisting of silica filler, an epoxy resin that is liquid at room temperature, and a curing agent.

【0013】超微粒子粉末の平均粒子径が50nmを超
えると揺変度があがらずペーストのたれ、糸引き等の作
業性の向上が望めない。2nm未満だとかさ密度が小さ
くなるため、空気中に舞い易く、秤量などの仕込みが困
難であり、またペースト混練時においても均一に混練で
きず、固まりのまま残存しやすいため好ましくない。
[0013] If the average particle diameter of the ultrafine powder exceeds 50 nm, the thixotropy will not increase, and improvements in workability such as paste sagging and stringiness cannot be expected. If it is less than 2 nm, the bulk density becomes small, which makes it easy to fly in the air, making it difficult to weigh and prepare, and even when kneading the paste, it cannot be uniformly kneaded and tends to remain as a lump, which is not preferable.

【0014】シリカフィラーの含有量が10重量%未満
だとマウント後の接着強度が不足し、30重量%より多
いと、低応力効果が望めない。シリカフィラー中の超微
粒子シリカ粉末が10重量%より少ないと、ペーストの
揺変度が小さすぎるため、ペーストのたれや、糸引きが
発生し、作業性が非常に悪くなる。また50重量%より
多いと、ペーストの粘度が上がりすぎ、実用的ではない
。本発明の製造方法は例えば各成分を予備混合し、三本
ロールを用いて混練し、ペーストを得て、真空下脱泡す
ることなどがある。
If the silica filler content is less than 10% by weight, the adhesive strength after mounting will be insufficient, and if it is more than 30% by weight, a stress-lowering effect cannot be expected. If the amount of ultrafine silica powder in the silica filler is less than 10% by weight, the thixotropy of the paste is too small, causing the paste to sag or become stringy, resulting in very poor workability. Moreover, if it exceeds 50% by weight, the viscosity of the paste increases too much and is not practical. The manufacturing method of the present invention includes, for example, premixing each component, kneading it using three rolls to obtain a paste, and defoaming under vacuum.

【0015】以下、実施例で本発明を具体的に説明する
。配合割合は重量部で示す。
[0015] The present invention will be specifically explained below with reference to Examples. The blending ratio is shown in parts by weight.

【実施例】実施例1〜4 平均粒径が3μmの球状無定形シリカ粉末(以下球状シ
リカ)と一次粒子の平均粒径が12nmの超微粒子シリ
カ粉末(以下シリカA)およびビスフェノールAとエピ
クロルヒドリンとの反応により得られるジグリジルエー
テル(エポキシ当量180で常温で液状、以下エポキシ
樹脂)とフェノールノボラック樹脂(OH当量104、
軟化点110℃)、ジシアンジアミド、希釈剤のクレジ
ルグリシジルエーテルを表1に示す割合で配合し三本ロ
ールで混練して絶縁樹脂ペーストを得た。この絶縁樹脂
ペーストを真空チャンバーにて2mmHgで30分間脱
泡した後、以下の方法により各性能を評価した。結果を
表1に示す。
[Example] Examples 1 to 4 Spherical amorphous silica powder with an average particle size of 3 μm (hereinafter referred to as spherical silica), ultrafine silica powder with an average primary particle size of 12 nm (hereinafter referred to as silica A), bisphenol A, and epichlorohydrin. Diglydyl ether (epoxy equivalent: 180, liquid at room temperature, hereinafter referred to as epoxy resin) obtained by the reaction of phenol novolak resin (OH equivalent: 104,
(softening point: 110° C.), dicyandiamide, and cresyl glycidyl ether as a diluent in the proportions shown in Table 1, and kneaded with a three-roll roll to obtain an insulating resin paste. After degassing this insulating resin paste in a vacuum chamber at 2 mmHg for 30 minutes, each performance was evaluated by the following methods. The results are shown in Table 1.

【0016】粘度 E型粘度計を用い25℃、25rpmでの値を粘度とし
た。揺変度次式に従い0.5rpmと25rpmでの粘
度の比をもって揺変度とした。 ペーストのたれ 内径1.0mmのニードルをつけたシリンジにペースト
を5ml入れ、ニードルを下にして試験管立てに垂直に
置き、30分後ニードルの先端にたれたペーストの重量
を測定した。糸ひき性絶縁樹詣ペーストの中へ直径1m
mφのピンを深さ5mmまで沈めて、それを300mm
/分の速度で引き上げペーストが切れた時の高さを測定
した。チップ歪 銅フレーム上に絶縁ペーストを塗布しシリコンチップ(
サイズ:6×12×0.3mm)をマウントして200
℃1時間オーブン中で硬化した。これを表面粗さ計にて
チップの両端を結ぶ線上から垂直にチップの反りの頂上
までの高さを測定した。比較例1〜6表1に示す配合割
合で実施例1と同様にして絶縁ペーストを得た。比較例
5では一次粒子の平均粒径が1nmの超微粒子シリカ粉
末(以下微粉シリカB)を、比較例6では一次粒子の平
均粒径が70nmの超微粒子シリカ粉末(以下微粉シリ
カC)を用いた。結果を表1に示す。
Viscosity Using an E-type viscometer, the value at 25° C. and 25 rpm was taken as the viscosity. Thixometry The ratio of the viscosity at 0.5 rpm and 25 rpm was defined as the thixotropy according to the following equation. 5 ml of the paste was placed in a syringe equipped with a needle having an inner diameter of 1.0 mm, and placed vertically on a test tube stand with the needle facing down. After 30 minutes, the weight of the paste dripping at the tip of the needle was measured. 1m diameter into stringy insulating paste
Sink the mφ pin to a depth of 5mm, and then add it to a depth of 300mm.
The height when the paste was cut was measured at a speed of /min. Silicon chips (
Size: 6 x 12 x 0.3 mm) mounted and 200
Cure in oven for 1 hour. The height from the line connecting both ends of the chip to the top of the warp of the chip perpendicularly was measured using a surface roughness meter. Comparative Examples 1 to 6 Insulating pastes were obtained in the same manner as in Example 1 using the blending ratios shown in Table 1. Comparative Example 5 used ultrafine silica powder (hereinafter referred to as fine silica B) with an average primary particle diameter of 1 nm, and Comparative Example 6 used ultrafine silica powder (hereinafter referred to as fine silica C) with an average primary particle diameter of 70 nm. there was. The results are shown in Table 1.

【0017】[0017]

【表1】[Table 1]

【0018】[0018]

【発明の効果】本発明の絶縁樹脂ペーストはディスペン
サーによる塗布時においてペーストのたれや糸ひきが極
めて少なく作業性が良好でかつ銅、42アロイ等の金属
フレーム、セラミック基板、ガラスエポキシ等の有機基
板へのIC等の半導体素子の接着に用いることができ、
特に銅フレーム上への大型チップの接着に適しており、
銅フレームとシリコーンチップとの熱膨張率の差による
IC等の組立工程での加熱処理時のチップクラック,チ
ップ歪によりIC等の特性不良を防ぐことができ、従来
になかった応力緩和特性に優れたマウント用絶縁樹脂ペ
ーストである。
Effects of the Invention The insulating resin paste of the present invention has excellent workability with very little paste dripping or stringing when applied with a dispenser, and can be applied to metal frames such as copper and 42 alloy, ceramic substrates, and organic substrates such as glass epoxy. It can be used to bond semiconductor elements such as ICs to
Particularly suitable for bonding large chips onto copper frames,
It can prevent characteristic defects in ICs due to chip cracks and chip distortions during heat treatment during the assembly process of ICs due to the difference in thermal expansion coefficient between the copper frame and silicone chip, and has excellent stress relaxation properties that were not found in the past. This is an insulating resin paste for mounting.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (A)シリカフィラー、(B)常温で
液状のエポキシ樹脂、(C)硬化剤を必須成分とし、該
成分中にシリカフィラー(A)を10〜30重量%含有
し、シリカフィラー中の10〜50重量%が一次粒子の
平均粒径が2〜50nmの超微粒子シリカ粉末であるこ
とを特徴とする絶縁樹脂ペースト。
Claim 1: The essential components are (A) silica filler, (B) an epoxy resin that is liquid at room temperature, and (C) a curing agent, which contains 10 to 30% by weight of silica filler (A), and contains silica filler (A) in an amount of 10-30% by weight. An insulating resin paste characterized in that 10 to 50% by weight of the filler is ultrafine silica powder having an average primary particle diameter of 2 to 50 nm.
JP41817690A 1990-12-25 1990-12-25 Insulating resin paste Pending JPH04222887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41817690A JPH04222887A (en) 1990-12-25 1990-12-25 Insulating resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41817690A JPH04222887A (en) 1990-12-25 1990-12-25 Insulating resin paste

Publications (1)

Publication Number Publication Date
JPH04222887A true JPH04222887A (en) 1992-08-12

Family

ID=18526097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41817690A Pending JPH04222887A (en) 1990-12-25 1990-12-25 Insulating resin paste

Country Status (1)

Country Link
JP (1) JPH04222887A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327559A (en) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd Electronic component binder
JP2005235915A (en) * 2004-02-18 2005-09-02 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor and semiconductor device
JP2006169288A (en) * 2004-12-13 2006-06-29 Tdk Corp Adhesive and method for bonding thin sheet to flat sheet
WO2009107873A1 (en) * 2008-02-29 2009-09-03 住友化学株式会社 Method of gluing objects together
US7842178B2 (en) 2005-04-18 2010-11-30 University Of Iowa Research Foundation Magnet incorporated electrically conductive electrodes
JP2013099183A (en) * 2011-11-04 2013-05-20 Hitachi Ltd Composite insulating resin and insulating spacer comprising the same, and gas-insulated apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327559A (en) * 2003-04-22 2004-11-18 Matsushita Electric Ind Co Ltd Electronic component binder
JP2005235915A (en) * 2004-02-18 2005-09-02 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor and semiconductor device
JP2006169288A (en) * 2004-12-13 2006-06-29 Tdk Corp Adhesive and method for bonding thin sheet to flat sheet
US7842178B2 (en) 2005-04-18 2010-11-30 University Of Iowa Research Foundation Magnet incorporated electrically conductive electrodes
WO2009107873A1 (en) * 2008-02-29 2009-09-03 住友化学株式会社 Method of gluing objects together
JP2009227986A (en) * 2008-02-29 2009-10-08 Sumitomo Chemical Co Ltd Method of adhering objects
JP2013099183A (en) * 2011-11-04 2013-05-20 Hitachi Ltd Composite insulating resin and insulating spacer comprising the same, and gas-insulated apparatus

Similar Documents

Publication Publication Date Title
JP3189988B2 (en) Insulating resin paste
JP2935919B2 (en) Insulating resin paste
JPH04222887A (en) Insulating resin paste
JPH0790239A (en) Electrically conductive resin paste
JP2603375B2 (en) Conductive resin paste for semiconductors
JP2974902B2 (en) Conductive resin paste
JPH10237157A (en) Liquid resin composition, and semiconductor apparatus made by using the same
JP2641349B2 (en) Insulating resin paste
JPH07161740A (en) Conductive resin paste for semiconductor
JP2501258B2 (en) Insulating resin paste
JP3482153B2 (en) Die attach paste for semiconductor
JPH10120873A (en) Insulating resin paste for semiconductor
JP3719855B2 (en) Resin paste for semiconductor
JP2596663B2 (en) Conductive resin paste for semiconductors
JPH04223007A (en) Conductive resin paste for semiconductor
JPH03145143A (en) Conductive resin paste for semiconductor
JP3608908B2 (en) Resin paste for semiconductor
JP2001152029A (en) Resin composition and semiconductor device produced by using the composition
JPH0790238A (en) Electrically conductive resin paste
JP2001055482A (en) Resin paste for semiconductor and semiconductor device using the same
JPH1149841A (en) Resin paste for semiconductor
JP2000072846A (en) Resin paste for semiconductor
JP2944726B2 (en) Conductive resin paste for semiconductors
JP2716635B2 (en) Conductive resin paste
JPH0684974A (en) Conductive resin paste for semiconductor