JPH0676474B2 - Insulating resin paste for semiconductors - Google Patents
Insulating resin paste for semiconductorsInfo
- Publication number
- JPH0676474B2 JPH0676474B2 JP61305235A JP30523586A JPH0676474B2 JP H0676474 B2 JPH0676474 B2 JP H0676474B2 JP 61305235 A JP61305235 A JP 61305235A JP 30523586 A JP30523586 A JP 30523586A JP H0676474 B2 JPH0676474 B2 JP H0676474B2
- Authority
- JP
- Japan
- Prior art keywords
- paste
- silica
- particle size
- resin
- bubbles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Die Bonding (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子をリードフレームあるいはセラミッ
ク基板等へダイボンディングする場合に用いられる絶縁
樹脂ペーストに関するものである。更に詳しくは高温、
短時間で硬化させても、気泡の発生が極めて少ない樹脂
接合法に用いる絶縁樹脂ペーストに関するものである。TECHNICAL FIELD The present invention relates to an insulating resin paste used when die-bonding a semiconductor element to a lead frame, a ceramic substrate, or the like. More specifically, high temperature,
The present invention relates to an insulating resin paste used in a resin joining method in which bubbles are extremely generated even when cured in a short time.
従来、半導体素子をリードフレーム等へダイボンディン
グする方法としては金とシリコンとの共晶を形成するこ
とにより結合する金−シリコン共晶法、また半田ペース
トを用いて接合する半田接合法が主に用いられてきた。
金−シリコン共晶法は金を用いるためコストは非常に高
いとか、あるいは作業温度が400〜450℃と高く半導体素
子や部品の劣化をもたらす欠点があった。一方半田接合
法は比較的低コストではあるが耐熱性が劣るとか、ある
いは半田ボール飛散による半導体素子が劣化するという
欠点があった。Conventionally, as a method of die-bonding a semiconductor element to a lead frame or the like, a gold-silicon eutectic method of bonding by forming a eutectic of gold and silicon, and a solder bonding method of bonding using a solder paste are mainly used. Has been used.
The gold-silicon eutectic method has a drawback that the cost is very high because gold is used, or the working temperature is high at 400 to 450 ° C., which causes deterioration of semiconductor elements and parts. On the other hand, the solder joining method has a drawback that the heat resistance is inferior although the cost is relatively low, or the semiconductor element is deteriorated due to scattering of solder balls.
この様な中にあって、最近樹脂中に銀粉末、シリカ粉末
等無機質粉末を分散させた導電性あるいは絶縁体のペー
ストを用いる樹脂結合法が用いられる様になってきた。
この樹脂結合法は大巾なコストダウンが可能であり、特
に絶縁樹脂ペーストとして特にシリカ粉末を用いたもの
は貴金属を全く用いないため安価であり、又その特性に
おいても非常に優れている。Under such circumstances, recently, a resin bonding method using a conductive or insulating paste in which an inorganic powder such as a silver powder or a silica powder is dispersed in a resin has been used.
This resin bonding method can greatly reduce the cost. Particularly, the insulating resin paste using silica powder is inexpensive because no precious metal is used at all, and its characteristics are also very excellent.
しかしながら、これらの樹脂接合法に用いる従来の絶縁
樹脂ペーストは硬化時に気泡が発生し易いという欠点が
ある。これはシリカ粉末等の無機質粉末を樹脂に分散さ
せ、ペースト状にする必要があるために、樹脂は大量の
溶剤を含むがあるいは常温で液状のものを用いる必要が
あり、これ等がこれらの絶縁ペーストが硬化する時に一
部気化し、気泡を発生させたり、あるいは樹脂と無機質
粉末を混練する時空気を抱き込み、気泡となる。However, the conventional insulating resin paste used in these resin bonding methods has a drawback that bubbles are easily generated during curing. This is because it is necessary to disperse an inorganic powder such as silica powder in a resin to form a paste, so the resin contains a large amount of solvent or must be liquid at room temperature. When the paste is hardened, it is partially vaporized to generate bubbles, or when the resin and the inorganic powder are kneaded, air is included to form bubbles.
これ等の気泡が硬化時にスムーズに抜けないと、硬化物
に気泡が残存し半導体素子とリードフレームとの密着強
度を著しく低下させるとかあるいは気泡が抜ける際の力
で半導体チップが傾き、傾いたまま接合され、後工程で
の金線ワイヤボンディングで自動ボンダーでの位置認識
が出来ないという重大欠点を生じてしまう。If these bubbles do not escape smoothly during curing, the bubbles will remain in the cured product and the adhesion strength between the semiconductor element and the lead frame will be significantly reduced, or the force when the bubbles escape will cause the semiconductor chip to tilt and remain tilted. They will be joined together, which will cause a serious defect that the position cannot be recognized by the automatic bonder in the gold wire wire bonding in the subsequent process.
本発明の目的は上記の様な従来技術の欠点を改良し、半
導体素子が傾くことなくリードフレーム等外部支持電極
に強固に接合される絶縁樹脂ペーストを提供することに
ある。An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide an insulating resin paste which is firmly bonded to an external supporting electrode such as a lead frame without tilting the semiconductor element.
ペーストが硬化する際に発生する気泡は充填剤の表面に
存在するものであり、これは液状樹脂組成物に無機充填
剤を配合した場合、充填剤表面が液状樹脂組成物にどう
しても充分にぬれないためであり、液状樹脂組成物に無
機充填剤を配合する場合には避けられない問題である。Bubbles generated when the paste is cured are present on the surface of the filler, and when the liquid resin composition is mixed with an inorganic filler, the surface of the filler is not sufficiently wet to the liquid resin composition. This is an unavoidable problem when an inorganic filler is added to the liquid resin composition.
本発明者等は気泡の発生源である充填剤配合量を極力少
なくすることに注目し、鋭意検討を重ねた結果、超微粒
子シリカ粉末を併用すれば無機充填剤を著しく減少させ
ることができ、超微粒子シリカ粉末そのものは気泡の発
生源にならないこと、硬化剤としてフエノールノボラッ
クと潜在性アミン化合物を用いると熱時接着強度が著し
く増加することを見い出し目的を達成するに到った。The present inventors have paid attention to reducing the amount of the filler as the source of generation of bubbles as much as possible, and as a result of extensive studies, the use of ultrafine silica powder in combination can significantly reduce the inorganic filler, It has been found that the ultrafine silica powder itself does not become a source of air bubbles, and that when a phenol novolac and a latent amine compound are used as a curing agent, the adhesive strength at the time of heating remarkably increases.
本発明は(A)最大粒径が50μm以下で平均粒径2〜5
μmのシリカ粉末と、平均粒径が0.005〜0.02μmの超
微粒子シリカ粉末との混合物であって、平均粒径2〜5
μmのシリカ粉末60〜85重量%含むシリカ充填剤、
(B)フェノールノボラック、(C)潜在性アミン化合
物、(D)常温で液状で加水分解性塩素含有量が500ppm
以上であるエポキシ樹脂、よりなる組成物でシリカ充填
剤配合量が5〜30重量%かなる半導体用絶縁樹脂ペース
トに関するものである。The present invention (A) has a maximum particle size of 50 μm or less and an average particle size of 2 to 5
It is a mixture of silica powder having a particle size of μm and ultrafine silica powder having an average particle size of 0.005 to 0.02 μm, and an average particle size of 2 to 5
silica filler containing 60 to 85% by weight of silica powder of μm,
(B) Phenol novolac, (C) Latent amine compound, (D) Liquid at room temperature with hydrolyzable chlorine content of 500 ppm
The present invention relates to an insulating resin paste for semiconductors, which comprises the above epoxy resin and has a silica filler content of 5 to 30% by weight.
絶縁ペーストの硬化時に発生する気泡は充填剤の表面に
存在すると考えられるが、従って充填剤量を少なくすれ
ば気泡は少なくすることができる。ところが通常充填剤
の量を減少させるとペーストの粘度、揺変度が小さくな
り、ディスペンサーからのペーストのたれや、あるいは
ブリード等を起こし実用上不都合を生じる。又耐熱性も
低下し、高温時で高い接着強度が要求されるワイヤボン
ディングの工程でチップが剥がれる不都合も生じる。従
って通常は半導体用絶縁ペーストの充填剤の配合量は少
なくとも40重量%以上である。It is considered that the bubbles generated during the curing of the insulating paste are present on the surface of the filler. Therefore, the bubbles can be reduced by reducing the amount of the filler. However, when the amount of the filler is usually reduced, the viscosity and the degree of thixotropy of the paste become small, which causes dripping of the paste from the dispenser, bleeding or the like, which is practically inconvenient. In addition, the heat resistance is lowered, and there is a disadvantage that the chip is peeled off in the wire bonding process which requires high adhesive strength at high temperature. Therefore, the compounding amount of the filler of the insulating paste for semiconductors is usually at least 40% by weight or more.
本発明に用いられるシリカ充填剤は超微粒子の粒径が0.
005〜0.02μmのシリカを併用することを特徴としてい
るが、この様な超微粒子シリカは液状樹脂組成物に配合
しても、その表面には硬化時にチップを傾かせるほどの
大きい気泡は存在せず、不都合を生じさせる気泡の発生
源とはならないことを見い出した。しかも少量添加だけ
で粘度、揺変度が著しく大きくなるため、絶縁ペースト
中の充填剤量を少なくしてもディスペンサーからのペー
ストのたれや、あるいはブリードを起こさない。また本
発明に用いられるシリカ充填剤は最大粒径50μm以下で
平均粒径2〜5μmのシリカ粉末を60〜85重量%含む
が、60重量%より少ないと耐熱性や熱伝導性が低下す
る。また超微粒子シリカが多くなり過ぎ粘度、揺変度が
著しく高くなり、ディスペンサーで塗布時ペーストが糸
状に高くひき、チップのマウントができなくなる。また
平均粒径2〜5μmの配合量85重量%より多くなると超
微粒子シリカ粉末の含有量が少な過ぎて本願発明の効果
が充分に出ない。また本発明に用いるシリカ粉末の粒径
を50μm以上と限定したが、これは粒径がこれより大き
いとディスペンサーでペーストを塗布する時細いニード
ル(口径0.2mm以下)ではニードルの出口付近にシリカ
粉末粒子が徐々に滞積し、やがては出口をふいでしま
い、長時間連続使用できなくなるためである。The silica filler used in the present invention has an ultrafine particle size of 0.
The feature is that silica of 005 to 0.02 μm is used in combination, but even if such ultrafine particle silica is compounded in the liquid resin composition, there should be no large bubbles on the surface of the silica that may tilt the chip during curing. However, they have found that they do not become a source of bubbles that cause inconvenience. Moreover, since the viscosity and thixotropy become remarkably large only by adding a small amount, dripping of the paste from the dispenser or bleeding does not occur even if the amount of the filler in the insulating paste is reduced. Further, the silica filler used in the present invention contains 60 to 85% by weight of silica powder having a maximum particle size of 50 μm or less and an average particle size of 2 to 5 μm, but if it is less than 60% by weight, heat resistance and thermal conductivity decrease. In addition, the amount of ultrafine silica becomes too large, and the viscosity and the degree of thixotropy become extremely high, and the paste is pulled into a thread shape at the time of application with a dispenser, and the chip cannot be mounted. On the other hand, if the blending amount is more than 85% by weight with the average particle diameter of 2 to 5 μm, the content of the ultrafine silica powder is too small and the effect of the present invention is not sufficiently exerted. Further, the particle size of the silica powder used in the present invention is limited to 50 μm or more, but if the particle size is larger than this, when applying paste with a dispenser, a fine needle (diameter of 0.2 mm or less) has a silica powder near the outlet of the needle. This is because the particles gradually accumulate and eventually block the outlet, making continuous use impossible for a long time.
また、本発明においては、硬化剤としてフェノールノボ
ラックと潜在性アミン化合物を併用することを特徴とし
ている。Further, the present invention is characterized in that a phenol novolac and a latent amine compound are used in combination as a curing agent.
絶縁ペーストにおいてシリカ充填剤の含有量が少ないと
耐熱性が低下するため、通常は40重量%以上含む。しか
し、本発明においては熱安定性の良いベンゼン環を多く
含み耐熱性の優れたフェノールノボラックを硬化剤とす
ることによりシリカ充填剤含有量が30重量%以下でも耐
熱性の優れた絶縁ペーストを得るに到った。When the content of the silica filler in the insulating paste is low, the heat resistance is lowered, so the content is usually 40% by weight or more. However, in the present invention, the insulating paste having excellent heat resistance is obtained even when the content of the silica filler is 30% by weight or less by using the phenol novolac excellent in heat resistance and containing many benzene rings having good heat stability as the curing agent. Came to.
ただし、フェノールノボラックは固形のため、単独使用
の場合には、ペーストの粘度が著しく上り、実用には適
さない。また、これを改良する目的で溶剤を添加すると
硬化時にボイドが発生する。フェノールノボラックより
当量の小さい潜在性アミン化合物を併用することによ
り、粘度がそれほど高くなく耐熱性の優れた絶縁ペース
トを得ることができた。However, since phenol novolac is a solid, when it is used alone, the viscosity of the paste increases remarkably and is not suitable for practical use. Further, when a solvent is added for the purpose of improving this, voids are generated during curing. By using a latent amine compound having a smaller equivalent weight than that of phenol novolac in combination, an insulating paste having not so high viscosity and excellent heat resistance could be obtained.
本発明に用いるフェノールノボラックはフェノールとホ
ルムアルデヒドとを反応させることによって得られる2
及3核体を主体とするノボラック樹脂である。The phenol novolac used in the present invention is obtained by reacting phenol with formaldehyde.
It is a novolac resin mainly composed of trinuclear bodies.
潜在性アミン化合物としては、アジピン酸ヒドラジド、
ドデカン酸ジヒドラジド、イソフタル酸ヒドラジド、p
−オキシ安息香酸ジヒドラジド等のカルボン酸ヒドラジ
ドやジシアンジアミドである。As a latent amine compound, adipic acid hydrazide,
Dodecanoic acid dihydrazide, isophthalic acid hydrazide, p
Carboxylic acid hydrazides such as oxybenzoic acid dihydrazide and dicyandiamide.
本発明に用いるエポキシ樹脂は常温で液状のものである
のに限定しているが、常温で液状のものでないと銀粉と
の混練において溶剤を必要とする。溶剤は気泡発生の原
因となり、高温短時間の速硬化性を要求される用途には
使用できない。The epoxy resin used in the present invention is limited to one which is liquid at room temperature, but a solvent is required for kneading with silver powder unless it is liquid at room temperature. The solvent causes bubbles and cannot be used in applications requiring fast curing at high temperature for a short time.
また、エポキシ樹脂に含まれる加水分解性塩素量を500p
pm以下に限定しているが、この様なエポキシ樹脂を用い
ることにより絶縁ペーストから抽出(プレッシャクッ
カ)される塩素の量を大巾に低減することができる。抽
出された塩素は半導体素子表面のアルミ配線腐食をひき
おこす原因となるため、抽出量が少なければそれだけ信
頼性が高くなる。In addition, the amount of hydrolyzable chlorine contained in the epoxy resin is 500 p
Although limited to pm or less, the amount of chlorine extracted (pressure cooker) from the insulating paste can be significantly reduced by using such an epoxy resin. The extracted chlorine causes corrosion of aluminum wiring on the surface of the semiconductor element, so the smaller the amount of extracted chlorine, the higher the reliability.
加水分解性塩素含有量の測定は以下の様にして行なう。
即ち、エポキシ樹脂0.5gをジオキサン30mlに完全に溶解
させ、これに1N-KOH液(エタノール溶液)5mlを加え、3
0分間煮沸還流する。これに80%アセトン水100ml加え、
さらにConc.HNO32ml加えて、0.01NAgNO3水溶液で電位差
滴定を行なう。The content of hydrolyzable chlorine is measured as follows.
That is, 0.5 g of epoxy resin was completely dissolved in 30 ml of dioxane, and 5 ml of 1N-KOH solution (ethanol solution) was added to
Boil to reflux for 0 minutes. To this, add 100 ml of 80% acetone water,
Further, 2 ml of Conc.HNO 3 is added, and potentiometric titration is performed with 0.01 NAgNO 3 aqueous solution.
本発明に用いるエポキシ樹脂としては、例えばビスフェ
ノールA、ビスフェノールF、フェノールノボラックと
エピクロルヒドリンとの反応で得られるジグリシジルエ
ーテルで常温で液状のものビニルシクロヘキセンジオキ
シド、ジシクロペンタジエンジオキシド、アリサイクリ
ックジエポキシ−アジペイトの様な脂環式エポキシ、更
にはn−ブチルグリシジルエーテル、パーサティック酸
グリシジルエステル、スチレンオキサイド、フェニルグ
リシジルエーテル、クレジルグリシジルエーテル、ジシ
クロペンタジエンジエポキシドのような通常エポキシ樹
脂の希釈剤として用いられるものがある。As the epoxy resin used in the present invention, for example, bisphenol A, bisphenol F, diglycidyl ether obtained by the reaction of phenol novolac and epichlorohydrin, which is liquid at room temperature, vinylcyclohexene dioxide, dicyclopentadiene dioxide, alicyclic diether Dilution of cycloaliphatic epoxies such as epoxy-adipate, as well as conventional epoxy resins such as n-butyl glycidyl ether, persatic acid glycidyl ester, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, dicyclopentadiene diepoxide. Some are used as agents.
更に、上記エポキシ樹脂のうち沸点が250℃以上のもの
は非常に有用である。なぜならこれ等用いた樹脂ペース
トは、樹脂の揮発性が少ないため、連続使用しても粘度
の変化が少ないためである。Further, among the above epoxy resins, those having a boiling point of 250 ° C. or higher are very useful. This is because the resin pastes used in these materials have a low volatility of the resin, and therefore the viscosity does not change much even if they are continuously used.
本発明において絶縁樹脂ペースト中のシリカ充填配合量
を5〜30重量%に限定しているが5重量%より少ないと
超微粒子シリカを配合してあるとはいえ、粘度、揺変度
が小さくなり、ディスペンサーからのペーストのたれ
や、あるいはブリード等を起こしてしまう。一方30重量
%より多いとシリカ充填剤の表面に存在する気泡が多く
なり、本発明の効果がなくなってしまう。In the present invention, the amount of silica filling in the insulating resin paste is limited to 5 to 30% by weight, but if it is less than 5% by weight, the viscosity and the thixotropy become small even though ultrafine particle silica is incorporated. , The dripping of the paste from the dispenser or bleeding will occur. On the other hand, if it is more than 30% by weight, the bubbles present on the surface of the silica filler will increase, and the effect of the present invention will be lost.
更に本発明においては必要により硬化促進剤、顔料、染
料、消泡剤等を添加して用いることもできる。Further, in the present invention, a curing accelerator, a pigment, a dye, a defoaming agent, etc. may be added and used as necessary.
以上述べた様に本発明による半導体用絶縁樹脂ペースト
は硬化時気泡の発生が極めて少ないため、従来、半導体
素子と外部電極との接合において、しばしば発生した、
半導体素子の傾き、あるいは剥がれがなくなり、接合の
信頼性を大巾に向上させることができる。また含有加水
分解性塩素量も極めて少ないことから半導体素子表面の
アルミ配線の腐食は起こりにくく信頼性を向上させるこ
とができる。As described above, since the insulating resin paste for a semiconductor according to the present invention has very few bubbles during curing, it has been often generated in the conventional bonding of the semiconductor element and the external electrode.
The inclination or peeling of the semiconductor element is eliminated, and the reliability of bonding can be greatly improved. Further, since the content of hydrolyzable chlorine contained is extremely small, corrosion of the aluminum wiring on the surface of the semiconductor element hardly occurs and reliability can be improved.
〔実施例1〜実施例4〕 篩別により調整した最大粒径が50μm以下で、平均粒径
が3μmのシリカ粉末(以下シリカA)と平均粒径0.01
μmの超微粒子シリカ粉末(以下シリカB)と、ビスフ
ェノールAとエピクロルヒドリンとの反応により得られ
るジグリシジルエーテル(加水分解性塩素含有量380pp
m、エポキシ当量180で常温で液状、以下エポキシ樹脂
A)とフェノールノボラック及び潜在性アミン化合物と
してアジピン酸ヒドラジドとを第1表の割合で配合し三
本ロールで混練し、絶縁樹脂ペーストを得た。[Examples 1 to 4] Silica powder having a maximum particle size adjusted by sieving of 50 μm or less and an average particle size of 3 μm (hereinafter referred to as silica A) and an average particle size of 0.01
Diglycidyl ether (hydrolyzable chlorine content 380 pp obtained by reacting ultrafine silica powder of μm (hereinafter referred to as silica B) with bisphenol A and epichlorohydrin
m, epoxy equivalent 180, liquid at normal temperature, hereinafter epoxy resin A), phenol novolac and adipic acid hydrazide as latent amine compound were mixed in the proportions shown in Table 1 and kneaded with a three-roll to obtain an insulating resin paste. .
この絶縁樹脂ペーストを真空チャンバーにて2mmHgで30
分間脱泡した後、リードフレーム上にディスペンサーで
塗布し、3×3mm角の大きさの半導体素子をマウントし
た。しかる後300℃の熱盤上で60秒間のせて硬化させ、
半導体素子の傾き、剥がれ数及び気泡の発生状況を調
べ、更に300℃の熱盤上で半導体素子をテンションゲー
ジではじき、熱時の接着強度を測定した。次に、リード
フレーム上にペーストを塗布し、30分間放置してブリー
ドの状態を調べた。また200℃のオーブン中でペースト
を硬化させ硬化物の体積抵抗率及びプレッシャークッカ
処理(125℃、20時間)により抽出された塩素量を測定
した。結果を第1表に示す。This insulating resin paste is 30 at 2 mmHg in a vacuum chamber.
After defoaming for a minute, the lead frame was coated with a dispenser, and a semiconductor element of 3 × 3 mm square was mounted. Then, put on a hot plate at 300 ℃ for 60 seconds to cure,
The inclination of the semiconductor element, the number of peelings, and the occurrence of bubbles were examined, and the semiconductor element was repelled with a tension gauge on a heating plate at 300 ° C. to measure the adhesive strength during heating. Next, the paste was applied onto the lead frame and left for 30 minutes to examine the state of the bleed. Also, the paste was cured in an oven at 200 ° C, and the volume resistivity of the cured product and the amount of chlorine extracted by pressure cooker treatment (125 ° C, 20 hours) were measured. The results are shown in Table 1.
〔比較例1〜比較例3〕 第1表に示す配合割合で実施例と全く同様にして絶縁樹
脂ペーストを得た。評価結果を第1表に示す。[Comparative Examples 1 to 3] Insulating resin pastes were obtained in exactly the same manner as in the examples with the compounding ratios shown in Table 1. The evaluation results are shown in Table 1.
〔比較例4〕 エポキシ樹脂として、ビスフェノールAとエピクロルヒ
ドリンとの反応により得られるジグリシジルエーテル
(加水分解性塩素含有量950ppm、エポキシ当量180で常
温で液状、以下エポキシ樹脂B)を用いる以外は実施例
1と全く同様の絶縁ペーストを得た。評価結果を第1表
に示す。[Comparative Example 4] Example 4 except that diglycidyl ether (hydrolyzable chlorine content 950 ppm, epoxy equivalent 180, liquid at room temperature, hereinafter epoxy resin B) obtained by reaction of bisphenol A and epichlorohydrin is used as an epoxy resin. The same insulating paste as in 1 was obtained. The evaluation results are shown in Table 1.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/52 E 7376−4M H05K 3/32 B 7128−4E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location H01L 21/52 E 7376-4M H05K 3/32 B 7128-4E
Claims (1)
〜5μmのシリカ粉末と、平均粒径が0.005〜0.02μm
の超微粒子シリカ粉末との混合物であって、平均粒径2
〜5μmのシリカ粉末を60〜85重量%含むシリカ充填
剤、 (B)フェノールノボラック、 (C)潜在性アミン化合物、 (D)常温で液状で加水分解性塩素含有量が500ppm以下
であるエポキシ樹脂、 よりなる組成物で、シリカ充填剤配合量が5〜30重量%
を含有することを特徴とする半導体用絶縁樹脂ペース
ト。1. (A) The maximum particle size is 50 μm or less and the average particle size is 2
~ 5μm silica powder and average particle size 0.005 ~ 0.02μm
Which is a mixture with the ultrafine silica powder of
Silica filler containing 60 to 85% by weight of silica powder of ˜5 μm, (B) phenol novolac, (C) latent amine compound, (D) liquid epoxy resin having a hydrolyzable chlorine content of 500 ppm or less at room temperature And a silica filler content of 5 to 30% by weight.
An insulating resin paste for semiconductors containing:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61305235A JPH0676474B2 (en) | 1986-12-23 | 1986-12-23 | Insulating resin paste for semiconductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61305235A JPH0676474B2 (en) | 1986-12-23 | 1986-12-23 | Insulating resin paste for semiconductors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63159422A JPS63159422A (en) | 1988-07-02 |
JPH0676474B2 true JPH0676474B2 (en) | 1994-09-28 |
Family
ID=17942656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61305235A Expired - Fee Related JPH0676474B2 (en) | 1986-12-23 | 1986-12-23 | Insulating resin paste for semiconductors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0676474B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999020090A1 (en) * | 1997-10-14 | 1999-04-22 | Ibiden Co., Ltd. | Multilayer printed wiring board and its manufacturing method, and resin composition for filling through-hole |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07100766B2 (en) * | 1987-06-25 | 1995-11-01 | ソマール株式会社 | Epoxy resin powder coating composition |
JP2596995B2 (en) * | 1988-12-21 | 1997-04-02 | シャープ株式会社 | Method for manufacturing semiconductor device |
JPH0724270B2 (en) * | 1989-12-14 | 1995-03-15 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
JP2641349B2 (en) * | 1991-05-07 | 1997-08-13 | 住友ベークライト株式会社 | Insulating resin paste |
JP2012062422A (en) * | 2010-09-17 | 2012-03-29 | Sekisui Chem Co Ltd | Resin composition and molded body |
JP6228412B2 (en) * | 2013-09-18 | 2017-11-08 | エスアイアイ・セミコンダクタ株式会社 | Semiconductor device |
TW202006034A (en) * | 2018-06-21 | 2020-02-01 | 日商日立化成股份有限公司 | Thermosetting resin composition, prepreg, laminated sheet, printed-wiring board and semiconductor package, and method for producing thermosetting resin composition |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS554952A (en) * | 1978-06-28 | 1980-01-14 | Toshiba Corp | Semiconductor device |
JPS5659837A (en) * | 1979-09-28 | 1981-05-23 | Hitachi Chem Co Ltd | Epoxy resin composition |
JPS604522A (en) * | 1983-06-23 | 1985-01-11 | Sumitomo Bakelite Co Ltd | Electrical insulating resin paste |
JPS604521A (en) * | 1983-06-23 | 1985-01-11 | Sumitomo Bakelite Co Ltd | Electrical insulating resin paste |
JPS61204257A (en) * | 1985-03-08 | 1986-09-10 | Sumitomo Bakelite Co Ltd | Epoxy resin composition for sealing semiconductor |
-
1986
- 1986-12-23 JP JP61305235A patent/JPH0676474B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999020090A1 (en) * | 1997-10-14 | 1999-04-22 | Ibiden Co., Ltd. | Multilayer printed wiring board and its manufacturing method, and resin composition for filling through-hole |
CN100418390C (en) * | 1997-10-14 | 2008-09-10 | 揖斐电株式会社 | Multilayer printed circuit board and its producing method,filling resin composition for through hole |
Also Published As
Publication number | Publication date |
---|---|
JPS63159422A (en) | 1988-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3189988B2 (en) | Insulating resin paste | |
US4942190A (en) | Thermosetting insulating resin paste | |
JPH0676474B2 (en) | Insulating resin paste for semiconductors | |
JPH07126489A (en) | Electrically conductive resin paste | |
JP3254626B2 (en) | Conductive resin paste and semiconductor device using the same | |
JP3178309B2 (en) | Conductive epoxy resin composition | |
JPH0511365B2 (en) | ||
JPH0567670B2 (en) | ||
JP2002097254A (en) | Epoxy resin composition and semiconductor device | |
JP3526183B2 (en) | Conductive resin paste and semiconductor device manufactured using the same | |
JPH0669257A (en) | Adhesive for semiconductor element and semiconductor device | |
JP2002284889A (en) | Manufacturing method of resin paste for semiconductor, resin paste for semiconductor and semiconductor device | |
JP3254625B2 (en) | Conductive resin paste and semiconductor device using the same | |
JPH04303937A (en) | Conductive resin paste for semiconductor | |
JP3259501B2 (en) | Conductive resin paste composition and semiconductor device | |
JP2003147316A (en) | Adhesive resin paste composition and semiconductor device using the same | |
JP2596663B2 (en) | Conductive resin paste for semiconductors | |
JP3608908B2 (en) | Resin paste for semiconductor | |
JP2716635B2 (en) | Conductive resin paste | |
JP3250793B2 (en) | Conductive resin paste and semiconductor device using the same | |
JPH06196513A (en) | Adhesive and semiconductor device | |
JP2002134530A (en) | Resin paste for semiconductor, manufacturing method thereof, and semiconductor device | |
JPH09194813A (en) | Conductive resin paste composition and semiconductor device | |
JPH07258618A (en) | Electrically conductive resin paste | |
JP2000080149A (en) | Resin paste for semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |