JPH0790238A - Electrically conductive resin paste - Google Patents

Electrically conductive resin paste

Info

Publication number
JPH0790238A
JPH0790238A JP5239284A JP23928493A JPH0790238A JP H0790238 A JPH0790238 A JP H0790238A JP 5239284 A JP5239284 A JP 5239284A JP 23928493 A JP23928493 A JP 23928493A JP H0790238 A JPH0790238 A JP H0790238A
Authority
JP
Japan
Prior art keywords
conductive resin
resin paste
epoxy compound
electrically conductive
silver powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5239284A
Other languages
Japanese (ja)
Inventor
Hikari Okubo
光 大久保
Michio Kobayashi
道雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP5239284A priority Critical patent/JPH0790238A/en
Publication of JPH0790238A publication Critical patent/JPH0790238A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To provide an electrically conductive resin paste composed of silver powder, a specific epoxy compound and a curing agent at specific ratios, having excellent coating workability and low water-absorption, providing a cured product having low elastic modulus and free from cracking and useful for bonding a semiconductor element to a metal frame, etc. CONSTITUTION:This electrically conductive resin paste contains, as essential components, (A) 60-85wt.% of silver powder, (B) 3-20wt.% of an epoxy compound having naphthalene skeleton and expressed by the formula I (R1 and R2 are group of the formula II or H and at least one of R1 and R2 is group of the formula II; (n) is 0 or 1), e.g. 1,6-dihydroxynaphthalene diglycidyl ether and (C) a curing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はIC、LSI等の半導体
素子を金属フレーム等に接着する導電性樹脂ペーストに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive resin paste for adhering semiconductor elements such as IC and LSI to a metal frame or the like.

【0002】[0002]

【従来の技術】近年のエレクトロニクス産業の著しい発
展に伴い、トランジスタ,IC、LSI、超LSIと半
導体素子における回路の集積度は急激に増大している。
このため、半導体素子の大きさも、従来長辺が数mm程
度だったものが10数mmと飛躍的に増大している。ま
た、リードフレームも従来の42合金から熱伝導性も良
く安価である銅材が主流となりつつある。一方、半導体
製品の実装方法は表面実装法に、しかも高密度実装化の
ため半導体製品自体の大きさは小さく、かつ薄くなって
きている。このような半導体製品の動向に従い、半導体
製品の構成材料に対する要求性能も変化してきており、
半導体素子と金属フレームを接合するダイボンディング
用導電性樹脂ペーストに対しても、従来求められていた
接合の信頼性のみならず、大型チップと銅フレームの熱
膨張率の差に基づく熱応力を吸収緩和する応力緩和特
性、更に薄型パッケージでの表面実装に基づく耐半田ク
ラック特性が要求され始めている。
2. Description of the Related Art With the remarkable development of the electronics industry in recent years, the degree of integration of circuits in transistors, ICs, LSIs, VLSIs and semiconductor devices has been rapidly increasing.
For this reason, the size of the semiconductor element, which has been conventionally about several mm on the long side, has been dramatically increased to about 10 mm. Further, as the lead frame, a copper material, which has good thermal conductivity and is inexpensive, is becoming the mainstream from the conventional 42 alloy. On the other hand, the semiconductor product mounting method is a surface mounting method, and the size of the semiconductor product itself is becoming smaller and thinner due to high-density mounting. In accordance with such trends in semiconductor products, the performance requirements for the constituent materials of semiconductor products are changing,
For the conductive resin paste for die bonding that joins the semiconductor element and the metal frame, not only the reliability of joining that has been conventionally required but also the thermal stress due to the difference in the coefficient of thermal expansion between the large chip and the copper frame is absorbed. Stress relaxation characteristics to relax, and solder crack resistance characteristics based on surface mounting in thin packages are beginning to be required.

【0003】ここで、応力緩和特性は半導体素子の材料
であるシリコン等の線熱膨張係数が3×10-6/℃であ
るのに対し、銅フレームの線熱膨張係数は20×10-6
/℃で一桁大きいため、ダイボンディング用導電性樹脂
ペーストの加熱硬化後の冷却過程において銅フレームの
方がシリコンチップより大きな割合で収縮することによ
り、チップの反り、ひいてはチップクラックあるいはダ
イボンディング用導電性樹脂ペーストの剥離等を引き起
こし,IC、LSI等の半導体製品の特性不良の一因な
る可能性がある。このような熱応力を吸収緩和するため
にダイボンディング用導電性樹脂ペーストを低弾性率に
する必要があるが、従来のエポキシ系ダイボンディング
用導電性樹脂ペーストでは、熱硬化性樹脂であるため三
次元架橋し弾性率が高くなり、大型チップと銅フレーム
との熱膨張率の差に基づく歪を吸収するに至らなかっ
た。一方線状高分子タイプのポリイミド樹脂系ダイボン
ディング用導電性樹脂ペーストではエポキシ系ダイボン
ディング用導電性樹脂ペーストに比べ硬化物の弾性率は
小さく、チップの反りは改良される。しかしポリイミド
樹脂をダイボンディング用導電性樹脂ペーストとして用
いる場合には、塗布作業性の点からN−メチル−2−ピ
ロリドン,N,N−ジメチルホルムアミド等の多量の極
性溶剤に溶解して粘度を調整しなければならない。この
ときの溶剤量はダイボンディング用樹脂ペーストの30
重量%にもなり、半導体素子と金属フレームの接着に用
いた場合、硬化加熱時の溶剤の抜け跡として硬化物中に
ボイドが発生し、接着強度、熱伝導性及び導電性の低下
の原因となり信頼性の面から好ましくない。
Here, regarding the stress relaxation characteristic, the linear thermal expansion coefficient of silicon, which is the material of the semiconductor element, is 3 × 10 −6 / ° C., whereas the linear thermal expansion coefficient of the copper frame is 20 × 10 −6.
Since the copper frame shrinks at a rate larger than that of silicon chips in the cooling process after heating and hardening the conductive resin paste for die bonding, chip warpage, and eventually chip cracking or die bonding This may cause peeling of the conductive resin paste or the like, which may be a cause of defective characteristics of semiconductor products such as IC and LSI. In order to absorb and relax such thermal stress, the conductive resin paste for die bonding needs to have a low elastic modulus, but the conventional epoxy-based conductive resin paste for die bonding is a thermosetting resin so The original cross-linking resulted in a higher elastic modulus, and the strain due to the difference in the coefficient of thermal expansion between the large chip and the copper frame could not be absorbed. On the other hand, the linear polymer type polyimide resin-based conductive resin paste for die-bonding has a smaller elastic modulus of the cured product than the epoxy-based conductive resin paste for die-bonding, and chip warpage is improved. However, when the polyimide resin is used as a conductive resin paste for die bonding, the viscosity is adjusted by dissolving it in a large amount of polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, etc. from the viewpoint of coating workability. Must. The amount of solvent at this time is 30% of the resin paste for die bonding.
When it is used for adhesion of semiconductor element and metal frame, voids are generated in the cured product as traces of solvent escaped during curing and heating, which causes decrease in adhesive strength, thermal conductivity and conductivity. It is not preferable in terms of reliability.

【0004】また、表面実装あるいは高密度実装を目的
としたパッケージサイズの小型化、薄型化に基づく実装
時の熱ストレスの急激な増加により半導体封止材だけで
なくダイボンディング用導電性樹脂ペーストにも耐リフ
ロークラック性が要求されてきている。ダイボンディン
グ用導電性樹脂ペーストの耐リフロークラック性は、半
田リフロー時のストレスを緩和吸収するために、リフロ
ー温度付近で低弾性率であるとともに、半田リフローの
前処理段階での吸水率が小さく、かつ吸水後でも充分な
接合強度を示すことが必要であるがエポキシ及びポリイ
ミド樹脂ペーストを含めてこれらの特性を満足するもの
はなかった。
Further, due to a rapid increase in thermal stress at the time of mounting due to the miniaturization and thinning of the package size for surface mounting or high density mounting, not only the semiconductor sealing material but also the conductive resin paste for die bonding is used. Also, reflow crack resistance is required. The reflow crack resistance of the conductive resin paste for die bonding has a low elastic modulus near the reflow temperature in order to absorb and absorb stress during solder reflow, and a small water absorption rate in the pretreatment stage of solder reflow. In addition, it is necessary to show sufficient bonding strength even after absorbing water, but none of them including epoxy and polyimide resin paste satisfies these characteristics.

【0005】[0005]

【発明が解決しようとする課題】本発明はIC等の大型
チップと銅フレームとの組み合わせでもチップクラック
やチップの反りによるIC等の特性不良が生じず、かつ
薄型パッケージでの半田リフロークラックが発生しない
高信頼性の導電性樹脂ペーストを提供するものである。
SUMMARY OF THE INVENTION According to the present invention, even when a large chip such as an IC and a copper frame are combined, a chip crack or a characteristic defect of the IC due to the warp of the chip does not occur, and a solder reflow crack occurs in a thin package. Not to provide a highly reliable conductive resin paste.

【0006】[0006]

【課題を解決するための手段】本発明は(A)銀粉、
(B)下記式(1)で示されるナフタレン骨格を有する
エポキシ化合物、(C)硬化剤を必須成分とし、全導電
性樹脂ペースト中の銀粉が60〜85重量%、ナフタレ
ン骨格を有するエポキシ化合物が3〜20重量%である
導電性樹脂ペーストであり、
The present invention provides (A) silver powder,
(B) An epoxy compound having a naphthalene skeleton represented by the following formula (1), a curing agent (C) as an essential component, 60 to 85% by weight of silver powder in the total conductive resin paste, and an epoxy compound having a naphthalene skeleton. 3 to 20% by weight of a conductive resin paste,

【0007】[0007]

【化2】 [Chemical 2]

【0008】塗布作業性が良好でかつ主剤であるエポキ
シ化合物中にナフタレン骨格を導入することにより硬化
物の架橋密度が低下し、低弾性率となるためIC、LS
I等の大型チップと銅フレームの組み合わせでも熱膨張
率の差に基づく歪を吸収し応力緩和特性に優れるもので
ある。更に、硬化物は高温での弾性率が低く、かつ非極
性のナフタレン環の導入により吸水率が低く、しかも吸
水による接着強度の低下の小さい耐リフロークラック性
に優れるものである。
By introducing a naphthalene skeleton into the epoxy compound, which has good coating workability and is the main component, the crosslink density of the cured product decreases and the elastic modulus becomes low, so IC and LS
Even a combination of a large chip such as I and a copper frame absorbs strain due to the difference in coefficient of thermal expansion and has excellent stress relaxation characteristics. Further, the cured product has a low elastic modulus at high temperature, a low water absorption rate due to the introduction of a non-polar naphthalene ring, and an excellent reflow crack resistance with a small decrease in adhesive strength due to water absorption.

【0009】本発明に用いる銀粉は用いる分野が電子電
気分野のためハロゲンイオン、アルカリ金属イオン等の
イオン性不純物量が10ppm以下であることが望まし
い。また形状としてはフレーク状、樹脂状あるいは球状
のものを単独あるいは混合して用いることができる。更
に粒径に関しては通常平均粒径が2〜10μm、最大粒
径は50μm以下程度のものが好ましく、比較的細かい
銀粉と粗い銀粉を混合して用いてもよい。銀粉量が60
重量%未満だと硬化物の電気伝導性が低下し、85重量
%を越えると樹脂ペーストの粘度が高くなり過ぎ、塗布
作業性の低下の原因となるので好ましくない。
Since the silver powder used in the present invention is used in electronic and electrical fields, it is desirable that the amount of ionic impurities such as halogen ions and alkali metal ions be 10 ppm or less. Further, as the shape, a flake shape, a resin shape, or a spherical shape can be used alone or in combination. Further, regarding the particle size, it is usually preferable that the average particle size is 2 to 10 μm and the maximum particle size is about 50 μm or less, and relatively fine silver powder and coarse silver powder may be mixed and used. 60 silver powder
If it is less than 5% by weight, the electrical conductivity of the cured product will decrease, and if it exceeds 85% by weight, the viscosity of the resin paste will be too high, and this will cause deterioration of coating workability, which is not preferable.

【0010】本発明で用いる式(1)で示されるナフタ
レン骨格を有するエポキシ化合物は、非極性のナフタレ
ン環の導入により架橋点間の距離が長くなり、硬化物の
弾性率が低くなるとともに、高温での低弾性率化が図
れ、更に吸水率が低く、しかも吸水による接着強度の低
下が小さいという特徴がある。ここで、nは0又は1で
あり、2以上だと導電性樹脂の粘度が高くなり過ぎるた
め好ましくない。R1、R2はグリシジルエーテル基、又
は水素であり、少なくとも一方はグリシジルエーテル基
である。式(1)で示されるナフタレン骨格を有するエ
ポキシ化合物の中で、好ましいのは1,6−ジヒドロキ
シナフタレンジグリシジルエーテルである。ナフタレン
骨格を有するエポキシ化合物は、全導電性樹脂ペースト
中3〜20重量%含まれる。3重量%未満だとナフタレ
ン骨格を有するエポキシ化合物の効果が充分に現れず、
20重量%を越えるとナフタレン骨格を有するエポキシ
化合物自体が高粘度のため導電性樹脂ペーストの粘度が
高くなり過ぎ塗布作業性の低下をきたす。
The epoxy compound having a naphthalene skeleton represented by the formula (1) used in the present invention has a long distance between cross-linking points due to the introduction of a non-polar naphthalene ring, resulting in a low elastic modulus of a cured product and a high temperature. It has the characteristics that the elastic modulus can be lowered, the water absorption rate is low, and the decrease in adhesive strength due to water absorption is small. Here, n is 0 or 1, and if n is 2 or more, the viscosity of the conductive resin becomes too high, which is not preferable. R 1 and R 2 are glycidyl ether groups or hydrogen, and at least one of them is a glycidyl ether group. Among the epoxy compounds having a naphthalene skeleton represented by the formula (1), 1,6-dihydroxynaphthalene diglycidyl ether is preferable. The epoxy compound having a naphthalene skeleton is contained in the total conductive resin paste in an amount of 3 to 20% by weight. If it is less than 3% by weight, the effect of the epoxy compound having a naphthalene skeleton is not sufficiently exhibited,
If it exceeds 20% by weight, the epoxy compound itself having a naphthalene skeleton has a high viscosity, so that the viscosity of the conductive resin paste becomes too high and the coating workability deteriorates.

【0011】また本発明ではナフタレン骨格を有するエ
ポキシ化合物の他に、必要により以下に示すような通常
のエポキシ樹脂との併用も可能である。併用可能なエポ
キシ樹脂としては、例えばビスフェノールA、ビスフェ
ノールF、フェノールノボラック樹脂、クレゾールノボ
ラック樹脂類とエピクロルヒドリンとの反応により得ら
れるポリグリシジルエーテル、ブタンジオールジグリシ
ジルエーテル、ネオペンチルグリコールジグリシジルエ
ーテル等の脂肪族エポキシ、ジグリシジルヒダントイン
等の複素環式エポキシ、ビニルシクロヘキセンジオキサ
イド、ジシクロペンタジエンジオキサイド、アリサイク
リックジエポキシ−アジペイトのような脂環式エポキ
シ、更にn−ブチルグリシジルエーテル、バーサティッ
ク酸グリシジルエステル、スチレンオサイド、エチルヘ
キシルグリシジルエーテル、フェニルグリシジルエーテ
ル、クレジルグリシジルエーテル、ブチルフェニルグリ
シジルエーテル等のような通常のエポキシ樹脂の希釈剤
として用いられるものがあり、これらは単独あるいは混
合しても併用可能である。
Further, in the present invention, in addition to the epoxy compound having a naphthalene skeleton, it can be used in combination with a usual epoxy resin as described below, if necessary. Examples of the epoxy resin that can be used in combination include fatty acids such as bisphenol A, bisphenol F, phenol novolac resin, polyglycidyl ether obtained by reacting cresol novolac resins with epichlorohydrin, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether. Group epoxies, heterocyclic epoxies such as diglycidyl hydantoin, vinyl cyclohexene dioxide, dicyclopentadiene dioxide, alicyclic epoxies such as alicyclic diepoxy-adipate, and n-butyl glycidyl ether, glycidyl versatic acid Ester, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, butyl phenyl glycidyl There are those generally used as diluents in epoxy resins such as ethers, it also alone or in combination can be used in combination.

【0012】更に、本発明ではフェノールノボラック樹
脂類、ポリアミド、芳香族あるいは脂肪族ポリアミン、
ジシアンジアミド、ジヒドラジン類、マレオニトリル誘
導体等の潜在性アミン化合物、イミダゾール誘導体等の
通常のエポキシ樹脂の硬化剤、3級アミン類、トリフェ
ニルホスフィン、テトラフェニルホスフィンテトラフェ
ニルボレート等といった通常の硬化促進剤を単独あるい
は混合しても使用可能である。本発明においては必要に
応じ可撓性付与剤、消泡剤、カップリング剤等を用いる
こともできる。本発明の製造方法には、例えば各成分を
予備混合した後、三本ロールを用いて混練し、混練後真
空下脱泡し樹脂ペーストを得る等がある。
Further, in the present invention, phenol novolac resins, polyamides, aromatic or aliphatic polyamines,
Latent amine compounds such as dicyandiamide, dihydrazines and maleonitrile derivatives, ordinary epoxy resin curing agents such as imidazole derivatives, and ordinary curing accelerators such as tertiary amines, triphenylphosphine and tetraphenylphosphine tetraphenylborate. They can be used alone or as a mixture. In the present invention, a flexibility-imparting agent, a defoaming agent, a coupling agent and the like can be used if necessary. The production method of the present invention includes, for example, premixing the respective components, kneading using a three-roll mill, and degassing under vacuum after kneading to obtain a resin paste.

【0013】以下実施例を用いて本発明を具体的に説明
する。なお配合割合は重量部である。 実施例1〜4 粒径1〜30μmで、平均粒径3μmのフレーク状銀粉
と1,6−ジヒドロキシナフタレンジグリシジルエーテ
ル(エポキシ当量141、常温で液状、以下ナフタレン
エポキシA)、ビスフェノールAとエピクロルヒドリン
との反応により得られるジグリシジルビスフェノールA
(エポキシ当量180、常温で液体、以下ビスAエポキ
シ)、クレジルグリシジルエーテル(エポキシ当量18
5)、フェノールノボラック樹脂(水酸基当量104、
軟化点85℃)、ジシアンジアミド、ジアザビシクロウ
ンデセンを表1に示す割合で配合し、3本ロールで混練
して導電性樹脂ペーストを得た。この導電性樹脂ペース
トを真空チャンバーにて、2mmHgで30分間脱泡し
た後、以下の方法により各種性能を評価した。
The present invention will be specifically described below with reference to examples. The mixing ratio is parts by weight. Examples 1 to 4 Flake silver powder having a particle size of 1 to 30 μm and an average particle size of 3 μm, 1,6-dihydroxynaphthalene diglycidyl ether (epoxy equivalent 141, liquid at room temperature, hereinafter naphthalene epoxy A), bisphenol A and epichlorohydrin. Diglycidyl bisphenol A obtained by the reaction of
(Epoxy equivalent 180, liquid at room temperature, hereinafter bis A epoxy), cresyl glycidyl ether (epoxy equivalent 18
5), phenol novolac resin (hydroxyl group equivalent 104,
(Softening point 85 ° C.), dicyandiamide, and diazabicycloundecene were mixed in the proportions shown in Table 1, and kneaded with a three-roll to obtain a conductive resin paste. After defoaming this conductive resin paste in a vacuum chamber at 2 mmHg for 30 minutes, various performances were evaluated by the following methods.

【0014】粘度 :E型粘度計(3°コーン)
を用い25℃、2.5rpmでの値を測定し粘度とし
た。 糸引き性 :導電性樹脂ペーストの中へ直径1mmφ
のピンを深さ5mmまで入れ、ピンを300mm/分の
速度で引き上げ、ペーストが切れたときの高さを測定し
た。 体積抵抗率 :スライドガラス上にペーストを幅4m
m、厚さ30μmに塗布し、200℃オーブン中で60
分間硬化した後硬化物の体積抵抗率を測定した。 弾性率 :テフロンシート上にペーストを幅10m
m、長さ約150mm、厚さ0.1mmに塗布し、20
0℃オーブン中60分間硬化した後、引張り試験機で試
験長100mm、引張り速度1mm/分にて測定し得ら
れた応力−ひずみ曲線の初期勾配より弾性率を算出し
た。 吸水率 :テフロンシート上にペーストを50×5
0×0.1mmになるように塗布し200℃オーブン中
60分間硬化した後、85℃、85%、72時間吸水処
理を行い、処理前後の重量変化より吸水率を算出した。 接着強度 :5×5mmのシリコンチップをペースト
を用いて銅フレームにマウントし200℃オーブン中6
0分間硬化した。硬化後プッシュプルゲージを用い24
0℃での熱時ダイシェア強度を測定した。また硬化後の
サンプルを85℃、85%、72時間吸水処理し、24
0℃での熱時ダイシェア強度を測定した。 耐パッケージクラック性:シリカフィラーを約78%含
有するビフェノール型エポキシ/フェノールノボラック
系の封止材料を用い下記の条件で成形したパッケージを
85℃、85%、168時間吸水処理した後,IRリフ
ロー(240℃、10秒)にかけ、断面観察により内部
クラックの数を測定し耐パッケージクラック性の指標と
した。 パッケージ : 80pQFP(14×20×
2mmt) チップサイズ : 7.5×7.5mm(アルミ
配線のみ) リードフレーム : 42アロイ 成形 : 175℃、2分 ポストモールドキュア: 175℃、4時間
Viscosity: E type viscometer (3 ° cone)
Was measured at 25 ° C. and 2.5 rpm to obtain the viscosity. String pullability: Diameter of 1mmφ into conductive resin paste
Was inserted to a depth of 5 mm, the pin was pulled up at a speed of 300 mm / min, and the height when the paste was broken was measured. Volume resistivity: 4m width paste on slide glass
m, thickness of 30 μm, and 60 in 200 ° C oven
After curing for a minute, the volume resistivity of the cured product was measured. Elastic Modulus: Paste 10m wide on Teflon sheet
m, length about 150 mm, thickness 0.1 mm, 20
After curing in an oven at 0 ° C. for 60 minutes, the modulus of elasticity was calculated from the initial gradient of the stress-strain curve obtained by measuring with a tensile tester at a test length of 100 mm and a tensile speed of 1 mm / min. Water absorption: 50 × 5 paste on Teflon sheet
After coating so as to be 0 × 0.1 mm and curing in an oven at 200 ° C. for 60 minutes, water absorption treatment was performed at 85 ° C., 85% for 72 hours, and the water absorption rate was calculated from the weight change before and after the treatment. Adhesive strength: A 5 × 5 mm silicon chip was mounted on a copper frame using a paste and placed in an oven at 200 ° C. 6
Cured for 0 minutes. After curing using push-pull gauge 24
The die shear strength during heating at 0 ° C was measured. Also, the cured sample was subjected to water absorption treatment at 85 ° C, 85% for 72 hours, and then
The die shear strength during heating at 0 ° C was measured. Package crack resistance: A package molded under the following conditions using a biphenol type epoxy / phenol novolac-based encapsulating material containing about 78% silica filler is treated at 85 ° C., 85% for 168 hours for water absorption, and then subjected to IR reflow ( At 240 ° C. for 10 seconds, the number of internal cracks was measured by observing the cross section and used as an index of package crack resistance. Package: 80pQFP (14 x 20 x
2mmt) Chip size: 7.5 x 7.5mm (Aluminum wiring only) Lead frame: 42 Alloy molding: 175 ° C, 2 minutes Post mold cure: 175 ° C, 4 hours

【0015】実施例5 実施例1〜4の1,6−ジヒドロキシナフタレンジグリ
シジルエーテルに変えて、ジヒドロキシナフタレンの2
分子をメチレン基で結合した化合物をグリシジルエーテ
ル化した4官能のもの(エポキシ当量161、軟化点9
1℃、以下ナフタレンエポキシB)を用いた他は、実施
例1〜4と同様にして導電性樹脂ペーストを作製し評価
した。評価結果を表1に示す。 実施例6 硬化促進剤としてトリフェニルホスフィンを用いた他は
実施例1〜4と同様にして、導電性樹脂ペーストを作製
し評価した。評価結果を表1に示す。 実施例7 硬化剤として2−メチル−4−エチルイミダゾール(以
下2P4MZ)を用いた他は、実施例1〜4と同様にし
て導電性樹脂ペーストを作製し評価した。評価結果を表
1に示す。
Example 5 Instead of the 1,6-dihydroxynaphthalene diglycidyl ether of Examples 1 to 4, dihydroxynaphthalene 2 was used.
A tetrafunctional compound obtained by glycidyl etherification of a compound in which molecules are bound with a methylene group (epoxy equivalent 161, softening point 9
A conductive resin paste was prepared and evaluated in the same manner as in Examples 1 to 4 except that naphthalene epoxy B) was used at 1 ° C. The evaluation results are shown in Table 1. Example 6 A conductive resin paste was prepared and evaluated in the same manner as in Examples 1 to 4 except that triphenylphosphine was used as the curing accelerator. The evaluation results are shown in Table 1. Example 7 A conductive resin paste was prepared and evaluated in the same manner as in Examples 1 to 4 except that 2-methyl-4-ethylimidazole (hereinafter 2P4MZ) was used as a curing agent. The evaluation results are shown in Table 1.

【0016】比較例1〜4 表2に示す配合割合で実施例1と全く同様にして導電性
樹脂ペーストを作製した。評価結果を表2に示す。
Comparative Examples 1 to 4 A conductive resin paste was prepared in the same manner as in Example 1 with the compounding ratios shown in Table 2. The evaluation results are shown in Table 2.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明の導電性樹脂ペーストは、ディス
ペンス塗布時の作業性が良好で、また硬化物の弾性率が
低く、銅、42合金等の金属フレーム、セラミック基
板、ガラスエポキシ等の有機基板へのIC,LSI等の
半導体素子の接着に用いることができる。特に銅フレー
ムへの大型チップの接着に適しており、銅フレームとシ
リコンチップの熱膨張率の差に基づくIC、LSI等の
特性不良を防ぐことができ、更には硬化物の吸水率が低
く、吸水による接着強度の低下が少ないため薄型パッケ
ージに使用しても、半田処理時にクラックの発生しない
従来になかった高信頼性の半導体素子接着用の導電性樹
脂ペーストである。
EFFECTS OF THE INVENTION The conductive resin paste of the present invention has good workability during dispense application, has a low elastic modulus of the cured product, and has a metal frame made of copper, 42 alloy or the like, a ceramic substrate, an organic material such as glass epoxy. It can be used for bonding semiconductor elements such as IC and LSI to a substrate. It is especially suitable for bonding large chips to a copper frame, can prevent characteristic defects such as IC and LSI due to the difference in thermal expansion coefficient between the copper frame and the silicon chip, and further has a low water absorption of the cured product. This is a highly reliable conductive resin paste for bonding semiconductor elements, which has never existed before and does not cause cracks during soldering even when used in a thin package because the adhesive strength is less likely to drop due to water absorption.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)銀粉、(B)下記式(1)で示さ
れるナフタレン骨格を有するエポキシ化合物、(C)硬
化剤を必須成分とし、全導電性樹脂ペースト中の銀粉が
60〜85重量%、ナフタレン骨格を有するエポキシ化
合物が3〜20重量%であることを特徴とする導電性樹
脂ペースト。 【化1】
1. An (A) silver powder, (B) an epoxy compound having a naphthalene skeleton represented by the following formula (1), and (C) a curing agent as essential components, and the silver powder in the total conductive resin paste is 60 to 85. %, And an epoxy compound having a naphthalene skeleton is 3 to 20% by weight. [Chemical 1]
【請求項2】 ナフタレン骨格を有するエポキシ化合物
が1,6−ジヒドロキシナフタレンジグリシジルエーテ
ルであることを特徴とする請求項1記載の導電性樹脂ペ
ースト。
2. The conductive resin paste according to claim 1, wherein the epoxy compound having a naphthalene skeleton is 1,6-dihydroxynaphthalene diglycidyl ether.
JP5239284A 1993-09-27 1993-09-27 Electrically conductive resin paste Pending JPH0790238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239284A JPH0790238A (en) 1993-09-27 1993-09-27 Electrically conductive resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239284A JPH0790238A (en) 1993-09-27 1993-09-27 Electrically conductive resin paste

Publications (1)

Publication Number Publication Date
JPH0790238A true JPH0790238A (en) 1995-04-04

Family

ID=17042460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239284A Pending JPH0790238A (en) 1993-09-27 1993-09-27 Electrically conductive resin paste

Country Status (1)

Country Link
JP (1) JPH0790238A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790239A (en) * 1993-09-27 1995-04-04 Sumitomo Bakelite Co Ltd Electrically conductive resin paste
JP2000319622A (en) * 1999-05-14 2000-11-21 Denso Corp Electrically conductive adhesive and circuit board using this as material for connecting components
JP2006505674A (en) * 2002-11-05 2006-02-16 ヘンケル コーポレイション Organic acid-containing composition and method of use thereof
US7524893B2 (en) 2004-02-13 2009-04-28 Harima Chemicals, Inc. Conductive adhesive
JP2010024301A (en) * 2008-07-16 2010-02-04 Sony Chemical & Information Device Corp Anisotropic conductive adhesive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237125A (en) * 1990-02-14 1991-10-23 Shin Etsu Chem Co Ltd Thermosetting resin composition and cured material thereof
JPH05121465A (en) * 1991-10-28 1993-05-18 Hitachi Chem Co Ltd Conductive resin paste composition and semiconductor device using the composition
JPH06136341A (en) * 1992-10-22 1994-05-17 Toray Ind Inc Adhesive
JPH0790239A (en) * 1993-09-27 1995-04-04 Sumitomo Bakelite Co Ltd Electrically conductive resin paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237125A (en) * 1990-02-14 1991-10-23 Shin Etsu Chem Co Ltd Thermosetting resin composition and cured material thereof
JPH05121465A (en) * 1991-10-28 1993-05-18 Hitachi Chem Co Ltd Conductive resin paste composition and semiconductor device using the composition
JPH06136341A (en) * 1992-10-22 1994-05-17 Toray Ind Inc Adhesive
JPH0790239A (en) * 1993-09-27 1995-04-04 Sumitomo Bakelite Co Ltd Electrically conductive resin paste

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790239A (en) * 1993-09-27 1995-04-04 Sumitomo Bakelite Co Ltd Electrically conductive resin paste
JP2000319622A (en) * 1999-05-14 2000-11-21 Denso Corp Electrically conductive adhesive and circuit board using this as material for connecting components
JP4581156B2 (en) * 1999-05-14 2010-11-17 株式会社デンソー Conductive adhesive and circuit board using the same as component connection material
JP2006505674A (en) * 2002-11-05 2006-02-16 ヘンケル コーポレイション Organic acid-containing composition and method of use thereof
US7524893B2 (en) 2004-02-13 2009-04-28 Harima Chemicals, Inc. Conductive adhesive
JP2010024301A (en) * 2008-07-16 2010-02-04 Sony Chemical & Information Device Corp Anisotropic conductive adhesive
US8636924B2 (en) 2008-07-16 2014-01-28 Dexerials Corporation Anisotropic conductive adhesive
US9418958B2 (en) 2008-07-16 2016-08-16 Dexerials Corporation Anisotropic conductive adhesive

Similar Documents

Publication Publication Date Title
JPH0790239A (en) Electrically conductive resin paste
KR100681565B1 (en) Die-attaching paste and semiconductor device
JP2001106767A (en) Resin paste for semiconductor and semiconductor device using the same
JP3384472B2 (en) Conductive resin paste
JP2974902B2 (en) Conductive resin paste
JPH0790238A (en) Electrically conductive resin paste
JP2935919B2 (en) Insulating resin paste
JPH10237157A (en) Liquid resin composition, and semiconductor apparatus made by using the same
JPH10120873A (en) Insulating resin paste for semiconductor
JP2002252235A (en) Resin paste for semiconductor and semiconductor device using it
JP2010108615A (en) Conductive resin paste
JP3719855B2 (en) Resin paste for semiconductor
JP3555930B2 (en) Resin paste for semiconductor and semiconductor device using the same
JPH04222887A (en) Insulating resin paste
JPS63161014A (en) Electrically conductive resin paste
JP3568742B2 (en) Resin paste for semiconductor
JP3608908B2 (en) Resin paste for semiconductor
JP3719856B2 (en) Resin paste for semiconductor
JP2596663B2 (en) Conductive resin paste for semiconductors
JP2002187938A (en) Die attachment paste and semiconductor device
JPH06184279A (en) Electrically conductive resin paste
JP2787842B2 (en) Conductive resin paste for semiconductors
JPH03145143A (en) Conductive resin paste for semiconductor
JP3449846B2 (en) Conductive resin paste for semiconductor
JP2000072846A (en) Resin paste for semiconductor