JPH0995651A - Electroconductive resin paste - Google Patents

Electroconductive resin paste

Info

Publication number
JPH0995651A
JPH0995651A JP7251659A JP25165995A JPH0995651A JP H0995651 A JPH0995651 A JP H0995651A JP 7251659 A JP7251659 A JP 7251659A JP 25165995 A JP25165995 A JP 25165995A JP H0995651 A JPH0995651 A JP H0995651A
Authority
JP
Japan
Prior art keywords
resin paste
platinum
conductive resin
weight
diallylbisphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7251659A
Other languages
Japanese (ja)
Other versions
JP3313267B2 (en
Inventor
Hikari Okubo
光 大久保
Shingo Ito
慎吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP25165995A priority Critical patent/JP3313267B2/en
Publication of JPH0995651A publication Critical patent/JPH0995651A/en
Application granted granted Critical
Publication of JP3313267B2 publication Critical patent/JP3313267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To obtain the subject paste useful for bonding a semiconductor element such as IC and LSI to a metal frame, etc., excellent in curability, especially in adhesiveness, withstanding stress during reflow of solder. SOLUTION: This electroconductive resin paste comprises (A) 60-90wt.% of silver powder, (B) 5-35wt.% of an epoxy resin liquid at a normal temperature, (C) 0.5-8wt.% of a compound containing one or more phenolic hydroxyl groups and alkenyl groups in one molecule (e.g. diallylbisphenol A or diallylbisphenol F), (D) 0.1-5wt.% of a cyclosiloxane of the formula and (E) 100wt.ppm to 50wt. ppm of a platinum-based catalyst [e.g. a complex of platinum and cyclo(vinylmethylsiloxane) as essential components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、IC、LSI等の
半導体素子を金属フレーム等に接着する導電性樹脂ペー
ストに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive resin paste for adhering semiconductor elements such as IC and LSI to a metal frame or the like.

【0002】[0002]

【従来の技術】近年のエレクトロニクス産業の著しい発
展に伴い、トランジスタ、IC、LSI、超LSIと半
導体素子における回路の集積度は急激に増大している。
このため、半導体素子の大きさも、従来長辺が数mm程
度だったものが10数mmと飛躍的に増大している。ま
た、リードフレームも従来の42アロイから熱伝導性も
良く、安価である銅材が主流となりつつある。一方、半
導体製品の実装方法は表面実装法にしかも高密度実装化
のため半導体製品自体の大きさは小さく、しかも薄くな
ってきている。このような半導体製品の動向に従い半導
体製品の構成材料に対する要求性能も変化してきてお
り、半導体素子と金属フレームを接合するダイボンディ
ング用樹脂ペーストに対しても、従来求められていた接
合の信頼性のみならず、大型チップと銅フレームの熱膨
張率の差に基づく熱応力を吸収緩和する応力緩和特性、
更には薄型パッケージでの表面実装に基づく耐半田クラ
ック特性が要求され始めている。ここで、応力緩和特性
は半導体素子の材料であるシリコン等の線熱膨張係数が
3×10-6/℃であるのに対し銅フレームの線熱膨張係
数は20×10-6/℃と一桁大きいため、ダイボンディ
ング用樹脂ペーストの加熱硬化後の冷却過程において銅
フレームの方がシリコンチップより大きな割合で収縮す
ることに基づき、チップの反りひいてはチップクラック
あるいはダイボンディング用樹脂ペーストの剥離等を引
き起こし、IC、LSI等の半導体製品の特性不良の一
因となり得る可能性がある。
2. Description of the Related Art With the remarkable development of the electronics industry in recent years, the degree of integration of circuits in transistors, ICs, LSIs, VLSIs and semiconductor devices has been rapidly increasing.
For this reason, the size of the semiconductor element, which has been conventionally about several mm on the long side, has been dramatically increased to about 10 mm. Further, the lead frame is also made of a copper material, which has good thermal conductivity and is inexpensive, as compared with the conventional 42 alloy, and is becoming the mainstream. On the other hand, the semiconductor product mounting method is a surface mounting method, and due to high-density mounting, the size of the semiconductor product itself is becoming smaller and thinner. In accordance with such trends in semiconductor products, the performance requirements for the constituent materials of semiconductor products are changing, and even for the resin paste for die bonding that bonds the semiconductor element and the metal frame, only the reliability of the bonding that has been conventionally required. However, stress relaxation characteristics that absorb and relax the thermal stress based on the difference in the coefficient of thermal expansion between the large chip and the copper frame,
Furthermore, solder crack resistance characteristics based on surface mounting in thin packages are beginning to be required. Here, regarding the stress relaxation characteristics, the linear thermal expansion coefficient of silicon or the like, which is the material of the semiconductor element, is 3 × 10 −6 / ° C., whereas the linear thermal expansion coefficient of the copper frame is 20 × 10 −6 / ° C. Since it is large, the copper frame shrinks at a higher rate than the silicon chip in the cooling process after heating and curing the die-bonding resin paste, which may cause chip warpage and chip cracking or peeling of the die-bonding resin paste. This may cause a defect in the characteristics of semiconductor products such as ICs and LSIs.

【0003】このような熱応力を吸収緩和するためにダ
イボンディング用樹脂ペーストを低弾性率にする必要が
あるが、従来のエポキシ樹脂系ダイボンディング用樹脂
ペーストでは、熱硬化性樹脂であるため三次元架橋し弾
性率が高くなり、大型チップと銅フレームとの熱膨張率
の差に基づく歪を吸収するに至らなかった。一方線状高
分子タイプのポリイミド樹脂系ダイボンディング用樹脂
ペーストは、エポキシ樹脂系ダイボンディング用樹脂ペ
ーストに比べ硬化物の弾性率が小さく、チップの反りは
改良される。しかしポリイミド樹脂をダイボンディング
用樹脂ペーストとして用いる場合には、塗布作業性の点
からN−メチル−2−ピロリドン、N,N−ジメチルホ
ルムアミド等の多量の極性溶剤に溶解して粘度を調整し
なければならない。このときの溶剤量はダイボンディン
グ用樹脂ペーストの30重量%にもなり、半導体素子と
金属フレームの接着に用いた場合硬化加熱時の溶剤の抜
け跡として硬化物中にボイドが発生し、接着強度、熱伝
導性及び導電性の低下の原因となり信頼性の面から好ま
しくない。また、表面実装あるいは高密度実装を目的と
したパッケージサイズの小型化、薄型化に基づく実装時
の熱ストレスの急激な増加により半導体封止材だけでな
くダイボンディング用樹脂ペーストにも耐リフロークラ
ック性が要求されてきている。ダイボンディング用樹脂
ペーストの耐リフロークラック性は、半田リフロー時の
ストレスを緩和吸収するためにリフロー温度付近で低弾
性率であると共に、半田リフローの前処理段階での吸水
率が小さく、かつ吸水後でも十分な接合強度、特に加熱
状態で十分な引き剥し方向での強度を示すことが必要で
あるがエポキシ樹脂及びポリイミド樹脂ペーストを含め
てこれらの特性を満足するものはなかった。
In order to absorb and relax such thermal stress, the die bonding resin paste needs to have a low elastic modulus. However, the conventional epoxy resin type die bonding resin paste is a thermosetting resin, so that it has a tertiary The original cross-linking resulted in a higher elastic modulus, and the strain due to the difference in the coefficient of thermal expansion between the large chip and the copper frame could not be absorbed. On the other hand, the linear polymer type polyimide resin-based die bonding resin paste has a smaller elastic modulus of the cured product than the epoxy resin-based die bonding resin paste, and the warpage of the chip is improved. However, when a polyimide resin is used as a die-bonding resin paste, it must be dissolved in a large amount of a polar solvent such as N-methyl-2-pyrrolidone or N, N-dimethylformamide to adjust the viscosity in terms of coating workability. I have to. At this time, the amount of the solvent becomes 30% by weight of the resin paste for die bonding, and when it is used for bonding the semiconductor element and the metal frame, voids are generated in the cured product as a trace of the solvent when curing and heating, and the bonding strength is increased. However, it is not preferable in terms of reliability because it causes a decrease in thermal conductivity and conductivity. Reflow crack resistance not only to the semiconductor encapsulant but also to the resin paste for die bonding due to the rapid increase in thermal stress during mounting due to the miniaturization and thinning of the package size for surface mounting or high density mounting. Is being requested. The reflow crack resistance of the die-bonding resin paste has a low elastic modulus near the reflow temperature to absorb and absorb stress during solder reflow, and also has a low water absorption rate in the pretreatment stage of solder reflow, and after water absorption. However, it is necessary to exhibit sufficient bonding strength, particularly strength in the peeling direction in a heated state, but none of them including epoxy resin and polyimide resin paste satisfies these characteristics.

【0004】[0004]

【発明が解決しようとする課題】本発明は、IC等の大
型チップと銅フレームとの組み合わせでもチップクラッ
クやチップの反りによるIC等の特性不良が生じず、か
つ薄型パッケージでの半田リフロークラックが発生しな
い高信頼性の導電性樹脂ペーストを提供するものであ
る。
SUMMARY OF THE INVENTION According to the present invention, even when a large chip such as an IC and a copper frame are combined, a characteristic defect of the IC such as a chip crack or a warp of the chip does not occur, and a solder reflow crack in a thin package is prevented. It is intended to provide a highly reliable conductive resin paste that does not occur.

【0005】[0005]

【課題を解決するための手段】本発明は、(A)銀粉、
(B)常温で液状のエポキシ樹脂、(C)1分子内に少
なくとも1個のフェノール性水酸基及びアルケニル基を
有する化合物、(D)式(1)で示されるシクロシロキ
サン、(E)白金系触媒を必須成分とし、全導電性樹脂
ペースト中に(A)成分を60〜90重量%、(B)を
5〜35重量%、(C)成分を0.5〜8重量%、
(D)成分を0.1〜5重量%、(E)成分を白金換算
で100重量ppb〜50重量ppm含む導電性樹脂ペ
ーストであり、
The present invention provides (A) silver powder,
(B) Epoxy resin liquid at room temperature, (C) compound having at least one phenolic hydroxyl group and alkenyl group in one molecule, (D) cyclosiloxane represented by the formula (1), (E) platinum-based catalyst As an essential component, 60 to 90% by weight of the component (A), 5 to 35% by weight of the component (B), and 0.5 to 8% by weight of the component (C) in the total conductive resin paste,
A conductive resin paste containing 0.1 to 5% by weight of component (D) and 100 to 50 ppm by weight of component (E) in terms of platinum of ppb to 50 ppm by weight.

【0006】[0006]

【化3】 Embedded image

【0007】塩素、ナトリウム等のイオン性不純物濃度
が低く、塗布作業性が良好で、かつ通常のエポキシ樹脂
の硬化反応以外に1分子内に少なくとも1個のフェノー
ル性水酸基及びアルケニル基を有する化合物のアルケニ
ル基と、式(1)で示されるシクロシロキサンのSi・
H基のハイドロシリル化反応も利用して硬化させるため
硬化性に優れ、また接着力が良好、更には吸湿による接
着力の低下が少ないため半田リフロー時の熱ストレスに
よる導電性樹脂ペースト層の剥離が生じにくく、耐リフ
ロークラック性に優れるものである。
A compound having a low concentration of ionic impurities such as chlorine and sodium, good coating workability, and having at least one phenolic hydroxyl group and alkenyl group in one molecule other than the usual curing reaction of epoxy resin. An alkenyl group and Si of the cyclosiloxane represented by the formula (1)
It has excellent curability because it is also hardened by using the hydrosilylation reaction of H group, and has good adhesive strength. Furthermore, since the adhesive strength is less likely to decrease due to moisture absorption, the conductive resin paste layer peels off due to thermal stress during solder reflow. Is less likely to occur and has excellent reflow crack resistance.

【0008】[0008]

【発明の実施の態様】本発明に用いる銀粉は、用いる分
野が電子・電気分野のためハロゲンイオン、アルカリ金
属イオン等のイオン性不純物量が10ppm以下である
ことが望ましい。また形状としてはフレーク状、樹枝状
あるいは球状のものを単独あるいは混合して用いること
ができる。更に粒径に関しては、通常平均粒径が2〜1
0μm、最大粒径は50μm程度のものが好ましく、比
較的細かい銀粉と粗い銀粉を混合して用いてもよい。全
導電性樹脂ペースト中の銀粉量が、60重量%未満だと
硬化物の電気伝導性が低下し、90重量%を越えると樹
脂ペーストの粘度が高くなりすぎ塗布作業性の低下の原
因となる。
BEST MODE FOR CARRYING OUT THE INVENTION The silver powder used in the present invention preferably has an amount of ionic impurities such as halogen ions and alkali metal ions of 10 ppm or less because the fields of use are electronic and electrical fields. As the shape, flaky, dendritic or spherical shapes can be used alone or in combination. Regarding the particle size, the average particle size is usually 2 to 1
It is preferably 0 μm and the maximum particle size is about 50 μm, and relatively fine silver powder and coarse silver powder may be mixed and used. If the amount of silver powder in the total conductive resin paste is less than 60% by weight, the electrical conductivity of the cured product will decrease, and if it exceeds 90% by weight, the viscosity of the resin paste will be too high, which will cause deterioration of coating workability. .

【0009】本発明に用いるエポキシ樹脂は、常温で液
状のものに限定しているが、常温で液状のものでないと
銀粉との混練において溶剤を必要とする。溶剤は気泡の
原因となり硬化物の接着強度、熱伝導率を低下させてし
まうので好ましくない。常温で液状のエポキシ樹脂とし
ては、例えば、常温で固形のものでも常温で液状のエポ
キシ樹脂と混合することで常温で安定して液状を示すも
のを含む。本発明に用いるエポキシ樹脂としては、ビス
フェノールA、ビスフェノールF、フェノールノボラッ
ク、クレゾールノボラック類とエピクロルヒドリンとの
反応により得られるポリグリシジルエーテル、ブタンジ
オールジグリシジルエーテル、ネオペンチルグリコール
ジグリシジルエーテル等の脂肪族エポキシ、ジグリシジ
ルヒダントイン等の複素環式エポキシ、ビニルシクロヘ
キセンジオキサイド、ジシクロペンタジエンジオキサイ
ド、アリサイクリックジエポキシ−アジペイトのような
脂環式エポキシ、更にはn−ブチルグリシジルエーテ
ル、バーサティック酸グリシジルエステル、スチレンオ
サイド、エチルヘキシルグリシジルエーテル、フェニル
グリシジルエーテル、クレジルグリシジルエーテル、ブ
チルフェニルグリシジルエーテル等のような通常のエポ
キシ樹脂の希釈剤として用いられるものがあり、これら
は単独でも混合して用いてもよい。
The epoxy resin used in the present invention is limited to a liquid at room temperature, but if it is not liquid at room temperature, a solvent is required for kneading with silver powder. The solvent is not preferable because it causes bubbles and lowers the adhesive strength and thermal conductivity of the cured product. Examples of the epoxy resin that is liquid at room temperature include those that are solid at room temperature and those that are stable at room temperature when mixed with an epoxy resin that is liquid at room temperature. Examples of the epoxy resin used in the present invention include aliphatic epoxies such as bisphenol A, bisphenol F, phenol novolac, polyglycidyl ether obtained by reaction of cresol novolacs with epichlorohydrin, butanediol diglycidyl ether, and neopentyl glycol diglycidyl ether. , Cycloaliphatic epoxies such as heterocyclic epoxies such as diglycidyl hydantoin, vinylcyclohexene dioxide, dicyclopentadiene dioxide, alicyclic diepoxy-adipate, and n-butyl glycidyl ether, versatic acid glycidyl ester , Styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, butyl phenyl glycidyl ether Normal while others are used as diluting agent for epoxy resins, such as equal, they may be used singly or in admixture.

【0010】本発明に用いる1分子内に少なくとも1個
のフェノール性水酸基及びアルケニル基を有する化合物
は、エポキシ基とフェノール性水酸基、Si・H基とア
ルケニル基の反応を利用するので、フェノール性水酸
基、アルケニル基のみを有する化合物をそれぞれ別々に
配合した場合には、期待する硬化物の凝集力ひいては接
着力の向上が認められない。また用いる化合物によって
は、硬化中に分離が生じ逆に接着力の向上が認められ
ず、あるいは硬化中に分離が生じ逆に接着力が低下して
しまう。1分子内に少なくとも1個のフェノール性水酸
基及びアルケニル基を有する化合物としては、例えば、
アリルフェノール、ヒドロキシスチレン、オイゲノー
ル、モノあるいはジアリルビスフェノールA、モノある
いはジアリルビスフェノールFなどが挙げられるが、ジ
アリルビスフェノールAあるいはジアリルビスフェノー
ルFが特に好ましい。1分子内に少なくとも1個のフェ
ノール性水酸基及びアルケニル基を有する化合物は、全
導電性樹脂ペースト中に0.5〜8重量%含まれる。
0.5重量%未満だと期待する効果が現れず、8重量%
より多い場合には硬化物中に未反応のフェノール性水酸
基が残存し架橋密度の低下、接着力不足、吸水特性の悪
化などの原因となるので好ましくない。
The compound having at least one phenolic hydroxyl group and alkenyl group in one molecule used in the present invention utilizes the reaction of an epoxy group with a phenolic hydroxyl group and the reaction of an Si.H group with an alkenyl group. When the compounds having only the alkenyl group are separately blended, the expected cohesive strength of the cured product and thus the improvement in the adhesive strength are not observed. Further, depending on the compound used, separation occurs during curing and conversely no improvement in adhesive strength is observed, or separation occurs during curing and conversely decreases adhesive strength. Examples of the compound having at least one phenolic hydroxyl group and alkenyl group in one molecule include:
Examples thereof include allylphenol, hydroxystyrene, eugenol, mono- or diallylbisphenol A, mono- or diallylbisphenol F, and diallylbisphenol A or diallylbisphenol F are particularly preferable. The compound having at least one phenolic hydroxyl group and alkenyl group in one molecule is contained in the entire conductive resin paste in an amount of 0.5 to 8% by weight.
If less than 0.5% by weight, the expected effect does not appear, 8% by weight
If the amount is larger than that, unreacted phenolic hydroxyl groups remain in the cured product, which causes reduction in crosslink density, insufficient adhesive strength, deterioration of water absorption property, etc., which is not preferable.

【0011】本発明に用いる式(1)のシクロシロキサ
ンは、R1、R2、R3がメチル基、又はフェニル基でm
は2以上の整数でm+nは3〜6である。より好ましい
のは、式(2)で示される構造のものでmは2以上の整
数で、m+nは4である。例えば、テトラメチルシクロ
テトラシロキサン、ヘキサメチルシクロテトラシロキサ
ン、テトラペンタメチルシクロテトラシロキサンが挙げ
られる。式(1)のシクロシロキサンと異なる構造の直
鎖状のシロキサンである1,1,3,3−テトラメチル
ジシロキサンでは、沸点が約70℃と低く硬化時に発泡
あるいは揮発してしまい、シロキサン単位が2以上の所
謂Hオイルの場合には、反応の相手となるアルケニル基
を有する化合物との相溶性が悪くなり、硬化前あるいは
硬化時に分離する欠点があるのに対し、式(1)のシク
ロシロキサンではこれらの欠点ががない。本発明に用い
る式(1)のシクロシロキサンは、塩素、ナトリウム等
のイオン性不純物が50ppm以下であることが望まし
い。全導電性樹脂ペースト中の配合量が、0.1重量%
未満だと期待する性能が得られず、5重量%を越えると
硬化物中に未反応のシクロシロキサンが残存するため好
ましくない。
The cyclosiloxane of the formula (1) used in the present invention has m in which R 1 , R 2 and R 3 are methyl groups or phenyl groups.
Is an integer of 2 or more and m + n is 3 to 6. More preferred is a structure represented by the formula (2), m is an integer of 2 or more, and m + n is 4. Examples thereof include tetramethylcyclotetrasiloxane, hexamethylcyclotetrasiloxane, and tetrapentamethylcyclotetrasiloxane. In the case of 1,1,3,3-tetramethyldisiloxane, which is a linear siloxane having a structure different from that of the cyclosiloxane of the formula (1), the boiling point is as low as about 70 ° C., and foaming or volatilization occurs at the time of curing, resulting in a siloxane unit. In the case of a so-called H oil having a ratio of 2 or more, the compatibility with the compound having an alkenyl group, which is a partner of the reaction, becomes poor and there is a drawback that the compound is separated before or during curing. Siloxane does not have these drawbacks. The cyclosiloxane of formula (1) used in the present invention preferably has an ionic impurity such as chlorine or sodium of 50 ppm or less. 0.1 wt% in the total conductive resin paste
If it is less than 5% by weight, the expected performance cannot be obtained, and if it exceeds 5% by weight, unreacted cyclosiloxane remains in the cured product, which is not preferable.

【0012】本発明で用いる白金系触媒としは、ハイド
ロシリル化反応で一般に使用される6塩化白金酸を使用
しても差し支えないが、使用する分野が電気・電子分野
であることから腐食性のイオンを限りなく減らし、かつ
触媒活性の点から白金と有機化合物あるいは有機シリコ
ーン化合物との錯体の方が好ましい。具体的には、白金
とシクロ(ビニルメチルシロキサン)の錯体、白金とジ
ビニルテトラメチルジシロキサンとの錯体、白金とオク
チルアルコールとの錯体等があるが、錯体自体が硬化時
に反応するという点で、白金とシクロ(ビニルメチルシ
ロキサン)との錯体、白金とジビニルテトラメチルジシ
ロキサンとの錯体の方がより好ましい。白金系触媒の配
合量が白金換算で100重量ppb未満だと導電性樹脂
ペーストが十分に硬化しないかあるいは硬化時間が長く
なり、50重量ppmを越えると導電性樹脂ペーストの
硬化時の反応に伴う発熱量が多くなりすぎ硬化物中にボ
イドが発生し易く接着強度の低下、電気伝導率、熱伝導
率の悪化の原因となるため好ましくない。本発明におい
ては、必要に応じ潜在性硬化剤、通常エポキシ基とフェ
ノール性水酸基の反応の促進剤として知られているトリ
エチルアミン、ジアザビシクロウンデセンなどの3級ア
ミン、トリフェニルホスフィン、テトラフェニルホスフ
ィン−テトラフェニルボレート塩、可撓性付与剤、消泡
剤、カップリング剤等を用いることもできる。本発明の
導電性樹脂ペーストの製造方法としては、例えば各成分
を予備混合した後、3本ロールを用いて混練し、混練後
真空下脱泡し樹脂ペーストを得るなどがある。
As the platinum-based catalyst used in the present invention, hexachloroplatinic acid generally used in hydrosilylation reaction may be used, but since it is used in the electric and electronic fields, it is corrosive. A complex of platinum with an organic compound or an organic silicone compound is preferable from the viewpoint of reducing the number of ions as much as possible and having catalytic activity. Specifically, there are a complex of platinum and cyclo (vinylmethylsiloxane), a complex of platinum and divinyltetramethyldisiloxane, a complex of platinum and octyl alcohol, and the like, but the complex itself reacts during curing. A complex of platinum and cyclo (vinylmethylsiloxane) and a complex of platinum and divinyltetramethyldisiloxane are more preferable. If the compounding amount of the platinum-based catalyst is less than 100 weight ppb in terms of platinum, the conductive resin paste will not be sufficiently cured or the curing time will be long, and if it exceeds 50 weight ppm, the reaction during curing of the conductive resin paste will be accompanied. The amount of heat generated is too large, and voids are liable to occur in the cured product, resulting in a decrease in adhesive strength and a deterioration in electrical conductivity and thermal conductivity, which is not preferable. In the present invention, if necessary, a latent curing agent, a tertiary amine such as triethylamine, diazabicycloundecene or the like, which is generally known as an accelerator for the reaction between an epoxy group and a phenolic hydroxyl group, triphenylphosphine, tetraphenylphosphine. -Tetraphenyl borate salt, flexibility imparting agent, defoaming agent, coupling agent and the like can also be used. The method for producing the conductive resin paste of the present invention includes, for example, premixing the respective components, kneading them using a three-roll mill, and degassing under vacuum after kneading to obtain a resin paste.

【0013】以下実施例を用いて本発明を具体的に説明
する。配合割合は重量部で示す。 実施例1〜5 粒径1〜30μmで平均粒径3μmのフレーク状銀粉、
ビスフェノールAとエピクロルヒドリンとの反応により
得られるジグリシジルビスフェノールA(エポキシ当量
180、常温で液体、以下ビスAエポキシ)、クレジル
グリシジルエーテル(エポキシ当量185)、ジアリル
ビスフェノールF、テトラメチルシクロテトラシロキサ
ン(以下シリコーン化合物A)、ヘキサメチルシクロテ
トラシロキサン(以下シリコーン化合物B)、白金−シ
クロ(ビニルメチルシロキサン)錯体のシクロ(ビニル
メチルシロキサン)溶液(白金濃度1重量% 、以下白
金触媒A)及びカップリング剤(信越化学工業(株)・
製、KBM−503)、ジアザビシクロウンデセンを表
1に示す割合で配合し、3本ロールで混練して導電性樹
脂ペーストを得た。
The present invention will be specifically described below with reference to examples. The mixing ratio is shown in parts by weight. Examples 1 to 5 Flake silver powder having a particle size of 1 to 30 μm and an average particle size of 3 μm,
Diglycidyl bisphenol A obtained by the reaction of bisphenol A and epichlorohydrin (epoxy equivalent 180, liquid at room temperature, hereinafter bisA epoxy), cresyl glycidyl ether (epoxy equivalent 185), diallyl bisphenol F, tetramethylcyclotetrasiloxane (hereinafter Silicone compound A), hexamethylcyclotetrasiloxane (hereinafter silicone compound B), cyclo (vinylmethylsiloxane) solution of platinum-cyclo (vinylmethylsiloxane) complex (platinum concentration 1% by weight, platinum catalyst A hereinafter) and coupling agent (Shin-Etsu Chemical Co., Ltd.
KBM-503) and diazabicycloundecene were mixed in a ratio shown in Table 1 and kneaded with a three-roll mill to obtain a conductive resin paste.

【0014】この導電性樹脂ペーストを真空チャンバー
にて2mmHgで30分間脱泡した後、以下の方法によ
り各種性能を評価した。評価結果を表1に示す。 ゲルタイム:ペースト1ccを150℃の熱板上に置き
スパチュラでかきまぜペーストが流動性を示さなくなる
までの時間を測定した。 粘 度:E型粘度計(3°コーン)を用い25℃、
2.5rpmでの値を測定し粘度とした。 糸引き性 :導電性樹脂ペーストの中へ直径1mmΦの
ピンを深さ5mmまで入れ、ピンを300mm/分の速
度で引き上げ、ペーストが切れたときの高さを測定し
た。 体積抵抗率:スライドガラス上にペーストを幅4mm厚
さ30μmに塗布し、150℃熱板上、30分間硬化し
た後硬化物の体積抵抗率を測定した。 接着強度 :ペーストを用いて5×5mmのシリコンチ
ップを銅フレームにマウントし150℃、30分間硬化
した。硬化後プッシュプルゲージを用い240℃での熱
時ダイシェア強度を測定した。なお、硬化物を85℃、
相対湿度85%、72時間吸湿処理したサンプルについ
ても同様の測定を行った。 ボイド :接着強度測定前のサンプルを軟X線透過法
によりボイドの観察を行った。 不純物 :硬化・粉砕したペースト2g及び純水40
mlを125℃、20時間抽出して得られた抽出液のナ
トリウム及び塩素イオン濃度をイオンクロマトグラフィ
ーにて測定した。
After degassing the conductive resin paste in a vacuum chamber at 2 mmHg for 30 minutes, various performances were evaluated by the following methods. Table 1 shows the evaluation results. Gel time: 1 cc of paste was placed on a hot plate at 150 ° C., and agitated with a spatula. The time until the paste showed no fluidity was measured. Viscosity: E type viscometer (3 ° cone) at 25 ° C,
The value at 2.5 rpm was measured and used as the viscosity. String pullability: A pin having a diameter of 1 mmΦ was inserted into a conductive resin paste to a depth of 5 mm, the pin was pulled up at a speed of 300 mm / min, and the height when the paste was broken was measured. Volume resistivity: The paste was applied on a slide glass to have a width of 4 mm and a thickness of 30 μm and cured on a hot plate at 150 ° C. for 30 minutes, and then the volume resistivity of the cured product was measured. Adhesive strength: A 5 × 5 mm silicon chip was mounted on a copper frame using a paste and cured at 150 ° C. for 30 minutes. After curing, the die shear strength during heating at 240 ° C was measured using a push-pull gauge. The cured product is at 85 ° C,
The same measurement was performed on a sample that had been subjected to moisture absorption for 72 hours at a relative humidity of 85%. Void: The sample before adhesive strength measurement was observed for voids by the soft X-ray transmission method. Impurities: 2 g of hardened and crushed paste and 40 pure water
The concentration of sodium and chloride ions in the extract obtained by extracting ml for 20 hours at 125 ° C. was measured by ion chromatography.

【0015】実施例6 用いる1分子内に少なくとも1個のフェノール性水酸基
とアルケニル基を有する化合物として、ジアリルビスフ
ェノールAを用いた他は、実施例1〜4と全く同様にし
て導電性樹脂ペーストを作製し評価を行った。 実施例7 用いる白金系触媒としては、白金−ジビニルテトラメチ
ルジシロキサン錯体のキシレン溶液(白金濃度3重量%
、以下白金触媒B)を用いた他は実施例1〜4と全く
同様にして導電性樹脂ペーストを作製し評価を行った。 比較例1〜6 表2に示す配合割合で実施例と全く同様にして導電性樹
脂ペーストを作製した。 なお比較例5では、シリコー
ン化合物Aの替わりに、1,1,3,3−テトラメチル
ジシロキサン(以下シリコーン化合物C)を用い、比較
例6ではビスフェノールA及び2−ヒドロキシ−1,3
−ジメタクリロキシプロパン(以下ジメタクリル化合
物)を用いた。なお、比較例1、2については、硬化が
遅くサンプルを作成できず評価できなかった。
Example 6 A conductive resin paste was prepared in the same manner as in Examples 1 to 4 except that diallyl bisphenol A was used as the compound having at least one phenolic hydroxyl group and alkenyl group in one molecule. It was produced and evaluated. Example 7 The platinum-based catalyst used was a xylene solution of platinum-divinyltetramethyldisiloxane complex (platinum concentration 3% by weight).
A conductive resin paste was prepared and evaluated in the same manner as in Examples 1 to 4 except that the platinum catalyst B) was used. Comparative Examples 1 to 6 Conductive resin pastes were prepared with the compounding ratios shown in Table 2 in exactly the same manner as in the examples. In Comparative Example 5, 1,1,3,3-tetramethyldisiloxane (hereinafter Silicone Compound C) was used instead of Silicone Compound A, and in Comparative Example 6, bisphenol A and 2-hydroxy-1,3 were used.
-Dimethacryloxypropane (hereinafter referred to as a dimethacryl compound) was used. In Comparative Examples 1 and 2, curing was slow and samples could not be prepared, so that evaluation was not possible.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明の導電性樹脂ペーストは、硬化性
が良好であると共に、特に接着性が良好であり半田リフ
ロー時のストレスに耐えられる。更にディスペンス塗布
時の作業性に優れ、イオン性不純物が少なく、42アロ
イ等の金属フレーム、セラミック基板、ガラスエポキシ
等の有機基板へのIC、LSI等の半導体素子の接着に
最適である。
EFFECT OF THE INVENTION The conductive resin paste of the present invention has good curability and particularly good adhesion, and can withstand stress during solder reflow. Further, it is excellent in workability at the time of dispensing application, has a small amount of ionic impurities, and is most suitable for bonding semiconductor elements such as IC and LSI to a metal frame such as 42 alloy, a ceramic substrate, an organic substrate such as glass epoxy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09J 183/05 JBF C09J 183/05 JBF H01B 1/22 H01B 1/22 A H01L 21/52 H01L 21/52 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C09J 183/05 JBF C09J 183/05 JBF H01B 1/22 H01B 1/22 A H01L 21/52 H01L 21 / 52 E

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (A)銀粉、(B)常温で液状のエポキ
シ樹脂、(C)1分子内に少なくとも1個のフェノール
性水酸基及びアルケニル基を有する化合物、(D)式
(1)で示されるシクロシロキサン、(E)白金系触媒
を必須成分とし、全導電性樹脂ペースト中に(A)成分
を60〜90重量%、(B)を5〜35重量%、(C)
成分を0.5〜8重量%、(D)成分を0.1〜5重量
%、(E)成分を白金換算で100重量ppb〜50重
量ppm含むことを特徴とする導電性樹脂ペースト。 【化1】
1. A silver powder, (B) an epoxy resin which is liquid at room temperature, (C) a compound having at least one phenolic hydroxyl group and an alkenyl group in one molecule, and (D) represented by the formula (1). Cyclosiloxane and (E) platinum-based catalyst as essential components, 60 to 90% by weight of (A) component, 5 to 35% by weight of (B), and (C) in the total conductive resin paste.
A conductive resin paste comprising 0.5 to 8 wt% of a component, 0.1 to 5 wt% of a (D) component, and 100 wt ppb to 50 wt ppm of a (E) component in terms of platinum. Embedded image
【請求項2】 1分子内に少なくとも1個のフェノール
性水酸基及びアルケニル基を有する化合物がジアリルビ
スフェノールA、又はジアリルビスフェノールFである
請求項1記載の導電性樹脂ペースト。
2. The conductive resin paste according to claim 1, wherein the compound having at least one phenolic hydroxyl group and alkenyl group in one molecule is diallylbisphenol A or diallylbisphenol F.
【請求項3】 式(1)のシクロシロキサンが、式
(2)である請求項1、又は請求項2記載の導電性樹脂
ペースト。 【化2】
3. The conductive resin paste according to claim 1, wherein the cyclosiloxane of the formula (1) has the formula (2). Embedded image
【請求項4】 白金系触媒が、白金とシクロ(ビニルメ
チルシロキサン)との錯体である請求項1、請求項2、
又は請求項3記載の導電性樹脂ペースト。
4. The platinum-based catalyst is a complex of platinum and cyclo (vinylmethylsiloxane), claim 1,
Alternatively, the conductive resin paste according to claim 3.
【請求項5】 白金系触媒が、白金とジビニルテトラメ
チルジシロキサンとの錯体である請求項1、請求項2、
又は請求項3記載の導電性樹脂ペースト。
5. The platinum-based catalyst is a complex of platinum and divinyltetramethyldisiloxane, 1, 2.
Alternatively, the conductive resin paste according to claim 3.
JP25165995A 1995-09-28 1995-09-28 Conductive resin paste Expired - Fee Related JP3313267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25165995A JP3313267B2 (en) 1995-09-28 1995-09-28 Conductive resin paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25165995A JP3313267B2 (en) 1995-09-28 1995-09-28 Conductive resin paste

Publications (2)

Publication Number Publication Date
JPH0995651A true JPH0995651A (en) 1997-04-08
JP3313267B2 JP3313267B2 (en) 2002-08-12

Family

ID=17226114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25165995A Expired - Fee Related JP3313267B2 (en) 1995-09-28 1995-09-28 Conductive resin paste

Country Status (1)

Country Link
JP (1) JP3313267B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192739A (en) * 1997-09-18 1999-04-06 Sumitomo Bakelite Co Ltd Conductive resin paste and semiconductor device produced by using it
WO2001064807A1 (en) * 2000-02-29 2001-09-07 Matsushita Electric Industrial Co., Ltd. Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same
JP2002353393A (en) * 2001-05-24 2002-12-06 Sony Corp Lead frame, semiconductor device and manufacturing method of the semiconductor device
JP2003073548A (en) * 2001-09-05 2003-03-12 Kanegafuchi Chem Ind Co Ltd Curable composition amd cured material
WO2006118334A1 (en) * 2005-04-27 2006-11-09 Dow Corning Toray Co., Ltd. Curable silicone composition and cured product therefrom
US7842178B2 (en) 2005-04-18 2010-11-30 University Of Iowa Research Foundation Magnet incorporated electrically conductive electrodes
US7915439B2 (en) 2004-10-13 2011-03-29 Dow Corning Toray Company, Ltd. Method of producing silylalkoxymethyl halide
US8273815B2 (en) 2006-09-11 2012-09-25 Dow Corning Toray Company, Ltd. Curable silicone composition and electronic component
US8338527B2 (en) 2005-04-27 2012-12-25 Dow Corning Toray Company, Ltd. Curable silicone composition and electronic components
KR101283949B1 (en) * 2012-09-04 2013-07-09 삼성유리공업 주식회사 Conductible adhesive coating film for soldering joint and soldering joint method
KR101372260B1 (en) * 2013-01-23 2014-03-10 삼성유리공업 주식회사 Mirror apparatus for radiating far-infrared rays

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192739A (en) * 1997-09-18 1999-04-06 Sumitomo Bakelite Co Ltd Conductive resin paste and semiconductor device produced by using it
WO2001064807A1 (en) * 2000-02-29 2001-09-07 Matsushita Electric Industrial Co., Ltd. Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same
US6916433B2 (en) 2000-02-29 2005-07-12 Matsushita Electric Industrial Co., Ltd. Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same
JP2002353393A (en) * 2001-05-24 2002-12-06 Sony Corp Lead frame, semiconductor device and manufacturing method of the semiconductor device
JP2003073548A (en) * 2001-09-05 2003-03-12 Kanegafuchi Chem Ind Co Ltd Curable composition amd cured material
US7915439B2 (en) 2004-10-13 2011-03-29 Dow Corning Toray Company, Ltd. Method of producing silylalkoxymethyl halide
US7842178B2 (en) 2005-04-18 2010-11-30 University Of Iowa Research Foundation Magnet incorporated electrically conductive electrodes
WO2006118334A1 (en) * 2005-04-27 2006-11-09 Dow Corning Toray Co., Ltd. Curable silicone composition and cured product therefrom
US8309652B2 (en) 2005-04-27 2012-11-13 Dow Corning Toray Company, Ltd. Curable silicone composition and cured product therefrom
US8338527B2 (en) 2005-04-27 2012-12-25 Dow Corning Toray Company, Ltd. Curable silicone composition and electronic components
KR101244203B1 (en) * 2005-04-27 2013-03-18 다우 코닝 도레이 캄파니 리미티드 Curable silicone composition and cured product therefrom
US8273815B2 (en) 2006-09-11 2012-09-25 Dow Corning Toray Company, Ltd. Curable silicone composition and electronic component
KR101283949B1 (en) * 2012-09-04 2013-07-09 삼성유리공업 주식회사 Conductible adhesive coating film for soldering joint and soldering joint method
KR101372260B1 (en) * 2013-01-23 2014-03-10 삼성유리공업 주식회사 Mirror apparatus for radiating far-infrared rays

Also Published As

Publication number Publication date
JP3313267B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
JP3313267B2 (en) Conductive resin paste
JP3189988B2 (en) Insulating resin paste
JPH06184282A (en) Electrically conductive resin paste
JPH0790239A (en) Electrically conductive resin paste
JP3384472B2 (en) Conductive resin paste
JP2974902B2 (en) Conductive resin paste
JP2834658B2 (en) Conductive resin paste for semiconductors
JP2935919B2 (en) Insulating resin paste
JPH10237157A (en) Liquid resin composition, and semiconductor apparatus made by using the same
JP4064025B2 (en) Resin composition and semiconductor device produced using the same.
JP2603375B2 (en) Conductive resin paste for semiconductors
JP3403274B2 (en) Conductive resin paste
JP3719855B2 (en) Resin paste for semiconductor
JPH10120873A (en) Insulating resin paste for semiconductor
JP3095106B2 (en) Conductive resin paste
JP3608908B2 (en) Resin paste for semiconductor
JP2501258B2 (en) Insulating resin paste
JP2787842B2 (en) Conductive resin paste for semiconductors
JP2596663B2 (en) Conductive resin paste for semiconductors
JPH0617443B2 (en) Conductive resin paste
JP2641349B2 (en) Insulating resin paste
JPH0790238A (en) Electrically conductive resin paste
JP2798565B2 (en) Conductive resin paste for semiconductors
JP2944726B2 (en) Conductive resin paste for semiconductors
JPH06184279A (en) Electrically conductive resin paste

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130531

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140531

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees