JP2641349B2 - Insulating resin paste - Google Patents

Insulating resin paste

Info

Publication number
JP2641349B2
JP2641349B2 JP3196190A JP19619091A JP2641349B2 JP 2641349 B2 JP2641349 B2 JP 2641349B2 JP 3196190 A JP3196190 A JP 3196190A JP 19619091 A JP19619091 A JP 19619091A JP 2641349 B2 JP2641349 B2 JP 2641349B2
Authority
JP
Japan
Prior art keywords
paste
silica
weight
filler
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3196190A
Other languages
Japanese (ja)
Other versions
JPH04332754A (en
Inventor
光 大久保
隆 鈴木
増雄 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP3196190A priority Critical patent/JP2641349B2/en
Publication of JPH04332754A publication Critical patent/JPH04332754A/en
Application granted granted Critical
Publication of JP2641349B2 publication Critical patent/JP2641349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はIC、LSI等の半導体
素子を金属フレーム等に接着する絶縁ペーストに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating paste for bonding a semiconductor element such as an IC or an LSI to a metal frame or the like.

【0002】[0002]

【従来の技術】エレクトロニクス業界の最近の著しい発
展により、トランジスター、IC、LSI、超LSIと
進化してきており、これら半導体素子に於ける回路の集
積度が急激に増大すると共に大量生産が可能となり、こ
れらを用いた半導体製品の普及に伴って、その量産に於
ける作業性の向上並びにコストダウンが重要な問題とな
ってきた。従来は半導体素子を金属フレームなどの導体
にAu−Si共晶法により接合し、次いでハーメチック
シールによって封止して、半導体製品とするのが普通で
あった。しかし量産時の作業性、コストの面より、樹脂
封止法が開発され、現在は、一般化されている。これに
伴い、マウント工程に於けるAu−Si共晶法の改良と
してハンダ材料や導電性樹脂ペーストや樹脂ペーストと
いったマウント用樹脂による方法が取り上げられるよう
になった。
2. Description of the Related Art Recent remarkable developments in the electronics industry have evolved into transistors, ICs, LSIs, and VLSIs, and the degree of integration of circuits in these semiconductor devices has rapidly increased, and mass production has become possible. With the spread of semiconductor products using these, improvement in workability and cost reduction in mass production have become important issues. Conventionally, it has been common practice to bond a semiconductor element to a conductor such as a metal frame by an Au-Si eutectic method, and then to seal it with a hermetic seal to obtain a semiconductor product. However, in view of workability and cost during mass production, a resin encapsulation method has been developed and is now generally used. Along with this, as a modification of the Au-Si eutectic method in the mounting process, a method using a mounting material such as a solder material, a conductive resin paste or a resin paste has come to be taken up.

【0003】しかし、ハンダ法では信頼性が低いこと、
素子の電極を汚染し易いこと等が欠点とされ、高熱伝導
性を要するパワートランジスター、パワーICの素子に
使用が限られている。これに対しマウント用樹脂はハン
ダ法に較べ、作業性に於いても信頼性等に於いても優れ
ており、その需要が急激に増大している。中でも、シリ
カ粉末を用いた絶縁ペーストは貴金属を全く用いていな
いため安価であり、特に絶縁性を要求されるあるいは導
電性を必要としない用途での需要が増大している。
However, the solder method has low reliability,
The disadvantage is that the electrodes of the element are easily contaminated, and the use thereof is limited to power transistors and power IC elements that require high thermal conductivity. On the other hand, the mounting resin is superior in workability and reliability as compared with the soldering method, and the demand thereof is rapidly increasing. Above all, an insulating paste using silica powder is inexpensive because no precious metal is used at all, and the demand in applications that require insulating properties or do not require conductivity is increasing.

【0004】更に最近、IC等の集積度の高密度化によ
り、チップが大型化してきており、一方従来用いられて
きたリードフレームである42合金フレームが高価なこ
とより、コストダウンの目的から銅フレームが用いられ
るようになってきた。ここで、IC等のチップの大きさ
が約4〜5mm角より、大きくなるとマウント法として
Au−Si共晶法を用いた場合には、組立工程での加熱
によりチップと銅フレームの熱膨張率の差に基づくチッ
プのクラックや反りが発生しこれに起因する特性不良が
問題となっている。
More recently, chips have been increasing in size due to the increase in the degree of integration of ICs and the like. On the other hand, since the 42 alloy frame, which has been conventionally used, is expensive, copper is used for cost reduction purposes. Frames have come to be used. Here, when the size of a chip such as an IC becomes larger than about 4 to 5 mm square, when the Au-Si eutectic method is used as a mounting method, the coefficient of thermal expansion of the chip and the copper frame is increased by heating in the assembling process. Chip cracks and warpages due to the difference between the chips cause characteristic defects.

【0005】即ちこれは、チップの材料であるシリコン
等の熱膨張率が3×10−6/℃であるのに対し、42
合金フレームでは8×10−6/℃であるが、銅フレー
ムでは20×10−6/℃と大きくなる為である。これ
に対し、マウント法としてマウント用樹脂を用いること
が考えられるが、従来のエポキシ樹脂ペーストでは、熱
硬化性樹脂で三次元硬化する為、弾性率が大きく、チッ
プと銅フレームとの歪を吸収するに至らなかった。一
方、線状高分子タイプのポリイミド樹脂系ではエポキシ
樹脂に較べ弾性率が小さく、チップの反りは改良され
る。しかし、ポリイミド樹脂をマウント用樹脂として用
いるには、作業性の点から、N−メチル−2−ピロリド
ン、N、N−ジメチルホルムアミド等の多量の極性溶剤
に溶解して、粘度を低くしなければならない。この時の
溶剤量は、マウント樹脂中の30重量%以上にもなり、
チップと金属フレームとの接着に用いた場合、硬化加熱
時の溶剤の抜け跡として硬化物中にボイドが生成し、接
着強度低下、電気伝導及び熱伝導不良の原因となり、信
頼性面から好ましくない。
That is, while the coefficient of thermal expansion of silicon or the like, which is the material of the chip, is 3 × 10 −6 / ° C.,
This is because the alloy frame has a temperature of 8 × 10 −6 / ° C., whereas the copper frame has a temperature of 20 × 10 −6 / ° C. On the other hand, mounting resin may be used as the mounting method.However, conventional epoxy resin paste is three-dimensionally cured with thermosetting resin, so it has a large elastic modulus and absorbs the distortion between the chip and the copper frame. I didn't do it. On the other hand, in the linear polymer type polyimide resin, the elastic modulus is smaller than that of the epoxy resin, and the warpage of the chip is improved. However, in order to use a polyimide resin as a mounting resin, from the viewpoint of workability, it must be dissolved in a large amount of a polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like to reduce the viscosity. No. At this time, the amount of the solvent is 30% by weight or more in the mount resin.
When used for bonding a chip and a metal frame, voids are formed in the cured product as traces of the solvent during curing and heating, resulting in reduced bonding strength, poor electrical and thermal conductivity, and are not preferred from a reliability standpoint. .

【0006】また絶縁樹脂ペーストにおいて、低弾性率
化を試みる目的でシリカフィラー含有率を30重量%以
下にするとペーストの揺変度が小さくなりすぎ、ペース
トのたれ、糸引き等が発生し好ましくなかった。さら
に、シリカフィラー中に一次粒子の平均粒径が2〜50
nmの超微粒子シリカ粉末を併用するとペーストの揺変
度が上がり、ペーストのたれ、糸引き等が大巾に改善さ
れ、非常に良好な塗布作業性を示すようになるが使用す
る超微粒子シリカ粉末が何ら表面処理を施していない通
常のシリカ粉末だと表面のシラノール基が樹脂ペースト
中の樹脂成分と徐々に水素結合を取りはじめ、粘度およ
び揺変度の低下が起こり作業性の低下につながってい
た。
When the content of silica filler in the insulating resin paste is reduced to 30% by weight or less for the purpose of lowering the modulus of elasticity, the degree of swaying of the paste becomes too small, causing dripping of the paste and stringing, which is not preferable. Was. Further, the average particle size of the primary particles in the silica filler is 2 to 50.
When ultra-fine silica powder of nm is used together, the thixotropic degree of the paste increases, dripping of the paste, stringing, etc. are greatly improved, and very good coating workability is exhibited. However, in the case of ordinary silica powder that has not been subjected to any surface treatment, the silanol groups on the surface gradually begin to form hydrogen bonds with the resin component in the resin paste, resulting in a decrease in viscosity and thixotropic degree, leading to a reduction in workability. Was.

【0007】[0007]

【発明が解決しようとする課題】本発明は揺変度が高
く、ディスペンサー塗布時の作業性に優れ、かつ作業性
の経時変化がなく、IC等の大型チップと銅フレームと
の組合せでもチップクラックやチップの反りによるIC
等の特性不良が起こらない絶縁ペーストを提供するもの
である。
DISCLOSURE OF THE INVENTION The present invention has a high degree of shaking, has excellent workability in dispenser application, has no change in workability with time, and has a chip crack even in a combination of a large chip such as an IC and a copper frame. And IC due to chip warpage
It is intended to provide an insulating paste which does not cause poor characteristics such as the above.

【0008】本発明は、シリカフィラー(A)と常温で
液状のエポキシ樹脂(B)および硬化剤(C)を必須成
分とし、該成分中にシリカフィラー(A)を10〜30
重量%含有し、シリカフィラー中の10〜50重量%が
一次粒子の平均粒径が2〜50nmでかつ表面のシラノー
ル基の50%以上と下記式[I]で示される有機珪素ハ
ロゲン化合物あるいはアルコール類と反応させた疎水性
の超微粒子シリカ粉末であり、残るシリカフィラー中の
50〜90重量%が有機珪素化合物による処理を行わな
いシリカフィラーからなる絶縁樹脂ペーストである。 Si(R)m(X)n m+n=4 [I] (R:メチル、エチル、ブチル、オクチル X:Cl、Br、OCH3、OH )
According to the present invention, the silica filler (A), the epoxy resin (B) and the curing agent (C) which are liquid at room temperature are essential components, and the silica filler (A) is contained in the components in an amount of 10 to 30.
10 to 50% by weight in the silica filler, the average particle size of the primary particles is 2 to 50 nm, and 50% or more of the silanol groups on the surface is the organosilicon halide or alcohol represented by the following formula [I]. s and Ri ultrafine silica powder der hydrophobic reacted, silica filler remaining in
50 to 90% by weight do not undergo treatment with the organosilicon compound.
It is an insulating resin paste made of silica filler . Si (R) m (X) n m + n = 4 [I] (R: methyl, ethyl, butyl, octyl X: Cl, Br, OCH 3 , OH)

【0009】本発明に用いるエポキシ樹脂としては、例
えばビスフェノールA、ビスフェノールF、フェノール
ノボラックとエピクロルヒドリンとの反応で得られるポ
リグリシジルエーテルで常温で液状のもの、ビニルシク
ロヘキセンジオキシド、ジシクロペンタジエンジオキシ
ド、アリサイクリックジエポキシ−アジペイトのような
脂環式エポキシ、更にはn−ブチルグリシジルエーテ
ル、バーサティック酸グリシジルエステル、スチレンオ
キサイド、フェニルグリシジルエーテル、クレジルグリ
シジルエーテル、ジシクロペンタジエンジエポキシドの
ような通常エポキシ樹脂の希釈剤として用いられるもの
がある。
The epoxy resin used in the present invention includes, for example, bisphenol A, bisphenol F, polyglycidyl ether obtained by the reaction of phenol novolak with epichlorohydrin, which is liquid at ordinary temperature, vinylcyclohexene dioxide, dicyclopentadiene dioxide, Alicyclic epoxies, such as alicyclic diepoxy-adipate, and also normal, such as n-butyl glycidyl ether, glycidyl versatate, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, dicyclopentadiene diepoxide Some are used as diluents for epoxy resins.

【0010】また硬化剤としては特に限定されないがフ
ェノール樹脂系硬化剤とジシアンジアミド、アジピン酸
ヒドラジド等の潜在型アミン化合物の併用が好ましい。
更に、本発明においては、必要に応じ、硬化促進剤、顔
料、染料、消泡剤等の添加剤を用いることもできる。
The curing agent is not particularly limited, but a combination of a phenolic resin-based curing agent and a latent amine compound such as dicyandiamide or adipic hydrazide is preferred.
Further, in the present invention, if necessary, additives such as a curing accelerator, a pigment, a dye, and an antifoaming agent can be used.

【0011】本発明に用いるシリカフィラーは平均粒系
が1μm以上、20μm以下の溶融および/または破砕
シリカ粉末および一次粒子の平均粒径が2〜50nmで
かつ表面のシラノール基の50%以上と下記式〔I〕で
示される有機珪素ハロゲン化合物あるいはアルコール類
と反応させた疎水性の超微粒子シリカ粉末からなり、全
シリカフィラー中の疎水性超微粒子シリカ粉末は10〜
50重量%であり、更にシリカフィラーと常温で液状の
エポキシ樹脂および硬化剤からなる組成物中に10〜3
0重量%のシリカフィラーを含有する。
The silica filler used in the present invention has an average particle size of 1 μm or more and 20 μm or less, and has an average particle size of 2 to 50 nm of fused and / or crushed silica powder and primary particles and 50% or more of silanol groups on the surface and It consists of hydrophobic ultrafine silica powder reacted with an organosilicon halide or an alcohol represented by the formula (I), and the hydrophobic ultrafine silica powder in the total silica filler is 10 to 10.
50% by weight, and 10 to 3% in a composition comprising a silica filler, an epoxy resin liquid at room temperature and a curing agent.
Contains 0% by weight of silica filler.

【0012】超微粒子粉末の平均粒子径が50nmを超
えると揺変度があがらずペーストのたれ、糸引き等の作
業性の向上が望めない。2nm未満だとかさ密度が小さ
くなるため、空気中に舞い易く、秤量などの仕込みが困
難であり、またペースト混練時においても均一に混練で
きず、固まりのまま残存しやすいため好ましくない。ま
た使用する超微粒子シリカ粉末が何ら表面処理を施して
いない通常のシリカ粉末だと表面のシラノール基が樹脂
ペースト中の樹脂成分と徐々に水素結合を取りはじめ、
粘度および揺変度の低下が起こり、作業性の低下につな
がるため好ましくない。
If the average particle size of the ultrafine powder exceeds 50 nm, the degree of thixotropicity does not increase, and improvement in workability such as dripping of the paste and stringing cannot be expected. When the thickness is less than 2 nm, the bulk density becomes small, so that it is easy to fly in the air, it is difficult to prepare by weighing or the like, and even when the paste is kneaded, it is not preferable because it cannot be uniformly kneaded and tends to remain as a lump. Also, if the ultrafine silica powder used is ordinary silica powder that has not been subjected to any surface treatment, the silanol groups on the surface will gradually begin to form hydrogen bonds with the resin component in the resin paste,
It is not preferable because the viscosity and the thixotropic degree decrease, leading to a decrease in workability.

【0013】シリカフィラーの含有量が10重量%未満
だとマウント後の接着強度が不足し、30重量%より多
いと、低応力効果が望めない。シリカフィラー中の疎水
性超微粒子シリカ粉末が10重量%より少ないと、ペー
ストの揺変度が小さすぎるため、ペーストのたれや、糸
引きが発生し、作業性が非常に悪くなる。また50重量
%より多いと、ペーストの粘度が上がりすぎ、実用的で
はない。本発明の製造方法は例えば各成分を予備混合
し、三本ロールを用いて混練し、ペーストを得て、真空
下脱泡することなどがある。
When the content of the silica filler is less than 10% by weight, the adhesive strength after mounting is insufficient, and when it is more than 30% by weight, a low stress effect cannot be expected. If the amount of the hydrophobic ultrafine silica powder in the silica filler is less than 10% by weight, the degree of thixotropicity of the paste is too small, so that dripping of the paste and stringing occur, resulting in extremely poor workability. If it is more than 50% by weight, the viscosity of the paste becomes too high, which is not practical. The production method of the present invention includes, for example, premixing each component, kneading using a three-roll mill, obtaining a paste, and defoaming under vacuum.

【0014】以下、実施例で本発明を具体的に説明す
る。配合割合は重量部で示す。
Hereinafter, the present invention will be described in detail with reference to examples. The mixing ratio is shown in parts by weight.

【0015】[0015]

【実施例】【Example】

実施例1〜3 平均粒径が3μmの球状無定形シリカ粉末(以下球状シ
リカ)と、一次粒子の平均粒径が約12nmでかつ表面
のシラノール基の約70%をジメチルジクロロシランで
処理した疎水性の超微粒子シリカ粉末(以下疎水シリカ
A)およびビスフェノールAとエピクロルヒドリンとの
反応により得られるジグリシジルエーテル(エポキシ当
量180で常温で液状、以下エポキシ樹脂)とフェノー
ルノボラック樹脂(OH当量104、軟化点110
℃)、ジシアンジアミド、希釈剤のクレジルグリシジル
エーテルを表1に示す割合で配合し三本ロールで混練し
て絶縁樹脂ペーストを得た。この絶縁樹脂ペーストを真
空チャンバーにて2mmHg、30分間脱泡した後、以
下の方法により各性能を評価した。結果を表1に示す。
Examples 1 to 3 Spherical amorphous silica powder having an average particle size of 3 μm (hereinafter referred to as “spherical silica”) and hydrophobic particles having an average particle size of primary particles of about 12 nm and about 70% of silanol groups on the surface treated with dimethyldichlorosilane. Ultrafine silica powder (hereinafter referred to as hydrophobic silica A), diglycidyl ether obtained by the reaction of bisphenol A with epichlorohydrin (liquid at room temperature with epoxy equivalent of 180, hereinafter epoxy resin) and phenol novolak resin (OH equivalent 104, softening point) 110
C), dicyandiamide, and cresyl glycidyl ether as a diluent in the ratios shown in Table 1 and kneaded with a three-roll mill to obtain an insulating resin paste. After degassing the insulating resin paste in a vacuum chamber at 2 mmHg for 30 minutes, each performance was evaluated by the following methods. Table 1 shows the results.

【0016】粘度 E型粘度計を用い25℃、2.5rpmでの値を粘度と
した。 揺変度 次式に従い0.5rpmと2.5rpmでの粘度の比を
もって揺変度とした。 ペーストのたれ 内径1.0mmのニードルをつけたシリンジにペースト
を5ml入れ、ニードルを下にして試験管立てに垂直に
置き、30分後ニードルの先端にたれたペーストの重量
を測定した。 糸ひき性 絶縁樹脂ペーストの中へ直径1mmφのピンを深さ5m
mまで沈めて、それを30mm/分の速度で引き上げペ
ーストが切れた時の高さを測定した。 チップ歪 銅フレーム上に絶縁ペーストを塗布しシリコンチップ
(サイズ:6×12×0.3mm)をマウントして20
0℃、1時間オーブン中で硬化した。これを表面粗さ計
にてチップの両端を結ぶ線上から垂直にチップの反りの
頂上までの高さを測定した。
Viscosity The viscosity at 25 ° C. and 2.5 rpm was measured using an E-type viscometer. Fluctuation degree According to the following formula, the ratio of the viscosity at 0.5 rpm and 2.5 rpm was defined as the whisking degree. Paste dripping 5 ml of the paste was put into a syringe with a needle having an inner diameter of 1.0 mm, placed vertically on a test tube stand with the needle down, and 30 minutes later, the weight of the paste dripped on the tip of the needle was measured. Threadability Pins with a diameter of 1mmφ into insulating resin paste are 5m deep
m, and it was lifted at a speed of 30 mm / min to measure the height when the paste was cut. Chip distortion Apply insulating paste on a copper frame, mount a silicon chip (size: 6 × 12 × 0.3 mm) and
Cured in an oven at 0 ° C. for 1 hour. The height from the line connecting the both ends of the chip to the top of the warpage of the chip was measured by a surface roughness meter.

【0017】実施例4 使用する超微粒子シリカ粉末として一次粒子の平均粒径
が12nmでかつ表面をオクチルトリメトキシシランで
処理した疎水性の超微粒子シリカ粉末(以下疎水シリカ
B)を用いた他は実施例1〜3と同様にして絶縁樹脂ペ
ーストを作製し、評価した。結果を表1に示す。
Example 4 A hydrophobic ultrafine silica powder (hereinafter referred to as hydrophobic silica B) having an average primary particle diameter of 12 nm and a surface treated with octyltrimethoxysilane was used as the ultrafine silica powder to be used. An insulating resin paste was prepared and evaluated in the same manner as in Examples 1 to 3. Table 1 shows the results.

【0018】比較例1〜5 表1に示す配合割合で実施例と同様にして絶縁樹脂ペー
ストを得た。比較例1では一次粒子の平均粒径が約12
nmで表面処理を施していない親水性の超微粒子シリカ
粉末(以下親水シリカ)を用い、比較例5では一次粒子
の平均粒径が70nmでかつ表面のシラノール基の約7
0%をジメチルジクロロシランで処理した疎水性の超微
粒子シリカ粉末(以下疎水シリカC)を用いた。結果を
表1に示す。
Comparative Examples 1 to 5 Insulating resin pastes were obtained in the same manner as in the examples with the mixing ratios shown in Table 1. In Comparative Example 1, the average primary particle size was about 12
In Comparative Example 5, the average particle size of the primary particles was 70 nm, and about 7% of the silanol groups on the surface were used.
Hydrophobic ultrafine silica powder (hereinafter referred to as hydrophobic silica C) treated with 0% dimethyldichlorosilane was used. Table 1 shows the results.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】本発明の絶縁樹脂ペーストはディスペン
サーによる塗布時においてペーストのたれや糸ひきが極
めて少なく作業性が良好でかつその経時変化がなく、ま
た、銅、42アロイ等の金属フレーム、セラミック基
板、ガラスエポキシ等の有機基板へのIC等の半導体素
子の接着に用いることができ、特に銅フレーム上への大
型チップの接着に適しており、銅フレームとシリコーン
チップとの熱膨張率の差によるIC等の組立工程での加
熱処理時のチップクラック、チップ歪によるIC等の特
性不良を防ぐことができ、従来になかった応力緩和特性
に優れたマウント用絶縁樹脂ペーストである。
The insulating resin paste of the present invention has very little dripping and stringing of the paste at the time of application by a dispenser, has good workability, does not change with time, and has a metal frame made of copper, 42 alloy, etc. It can be used for bonding semiconductor devices such as ICs to substrates and organic substrates such as glass epoxy, and is particularly suitable for bonding large chips on copper frames, and the difference in thermal expansion coefficient between copper frames and silicone chips This is an insulating resin paste for mounting, which is capable of preventing chip cracks and chip defects at the time of heat treatment in an assembling process of ICs or the like due to chip distortion or the like, and has excellent stress relaxation characteristics which has not existed conventionally.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)シリカフィラー、(B)常温で液
状のエポキシ樹脂、(C)硬化剤を必須成分とし、該成
分中にシリカフィラー(A)を10〜30重量%含有
し、シリカフィラー中の10〜50重量%が一次粒子の
平均粒径が2〜50nmでかつ表面のシラノール基の50
%以上と下記式[I]で示される有機珪素ハロゲン化合
物あるいはアルコール類と反応させた疎水性の超微粒子
シリカ粉末であり、残るシリカフィラー中の50〜90
重量%が有機珪素化合物による処理を行わないシリカフ
ィラーであることを特徴とする絶縁樹脂ペースト。 Si(R)m(X)n m+n=4 [I] (R:メチル、エチル、ブチル、オクチル X:Cl、Br、OCH3、OH )
An essential component is (A) a silica filler, (B) an epoxy resin which is liquid at room temperature, and (C) a curing agent. The component contains 10 to 30% by weight of a silica filler (A). 10 to 50% by weight of the filler has an average primary particle diameter of 2 to 50 nm and 50 of silanol groups on the surface.
% Or more and the following formula Ri hydrophobic ultrafine silica powder der reacted with organosilicon halides or alcohols represented by [I], 50 to 90 in the silica filler remaining
% By weight of silica gel not treated with an organosilicon compound
Insulating resin paste, wherein filler der Rukoto. Si (R) m (X) n m + n = 4 [I] (R: methyl, ethyl, butyl, octyl X: Cl, Br, OCH 3 , OH)
JP3196190A 1991-05-07 1991-05-07 Insulating resin paste Expired - Fee Related JP2641349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3196190A JP2641349B2 (en) 1991-05-07 1991-05-07 Insulating resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3196190A JP2641349B2 (en) 1991-05-07 1991-05-07 Insulating resin paste

Publications (2)

Publication Number Publication Date
JPH04332754A JPH04332754A (en) 1992-11-19
JP2641349B2 true JP2641349B2 (en) 1997-08-13

Family

ID=16353693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3196190A Expired - Fee Related JP2641349B2 (en) 1991-05-07 1991-05-07 Insulating resin paste

Country Status (1)

Country Link
JP (1) JP2641349B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719225A (en) * 1994-06-13 1998-02-17 Sumitomo Chemical Company, Ltd. Filler-containing resin composition suitable for injection molding and transfer molding
JP3204611B2 (en) * 1996-03-05 2001-09-04 東京瓦斯株式会社 Adhesive composition for piping inner surface
JP2012062422A (en) * 2010-09-17 2012-03-29 Sekisui Chem Co Ltd Resin composition and molded body
CN112313281B (en) * 2018-06-21 2024-03-29 株式会社力森诺科 Thermosetting resin composition, prepreg, laminated board, printed wiring board, semiconductor package, and method for producing thermosetting resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161422A (en) * 1984-01-30 1985-08-23 Daihachi Kagaku Kogyosho:Kk Epoxy synthetic resin composition having improved electrical characteristics
JPH0676474B2 (en) * 1986-12-23 1994-09-28 住友ベークライト株式会社 Insulating resin paste for semiconductors

Also Published As

Publication number Publication date
JPH04332754A (en) 1992-11-19

Similar Documents

Publication Publication Date Title
JP3189988B2 (en) Insulating resin paste
JP2935919B2 (en) Insulating resin paste
JP2641349B2 (en) Insulating resin paste
JP2603375B2 (en) Conductive resin paste for semiconductors
JPH0995651A (en) Electroconductive resin paste
JPH0790239A (en) Electrically conductive resin paste
JP3407954B2 (en) Conductive resin paste
JP3384472B2 (en) Conductive resin paste
JP2834658B2 (en) Conductive resin paste for semiconductors
JPH04222887A (en) Insulating resin paste
JP2501258B2 (en) Insulating resin paste
JPH10237157A (en) Liquid resin composition, and semiconductor apparatus made by using the same
JPH04223007A (en) Conductive resin paste for semiconductor
JP3555930B2 (en) Resin paste for semiconductor and semiconductor device using the same
JPH07179833A (en) Conductive resin paste
JP2596663B2 (en) Conductive resin paste for semiconductors
JP3719855B2 (en) Resin paste for semiconductor
JPH03145143A (en) Conductive resin paste for semiconductor
JP2787842B2 (en) Conductive resin paste for semiconductors
JP3608908B2 (en) Resin paste for semiconductor
JPH0790238A (en) Electrically conductive resin paste
JP2000290468A (en) Die attach paste for semiconductor
JP2000239627A (en) Die-attaching paste
JP2716635B2 (en) Conductive resin paste
JP2000239638A (en) Die-attaching paste for semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees