WO2009107873A1 - Method of gluing objects together - Google Patents

Method of gluing objects together Download PDF

Info

Publication number
WO2009107873A1
WO2009107873A1 PCT/JP2009/054233 JP2009054233W WO2009107873A1 WO 2009107873 A1 WO2009107873 A1 WO 2009107873A1 JP 2009054233 W JP2009054233 W JP 2009054233W WO 2009107873 A1 WO2009107873 A1 WO 2009107873A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
objects
solvent
less
volatile liquid
Prior art date
Application number
PCT/JP2009/054233
Other languages
French (fr)
Japanese (ja)
Inventor
渋田匠
江口裕規
阪谷泰一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2009107873A1 publication Critical patent/WO2009107873A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers

Definitions

  • the present invention relates to an object bonding method, and more particularly, to a method for bonding a first object having a radius of curvature of 1 ⁇ m or less and a second object with a non-volatile liquid.
  • a special adhesive is usually used to bond objects to each other.
  • a method of bonding by heating through a mixture having a double or triple bond reactive with polyolefin between plastic and metal, or between plastic and metal Japanese Patent Laid-Open No. 5-4-3 8 3 3 5
  • a method using a two-component reactive adhesive having photo-curing properties see Japanese Patent Application Laid-Open No. 5-9-6 8 6 36.
  • the present invention provides a method for adhering an object and an object that can easily bond the object and the object and can achieve a high adhesive force.
  • the present invention is a method of bonding a first object having at least one point with a radius of curvature of 1 ⁇ m or less to a second object with a non-volatile liquid, wherein the first object has a curvature radius of 1
  • a method including a step of positioning the non-volatile liquid between a region including at least one point that is ⁇ m or less and the second object.
  • the present invention is a method of bonding a first object having at least one point with a radius of curvature of 1 ⁇ m or less to a second object with a non-volatile liquid, wherein the first object has a radius of curvature of 1
  • a method comprising the step of positioning the non-volatile liquid between a region including at least one point that is equal to or less than ⁇ ⁇ and the second object.
  • the first object is a particle having a particle size of 1 ⁇ m or less.
  • the method includes the step of preparing a dispersion by mixing the non-volatile liquid, a solvent, and a plurality of objects, each of which is the first object. Contacting the dispersion with the second object;
  • the method further comprises a step of bringing the dispersion in contact with the second object or the dispersion to be in contact with the second object into contact with the third object.
  • the step of removing the solvent is a method that is performed in a state where the dispersion is in contact with the third object. According to this method, in addition to being able to bond a plurality of first objects to a second object, the plurality of first objects can also be bonded to a third object.
  • the method includes mixing the non-volatile liquid, a solvent, a plurality of objects each being the first object, and a plurality of objects each being a second object. And preparing a dispersion,
  • the first objects are bonded together, and the second objects are bonded together.
  • the method includes: the non-volatile liquid; a solvent; a plurality of objects each being the first object; a plurality of objects each being a second object; Preparing a dispersion by mixing with a third object of
  • the first object and the second object can also be bonded to the third object. Further, according to this method, the first objects are also bonded to each other, and the second objects are also bonded to each other.
  • the third object is also glued together.
  • the non-volatile liquid is a liquid that does not substantially volatilize at the temperature and pressure of the atmosphere in the bonding process, and may be an inorganic substance (including metal) or an organic substance. If it meets the above, there is no particular limitation. Examples include liquefied aluminum, iron, zinc, copper, silver, gold, platinum, mercury, and tungsten.
  • the inorganic substance is not particularly limited as long as it takes a liquefied state and satisfies the above conditions, and examples thereof include various salts such as oxides, hydroxides and sulfides. Liquefied low-melting glass, low-melting salt, etc. are preferably used.
  • the organic substance is not particularly limited as long as it takes a liquefied state and satisfies the above conditions, and various organic compounds can be mentioned.
  • An ion liquid which is a salt of an organic compound having a charge is preferably used.
  • the ionic liquid is a liquid consisting only of ions composed of a combination of an organic cation and an anion.
  • examples thereof include imidazolium salts, pyridinium salts, pyrrolidinium salts, phosphonium salts, ammonium salts, guanidinium salts. Salts that are liquid at room temperature, such as salt, isoronium salt, isothiol-um salt, and the like.
  • 1,3_Dimethylimidazole trifluoromethanesulfonate 1-ethyl 1-methylimidazolium bis [oxalate (2 _)] borate, 1-ethyl 1-methylimidazole tetrafluoro Loborate, 1-Ethyl-1-methylimidazole Promide, 1-Ethyl-1-3-Methylimidazolium Chloride, 1_Ethyl-1-3-Methylimidazole Hexafluorophosphate, 1 1-Ethyl 1-Methyl imidazolium trifluoromethanesulfonate, 1-Ethyl 3-methyl imidazole trifluoroacetate, 1 —Ethyl _ 3-methylimidazole methyl sulfate, 1— 1—Meth Norley Midazolium p—Torolenos Norephone, 1—Ethnolay 3'—Metino Rei Midori Zhiorum Thion 1_Butyl-3
  • Trihexyl (tetradecyl) phosphonium chloride Trihexyl (Tetradecis / Le) Phosphonium tris (Pentafnorolechetinore) Trifnoreo oral phosphate, Trihexyl (Tetradecyl) Phosphonium tetrafluoroborate , Trihexyl (tetradecyl) phospho-umbis (trifluoromethylsulfonyl) imido, trihexyl (tetradecyl) phosphonium hexafluor oral phosphate, trihexyl (tetradecyl) phosphonium bis [oxalate (2 —)] Boreto I
  • Methyltrioctylammonium trifluoroacetate Methyltrioctylammonium trifluoromethanesulfonate, Methyltrioctylammonium bis (trifnoroleolomethinolesulfonyl) imide
  • the ionic liquid is imidazolium.
  • a salt is preferred, and 1-ethyl-1-methylimidazole tetrafluoroborate is particularly preferred.
  • the first object, the second object, and the third object are each independently an object made of a solid material such as a metal, a resin, an inorganic material, or a carbide.
  • a metal such as platinum, gold, silver, copper, aluminum, nickel, tantalum, and tungsten.
  • silver is preferable.
  • resins include acrylic resins, styrene resins, polyethylene resins, PAN resins, nylon resins, polyurethane resins, phenolic resins, silicone resins, benzoguanamine resins, and melamine resins. Examples thereof include resin and fluorine resin, and styrene resin is preferable.
  • inorganic substances include silicon oxide (silica), titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, tin oxide, ITO, calcium carbonate, barium sulfate, talc, kaolin, barium titanate, aluminum nitride, Examples thereof include silicon nitride, boron nitride, silicon carbide, and zeolite. Preferred are silicon oxide (silica) and aluminum oxide.
  • the carbide include activated carbon, carbon black, acetylene black, ketjen black, graphite, bonbon nanotube, bonbon nanofiber, carbon nanosphere, fullerene, and diamond, and activated carbon and carbon black are preferable. .
  • the material of the first object and the material of the second object may be the same or different, and the material of the first object and the material of the third object may be the same or different, and the material of the second object And the material of the third object may be the same or different.
  • first object, the second object, and the third object may be electrode materials independently of each other.
  • the electrode material is an active material such as a positive electrode active material, a negative electrode active material, or a capacitor active material.
  • An active material is a substance that emits and takes up electrons by a chemical reaction with an electrolyte. Therefore, an electrode formed using the electrode material can be suitably used for an electricity storage device including an electric double layer capacitor, a chemical battery such as a primary battery, a secondary battery, and a fuel cell.
  • the shape of the first object, the shape of the second object, and the shape of the third object are each independently arbitrary, such as a spherical shape, a needle shape, a flake shape, a fiber shape, a plate shape, etc. Let ’s go.
  • the first object has a radius of curvature of 1 / x rn or less, preferably 0.1 im or less, more preferably 0.05 / m or less, and even more preferably 0
  • the capillary force is strong. Since it does not appear, sufficiently strong adhesion may not be developed between the adherends (first object, second object, and third object).
  • the second object and the third object may or may not have points with a radius of curvature of 1 ⁇ m or less.
  • the radius of curvature of an object can be obtained using images observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an atomic force microscope (AFM), and the like.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • AFM atomic force microscope
  • an object having a diameter of about 10 ⁇ m or less is referred to as “particle”.
  • the half value of the particle diameter is the radius of curvature at every point on the surface of the particle.
  • the particle diameter of an object refers to an average particle diameter measured by a dynamic light scattering method, a Sears method, or a laser-diffraction scattering method, or a sphere equivalent diameter calculated from a BET specific surface area.
  • the particle size of the particles as the first object, the second object, or the third object is preferably l / zm or less, more preferably 0.1 / Xm or less, 0.05 jum or less is more preferred, 0.01 ⁇ m or less is more preferred, and 0.005 ⁇ m or less is more preferred.
  • the first object is preferably a spherical particle, an acicular particle, or a chain particle.
  • a chain particle is a particle having a structure in which a plurality of spherical particles are connected. Examples of spherical particles include SNOWTEX ST—XS (trade name) and SNOWTEX ST—XL (trade name) manufactured by Nissan Chemical Industries, Ltd. Examples of chain particles include Nissan Chemical Industries, Ltd. Examples include Snowtex PS-S and Snowtex PS-SO (trade name). “Snowtex” is a registered trademark in Japan.
  • Each of the second object and the third object may independently be a particle, a film, a sheet, a fiber, a molded body, or the like.
  • the first object has a radius of curvature of 1 / im or less, preferably 0.1 / m or less, and more preferably 0.05 m or less. Is done. Further, the first object is a third non-volatile liquid at a point of curvature radius l / m or less, preferably 0. l jn m or less, more preferably 0.0 5 ⁇ m or less and at or around Z. It can also be glued to objects.
  • the amount of the object having a radius of curvature of 1 ⁇ m or less is preferably 3 to 100 parts by weight, more preferably 10 to 100 parts by weight with respect to 1 part by weight of the non-volatile liquid. More preferably, it is 10 to 200 parts by weight. If the amount is less than 3 parts by weight, the objects tend to maintain fluidity and do not exhibit adhesiveness. When the amount is larger than the amount, the capillary force does not sufficiently act on the non-volatile liquid, and there is a tendency that the adhesiveness is not exhibited.
  • the distance between these objects is preferably 1 zm or less. More preferably, it is 1 ⁇ m or less, more preferably 0.001 l / zm or less, and most preferably 0.02 m or less.
  • the distance between the objects is preferably larger than the molecular size of the non-volatile liquid.
  • a non-volatile liquid is injected into the contact point after the point of curvature radius 1 / ⁇ ⁇ or less of the first object is brought into contact with the second object.
  • a point with a radius of curvature of 1 / zm or less of the first object is in contact with the second object, and the radius of curvature of the first object other than the point where it is bonded to the second object is 1 // m or less
  • a non-volatile liquid is injected into each contact.
  • a method using a composition containing a solvent is preferred because it is preferable that the objects have fluidity and the objects are closer to each other at the time of drying in order to more strongly express the adhesive force due to the capillary force of the non-volatile liquid.
  • a plurality of first objects, a plurality of second objects, a non-volatile liquid, and a solvent are mixed to prepare a dispersion, and then the solvent is removed.
  • first objects having a radius of curvature of 1 ⁇ m or less are particles having a width in the particle size distribution, or a particle having a radius of curvature of 1 m or less is a plurality of second objects.
  • a particle having a radius of curvature of 1 m or less is a plurality of second objects.
  • each object aggregates to reduce the points with a radius of curvature of 1 m or less.
  • the average particle size in the particle size distribution is preferably 1 ⁇ m or less. Further, the cumulative 10% diameter in the particle size distribution is preferably 1 ⁇ m or less.
  • the solvent used for the preparation of the dispersion used in the method of the present invention may be any solvent that is compatible with the non-volatile liquid, such as water, methanol, n-butanol, isopylpill alcohole, ethylene glycolate, n-Propyl cellosonolev, dimethinorea cetoamide, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomono methino acetate, propylene glycol mono metholeate / layer can be used, preferably with water is there.
  • the non-volatile liquid such as water, methanol, n-butanol, isopylpill alcohole, ethylene glycolate, n-Propyl cellosonolev, dimethinorea cetoamide, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomono methino
  • the content of the solvent in the dispersion may be an amount that can flow the first object, the second object, and the third object, and the proportion of the solvent in the dispersion is usually 30% by weight. . /. ⁇ 99% by weight.
  • the first object, the second object, and the third object may be subjected to surface treatment in order to improve the dispersibility in the solvent.
  • the dispersion containing the plurality of first objects, the non-volatile liquid, and the solvent in the present invention is dried to remove the solvent between the first object and the second object, and the first object and An adhesion function is developed between the third object and, in some cases, between the second object and the third object.
  • the solvent is usually removed from the dispersion by heating the dispersion and evaporating the solvent.
  • the heating temperature may be a temperature at which the solvent evaporates.
  • the dispersion liquid of the present invention may be coated on a substrate to form a dispersion liquid film.
  • the substrate can be the second object described above, or it can be the third object described above.
  • a known coating apparatus such as a bar coater or a die coater can be used.
  • As the base material a known plastic film or sheet, glass, metal film or sheet having an appropriate mechanical rigidity in accordance with the application of the product can be used.
  • plastic films or sheets include polyethylene terephthalate, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl / resenorelose, acetylenoresenorelose butyrate, poly (methyl methacrylate), etc. Or a sheet
  • plastic films or sheets include polyethylene terephthalate, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl / resenorelose, acetylenoresenorelose butyrate, poly (methyl methacrylate), etc.
  • seat can be mentioned.
  • Specific examples of the metal film or sheet include aluminum foil and copper foil.
  • the base material of the present invention can also be a film-like current collector formed of aluminum or the like used in an electric double layer capacitor.
  • the dispersion liquid of the present invention can be prepared as a paste, and after the paste is extruded into a thread or sheet, it is dried to remove the solvent, thereby forming a thread or sheet. According to the method of the present invention, a high-strength yarn or sheet can be formed.
  • the main materials used are as follows.
  • Silica particles Cold silica "Snowtex P S-S” (trade name) manufactured by Nissan Chemical Industries, Ltd.); radius of curvature: 0.0 0 5 to 0.0 0 9 ⁇ ⁇ ; average particle size 0
  • Silica particles (colloidal silica “Snowtex ST-XS” (trade name) manufactured by Nissan Chemical Industries, Ltd.); radius of curvature 0.02 to 0.03 / m; average particle size 0.0 0 4 to 0.06 ⁇ m; solid content concentration of colloidal silica: 20 wt./.) was used.
  • Lithium cobalt oxide “CELLSEED C-5H” (trade name) manufactured by Nippon Chemical Co., Ltd. (average particle diameter D a: 6.6 X m).
  • Acetylene black particles (curvature radius: 0.018 / im; average particle size 0.03 6 ⁇ m; 50% pressed product) manufactured by Denki Kagaku Kogyo Co., Ltd. were used.
  • the film obtained by using activated carbon was cut into a size of 1.5 cm x 2. O cm in a state of being laminated with a current collector, and the weight and film thickness of the cut piece were measured. The weight and film thickness of the film were determined by subtracting the weight and film thickness of the current collector from the weight and film thickness of the cut piece, respectively. Using this result, the density of the film was determined. For the film obtained using lithium cobaltate, the density of the film was determined in the same manner as described above except that the size of the cut piece was changed to 3.0 cm x 3. O cm. Example 1
  • Activated carbon (second object) 1 O g of acetylene black (third object) 2. 0 g colloidal silica (the first object; Snowtex PS- S) of 4 0. O g was added pressure, A non-volatile liquid (0.6 g) was added, and pure water was further added to prepare a slurry having a solid concentration of 30% by weight.
  • the slurry consists of activated carbon (second object) 1 6.
  • the composition of the slurry is shown in Table 1.
  • the slurry was applied on a 20 ⁇ m thick aluminum foil (current collector) using a handy film applicator to form a dispersion film. Thereafter, the aluminum foil with the dispersion film was heated at 60 ° C. for 1 hour and further at 240 ° C. for 6 hours to remove water, thereby obtaining a laminate in which the film was laminated on the aluminum foil. The density of the obtained film was measured, and the results are shown in Table 2.
  • Example 3 Dispersion as in Example 1 except that the amount of non-volatile liquid was changed to 0.4 g. was prepared.
  • the composition of the dispersion is shown in Table 1.
  • a laminate was prepared in the same manner as in Example 1, the film density was measured, and the results are shown in Table 2.
  • Example 4 A dispersion was prepared in the same manner as in Example 1 except that the amount of the nonvolatile liquid was changed to 0.2 g. The composition of the dispersion is shown in Table 1. Next, a laminate was prepared in the same manner as in Example 1, the film density was measured, and the results are shown in Table 2.
  • Example 4 A dispersion was prepared in the same manner as in Example 1 except that the amount of the nonvolatile liquid was changed to 0.2 g. The composition of the dispersion is shown in Table 1. Next, a laminate was prepared in the same manner as in Example 1, the film density was measured, and the results are shown in Table 2. Example 4
  • a dispersion was prepared in the same manner as in Example 1 except that the amount of the nonvolatile liquid was changed to 0.1 g.
  • the composition of the dispersion is shown in Table 1.
  • a laminate was prepared in the same manner as in Example 1, the film density was measured, and the results are shown in Table 2. Comparative Example 1
  • Table 1 shows the composition of the used dispersion prepared by preparing a dispersion in the same manner as in Example 1 except that the non-volatile liquid was not added. Next, a laminate was prepared in the same manner as in Example 1, the density of the film was measured, and the results are shown in Table 2.
  • Example 5 shows the composition of the used dispersion prepared by preparing a dispersion in the same manner as in Example 1 except that the non-volatile liquid was not added. Next, a laminate was prepared in the same manner as in Example 1, the density of the film was measured, and the results are shown in Table 2.
  • Example 5 shows the composition of the used dispersion prepared by preparing a dispersion in the same manner as in Example 1 except that the non-volatile liquid was not added. Next, a laminate was prepared in the same manner as in Example 1, the density of the film was measured, and the results are shown in Table 2.
  • Example 5 shows the composition of the used dispersion prepared by preparing a dispersion in the same manner as in Example 1 except that the non
  • Lithium cobaltate (second object) 9. O g and acetylene black (third object) 0.7 g powdered silica (first object) Add lg, add pure water, solid content 50 wt.
  • a / 0 slurry was prepared.
  • the slurry consists of lithium cobaltate (second object) 9.0 g, acetylene black (third object) 0.7 g, silica (first object) 0.6 g, non-volatile liquid Contained 0.1 g. That is, the amount of the first object per 1 part by weight of the nonvolatile liquid was 90 parts by weight.
  • the composition of the slurry is shown in Table 3.
  • the slurry was applied onto an aluminum foil (current collector) having a thickness of 2 ⁇ using a handy film applicator to form a dispersion film. Thereafter, the aluminum foil with the dispersion film is heated at 60 ° C. for 1 hour and further at 150 ° C. for 6 hours to remove water, whereby a laminate in which the film is laminated on the aluminum foil is obtained. Obtained. The density of the obtained film was measured, and the results are shown in Table 4.
  • the slurry consists of lithium cobaltate (second body) 9. O g, acetylene black (third body) 0.7 g, silica (first body) 0.6 g, non-volatile liquid 0. lg Contained. That is, the amount of the first object per 1 part by weight of the non-volatile liquid was 90 parts by weight.
  • the composition of the slurry is shown in Table 3. Further, after obtaining a laminate in the same manner as in Example 5, the density of the obtained film was measured, and the results are shown in Table 4.
  • Powdered silica (first object) Prepare slurry in the same manner as Example 5 except that 6.0 g was used instead of colloidal silica (first object; Snowtex ST-XS). did.
  • the slurry consists of lithium cobaltate (second object) 9.0 g, acetylene black (third object) 0.7 g, silica (first object) 0.6 g, non-volatile liquid 0.1 g Contained. That is, the amount of the first object per 1 part by weight of the non-volatile liquid was 90 parts by weight.
  • the composition of the slurry is shown in Table 3. Also, after obtaining a laminate in the same manner as in Example 5, the density of the obtained film was measured, and the results are shown in Table 4. Comparative Example 2
  • Lithium cobaltate (second object) 3 O g and acetylene black (third object) 2.
  • O g Furthermore, pure water is added, and the solid content concentration is 50 wt.
  • the slurry contained 36.0 g of lithium cobaltate (second body), 2.8 g of acetylene black (third body), and 2.4 g of silica (first body).
  • the composition of the slurry is shown in Table 3.
  • the slurry was applied onto an aluminum foil (current collector) having a thickness of 20 / m using a handy film applicator to form a dispersion film. Thereafter, the aluminum foil with the dispersion film is heated at 60 ° C. for 1 hour, and further at 150 ° C. for 6 hours to remove water, whereby the dispersion film is laminated on the aluminum foil. Got the body. The density of the obtained film was measured, and the results are shown in Table 4. [table 1 ]
  • an object can be bonded with high adhesive force with excellent operability. Furthermore, high cohesive force acts between the bonded objects.
  • the bonded objects can be brought closer to each other, and as a result, the packing density of the object assembly can be improved.

Abstract

Disclosed is a method of adhering a first object, which has at least one point with a curvature radius of 1μm or smaller, to a second object by means of a nonvolatile liquid. The method has a process for placing the nonvolatile liquid between an area of the first object including at least one point with a curvature radius of 1μm or smaller and the second object.

Description

明細書 物体の接着方法 技術分野  Technical field
本発明は、 物体の接着方法に関し、 詳しくは、 曲率半径 1 μ m以下の点を有す る第 1の物体と、 第 2の物体とを、 不揮発性液体で接着する方法に関する。 背景技術  The present invention relates to an object bonding method, and more particularly, to a method for bonding a first object having a radius of curvature of 1 μm or less and a second object with a non-volatile liquid. Background art
物体と物体とを接着するには、 通常、 専用の接着剤が使用される。 プラスチッ ク相互、 金属相互、 プラスチックと金属の両者間にポリオレフインと反応性の二 重、 三重結合を有する混合物を介して加熱することで接着する方法 (特開昭 5 4 - 3 8 3 3 5号公報参照) や光硬化性を有する二液反応粘 ·接着剤を用いる方法 (特開昭 5 9— 6 8 6 3 6号公報参照) が知られている。  A special adhesive is usually used to bond objects to each other. A method of bonding by heating through a mixture having a double or triple bond reactive with polyolefin between plastic and metal, or between plastic and metal (Japanese Patent Laid-Open No. 5-4-3 8 3 3 5) And a method using a two-component reactive adhesive having photo-curing properties (see Japanese Patent Application Laid-Open No. 5-9-6 8 6 36).
容易に物体と物体とを接着し、 高い接着力を達成することができる方法が求め られている。 発明の開示  There is a need for a method that can easily bond an object to each other and achieve high adhesion. Disclosure of the invention
本発明は、 物体と物体とを容易に接着することができ、 高い接着力を達成する ことができる、 物体と物体とを接着する方法を提供する。  The present invention provides a method for adhering an object and an object that can easily bond the object and the object and can achieve a high adhesive force.
本発明は、 曲率半径 1 μ m以下の点を少なくとも 1つ有する第 1の物体を不揮 発性液体で第 2の物体と接着する方法であって、 前記第 1の物体の曲率半径が 1 μ m以下である点を少なくとも 1つ含む領域と前記第 2の物体との間に前記不揮 発性液体を位置させる工程を有する方法を提供する。 発明を実施するための形態  The present invention is a method of bonding a first object having at least one point with a radius of curvature of 1 μm or less to a second object with a non-volatile liquid, wherein the first object has a curvature radius of 1 There is provided a method including a step of positioning the non-volatile liquid between a region including at least one point that is μm or less and the second object. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 曲率半径が 1 μ m以下の点を少なくとも 1つ有する第 1の物体を不 揮発性液体で第 2の物体と接着する方法であって、 前記第 1の物体の曲率半径が 1 μ ΐη以下である点を少なくとも 1つ含む領域と前記第 2の物体との間に前記不 揮発性液体を位置させる工程を有する方法。  The present invention is a method of bonding a first object having at least one point with a radius of curvature of 1 μm or less to a second object with a non-volatile liquid, wherein the first object has a radius of curvature of 1 A method comprising the step of positioning the non-volatile liquid between a region including at least one point that is equal to or less than μ ΐη and the second object.
一つの好ましい態様において、 前記第 1の物体は、 粒径が 1 μ m以下の粒子で ある。  In one preferred embodiment, the first object is a particle having a particle size of 1 μm or less.
他の一つの好ましい態様において、. 上記方法は、 前記不揮発性液体と、 溶媒と 、 各々が前記第 1の物体である複数の物体とを混合して分散液を調製する工程と 該分散液を前記第 2の物体と接触させるェ½と、 In another preferred embodiment, the method includes the step of preparing a dispersion by mixing the non-volatile liquid, a solvent, and a plurality of objects, each of which is the first object. Contacting the dispersion with the second object;
前記第 2の物体と接触している前記分散液から前記溶媒を除去する工程と を更に有する。 Removing the solvent from the dispersion in contact with the second object.
この態様において好ましいのは、 前記第 2の物体と接触している前記分散液また は前記第 2の物体と接触することになる前記分散液を第 3の物体と接触させるェ 程を更に有し、 In this embodiment, preferably, the method further comprises a step of bringing the dispersion in contact with the second object or the dispersion to be in contact with the second object into contact with the third object. ,
前記溶媒を除去する工程は、 前記分散液が前記第 3の物体とも接触している状態 で実施される方法である。 この方法によれば、 複数の第 1の物体を第 2の物体と 接着することができるのに加えて、 該複数の第 1の物体を第 3の物体とも接着す ることができる。 The step of removing the solvent is a method that is performed in a state where the dispersion is in contact with the third object. According to this method, in addition to being able to bond a plurality of first objects to a second object, the plurality of first objects can also be bonded to a third object.
他の一つの好ましい態様において、 上記方法は、 前記不揮発性液体と、 溶媒と 、 各々が前記第 1の物体である複数の物体と、 各々が第 2の物体である複数の物 体とを混合して分散液を調製する工程と、  In another preferred embodiment, the method includes mixing the non-volatile liquid, a solvent, a plurality of objects each being the first object, and a plurality of objects each being a second object. And preparing a dispersion,
前記分散液から前記溶媒を除去する工程と Removing the solvent from the dispersion;
を更に有する。 この方法によれば、 第 1の物体と第 2の物体とが接着されること に加えて、 第 1の物体同士も接着され、 第 2の物体同士も接着される。 It has further. According to this method, in addition to bonding the first object and the second object, the first objects are bonded together, and the second objects are bonded together.
他の一つの好ましい態様において、 上記方法は、 前記不揮発性液体と、 溶媒と 、 各々が前記第 1の物体である複数の物体と、 各々が第 2の物体である複数の物 体と、 複数の第 3の物体とを混合して分散液を調製する工程と、  In another preferred embodiment, the method includes: the non-volatile liquid; a solvent; a plurality of objects each being the first object; a plurality of objects each being a second object; Preparing a dispersion by mixing with a third object of
前記分散液から前記溶媒を除去する工程と Removing the solvent from the dispersion;
を更に有する。 この方法によれば、 第 1の物体を第 2の物体と接着することがで きるのに加えて、 第 1の物体や第 2の物体を第 3の物体とも接着することができ る。 また、 この方法によれば、 第 1の物体同士も接着され、 第 2の物体同士も接 着される。 また、 第 3の物体同士も接着される。 It has further. According to this method, in addition to being able to bond the first object to the second object, the first object and the second object can also be bonded to the third object. Further, according to this method, the first objects are also bonded to each other, and the second objects are also bonded to each other. The third object is also glued together.
本発明において、 不揮発性液体とは、 接着工程の雰囲気の温度および圧力にお いて実質的に揮発しない液体であり、 無機物 (金属を含む) でも有機物でもよい 金属としては、 液化した状態を取り、 上記を満たすものであれば特に限定はな レ、。 液化した状態のアルミ、 鉄、 亜鉛、 銅、 銀、 金、 白金、 水銀、 タングステン などが挙げられる。  In the present invention, the non-volatile liquid is a liquid that does not substantially volatilize at the temperature and pressure of the atmosphere in the bonding process, and may be an inorganic substance (including metal) or an organic substance. If it meets the above, there is no particular limitation. Examples include liquefied aluminum, iron, zinc, copper, silver, gold, platinum, mercury, and tungsten.
無機物としては、 液化した状態を取り、 上記を満たすものであれば特に限定は なく、 酸化物、 水酸化物、 硫化物、 など各種塩類などがあげられる。 液化した状 態の低融点ガラス、 低融点の塩類などが好ましく用いられる。 有機物としては、 液化した状態を取り、 上記を満たすものであれば特に限定は なく、 多様な有機化合物があげられる。 電荷を有した有機化合物の塩であるィォ ン液体などが好ましく用いられる。 The inorganic substance is not particularly limited as long as it takes a liquefied state and satisfies the above conditions, and examples thereof include various salts such as oxides, hydroxides and sulfides. Liquefied low-melting glass, low-melting salt, etc. are preferably used. The organic substance is not particularly limited as long as it takes a liquefied state and satisfies the above conditions, and various organic compounds can be mentioned. An ion liquid which is a salt of an organic compound having a charge is preferably used.
本発明において、 イオン液体とは有機カチオンとァニオンとの組み合わせから なるイオンのみからなる液体であり、 その例としては、 イミダゾリ ウム塩、 ピリ ジニゥム塩、 ピロリジニゥム塩、 ホスホニゥム塩、 アンモニゥム塩、 グァニジニ ゥム塩、 イソゥロニゥム塩、 イソチォゥ口-ゥム塩等の、 常温程度で液体である 塩が挙げられる。  In the present invention, the ionic liquid is a liquid consisting only of ions composed of a combination of an organic cation and an anion. Examples thereof include imidazolium salts, pyridinium salts, pyrrolidinium salts, phosphonium salts, ammonium salts, guanidinium salts. Salts that are liquid at room temperature, such as salt, isoronium salt, isothiol-um salt, and the like.
(ィミダゾリ ゥム塩)  (Imidazolium salt)
1 , 3 _ジメチルイミダゾリ ゥム トリフルォロメタンスルホネート、 1—ェチ ル一 3—メチルイミダゾリ ゥム ビス [ォキサレート (2 _ ) ] ボレート、 1— ェチル一 3—メチルイ ミダゾリ ゥム テトラフルォロボレート、 1—ェチル一 3 ーメチルイミダゾリ ゥム プロミ ド、 1 一ェチル一 3—メチルイミダゾリ ゥム クロリ ド、 1 _ェチル一 3—メチルイミダゾリ ゥム へキサフルオロフォスフエ イ ト、 1 一ェチル一 3—メチルイミダゾリ ゥム トリフルォロメタンスルホネー ト、 1—ェチルー 3—メチルイミダゾリ ゥム トリフルォロアセテート、 1 —ェ チル _ 3—メチルイミダゾリ ゥム メチルサルフェート、 1—ェチル一 3—メチ ノレイ ミダゾリ ゥム p— トノレエンスノレホネー ト、 1 —ェチノレー 3 '—メチノレイ ミダ ゾリ ゥム チオシァネート、 1 _ブチル一 3—メチルイミダゾリ ゥム トリフル ォロメタンスルホネート、 1 _ブチル _ 3—メチルイミダゾリ ゥム テ トラフル ォロボレート、 1—ブチノレ一 3—メチ イミダゾリ ゥム へキサフノレオロフォス フェイ ト、 1—ブチル _ 3—メチルイミダゾリ ゥム メチルサルフェート、 1 _ ブチルー 3—メチルイ ミダゾリ ゥム クロリ ド、 1—ブチルー 3—メチルイミダ ゾリ ゥム ブロミ ド、 1—プチル一 3—メチルイミダゾリ ゥム トリフルォロア セテート、 1—ブチル一 3—メチルイミダゾリ ゥム ォクチルサルフェート、 1 —へキシル _ 3—メチノレイミダゾリ ウム ビス (トリフノレオロメチノレスルホニル ) ィミ ド、 1 —へキシル一 3—メチルイミダゾリ ゥム クロリ ド、 1 _へキシル 一 3—メチルイミダゾリ ゥム テトラフルォロボレート、 1—へキシル一 3—メ チ^レイ ミダゾリ ウム へキサフノレオロフォスフェイ ト、 1—へキシノレ一 3—メチ ルイミダゾリ ゥム トリス (ペンタフルォロェチル) トリフルオロフォスフェイ ト、 3—メチル一 1—ォクチルイミダゾリ ゥム へキサフルオロフォスフェイ ト 、 3—メチル一 1—ォクチルイミダゾリ ゥム クロリ ド、 3—メチル一 1—ォク チルイミダゾリ ウム テ トラフルォロボレ一ト、 3—メチル一 1ーォクチルイミ ダゾリ ウム ビス (トリフルォロメチルスルホニル) イミ ド、 3 _メチル一 1— ォクチルイミダゾリ ゥム ォクチルサルフェート、 3—メチル一 1ーテトラデシ ルイミダゾリ ゥム テトラフルォロボレ一ト、 1 _へキサデシル一 3—メチルイ ミダゾリ ゥム クロリ ド、 3—メチルー 1ーォクタデシルイミダゾリ ゥム へキ サフルオロフォスフェイ ト、 3 _メチル _ 1—ォクタデシルイミダゾリ ゥム ビ ス (トリフルォロメチルスルホニル) イミ ド、 3—メチル一 1ーォクタデシルイ ミダゾリ ゥム トリ (ペンタフルォロェチル) トリフルオロフォスフェイ ト、 1 —ェチルー 2 , 3—ジメチルイミダゾリ ゥム ブロミ ド、 1—ェチルー 2 , 3 - ジメチルイミダゾリ ゥム テトラフルォロボレート、 1 _ェチル一 2 , 3—ジメ チルイ ミダゾリ ウム へキサフルオロフォスフェイ ト、 1—ェチル一 2 , 3 - ジメチルイミダゾリ ゥム クロリ ド、 1 一ェチル一 2 , 3—ジメチルイミダゾリ ゥム p— トルエンスルホネート、 1 _ブチル一 2 , 3—ジメチルイミダゾリ ウ ム テトラフルォロボレート、 1 _ブチル_ 2, 3—ジメチルイミダゾリ ゥム クロ リ ド、 1 _ブチル一 2, 3—ジメチルイ ミダゾリ ゥム へキサフルオロフォ スフエイ ト、 1 _ブチル一 2, 3—ジメチルイミダゾリ ゥム ォクチルサルフエ ート、 1一へキシル _ 2, 3—ジメチルイミダゾリ ゥム クロリ ド、 1一へキサ デシル一 2, 3—ジメチルイミダゾリ ゥム クロリ ド 1,3_Dimethylimidazole trifluoromethanesulfonate, 1-ethyl 1-methylimidazolium bis [oxalate (2 _)] borate, 1-ethyl 1-methylimidazole tetrafluoro Loborate, 1-Ethyl-1-methylimidazole Promide, 1-Ethyl-1-3-Methylimidazolium Chloride, 1_Ethyl-1-3-Methylimidazole Hexafluorophosphate, 1 1-Ethyl 1-Methyl imidazolium trifluoromethanesulfonate, 1-Ethyl 3-methyl imidazole trifluoroacetate, 1 —Ethyl _ 3-methylimidazole methyl sulfate, 1— 1—Meth Norley Midazolium p—Torolenos Norephone, 1—Ethnolay 3'—Metino Rei Midori Zhiorum Thion 1_Butyl-3-methylimidazole trifluoromethanesulfonate, 1_Butyl_3-methylimidazole Tetrafluoroborate, 1-Butinole 1-Methylimidazole Hexafluororeophosphato 1-Butyl_3-methylimidazolium methylsulfate, 1-Butyl-3-methylimidazolium chloride, 1-Butyl-3-methylimidazolium bromide, 1-butyl-1-methylimidazolium Trifluoroloacetate, 1-Butyl-1-3-Methylimidazolium sulfate, 1 —Hexyl _ 3-Methylenoremidazolium bis (Trifnoroleolomethinosulphonyl) imide, 1 —Hexyl 1—3 Methyl imidazolium chloride, 1_hexyl 1-methyl imidazole tetrafluorobore 1-hexyl 3-methyl hexazolium hexafnoroleolophosphate, 1-hexylol 3-trimethylimidazole tris (pentafluoroethyl) trifluorophosphate, 3-methyl 1-octylimidazole hexafluorophosphate, 3-methyl-1 1-octylimidazolium chloride, 3-methyl-1- 1-octylimidazolium tetrafluoroborate, 3-methyl-1 1-octylimidazolium bis (trifluoromethylsulfonyl) imidazole, 3_methyl mono 1— Octylimidazole sulfate Octylsulfate, 3-methyl-1-tetradecyl imidazole tetrafluoroborate, 1_hexadecyl-1-3-methylimidazolium chloride, 3-methyl-1-octadecylimidazole Li © beam to key support fluorophosphate Fay DOO, 3 _ methyl _ 1 O Kuta decyl imidazolinium © beam bi scan (triflate Ruo b methylsulfonyl) imide, 3-methyl-one 1 Okutadeshirui Midazori © beam tri (Pentafuruo Loetyl) trifluorophosphate, 1-ethyl-2-, 3-dimethylimidazolium bromide, 1-ethyl-2-, 3-dimethylimidazole tetrafluoroborate, 1_ethyl-1,2,3-dimethyl Tilididium hexafluorophosphate, 1-ethyl-1,2-dimethylimidazolium chloride, 1 1-Ethyl 1, 3-Dimethylimidazole p-Toluenesulfonate, 1_Butyl1-2,3-Dimethylimidazole Tetrafluoroborate, 1_Butyl-2,3-Dimethylimidazole Chloride, 1_Butyl-1,3-dimethylimidazole hexafluorophosphate, 1_Butyl-1,3-dimethylimidazole sulfate, 1-Hexyl_2,3-Dimethyl Imidazol chloride, 1-hexadecyl-1,3-dimethylimidazole chloride
(ピリジニゥム塩)  (Pyridinium salt)
N—ェチルピリジニゥム クロリ ド、 N—ェチルピリジニゥム ブロミ ド、 N— ブチルピリジニゥム クロリ ド、 N _ブチルピリジニゥム テトラフルォロボレ ート、 N—ブチルピリジニゥム へキサフルオロフォスフヱイ ト、 N—ブチルビ リジニゥム トリフルォロメタンスルホネート、 N—へキシルピリジニゥム テ トラフルォロボレート、 N—へキシルピリジニゥム へキサフルオロフォスフエ イ ト、 N—へキシルピリジニゥム ビス (ト リフルォロメチルスルホニル) イミ ド、 N—へキシルピリジニゥム トリフルォロメタンスルホネート、 N—ォクチ ルピリジニゥム クロリ ド、 4一メチル一N—ブチルピリジニゥム クロリ ド、 4一メチル一N—ブチルピリジニゥム テ トラフルォロボレート、 4—メチル一 N—ブチルピリジニゥム へキサフルオロフォスフェイ ト、 3 _メチル一N—ブ チルピリジニゥム クロリ ド、 4—メチル一N—ブチルピリジニゥム ブロミ ド 、 3 , 4—ジメチル一 N—ブチルピリジニゥム クロリ ド、 3 , 5 _ジメチルー N—ブチルピリジニゥム クロリ ド  N-ethylpyridinium chloride, N-ethylpyridinium bromide, N-butylpyridinium chloride, N_butylpyridinium tetrafluoroborate, N-butyl Pyridinium hexafluorophosphate, N-butylpyridine trifluoromethanesulfonate, N-hexylpyridinium tetrafluoroborate, N-hexylpyridinium hexafluorophosphate N-Hexylpyridinium bis (trimethylmethylsulfonyl) imide, N-Hexylpyridinium trifluoromethanesulfonate, N-octylpyridinium chloride, 4-methyl-1-N-butylpyridini Um chloride, 4-methyl-1-N-butylpyridinium tetrafluoroborate, 4-methyl-1-N-butylpyridinium hexafluoro Phosphate, 3_Methyl-1-N-butylpyridinium chloride, 4-Methyl-1-N-butylpyridinium bromide, 3,4-Dimethyl-1-N-butylpyridinium chloride, 3, 5_Dimethyl-N —Butylpyridinium chloride
(ピロリジニゥム塩)  (Pyrrolidinium salt)
1—ブチルー 1 一メチルピロリジニゥム クロリ ド、 1—ブチル _ 1ーメチルビ ロリジニゥム トリフルォロメタンスノレホネ一ト、 1—ブチルー 1—メチルピロ リジニゥム ビス (トリフルォロメチルスノレホニル) イミ ド、 1—ブチル一 1— メチルピロリジニゥム テ トラフルォロボレート、 1—ブチル _ 1—メチルピロ リジニゥム へキサフルオロフォスフェイ ト、 1一ブチル一 1—メチルピロリジ ニゥム トリス (ペンタフ/レオロェチノレ) トリフノレオ口フォスフェイ ト、 1—ブ チル _ 1一メチルピロリジニゥム トリフルォロアセテート、 1—へキシルー 1 —メチルピロリジニゥム クロリ ド、 1—メチル一 1—ォクチルピロリジニゥム クロリ ド' 1-Butyl-1 Monomethylpyrrolidinium chloride, 1-Butyl_ 1-Methylpyrrolidinium trifluoromethanesulphonate, 1-Butyl-1-methylpyrrolidinium bis (trifluoromethylsulphonyl) imide, 1— Butyl 1 Methylpyrrolidinium Tetrafluoroborate, 1-Butyl_ 1-Methylpyrrolidinium Hexafluorophosphate, 1-Butyl 1-Methylpyrrolidinium Tris (pentafu / leorochinole) Trifnoreo oral phosphate, 1-Butyl _ 1-Methylpyrrolidinium trifluoroacetate, 1-Hexiloux 1-Methylpyrrolidinium chloride, 1-Methylpyrrolidinyl chloride 1'-Methylpyrrolidinium chloride '
(ホスホニゥム塩)  (Phosphonium salt)
トリへキシル (テトラデシル) ホスホニゥム クロリ ド、 トリへキシル (テト ラデシ/レ) ホスホニゥム トリス (ペンタフノレォロェチノレ) トリフノレオ口フォス フェイ ト、 トリへキシル (テ トラデシル) ホスホニゥム テトラフルォロボレ一 ト、 トリへキシル (テ トラデシル) ホスホ-ゥム ビス (トリフルォロメチルス ルホニル) イミ ド、 トリへキシル (テトラデシル) ホスホニゥム へキサフルォ 口フォスフェイ ト、 トリへキシル (テトラデシル) ホスホニゥム ビス [ォキサ レート ( 2— ) ] ボレート 一  Trihexyl (tetradecyl) phosphonium chloride, Trihexyl (Tetradecis / Le) Phosphonium tris (Pentafnorolechetinore) Trifnoreo oral phosphate, Trihexyl (Tetradecyl) Phosphonium tetrafluoroborate , Trihexyl (tetradecyl) phospho-umbis (trifluoromethylsulfonyl) imido, trihexyl (tetradecyl) phosphonium hexafluor oral phosphate, trihexyl (tetradecyl) phosphonium bis [oxalate (2 —)] Boreto I
(アンモニゥム塩)  (Ammonium salt)
メチルトリオクチルアンモニゥム トリフルォロアセテート、 メチルトリオクチ ルアンモニゥム トリフルォロメタンスルホネート、 メチルトリオクチルアンモ ニゥム ビス (トリフノレオロメチノレスルホニル) イミ ド Methyltrioctylammonium trifluoroacetate, Methyltrioctylammonium trifluoromethanesulfonate, Methyltrioctylammonium bis (trifnoroleolomethinolesulfonyl) imide
(グァニジニゥム塩)  (Guanidinium salt)
N" —ェチル一 N, N, Ν' , Ν' ーテトラメチノレグァニジニゥム トリス ズ ペンタフ/レオロェチ;^レ) トリフノレオ口フォスフェイ ト、 グァニジニゥム トリス (ペンタフルォロェチル) トリフルオロフォスフェイ ト、 グァニジニゥム トリ フルォロメタンスルホネート、 Ν" —ェチル一 Ν, Ν, Ν' , N' —テトラメチ ルグァニジニゥム トリフルォロメタンスルホネート  N "—Etyl I N, N, Ν ', Ν'-Tetramethinoreguanidinium Tris Pentafu / Leoloche; ^ Le) Trifnoreo mouth phosphate, Guanidinium Tris (pentafluoroeutil) trifluorophosphate, Guanidinium trifluoromethanesulfonate, Ν "—Ethyl Ν, Ν, ', N' — Tetramethylguanidinium trifluoromethanesulfonate
(イソゥロニゥム塩)  (Isolonium salt)
〇_ェチル一1^, Ν, Ν' , Ν' ーテ トラメチルイソゥロニゥム トリフルォ ロメタンスルホネート、 Ο—ェチル一 Ν, Ν, Ν' , N' —テトラメチルイソゥ ロニゥム トリ (ペンタフノレォロェチル) トリフルオロフォスフェイ ト  ○ _Ethyl 1 ^, Ν, Ν ', Ν' Tetramethylisouronium trifluoromethanesulfonate, Ο—Ethyl Ν, Ν, Ν ', N' — Tetramethylisolone Tri Leorotil) Trifluorophosphate
(ィソチォゥロニゥム塩)  (Isochoronium salt)
S—ェチル一 Ν, Ν, Ν' , N' —テトラメチルイソチォゥロニゥム トリフ ルォロメタンスルホネート、 S—ェチル一 Ν, Ν, Ν' , N' —テ トラメチルイ ソチォゥロニゥム トリス (ペンタフノレォロェチ レ) トリフノレオ口フォスフェイ ト  S—Ethyl Ν, Ν, Ν ', N' — Tetramethylisothoronium trifluoromethanesulfonate, S—Ethyl Ν, Ν, Ν ', N' — Tetramethylisosotronum Tris (Pentafnorolero Chile) Trifuno Leo mouth phosphate
上記イオン液体としては、 入手、 取扱いの容易さの観点から、 イ ミダゾリ ゥム 塩が好ましく、 1 —ェチル一 3—メチルイミダゾリ ゥムテトラフルォロボレ一ト が特に好ましい。 From the viewpoint of easy availability and handling, the ionic liquid is imidazolium. A salt is preferred, and 1-ethyl-1-methylimidazole tetrafluoroborate is particularly preferred.
本発明において、 第 1の物体、 第 2の物体および第 3の物体は、 それぞれ独立 して、 金属、 樹脂、 無機物、 炭化物などの固体物質からなる物体である。 金属と しては例えば、 白金、 金、 銀、 銅、 アルミニウム、 ニッケル、 タンタル、 タンダ ステンが挙げられ、 銀が好ましい。 樹脂としては例えば、 アクリル系樹脂、 スチ レン系榭脂、 ポリエチレン系樹脂、 P A N系樹脂、 ナイロン系樹脂、 ポリ ウレタ ン系樹脂、 フエノール系榭脂、 シリ コーン系樹脂、 ベンゾグアナミン系樹脂、 メ ラミン系樹脂、 フッ素榭脂が挙げられ、 スチレン系榭脂が好ましい。 無機物とし ては例えば、 酸化ケィ素 (シリカ) 、 酸化チタン、 酸化アルミニウム、 酸化ジル コニゥム、 酸化亜鉛、 酸化錫、 I T O、 炭酸カルシウム、 硫酸バリ ウム、 タルク 、 カオリン、 チタン酸バリ ウム、 窒化アルミニウム、 窒化ケィ素、 窒化ホウ素、 炭化ケィ素、 ゼォライ 卜が挙げられ、 酸化ケィ素 (シリカ) 、 酸化アルミニウム が好ましい。 炭化物とは、 例えば、 活性炭、 カーボンブラック、 アセチレンブラ ック、 ケッチェンブラック、 黒鉛、 力一ボンナノチューブ、 力一ボンナノフアイ バー、 カーボンナノスフィァ、 フラーレン、 ダイヤモンドが挙げられ、 活性炭、 カーボンブラックが好ましい。  In the present invention, the first object, the second object, and the third object are each independently an object made of a solid material such as a metal, a resin, an inorganic material, or a carbide. Examples of the metal include platinum, gold, silver, copper, aluminum, nickel, tantalum, and tungsten. Silver is preferable. Examples of resins include acrylic resins, styrene resins, polyethylene resins, PAN resins, nylon resins, polyurethane resins, phenolic resins, silicone resins, benzoguanamine resins, and melamine resins. Examples thereof include resin and fluorine resin, and styrene resin is preferable. Examples of inorganic substances include silicon oxide (silica), titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, tin oxide, ITO, calcium carbonate, barium sulfate, talc, kaolin, barium titanate, aluminum nitride, Examples thereof include silicon nitride, boron nitride, silicon carbide, and zeolite. Preferred are silicon oxide (silica) and aluminum oxide. Examples of the carbide include activated carbon, carbon black, acetylene black, ketjen black, graphite, bonbon nanotube, bonbon nanofiber, carbon nanosphere, fullerene, and diamond, and activated carbon and carbon black are preferable. .
第 1の物体の物質と第 2の物体の物質とは同じも異なってもよく、 第 1の物体 の物質と第 3の物体の物質とは同じも異なってもよく、 第 2の物体の物質と第 3 の物体の物質とは同じも異なってもよい。  The material of the first object and the material of the second object may be the same or different, and the material of the first object and the material of the third object may be the same or different, and the material of the second object And the material of the third object may be the same or different.
また、 第 1の物体、 第 2の物体、 および第 3の物体は、 それぞれ独立に、 電極 材であってもよい。  In addition, the first object, the second object, and the third object may be electrode materials independently of each other.
電極材とは、 正極活物質や負極活物質やキャパシタ用活物質などの活物質のこ とである。 活物質とは、 電解質との化学反応によって、 電子を放出したり取り込 んだりする物質をいう。 したがって、 電極材を用いて形成された電極は、 電気二 重層キャパシタや、 一次電池、 二次電池、 燃料電池などの化学電池を含む、 蓄電 デバイスに好適に使用できる。  The electrode material is an active material such as a positive electrode active material, a negative electrode active material, or a capacitor active material. An active material is a substance that emits and takes up electrons by a chemical reaction with an electrolyte. Therefore, an electrode formed using the electrode material can be suitably used for an electricity storage device including an electric double layer capacitor, a chemical battery such as a primary battery, a secondary battery, and a fuel cell.
第 1の物体の形状、 第 2の物体の形状、 および第 3の物体の形状は、 それぞれ 独立に、 任意であって、 例えば球状、 針状、 燐片状、 繊維状、 板状等であってよ レ、。 達成される接着強度の観点から、 第 1の物体は、 曲率半径が 1 /x rn以下、 好 ましくは 0 . 1 i m以下、 より好ましくは 0 . 0 5 / m以下、 さらに好ましくは 、 0 . 0 1 X m以下、 最も好ましくは 0 . 0 0 5 m以下である点を少なく とも 1箇所、 好ましくは 2箇所以上もつ物体である。 このような第 1の物体の代わり に曲率半径 1 ^ m以下の点を有さない物体を使用した場合には、 毛管力が強く発 現しないため、 被着体 (第 1の物体、 第 2の物体、 および第 3の物体) 間に十分 に強い接着性が発現しない場合がある。 第 2の物体および第 3の物体は曲率半径 1 μ m以下の点を有していても良いし、 有していなくてもよい。 なお、 物体の曲 率半径は走査型電子顕微鏡 (S EM) 、 透過型電子顕微鏡 (TEM) 、 原子間力 顕微鏡 (AFM) などにより観察される画像を用いて求めることができる。 本発明において、 径が約 1 0 μ m以下である物体を 「粒子」 と称する。 物体が 球状粒子である場合には、 その粒子の径 (粒径) の半値がその粒子の表面上のす ベての点における曲率半径となる。 本発明において、 物体の粒径は、 動的光散乱 法、 シアーズ法、 又はレーザ一回折散乱法で測定される平均粒径、 または、 B E T比表面積から計算される球相当径を指す。 達成される接着強度の観点から、 第 1の物体、 第 2の物体、 または第 3の物体としての粒子の粒径は、 l /z m以下が 好ましく、 0. 1 /X m以下がより好ましく、 0. 0 5 ju m以下がさらに好ましく 、 0. 0 1 μ m以下がさらに好ましく、 0. 0 0 5 μ m以下がさらに好ましい。 第 1の物体は、 球状粒子、 針状粒子、 または鎖状粒子であることが好ましい。 鎖 状粒子とは、 複数の球状粒子が連結されている構造を有する粒子である。 球状粒 子の例としては、 日産化学工業 (株) 製のスノーテックス S T— X S (商品名) 、 スノーテックス S T— X L (商品名) 、 鎖状粒子の例としては、 日産化学工業 (株) 製のスノーテックス P S— S、 スノーテックス P S— SO (商品名) 等が 挙げられる。 「スノーテックス」 は日本における登録商標である。 The shape of the first object, the shape of the second object, and the shape of the third object are each independently arbitrary, such as a spherical shape, a needle shape, a flake shape, a fiber shape, a plate shape, etc. Let ’s go. From the viewpoint of the adhesive strength achieved, the first object has a radius of curvature of 1 / x rn or less, preferably 0.1 im or less, more preferably 0.05 / m or less, and even more preferably 0 An object having at least one point, preferably two or more points, of less than 0.1 Xm, most preferably less than 0.05 m. If an object that does not have a point with a radius of curvature of 1 ^ m or less is used instead of such a first object, the capillary force is strong. Since it does not appear, sufficiently strong adhesion may not be developed between the adherends (first object, second object, and third object). The second object and the third object may or may not have points with a radius of curvature of 1 μm or less. Note that the radius of curvature of an object can be obtained using images observed with a scanning electron microscope (SEM), a transmission electron microscope (TEM), an atomic force microscope (AFM), and the like. In the present invention, an object having a diameter of about 10 μm or less is referred to as “particle”. If the object is a spherical particle, the half value of the particle diameter (particle size) is the radius of curvature at every point on the surface of the particle. In the present invention, the particle diameter of an object refers to an average particle diameter measured by a dynamic light scattering method, a Sears method, or a laser-diffraction scattering method, or a sphere equivalent diameter calculated from a BET specific surface area. From the viewpoint of the adhesive strength achieved, the particle size of the particles as the first object, the second object, or the third object is preferably l / zm or less, more preferably 0.1 / Xm or less, 0.05 jum or less is more preferred, 0.01 μm or less is more preferred, and 0.005 μm or less is more preferred. The first object is preferably a spherical particle, an acicular particle, or a chain particle. A chain particle is a particle having a structure in which a plurality of spherical particles are connected. Examples of spherical particles include SNOWTEX ST—XS (trade name) and SNOWTEX ST—XL (trade name) manufactured by Nissan Chemical Industries, Ltd. Examples of chain particles include Nissan Chemical Industries, Ltd. Examples include Snowtex PS-S and Snowtex PS-SO (trade name). “Snowtex” is a registered trademark in Japan.
第 2の物体おょぴ第 3の物体は、 それぞれ独立に、 粒子であっても良いし、 フ イルム、 シート、 繊維、 成形体などであってもよい。  Each of the second object and the third object may independently be a particle, a film, a sheet, a fiber, a molded body, or the like.
第 1の物体は、 曲率半径 1 /i m以下、 好ましくは 0. 1 / m以下、 さらに好ま しくは 0. 0 5 m以下の点およびノまたはその周囲において不揮発性液体で第 2の物体と接着される。 さらに、 第 1の物体は、 曲率半径 l / m以下、 好ましく は 0. l jn m以下、 さらに好ましくは 0. 0 5 μ m以下の点および Zまたはその 周囲において、 不揮発性液体で第 3の物体とも接着され得る。  The first object has a radius of curvature of 1 / im or less, preferably 0.1 / m or less, and more preferably 0.05 m or less. Is done. Further, the first object is a third non-volatile liquid at a point of curvature radius l / m or less, preferably 0. l jn m or less, more preferably 0.0 5 μm or less and at or around Z. It can also be glued to objects.
不揮発性液体は例えばイオン液体を用いた場合、 たとえ 4 00°C程度の高温ま で加熱されても物体の間に残留し、 毛管力が働くため物体を強く引き寄せて、 物 体同士を強固に接着させ、 結果的に、 接着によって生じる物体集合体を緻密化す る、 という効果を発現すると考えられる。  For example, when an ionic liquid is used as the non-volatile liquid, even if it is heated to a high temperature of about 400 ° C., it remains between the objects, and the capillary force works so that the objects are strongly drawn together, thereby solidifying the objects. It is considered that the effect of densifying and as a result, densifying the object assembly resulting from the adhesion is manifested.
曲率半径が 1 μ m以下の点を有する物体の量は、 不揮発性液体 1重量部に対し て 3重量部〜 1 00 00重量部が好ましく、 より好ましくは 1 0重量部〜 1 00 0重量部、 さらに好ましくは 1 0重量部〜 2 0 0重量部である。 3重量部未満で あると、 物体同士が流動性を保ち接着性を発現しない傾向があり、 1 00 00重 量部より多いと不揮発性液体に毛管力が十分に働かず、 接着性を発現しない傾向 がある。 The amount of the object having a radius of curvature of 1 μm or less is preferably 3 to 100 parts by weight, more preferably 10 to 100 parts by weight with respect to 1 part by weight of the non-volatile liquid. More preferably, it is 10 to 200 parts by weight. If the amount is less than 3 parts by weight, the objects tend to maintain fluidity and do not exhibit adhesiveness. When the amount is larger than the amount, the capillary force does not sufficiently act on the non-volatile liquid, and there is a tendency that the adhesiveness is not exhibited.
物体間の不揮発性液体に毛管力が十分に働くようにするためには、 これら物体 間の距離を小さくすることが好ましく、 これら物体間の距離は、 1 z m以下にす ることが好ましく、 0 . 1 μ m以下にすることがより好ましく、 0 . O l /z m以 下にすることがさらに好ましく、 0 . 0 0 2 m以下にすることが最も好ましい 。 但し、 物体同士が近づきすぎると不揮発性液体が物体間に挿入され難くなるた め、 物体間の距離は不揮発性液体の分子サイズより大きいことが好ましい。 本発明の第 1の物体を第 2の物体に接着する方法、 または第 1の物体を第 2の 物体および第 3の物体に接着する方法としては、 例えば以下の方法 (1 ) 〜 (4 ) が挙げられる。  In order for the capillary force to sufficiently act on the non-volatile liquid between the objects, it is preferable to reduce the distance between these objects, and the distance between these objects is preferably 1 zm or less. More preferably, it is 1 μm or less, more preferably 0.001 l / zm or less, and most preferably 0.02 m or less. However, since the non-volatile liquid is difficult to be inserted between the objects if the objects are too close to each other, the distance between the objects is preferably larger than the molecular size of the non-volatile liquid. Examples of the method of adhering the first object of the present invention to the second object or the method of adhering the first object to the second object and the third object include the following methods (1) to (4): Is mentioned.
( 1 ) 第 1の物体の曲率半径 1 /χ ΐη以下の点を第 2の物体に接触させた後、 接点 に不揮発性液体を注入する。  (1) A non-volatile liquid is injected into the contact point after the point of curvature radius 1 / χ ΐη or less of the first object is brought into contact with the second object.
( 2 ) 第 1の物体の曲率半径 1 /z m以下の点を第 2の物体に接触させ、 さらに第 1の物体の、 第 2の物体と接着させた点以外の曲率半径 1 // m以下の点を第 3の 物体に接触させた後、 それぞれの接点に不揮発性液体を注入する。  (2) A point with a radius of curvature of 1 / zm or less of the first object is in contact with the second object, and the radius of curvature of the first object other than the point where it is bonded to the second object is 1 // m or less After the point is in contact with a third object, a non-volatile liquid is injected into each contact.
( 3 ) 第 1の物体の曲率半径 1 m以下の点を第 2の物体に接触させた後、 溶媒 で希釈した不揮発性液体を界面に注入し、 その後、 溶媒を蒸発ざせて除去する。  (3) After the point of curvature radius of 1 m or less of the first object is brought into contact with the second object, a non-volatile liquid diluted with a solvent is injected into the interface, and then the solvent is evaporated and removed.
( 4 ) 第 1の物体の曲率半径 1 m以下の点を第 2の物体に接触させ、 さらに第 1の物体の、 第 2の物体と接着させた点以外の曲率半径 1 /z m以下の点を第 3の 物体に接触させた後、 溶媒で希釈した不揮発性液体を両接点に注入し、 その後、 溶媒を蒸発させて除去する。  (4) A point with a radius of curvature of 1 / zm or less other than the point where the first object has a radius of curvature of 1 m or less in contact with the second object and the first object is bonded to the second object Is brought into contact with a third object, and then a non-volatile liquid diluted with a solvent is injected into both contacts, and then the solvent is evaporated and removed.
不揮発性液体の毛管力による接着力をより強く発現するため、 物体が流動性を 持ち、 乾燥時に物体同士がより近接することが好ましいため、 溶媒を含む組成物 を用いる方法が好ましい。  A method using a composition containing a solvent is preferred because it is preferable that the objects have fluidity and the objects are closer to each other at the time of drying in order to more strongly express the adhesive force due to the capillary force of the non-volatile liquid.
高い接着強度を達成するためには、 本発明の第 1の物体を第 2の物体に接着す る方法、 または第 1の物体を第 2の物体および第 3の物体に接着する方法におい て、 複数の第 1の物体を用いるのが好ましい。 また、 第 2の物体および第 3の物 体も曲率半径 1 μ m以下の点を有する場合には、 複数の第 2の物体、 および複数 の第 3の物体も複数用いることがより好ましい。 好ましい態様として、 例えば以 下の方法 (5 ) 〜 (8 ) が挙げられる。  In order to achieve high adhesive strength, in the method of adhering the first object of the present invention to the second object, or the method of adhering the first object to the second object and the third object, It is preferable to use a plurality of first objects. In addition, when the second object and the third object also have points having a radius of curvature of 1 μm or less, it is more preferable to use a plurality of second objects and a plurality of third objects. Preferred embodiments include, for example, the following methods (5) to (8).
( 5 ) 複数の第 1の物体と不揮発性液体と溶媒とを混合して分散液を調製した後 、 該分散液を第 2の物体に接触させ、 第 2の物体と接触している前記分散液から 溶媒を除去する。 ( 6 ) 複数の第 1の物体と不揮発性液体と溶媒とを混合して分散液を調製した後 、 該分散液を第 2の物体および第 3の物体と接触させ、 第 2の物体および第 3の 物体と接触している前記分散液から溶媒を除去する。 (5) After preparing a dispersion by mixing a plurality of first objects, a non-volatile liquid and a solvent, the dispersion is brought into contact with the second object, and the dispersion in contact with the second object Remove solvent from solution. (6) After preparing a dispersion by mixing a plurality of first objects, a non-volatile liquid and a solvent, the dispersion is brought into contact with the second object and the third object, and the second object and the second object 3. Remove the solvent from the dispersion in contact with the object.
( 7 ) 複数の第 1の物体と複数の第 2の物体と不揮発性液体と溶媒とを混合して 分散液を調製した後、 溶媒を除去する。  (7) A plurality of first objects, a plurality of second objects, a non-volatile liquid, and a solvent are mixed to prepare a dispersion, and then the solvent is removed.
( 8 ) 複数の第 1の物体と複数の第 2の物体と複数の第 3の物体と不揮発性液体 と溶媒とを混合して分散液を調製した後、 溶媒を除去する。  (8) After mixing a plurality of first objects, a plurality of second objects, a plurality of third objects, a non-volatile liquid, and a solvent to prepare a dispersion, the solvent is removed.
曲率半径が 1 μ m以下の点を有する複数の第 1の物体が粒度分布に幅がある粒 子である場合、 または曲率半径が 1 m以下の点を有する粒子を複数の第 2の物 体または複数の第 3の物体として用いる際に、 それらの粒子の粒度分布に幅があ る場合、 各物体が凝集して曲率半径 1 m以下の点を減少させていると考えられ る。 When a plurality of first objects having a radius of curvature of 1 μm or less are particles having a width in the particle size distribution, or a particle having a radius of curvature of 1 m or less is a plurality of second objects. Or, when using as a plurality of third objects, if the particle size distribution of these particles is wide, it is considered that each object aggregates to reduce the points with a radius of curvature of 1 m or less.
したがって、 高い接着力を発現させるため、 その粒度分布における平均粒径が 1 μ m以下であることが好ましい。 さらにはその粒度分布における累積 1 0 %径 が 1 μ m以下であることが好ましい。  Therefore, in order to develop a high adhesive force, the average particle size in the particle size distribution is preferably 1 μm or less. Further, the cumulative 10% diameter in the particle size distribution is preferably 1 μm or less.
本発明の方法で使用する分散液の調製に使用する溶媒は、 不揮発性液体と相溶 性がある溶媒であればよく、 例えば、 水、 メタノール、 n—ブタノール、 イソプ 口ピルアルコーノレ、 エチレングリ コーノレ、 n—プロピルセロソノレブ、 ジメチノレア セトアミ ド、 メチルェチルケトン、 メチルイソブチルケトン、 キシレン、 プロピ レングリコーノレモノメチノレアセテート、 プロピレングリコーノレモノメチ /レエーテ ル等を用いることができ、 好ましくは水である。 分散液中の溶媒の含有量は、 第 1の物体、 第 2の物体、 および第 3の物体を流動可能にできる量であればよく、 溶媒が分散液中に占める割合は通常、 3 0重量。/。〜 9 9重量%である。 なお、 第 1の物体、 第 2の物体、 および第 3の物体には、 上記溶媒への分散性を改良する ために、 表面処理を施しても良い。  The solvent used for the preparation of the dispersion used in the method of the present invention may be any solvent that is compatible with the non-volatile liquid, such as water, methanol, n-butanol, isopylpill alcohole, ethylene glycolate, n-Propyl cellosonolev, dimethinorea cetoamide, methyl ethyl ketone, methyl isobutyl ketone, xylene, propylene glycol monomono methino acetate, propylene glycol mono metholeate / layer can be used, preferably with water is there. The content of the solvent in the dispersion may be an amount that can flow the first object, the second object, and the third object, and the proportion of the solvent in the dispersion is usually 30% by weight. . /. ~ 99% by weight. The first object, the second object, and the third object may be subjected to surface treatment in order to improve the dispersibility in the solvent.
本発明における複数の第 1の物体と不揮発性液体と溶媒とを含む分散液は、 乾 燥させて溶媒を除去することにより第 1の物体と第 2の物体との間、 第 1の物体 と第 3の物体との間、 場合によっては第 2の物体と第 3の物体との間に接着機能 を発現する。 本発明の方法において、 分散液からの溶媒の除去は、 通常、 該分散 液を加熱して溶媒を蒸発させることにより行う。 この方法で溶媒を除去する場合 に、 加熱温度は溶媒が蒸発する温度であればよい。  The dispersion containing the plurality of first objects, the non-volatile liquid, and the solvent in the present invention is dried to remove the solvent between the first object and the second object, and the first object and An adhesion function is developed between the third object and, in some cases, between the second object and the third object. In the method of the present invention, the solvent is usually removed from the dispersion by heating the dispersion and evaporating the solvent. When the solvent is removed by this method, the heating temperature may be a temperature at which the solvent evaporates.
本発明の分散液は基材上に塗工して分散液膜を形成してもよい。 該基材は、 先 に述べた第 2の物体であることができ、 また、 先に述べた第 3の物体であること もできる。 分散液を基材上に塗布するのには、 ハンディ · フィルムアプリケ一タ 一、 バーコ一ター、 ダイコーター等の公知の塗布装置を用いることができる。 前記基材は、 製品の用途に応じた適度の機械的剛性を有する公知のプラスチッ クフィルムまたはシート、 ガラス、 金属フィルムまたはシートを用いることがで きる。 プラスチックフィルムまたはシートの具体例と しては、 ポリエチレンテレ フタレー ト、 ポリエチレン、 ポリプロピレン、 セロファン、 ト リァセチルセル口 ース、 ジァセチ /レセノレロース、 ァセチノレセノレロースブチレー ト、 ポリ メタク リノレ 酸メチル等のフィルムまたはシートを挙げることができる。 金属フィルムまたは シートの具体例としては、 アルミ箔、 銅箔等を挙げることができる。 本発明の基 材は、 電気二重層キヤバシタに用いられる、 アルミニウム等で形成されたフィル ム状の集電体であることもできる。 The dispersion liquid of the present invention may be coated on a substrate to form a dispersion liquid film. The substrate can be the second object described above, or it can be the third object described above. To apply the dispersion onto the substrate, use a handy film applicator. A known coating apparatus such as a bar coater or a die coater can be used. As the base material, a known plastic film or sheet, glass, metal film or sheet having an appropriate mechanical rigidity in accordance with the application of the product can be used. Specific examples of plastic films or sheets include polyethylene terephthalate, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl / resenorelose, acetylenoresenorelose butyrate, poly (methyl methacrylate), etc. Or a sheet | seat can be mentioned. Specific examples of the metal film or sheet include aluminum foil and copper foil. The base material of the present invention can also be a film-like current collector formed of aluminum or the like used in an electric double layer capacitor.
本発明の分散液はペース トとして作製して、 このペース トを糸状あるいはシー ト状に押し出した後、 乾燥して溶媒を除去し、 糸あるいはシートとすることもで きる。 本発明の方法によれば強度が高い糸あるいはシートを形成することができ る。 実施例  The dispersion liquid of the present invention can be prepared as a paste, and after the paste is extruded into a thread or sheet, it is dried to remove the solvent, thereby forming a thread or sheet. According to the method of the present invention, a high-strength yarn or sheet can be formed. Example
以下、 本件を実施例によってさらに具体的に説明するが、 本発明はこれら実施 例に限られない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
使用した主な材料は以下のとおりである。  The main materials used are as follows.
[不揮発性液体]  [Non-volatile liquid]
イオン液体である、 メルク株式会社製の 1 —ェチル一 3—メチルイミダゾリ ゥム テ 卜ラフノレ才ロボレー 卜。 An ionic liquid manufactured by Merck & Co., Inc. 1-Ethyl 1-methylimidazole
[第 1の物体]  [First object]
( 1 ) シリカ粒子 (日産化学工業株式会社製のコロイダルシリカ 「スノーテック ス P S— S」 (商品名) ; 曲率半径: 0. 0 0 5〜 0. 0 0 9 μ ηι ;平均粒径 0 (1) Silica particles (Colloidal silica "Snowtex P S-S" (trade name) manufactured by Nissan Chemical Industries, Ltd.); radius of curvature: 0.0 0 5 to 0.0 0 9 μ ηι; average particle size 0
. 0 1 0〜 0. 0 1 8 m ; コロイダルシリカの固形分濃度 : 2 0重量0 /0) 。. 0 1 0~ 0. 0 1 8 m; solid concentration of the colloidal silica: 2 0 Weight 0/0).
( 2 ) シリカ粒子 (日産化学工業株式会社製のコロイダルシリカ 「スノーテック ス S T— X S」 (商品名) ; 曲率半径 0. 0 0 2〜 0. 0 0 3 / m ;平均粒径 0 . 0 0 4〜 0. 0 0 6 μ m ; コロイダルシリカの固形分濃度 : 2 0重量。/。) を用 いた。 (2) Silica particles (colloidal silica “Snowtex ST-XS” (trade name) manufactured by Nissan Chemical Industries, Ltd.); radius of curvature 0.02 to 0.03 / m; average particle size 0.0 0 4 to 0.06 μm; solid content concentration of colloidal silica: 20 wt./.) Was used.
( 3 ) シリカ粒子 (株式会社日本触媒製のパウダー状シリカ 「シーホスター K E P 1 0 0」 (商品名) ; 曲率半径 0. 4 8 5〜 0. 6 1 5 μ m ;平均粒径 0. 9 5〜 1 . 2 5 μ m)  (3) Silica particles (Nippon Shokubai Co., Ltd. powdered silica “Seahoster KEP 100” (trade name); radius of curvature 0.4 8 5 to 0.6 1 5 μm; average particle size 0.95 ~ 1.2 5 μm)
[第 2の物体] ( 1 ) クラレケミカル株式会社製の活性炭 R P— 1 5をボールミルでジルコユア ボールを用い、 24時間粉砕して調整した活性炭。 粉砕後の活性炭を水に分散さ せて調整した分散液をレーザー回折 Z散乱式粒度分布測定装置 (HOR I BA LA 9 1 0) を用いて分析したところ、 活性炭の粒径は 5 /x mであり、 したがつ て、 曲率半径は 2. 5 /x mであった。 [Second object] (1) Activated carbon manufactured by Kuraray Chemical Co., Ltd. RP-1 15 was pulverized in a ball mill for 24 hours using a Zircoyu ball. When the dispersion liquid prepared by dispersing activated carbon after pulverization in water was analyzed using a laser diffraction Z-scattering particle size distribution analyzer (HOR I BA LA 9 1 0), the activated carbon particle size was 5 / xm. Therefore, the radius of curvature was 2.5 / xm.
(2) 日本化学株式会社製のコバルト酸リチウム 「セルシード C- 5 H」 (商品 名) (平均粒径 D a : 6. 6 X m) 。  (2) Lithium cobalt oxide “CELLSEED C-5H” (trade name) manufactured by Nippon Chemical Co., Ltd. (average particle diameter D a: 6.6 X m).
[第 3の物体]  [Third object]
電気化学工業株式会社製のアセチレンブラック粒子 (曲率半径: 0. 0 1 8 /i m ;平均粒径 0. 0 3 6 μ m; 5 0 %プレス品) を用いた。 Acetylene black particles (curvature radius: 0.018 / im; average particle size 0.03 6 μm; 50% pressed product) manufactured by Denki Kagaku Kogyo Co., Ltd. were used.
[膜密度の測定]  [Measurement of film density]
活性炭を用いて得られた膜は集電体と積層した状態で 1. 5 c mX 2. O c mの 大きさに切断し、 切断片の重量および膜厚を測定した。 切断片の重量および膜厚 から集電体の重量および膜厚をそれぞれ差し引いて前記膜の重量および膜厚をそ れぞれ求めた。 この結果を用いて前記膜の密度を求めた。 コバルト酸リチウムを 用いて得られた膜については、 切断片の大きさを 3. 0 c mX 3. O c mに変更 した以外は前記方法と同様にして、 膜の密度を求めた。 実施例 1 The film obtained by using activated carbon was cut into a size of 1.5 cm x 2. O cm in a state of being laminated with a current collector, and the weight and film thickness of the cut piece were measured. The weight and film thickness of the film were determined by subtracting the weight and film thickness of the current collector from the weight and film thickness of the cut piece, respectively. Using this result, the density of the film was determined. For the film obtained using lithium cobaltate, the density of the film was determined in the same manner as described above except that the size of the cut piece was changed to 3.0 cm x 3. O cm. Example 1
活性炭 (第 2の物体) 1 6. O gとアセチレンブラック (第 3の物体) 2. 0 gにコロイダルシリカ (第 1の物体;スノーテックス P S— S ) 4 0. O gを添 加し、 不揮発性液体 0. 6 gを添加し、 さらに純水を添加して、 固形分濃度 3 0 重量%のスラリーを調製した。 該スラリーは、 活性炭 (第 2の物体) 1 6. O g 、 アセチレンブラック (第 3の物体) 2. 0 g、 シリカ (第 1の物体) 8. 0 g 、 不揮発性液体 0. 6 gを含有していた。 すなわち不揮発性液体 1重量部あたり の第 1の物体の量は 1 3. 3重量部であった。 前記スラ リーの組成を表 1に示し た。 厚さ 2 0 μ mのアルミニウム箔 (集電体) 上に、 前記スラリーをハンディ · フィルムアプリケーターを用いて塗布し分散膜を形成した。 その後、 前記分散膜 付きアルミニウム箔を 6 0°Cで 1時間、 さらに 24 0 で 6時間加熱して水を除 去することで、 アルミニウム箔上に膜が積層されている積層体を得た。 得られた 膜の密度を測定し、 その結果を表 2に示した。 実施例 2 Activated carbon (second object) 1 6. O g of acetylene black (third object) 2. 0 g colloidal silica (the first object; Snowtex PS- S) of 4 0. O g was added pressure, A non-volatile liquid (0.6 g) was added, and pure water was further added to prepare a slurry having a solid concentration of 30% by weight. The slurry consists of activated carbon (second object) 1 6. O g, acetylene black (third object) 2.0 g, silica (first object) 8.0 g, non-volatile liquid 0.6 g Contained. That is, the amount of the first object per 1 part by weight of the non-volatile liquid was 13.3 parts by weight. The composition of the slurry is shown in Table 1. The slurry was applied on a 20 μm thick aluminum foil (current collector) using a handy film applicator to form a dispersion film. Thereafter, the aluminum foil with the dispersion film was heated at 60 ° C. for 1 hour and further at 240 ° C. for 6 hours to remove water, thereby obtaining a laminate in which the film was laminated on the aluminum foil. The density of the obtained film was measured, and the results are shown in Table 2. Example 2
不揮発性液体の量を 0. 4 gに変更した以外は、 実施例 1と同様にして分散液 を調製した。 該分散液の組成を表 1に示した。 次に、 実施例 1 と同様に積層体を 作成し、 膜の密度を測定し、 その結果を表 2に示した。 実施例 3 Dispersion as in Example 1 except that the amount of non-volatile liquid was changed to 0.4 g. Was prepared. The composition of the dispersion is shown in Table 1. Next, a laminate was prepared in the same manner as in Example 1, the film density was measured, and the results are shown in Table 2. Example 3
不揮発性液体の量を 0 . 2 gに変更した以外は、 実施例 1 と同様にして分散液 を調製した。 該分散液の組成を表 1に示した。 次に、 実施例 1 と同様に積層体を 作成し、 膜の密度を測定し、 その結果を表 2に示した。 実施例 4  A dispersion was prepared in the same manner as in Example 1 except that the amount of the nonvolatile liquid was changed to 0.2 g. The composition of the dispersion is shown in Table 1. Next, a laminate was prepared in the same manner as in Example 1, the film density was measured, and the results are shown in Table 2. Example 4
不揮発性液体の量を 0 . 1 gに変更した以外は、 実施例 1 と同様にして分散液 を調製した。 該分散液の組成を表 1に示した。 次に、 実施例 1 と同様に積層体を 作成し、 膜の密度を測定し、 その結果を表 2に示した。 比較例 1  A dispersion was prepared in the same manner as in Example 1 except that the amount of the nonvolatile liquid was changed to 0.1 g. The composition of the dispersion is shown in Table 1. Next, a laminate was prepared in the same manner as in Example 1, the film density was measured, and the results are shown in Table 2. Comparative Example 1
不揮発性液体を添加しなかった以外は、 実施例 1 と同様にして分散液を調製し た使用した分散液の組成を表 1に示した。 次に、 実施例 1 と同様に積層体を作成 し、 膜の密度を測定し、 その結果を表 2に示した。 実施例 5  Table 1 shows the composition of the used dispersion prepared by preparing a dispersion in the same manner as in Example 1 except that the non-volatile liquid was not added. Next, a laminate was prepared in the same manner as in Example 1, the density of the film was measured, and the results are shown in Table 2. Example 5
コバルト酸リチウム (第 2の物体) 9 . O gとアセチレンブラック (第 3の物 体) 0 . 7 gにパウダー状シリカ (第 1の物体) 0 . 6 gを添加し、 不揮発性液 体 0 . l gを添加し、 さらに純水を添加して、 固形分濃度 5 0重量。 /0のスラリー を調製した。 該スラリーは、 コバルト酸リチウム (第 2の物体) 9 . 0 g、 ァセ チレンブラック (第 3の物体) 0 . 7 g、 シリカ (第 1の物体) 0 . 6 g、 不揮 発性液体 0 . 1 gを含有していた。 すなわち不揮発性液体 1重量部あたりの第 1 の物体の量は 9 0重量部であった。 前記スラ リーの組成を表 3に示した。 厚さ 2 Ο μ ιηのアルミニウム箔 (集電体) 上に、 前記スラリ一をハンディ · フィルムァ プリケーターを用いて塗布し分散膜を形成した。 その後、 前記分散膜付きアルミ ユウム箔を 6 0 °Cで 1時間、 さらに 1 5 0 °Cで 6時間加熱して水を除去すること で、 アルミニウム箔上に膜が積層されている積層体を得た。 得られた膜の密度を 測定し、 その結果を表 4に示した。 実施例 6 Lithium cobaltate (second object) 9. O g and acetylene black (third object) 0.7 g powdered silica (first object) Add lg, add pure water, solid content 50 wt. A / 0 slurry was prepared. The slurry consists of lithium cobaltate (second object) 9.0 g, acetylene black (third object) 0.7 g, silica (first object) 0.6 g, non-volatile liquid Contained 0.1 g. That is, the amount of the first object per 1 part by weight of the nonvolatile liquid was 90 parts by weight. The composition of the slurry is shown in Table 3. The slurry was applied onto an aluminum foil (current collector) having a thickness of 2 Ομιη using a handy film applicator to form a dispersion film. Thereafter, the aluminum foil with the dispersion film is heated at 60 ° C. for 1 hour and further at 150 ° C. for 6 hours to remove water, whereby a laminate in which the film is laminated on the aluminum foil is obtained. Obtained. The density of the obtained film was measured, and the results are shown in Table 4. Example 6
パウダー状シリカ (第 1の物体) 0 . 6 gの代わりにコロイダルシリカ (第 1 の物体; スノーテックス p S— S) 6. 0 gを用いた以外は実施例 5と同様にし てスラリーを調製した。 該スラリーは、 コバルト酸リチウム (第 2の物体) 9. O g、 アセチレンブラック (第 3の物体) 0. 7 g、 シリカ (第 1の物体) 0. 6 g、 不揮発性液体 0. l gを含有していた。 すなわち不揮発性液体 1重量部あ たりの第 1の物体の量は 90重量部であった。 前記スラリーの組成を表 3に示し た。 また、 実施例 5 と同様にして積層体を得た後、 得られた膜の密度を測定し、 その結果を表 4に示した。 実施例 7 Powdered silica (first object) instead of 0.6 g colloidal silica (first A slurry was prepared in the same manner as in Example 5 except that 6.0 g of Snowtex p S—S) was used. The slurry consists of lithium cobaltate (second body) 9. O g, acetylene black (third body) 0.7 g, silica (first body) 0.6 g, non-volatile liquid 0. lg Contained. That is, the amount of the first object per 1 part by weight of the non-volatile liquid was 90 parts by weight. The composition of the slurry is shown in Table 3. Further, after obtaining a laminate in the same manner as in Example 5, the density of the obtained film was measured, and the results are shown in Table 4. Example 7
パウダー状シリカ (第 1の物体) 0. 6 gの代わりにコロイダルシリカ (第 1 の物体; スノーテックス S T— X S) 6. 0 gを用いた以外は実施例 5と同様に してスラリーを調製した。 該スラリーは、 コバルト酸リチウム (第 2の物体) 9 . 0 g、 アセチレンブラック (第 3の物体) 0. 7 g、 シリカ (第 1の物体) 0 . 6 g、 不揮発性液体 0. 1 gを含有していた。 すなわち不揮発性液体 1重量部 あたりの第 1の物体の量は 9 0重量部であった。 前記スラリーの組成を表 3に示 した。 また、 '実施例 5と同様にして積層体を得た後、 得られた膜の密度を測定し 、 その結果を表 4に示した。 比較例 2  Powdered silica (first object) Prepare slurry in the same manner as Example 5 except that 6.0 g was used instead of colloidal silica (first object; Snowtex ST-XS). did. The slurry consists of lithium cobaltate (second object) 9.0 g, acetylene black (third object) 0.7 g, silica (first object) 0.6 g, non-volatile liquid 0.1 g Contained. That is, the amount of the first object per 1 part by weight of the non-volatile liquid was 90 parts by weight. The composition of the slurry is shown in Table 3. Also, after obtaining a laminate in the same manner as in Example 5, the density of the obtained film was measured, and the results are shown in Table 4. Comparative Example 2
コバルト酸リチウム (第 2の物体) 3 6. O g とアセチレンブラック (第 3の 物体) 2. 8 gにコロイダルシリカ (第 1の物体; スノーテックス P S— S) 2 4. O gを添加し、 さらに純水を添加して、 固形分濃度 5 0重量。 /0のスラリーを 調製した。 不揮発性液体は用いなかった。 該スラリーは、 コバルト酸リチウム ( 第 2の物体) 3 6. 0 g、 アセチレンブラック (第 3の物体) 2. 8 g、 シリカ (第 1の物体) 2. 4 gを含有していた。 前記スラリーの組成を表 3に示した。 厚さ 20 / mのアルミニウム箔 (集電体) 上に、 前記スラリーをハンディ . フィ ルムアプリケーターを用いて塗布し分散膜を形成した。 その後、 前記分散膜付き アルミニウム箔を 6 0°Cで 1時間、 さらに 1 5 0°Cで 6時間加熱して水を除去す ることで、 アルミニウム箔上に分散液膜が積層されてなる積層体を得た。 得られ た膜の密度を測定し、 その結果を表 4に示した。 [表 1 ] Lithium cobaltate (second object) 3 6. O g and acetylene black (third object) 2. Add 8 g of colloidal silica (first object; SNOWTEX PS-S) 2 4. O g Furthermore, pure water is added, and the solid content concentration is 50 wt. A / 0 slurry was prepared. A non-volatile liquid was not used. The slurry contained 36.0 g of lithium cobaltate (second body), 2.8 g of acetylene black (third body), and 2.4 g of silica (first body). The composition of the slurry is shown in Table 3. The slurry was applied onto an aluminum foil (current collector) having a thickness of 20 / m using a handy film applicator to form a dispersion film. Thereafter, the aluminum foil with the dispersion film is heated at 60 ° C. for 1 hour, and further at 150 ° C. for 6 hours to remove water, whereby the dispersion film is laminated on the aluminum foil. Got the body. The density of the obtained film was measured, and the results are shown in Table 4. [table 1 ]
Figure imgf000015_0001
Figure imgf000015_0001
[表 2 ]
Figure imgf000015_0002
[Table 2]
Figure imgf000015_0002
[表 3 ] [Table 3]
Figure imgf000015_0003
Figure imgf000015_0003
[表 4 ]
Figure imgf000015_0004
産業上の利用可能性
[Table 4]
Figure imgf000015_0004
Industrial applicability
本発明の方法によれば、 優れた操作性で物体と物体とを高い接着力で接着する ことができる。 さらに、 接着された物体間に高い凝集力が作用するすることから 、 接着した物体同士をより近接させることができ、 結果的に物体集合体の充填密 度を向上させることができる。 According to the method of the present invention, an object can be bonded with high adhesive force with excellent operability. Furthermore, high cohesive force acts between the bonded objects. The bonded objects can be brought closer to each other, and as a result, the packing density of the object assembly can be improved.

Claims

請求の範囲 The scope of the claims
[ 1 ] 曲率半径が 1 μ m以下である点を少なくとも 1つ有する第 1の物体を不 揮発性液体で第 2の物体に接着する方法であって、 前記第 1の物体の曲率半径が 1 μ m以下である点を少なくとも 1つ含む領域と前記第 2の物体との間に前記不 揮発性液体を位置させる工程を有する方法。 [1] A method of bonding a first object having at least one point having a radius of curvature of 1 μm or less to a second object with a non-volatile liquid, wherein the radius of curvature of the first object is 1 positioning the non-volatile liquid between a region containing at least one point that is less than or equal to μm and the second object.
[ 2 ] 前記第 1の物体は、 粒径が 1 /Z m以下の粒子である第 1項に記載の方法 [2] The method according to item 1, wherein the first object is a particle having a particle size of 1 / Z m or less.
[ 3 ] 前記不揮発性液体と、 溶媒と、 各々が前記第 1の物体である複数の物体 とを混合して分散液を調製する工程と、 [3] A step of preparing a dispersion by mixing the non-volatile liquid, a solvent, and a plurality of objects each of which is the first object;
該分散液を前記第 2の物体と接触させる工程と、 Contacting the dispersion with the second object;
前記第 2の物体と接触している前記分散液から前記溶媒を除去する工程と を更に有する第 2項に記載の方法。 The method according to claim 2, further comprising: removing the solvent from the dispersion in contact with the second object.
[ 4 ] 前記第 2の物体と接触している前記分散液または前記第 2の物体と接触 することになる前記分散液を第 3の物体と接触させる工程を更に有し、 前記溶媒を除去する工程は、 前記分散液が前記第 3の物体とも接触している状態 で実施される第 3項に記載の方法。 [4] The method further includes the step of bringing the dispersion in contact with the second object or the dispersion to be in contact with the second object into contact with the third object, and removing the solvent. The method according to claim 3, wherein the step is performed in a state where the dispersion is also in contact with the third object.
[ 5 ] 前記不揮発性液体と、 溶媒と、 各々が前記第 1の物体である複数の物体 と、 各々が第 2の物体である複数の物体とを混合して分散液を調製する工程と、 前記分散液から前記溶媒を除去する工程と [5] A step of preparing a dispersion by mixing the non-volatile liquid, a solvent, a plurality of objects each of which is the first object, and a plurality of objects each of which is a second object; Removing the solvent from the dispersion;
を有する第 2項に記載の方法。 The method of claim 2 comprising:
[ 6 ] 前記不揮発性液体と、 溶媒と、 各々が前記第 1の物体である複数の物体 と、 各々が第 2の物体である複数の物体と、 更に他の複数の物体とを混合して分 散液を調製する工程と、 [6] The non-volatile liquid, the solvent, a plurality of objects each of which is the first object, a plurality of objects each of which is a second object, and another plurality of objects are mixed. A step of preparing a dispersion;
前記分散液から前記溶媒を除去する工程と Removing the solvent from the dispersion;
を有する第 2項に記載の方法。 The method of claim 2 comprising:
PCT/JP2009/054233 2008-02-29 2009-02-27 Method of gluing objects together WO2009107873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-049505 2008-02-29
JP2008049505 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107873A1 true WO2009107873A1 (en) 2009-09-03

Family

ID=41016240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054233 WO2009107873A1 (en) 2008-02-29 2009-02-27 Method of gluing objects together

Country Status (3)

Country Link
JP (1) JP2009227986A (en)
TW (1) TW201000584A (en)
WO (1) WO2009107873A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222887A (en) * 1990-12-25 1992-08-12 Sumitomo Bakelite Co Ltd Insulating resin paste
JPH0649851B2 (en) * 1988-06-28 1994-06-29 イビデン株式会社 Adhesive for electroless plating
JPH0995648A (en) * 1995-09-29 1997-04-08 Mitsubishi Paper Mills Ltd Pressure-sensitive adhesive recording sheet
JPH09310047A (en) * 1996-05-22 1997-12-02 Hanna Kagaku Kogyo Kk Vinyl-based adhesive composition
WO2000068330A1 (en) * 1999-05-10 2000-11-16 Shunichi Haruyama Inorganic-organic film and starting liquid composition therefor and method for preparation thereof, and applications and method for preparing them
JP2000336333A (en) * 1999-05-28 2000-12-05 Three Bond Co Ltd Epoxy-based two-pack type adhesive
JP2006253025A (en) * 2005-03-11 2006-09-21 Hitachi Maxell Ltd Transparent conductive composition, and transparent conductive film and transparent conductive material using the same
JP2007070370A (en) * 2004-09-03 2007-03-22 Kansai Paint Co Ltd Coating composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649851B2 (en) * 1988-06-28 1994-06-29 イビデン株式会社 Adhesive for electroless plating
JPH04222887A (en) * 1990-12-25 1992-08-12 Sumitomo Bakelite Co Ltd Insulating resin paste
JPH0995648A (en) * 1995-09-29 1997-04-08 Mitsubishi Paper Mills Ltd Pressure-sensitive adhesive recording sheet
JPH09310047A (en) * 1996-05-22 1997-12-02 Hanna Kagaku Kogyo Kk Vinyl-based adhesive composition
WO2000068330A1 (en) * 1999-05-10 2000-11-16 Shunichi Haruyama Inorganic-organic film and starting liquid composition therefor and method for preparation thereof, and applications and method for preparing them
JP2000336333A (en) * 1999-05-28 2000-12-05 Three Bond Co Ltd Epoxy-based two-pack type adhesive
JP2007070370A (en) * 2004-09-03 2007-03-22 Kansai Paint Co Ltd Coating composition
JP2006253025A (en) * 2005-03-11 2006-09-21 Hitachi Maxell Ltd Transparent conductive composition, and transparent conductive film and transparent conductive material using the same

Also Published As

Publication number Publication date
JP2009227986A (en) 2009-10-08
TW201000584A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
Yang et al. Fluoride‐free synthesis of two‐dimensional titanium carbide (MXene) using a binary aqueous system
Tang et al. A robust, freestanding MXene‐sulfur conductive paper for long‐lifetime Li–S batteries
Niu et al. MXene-based electrode with enhanced pseudocapacitance and volumetric capacity for power-type and ultra-long life lithium storage
Xie et al. Na2Ti3O7@ N‐doped carbon hollow spheres for sodium‐ion batteries with excellent rate performance
Lee et al. Delicate structural control of Si–SiO x–C composite via high-speed spray pyrolysis for Li-ion battery anodes
Liu et al. Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries
Tian et al. The rate performance of two-dimensional material-based battery electrodes may not be as good as commonly believed
Reddy et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries
Zhou et al. High-performance silicon battery anodes enabled by engineering graphene assemblies
Jiang et al. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes
Choi et al. Perforated metal oxide–carbon nanotube composite microspheres with enhanced lithium-ion storage properties
Lahiri et al. Carbon nanostructures in lithium ion batteries: past, present, and future
Zhu et al. Fast Li storage in MoS2‐graphene‐carbon nanotube nanocomposites: advantageous functional integration of 0D, 1D, and 2D nanostructures
Liang et al. Flexible free-standing graphene/SnO2 nanocomposites paper for Li-ion battery
Zheng et al. Functional MXene‐Based Materials for Next‐Generation Rechargeable Batteries
Yuan et al. One-pot spray-dried graphene sheets-encapsulated nano-Li4Ti5O12 microspheres for a hybrid batcap system
Nie et al. Design strategies toward high‐performance Zn metal anode
Jiang et al. Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li ion storage
Yang et al. Dielectric–Metallic Double-Gradient Composition Design for Stable Zn Metal Anodes
Schroeder et al. Investigation of the cathode–catalyst–electrolyte interface in aprotic Li–O2 batteries
TW201431602A (en) Aqueous dispersion solution of multilayer carbon nanotubes
Compton et al. Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium‐ion battery cathode
Zhang et al. Ni (II) Coordination Supramolecular Grids for Aqueous Nickel‐Zinc Battery Cathodes
Zhou et al. Titanium‐Carbide‐Decorated Carbon Nanofibers as Hybrid Electrodes for High Performance Li‐S Batteries
Kim et al. Polysulfide-breathing/dual-conductive, heterolayered battery separator membranes based on 0D/1D mingled nanomaterial composite mats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09715493

Country of ref document: EP

Kind code of ref document: A1