JP4969738B2 - Ceramic circuit board and semiconductor module using the same - Google Patents

Ceramic circuit board and semiconductor module using the same Download PDF

Info

Publication number
JP4969738B2
JP4969738B2 JP2001197165A JP2001197165A JP4969738B2 JP 4969738 B2 JP4969738 B2 JP 4969738B2 JP 2001197165 A JP2001197165 A JP 2001197165A JP 2001197165 A JP2001197165 A JP 2001197165A JP 4969738 B2 JP4969738 B2 JP 4969738B2
Authority
JP
Japan
Prior art keywords
circuit board
metal plate
back metal
ceramic
semiconductor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001197165A
Other languages
Japanese (ja)
Other versions
JP2003017627A (en
Inventor
隆之 那波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2001197165A priority Critical patent/JP4969738B2/en
Publication of JP2003017627A publication Critical patent/JP2003017627A/en
Application granted granted Critical
Publication of JP4969738B2 publication Critical patent/JP4969738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/404Manganese or rhenium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はセラミックス回路基板を用いた半導体モジュールに係り、特に金属回路板等の接合部の半田層やセラミックス基板に熱応力や反りによるクラックが発生することを効果的に防止でき、長期間に亘って優れた耐久性と高い信頼性が得られるセラミックス回路基板を用いた半導体モジュールに関する。
【0002】
【従来の技術】
従来からアルミナ(Al)焼結体などのように絶縁性に優れたセラミックス基板の表面に、導電性を有する金属回路板をろう材や接着剤やメタライズ金属層で一体に接合したセラミックス回路基板がパワートランジスタモジュールなどの半導体モジュール用基板やスイッチング電源モジュール用基板として広く普及している。
【0003】
しかしながら上記セラミックス回路基板においては、金属回路板とセラミックス基板との間に、ろう材や接着剤やメタライズ層のような介在物が存在するため、両者間の熱抵抗が大きくなり、金属回路上に設けられた半導体素子の発熱を系外に迅速に放熱させることが困難であるという問題点があった。
【0004】
このような問題点を解消するため、上記ろう材や接着剤やメタライズ層を使用せずに、所定形状に打ち抜いた金属回路板をセラミックス基板上に接触配置させて加熱するだけで直接接合する方法が検討されている。すなわち、直接接合法は、セラミックスと金属とを、ろう材層や接着剤層やメタライズ層などの接合層を介在させずに直接的に接合する方法である。この直接接合法では金属中あるいは金属表面に存在する結合剤(銅の場合は酸素)と金属との共晶液相が生成されて両部材が直接的に接合される。
【0005】
図4(A),(B),(C)はそれぞれの従来のセラミックス回路基板の構成例を示す平面図,断面図および背面図である。セラミックス基板2の材質としては、アルミナ(Al),ジルコニア(ZrO),ムライト等の酸化物系セラミックス焼結体や窒化けい素(Si),窒化アルミニウム(AlN)等の窒化物系焼結体が使用される。
【0006】
すなわち、Si基板などのセラミックス基板2の表面側には、Cu回路板などの金属回路板4が一体に接合される一方、裏面側にはCu板などの裏金属板5が接合され、金属回路板4の所定位置に半導体素子6が接合されてセラミックス回路基板1が構成されている。
【0007】
また、上記従来のセラミックス回路基板1においては、発熱時の反りを防止するために、金属回路板4と裏銅板5との体積が1:1と等しくなるように調整されていた。
【0008】
また、近年の半導体素子の高集積化,高出力化に伴って半導体素子からの発熱量も増大しており、この半導体素子6からの多量の発熱を効率的に拡散させるために、図4(B)に示すように、半導体モジュールでは、従来からセラミックス回路基板1の素子搭載面と反対側の裏銅板5に、銅(Cu)やAl−SiC系材料から成るヒートシンクベース7を半田付け法によって一体に接合している。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来のセラミックス回路基板を使用した半導体モジュールにおいては、セラミックス基板の寸法および厚さ,金属回路板のパターン形状や厚さによっては、セラミックス回路基板およびヒートシンクベースの反り量や反り方向が相反することが多いため、ヒートシンクベースに回路基板を半田付けした後に作用する繰り返しの熱履歴によって半田接合部にクラックが発生し、セラミックス回路基板の耐久性および動作信頼性が短期間で低下してしまうという問題点があった。
【0010】
また、現在までのセラミックス基板の材質や金属回路板等の接合方法の改良により、セラミックス基板と金属回路板との接合に関して、回路基板としての繰り返しの熱サイクル特性(TCT特性)の向上はある程度までは達成されている。しかしながら、裏金属板とヒートシンクベースとの接合構造までを含めた回路基板の熱サイクル特性の改善効果は未だに十分な域には達していないといった問題点があった。
【0011】
本発明は上記問題点を解決するためになされたものであり、特に金属回路板等の接合部の半田層やセラミックス基板に熱応力や反りによるクラックが発生することを効果的に防止でき、長期間に亘って優れた耐久性と高い信頼性が得られるセラミックス回路基板およびそれを用いた半導体モジュールを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明に係る半導体モジュールは、セラミックス基板の表面側に金属回路板を接合する一方、裏面側に裏金属板を接合したセラミックス回路基板の裏金属板に半田層を介してヒートシンクベースを配設した半導体モジュールにおいて、上記裏金属板に、上記金属回路板の厚さの10〜90%の深さを有する熱応力緩和部を設けるとともに、上記金属回路板の体積に対する裏金属板の体積の比が0.4〜0.6の範囲であり、かつ前記裏金属板の厚さが0.15〜0.5mmの範囲であり、上記金属回路板および裏金属板は、銅またはアルミニウムから成る一方、上記セラミックス基板が、窒化けい素,窒化アルミニウムまたはアルミナのいずれかから成り、上記熱応力緩和部が裏金属板に形成された段差、複数の溝、凹陥部のいずれかであり、上記裏金属板の熱応力緩和部に充填される半田の割合が10〜90容量%の範囲内としたことを特徴とする。
【0013】
また、上記セラミックス回路基板において、前記熱応力緩和部が、裏金属板の外周縁に形成された段差であることが好ましい。さらに、前記熱応力緩和部が、裏金属板に形成された複数の溝であることも好ましい。また、前記熱応力緩和部を、裏金属板に形成された凹陥部で形成することもできる。
【0014】
本発明においては、裏金属板に所定深さの段差,溝,凹陥部で形成した熱応力緩和部を設けているため、ヒートシンクベースと裏金属板との間の一部分に厚い半田層が形成されることになり、繰り返して熱サイクルが作用した場合においても熱応力が大幅に緩和され、半田クラックが発生しにくく、高い信頼性を有する回路基板が得られる。
【0015】
すなわち、半田層は、熱伝導率が小さいため、可及的に薄く形成することが望ましいが、過度に薄いと繰り返しの熱履歴によって半田層での熱応力が大きくなり、半田クラックが生じ易くなる。しかるに、上記のような熱応力緩和部を設けることにより、ヒートシンクベースと裏金属板とを半田接合した際に、熱応力緩和部に対応する半田層の部分に軟質で厚い半田部が形成される。この半田部によって半田層内に生じる熱応力が大幅に緩和低減されて半田クラックが発生しにくい回路基板が得られるのである。また、熱が作用したときに発生するヒートシンクベースの反りも、上記熱応力緩和部において吸収され、ヒートシンクベースの反りが回路基板に与える影響も少なくなる。
【0016】
特に半田クラックは、応力集中部となる裏金属板とヒートシンクベースとの接合部の外周部に発生し易いため、熱応力緩和部は外周方向に開放される形状であることが好ましい。その点で、特に熱応力緩和部を裏金属板の外周縁に段差として形成することが好ましい。
【0017】
また、上記段差,溝,凹陥部から成る熱応力緩和部の深さは、裏金属板表面より、金属回路板の厚さの10〜90%の範囲の深さを有することが好ましい。上記深さが10%未満の場合には熱応力の緩和効果が少ない。一方、90%を超えるように深くなると、裏金属板の強度が低下してしまうのでセラミックス基板と裏金属板の接合部に生じた応力により裏金属板が変形してしまう可能性がある。そのため、熱応力緩和部の深さは金属回路板の厚さの10〜90%とされるが30〜70%の範囲がより好ましい。
【0018】
なお、上記段差,溝,凹陥部からなる熱応力緩和部の形成方法としては、予めプレス加工等により段差等を形成した裏金属板をセラミックス基板の裏面に接合する方法、または金属回路板素材および裏金属板素材をセラミックス基板に接合し、金属回路板素材をエッチング処理して回路形成した後に、裏金属板素材のみをソフトエッチング処理して段差等を形成する方法などが採用できる。
【0019】
また本発明のセラミックス回路基板においては、金属回路板の体積に対する裏金属板の体積の比を0.6以下とし、相対的に裏金属板量を低減しているため、熱が回路基板に作用したときに裏金属板側が重点的に凹となるように所定量の反りが発生する。このような方向に反りが生じたとしても、裏金属板側に熱応力緩和部があることから、反りにより生じた変形を裏金属板のみで緩和できるのである。
【0020】
なお、金属回路板または裏金属板が複数の金属板片から成る場合において、金属回路板または裏金属板の体積は、それぞれの金属板片の体積を合計した値として計算したものである。
【0021】
上記金属回路板の体積に対する裏金属板の体積の比が0.6を超えると、反りの方向が金属回路板側に凹となり易くなり裏金属板に熱応力緩和部を設ける効果が得られなくなる。また、裏金属板の体積があまり小さ過ぎても反り量が増大するので、上記体積比は0.6以下と規定されるが0.4〜0.6の範囲がより好ましい。
【0022】
また、本発明に係るセラミックス回路基板において、裏金属板のセラミックス基板に対する接合面積をX、金属回路板(表金属板)のセラミックス基板に対する接合面積をYとしたとき、X<Yとすることも可能である。一般に、金属回路板と裏金属板の材質が同じであった場合、接合面積が大きい方が金属板が伸びるので反り量が大きくなり、接合面積の大きい側が凸状に反りが生じる。しかしながら、本発明に係るセラミックス回路基板では、金属回路板と裏金属板の体積比[(裏金属板の体積比/金属回路板の体積比)]を0.6以下にしているため、熱応力が生じたときに裏金属板側が凹状に反るように反り方向を制御しているため、上記X<Yのような形状をとることも可能である。
【0023】
このようなX<Yの形状を満たすことにより、金属回路板上に接続された半導体素子等の発熱素子から生じた熱を金属回路板およびセラミックス基板を介して、裏金属板、さらにはヒートシンクベースへ直線的に熱を逃すことができる。そのため、セラミックス基板と表裏金属板との接合部、さらには裏金属板とヒートシンクベースの接合部の熱サイクル特性を向上でき信頼性の高い半導体モジュールが得られる。
【0024】
さらに本発明に係るセラミックス回路基板において、裏金属板の厚さを0.15〜0.5mmの範囲とすることにより、セラミックス回路基板の構成材の熱膨張差による変形などの影響を低減することができる。
【0025】
さらに本発明のセラミックス回路基板を構成する金属回路板および裏金属板としては、特に限定されるものではないが、銅,アルミニウム,タングステン,モリブデンおよびそれらの合金の少なくとも1種から構成するとよい。特に熱伝導性,原料コストおよび導電性の観点から、銅,アルミニウムが好ましい。
【0026】
また、セラミックス基板の種類についても、特に限定されるものではないが、窒化けい素(Si),窒化アルミニウム(AlN),アルミナ(Al),ジルコニア(ZrO)およびAl−Zrセラミックスのいずれかで構成するとよい。特に特開2000−34172に開示しているように、高強度で60W/m・K以上の熱伝導率を有する窒化けい素焼結体で形成した基板が好ましい。
【0027】
さらに金属回路板は、直接接合法,活性金属接合法およびアルミニウム系ろう材接合法のいずれかによってセラミックス基板に接合することが好ましい。なお、上記Al−Zrセラミックスとは、AlおよびZrOの合計量に対し、Alを20〜80質量%含有したセラミックス焼結体のことである。また、各種セラミックスは必要に応じて焼結助剤等を含有してよいことは言うまでもない。
【0028】
ここで、直接接合法を用いる場合で、金属回路板が銅回路板である場合、銅直接接合法(DBC法)における結合剤は酸素であるので、この銅回路板はCu−O共晶化合物によりセラミックス基板に接合されることになる。さらに金属回路板がアルミニウム回路板である場合、アルミニウム直接接合法(DBA法)における結合剤はけい素が好ましいので、このアルミニウム回路板はAl−Si共晶化合物によりセラミックス基板に接合される。
【0029】
また活性金属法は、Ti,Zr,Hfなどの活性金属を含有するろう材を介して金属回路板をセラミックス基板に一体に接合する方法であり、Alろう材接合法は、Alを含有するろう材を介して金属回路板をセラミックス基板に一体に接合する方法である。
【0030】
本発明に係る半導体モジュールは、上記のように調製したセラミックス回路基板の裏金属板に半田層を介してヒートシンクベースを配設して構成される。
【0031】
上記構成に係るセラミックス回路基板およびそれを用いた半導体モジュールによれば、裏金属板に所定深さを有する段差,溝,凹陥部からなる熱応力緩和部を形成しているため、ヒートシンクベースと裏金属板との間の一部分に厚い半田層が形成されることになり、繰り返して熱サイクルが作用した場合においても熱応力が大幅に緩和され、半田クラックが発生しにくく、高い信頼性を有する回路基板が得られる。上記一部分に厚い半田層を形成することにより、裏金属板/(裏金属板+半田)/半田層/ヒートシンクベース、の傾斜組成構造が実質的に形成されることになり熱応力の緩和効果が得られるものと考えられる。また、必ずしも熱応力緩和部に半田をすべて充填する必要はなく、応力緩和部の体積に対し10容量%以上、好ましくは10〜90容量%で半田が充填されていれば本発明の効果は十分得られる。
【0032】
なお、本発明の裏金属板とヒートシンクベースの接合には、一般的に使用されている半田のみならず、BAg−8等のろう材や高分子を主成分とした接着剤などを使用しても問題はない。また、本発明のヒートシンクベースは、いわゆるヒートシンク(放熱板)のみを示すものではなく、実装ボードなどのセラミックス回路基板が接合または実装されるものは全て含むものとする。
【0033】
また金属回路板の体積に対する裏金属板の体積の比を0.6以下とし、相対的に裏金属板量を低減しているため、熱が回路基板に作用したときに裏金属板側が重点的に凹となるように所定量の反りが発生する。この反り方向であれば、裏金属板の熱応力緩和部で反りにより生じた応力を緩和できるので、反りにより起きる不具合を解消できる。
【0034】
【発明の実施の形態】
次に本発明の実施形態について以下に示す実施例を参照して具体的に説明する。
【0035】
実施例1〜10および比較例1〜6
表1に示すように、セラミックス基板として縦55mm×横37mmのSi基板,AlN基板およびAl基板を多数用意した。各セラミックス基板の厚さは表1に示す通りである。一方、表1に示す厚さを有するCuまたはAl製の表金属板(金属回路板)および裏金属板を多数用意した。
【0036】
なお、各実施例用の裏金属板にはソフトエッチング加工により、それぞれ熱応力緩和部としての段差,溝,または凹陥部を形成した。すなわち、実施例1,4〜10用の裏金属板の外周部には、図1に示すように、深さが0.12mmであり幅が2mmの段差3を形成した。また実施例2用の裏金属板には、図2に示すように幅が0.1mmの半円断面を有する溝3aを形成した。さらに、実施例3用の裏金属板は、図3に示すように5mm角で深さが0.12mmの凹陥部3bを形成した。一方、各比較例用の裏金属板は、図4に示すように熱応力緩和部を形成しないものを採用した。
【0037】
また、表金属板(金属回路板)の体積に対する裏金属板の体積の比は表1に示す値となるように、表金属板の回路パターンを調整した。
【0038】
こうして調製した表金属板および裏金属板を表1に示す活性金属法、DBC法またはDBA法を使用して各セラミックス基板に接合した。上記活性金属法では、65%Ag−30%Cu−5%Ti(質量%)から成るろう材ペーストを使用し、表裏金属板とセラミックス基板との積層体を真空中で温度850℃で5〜15分間保持して一体に接合した。
【0039】
一方、DBC法では積層体を窒素ガス雰囲気中で温度1075℃で5〜15分間加熱して一体に接合した。またDBA法では温度650℃で5〜15分間加熱して一体に接合した。
【0040】
各接合体の金属回路板の接合面積は、各実施例および比較例とともに、裏金属板の接合面積よりも小さくなるように金属回路板のサイズを調整した。
【0041】
そして上記のように調整した各接合体の表側の金属回路板の所定位置に、低温半田を用いて半導体素子(Siチップ)を半田接合して各実施例および比較例に係るセラミックス回路基板を製造した。しかる後に、表2に示す材料から成るヒートシンクベースを裏金属板側に高温半田を介して一体に接合することにより、図1〜図3に示すような各実施例および比較例に係る評価用半導体モジュールを作製した。なお、裏金属板の熱応力緩和部に充填される半田の割合は10〜90容量%の範囲内とした。
【0042】
図1は裏金属板5aの外周縁に熱応力緩和部3としての段差を形成したセラミックス回路基板1aの構成を示す図であり、セラミックス基板2の表面側に金属回路板4が接合される一方、裏面側に上記裏金属板5aが接合されている。また金属回路板4の所定位置に半導体素子6が接合される一方、裏金属板5aにヒートシンクベース7が一体に接合されて半導体モジュールが形成される。
【0043】
図2は裏金属板5bの縦方向に熱応力緩和部3aとしての溝を形成したセラミックス回路基板1bの構成を示す図であり、セラミックス基板2の表面側に金属回路板4が接合される一方、裏面側に上記裏金属板5bが接合されている。また金属回路板4の所定位置に半導体素子6が接合される一方、裏金属板5bにヒートシンクベース7が一体に接合されて半導体モジュールが形成される。
【0044】
図3は裏金属板5cの表面部に熱応力緩和部3bとしての凹陥部を形成したセラミックス回路基板1cの構成を示す図であり、セラミックス基板2の表面側に金属回路板4が接合される一方、裏面側に上記裏金属板5cが接合されている。また金属回路板4の所定位置に半導体素子6が接合される一方、裏金属板5cにヒートシンクベース7が一体に接合されて半導体モジュールが形成される。
【0045】
そして上記のように調製した各実施例および比較例に係る評価用半導体モジュールの耐久性および信頼性を評価するために下記のような熱衝撃試験(ヒートサイクル試験:TCT)を実施し、裏金属板とヒートシンクベースとの間の半田層におけるクラック発生状況を調査した。ヒートサイクル試験は、各モジュールを−40℃で30分間保持し、次に室温(RT)まで昇温して10分間保持し、さらに125℃まで昇温して30分間保持し、引き続き室温まで冷却して10分間保持するまでを1サイクルとする昇温−降温サイクルを100サイクル繰り返して実施した。そして100サイクル終了後に、裏金属板とヒートシンクベースとの間の半田層におけるクラックの発生の有無を超音波探傷法により調査し、クラックが発生したモジュールの割合を調査した。
【0046】
各モジュールに使用したセラミックス回路基板の仕様を表1に示すとともに、各モジュールの評価結果を下記表2に示す。
【0047】
【表1】

Figure 0004969738
【0048】
【表2】
Figure 0004969738
【0049】
上記表1〜2に示す結果から明らかなように、裏金属板に段差,溝,凹陥部のいずれかの熱応力緩和部を設けるとともに、表裏の金属板の体積比を所定の範囲に規定した回路基板を有する各実施例の半導体モジュールでは、TCT試験後におけるクラックの発生は皆無であり、優れた耐久性および信頼性を有することが判明した。
【0050】
一方、熱応力緩和部を設けず、かつ表裏の金属板の体積比が過大な各比較例に係るモジュールでは、いずれも半田クラックが発生し、モジュールとしての特性が低下することが再確認できた。
【0051】
なお、各実施例および比較例のモジュールを構成するセラミックス回路基板においては、いずれもセラミックス基板自体にはクラックが発生しないことが確認されている。
【0052】
実施例11〜16
前記実施例2に係る半導体モジュールにおいて、セラミックス基板の表裏面に設ける金属回路板の接合面積と裏金属板の接合面積との大小関係を変えるとともに、裏金属板の厚さを表3に示すように種々変えた点以外は実施例2と同様に処理して実施例11〜16に係る半導体モジュールを製造した。
【0053】
次に各モジュールに対して前記した昇温−降温条件による熱衝撃試験(TCT)を1000サイクル実施した後におけるセラミックス基板の反り方向を調査するとともに、半田層におけるクラックの発生率を測定して下記表3に示す結果を得た。また反りの方向によって凹面が形成される側で表示した。
【0054】
【表3】
Figure 0004969738
【0055】
上記表3に示す結果から明らかなように、表金属板(金属回路板)の接合面積Yが裏金属板の接合面積Xより小さい条件を満足する場合には、回路基板の反り方向が裏金属板側になり、そりの反りによって発生した応力が、裏金属板に形成した溝により効果的に緩和されているため、半田クラックの発生率が低下することが判明した。
【0056】
一方、裏金属板が0.15mmより薄い実施例15の場合および表裏金属板の接合面積の大小がX>Yを満たさない実施例16の場合では、熱応力緩和部としての溝を設ける効果が少ないことが確認できた。
【0057】
特に、X<Yである実施例16ではTCT試験による表金属板の熱収縮が大きいため反り方向が逆になってしまうことが確認された。また、このような形態では表金属板に半導体素子を搭載したときに、素子の熱が直線的にヒートシンクベースに伝わらないので、同様の不具合が生じてしまうといえる。
【0058】
【発明の効果】
以上説明の通り、本発明に係るセラミックス回路基板およびそれを用いた半導体モジュールによれば、裏金属板に所定深さを有する段差,溝,凹陥部からなる熱応力緩和部を形成しているため、ヒートシンクベースと裏金属板との間の一部分に厚い半田層が形成されることになり、繰り返して熱サイクルが作用した場合においても熱応力が大幅に緩和され、半田クラックが発生しにくく、高い信頼性を有する回路基板が得られる。
【0059】
また金属回路板の体積に対する裏金属板の体積の比を0.6以下とし、相対的に裏金属板量を低減しているため、熱が回路基板に作用したときに裏金属板側が重点的に凹となるように所定量の反りが発生する。この反りの方向および反り量は、ヒートシンクベースの反りの方向および反り量と一致することになるため、反りに起因する曲げ応力による基板の割れは解消される。
【図面の簡単な説明】
【図1】(A),(B)はそれぞれ本発明の一実施例に係るセラミックス回路基板の断面図および背面図。
【図2】(A),(B)はそれぞれ本発明の他の実施例に係るセラミックス回路基板の断面図および背面図。
【図3】(A),(B)はそれぞれ本発明の他の実施例に係るセラミックス回路基板の断面図および背面図。
【図4】(A),(B),(C)はそれぞれ従来のセラミックス回路基板の構成を示す平面図、断面図および背面図。
【符号の説明】
1,1a,1b,1c セラミックス回路基板
2 セラミックス基板
3,3a,3b 熱応力緩和部(段差,溝,凹陥部)
4 金属回路板
5,5a,5b,5c 裏金属板
6 半導体素子
7 ヒートシンクベース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor module using a ceramic circuit board, it can effectively prevent the particular cracks due to thermal stress and warp in the solder layer and the ceramic substrate of the bonded portion of the metal circuit plate or the like, a long period of time over and a semiconductor module using the excellent durability and high reliability can be obtained a ceramic circuit board.
[0002]
[Prior art]
Conventionally, ceramics in which a conductive metal circuit board is integrally joined with a brazing material, an adhesive, or a metallized metal layer on the surface of a ceramic substrate having excellent insulating properties such as an alumina (Al 2 O 3 ) sintered body Circuit boards are widely used as semiconductor module substrates such as power transistor modules and switching power supply module substrates.
[0003]
However, in the ceramic circuit board, since there are inclusions such as a brazing material, an adhesive, and a metallized layer between the metal circuit board and the ceramic board, the thermal resistance between them increases, and the metal circuit board There is a problem in that it is difficult to quickly dissipate heat generated from the provided semiconductor element outside the system.
[0004]
In order to solve such problems, a method of directly joining a metal circuit board punched into a predetermined shape on a ceramic substrate without heating using the brazing material, adhesive, or metallized layer, and heating it. Is being considered. That is, the direct bonding method is a method in which ceramics and metal are directly bonded without interposing a bonding layer such as a brazing material layer, an adhesive layer, or a metallized layer. In this direct joining method, a eutectic liquid phase of a binder (oxygen in the case of copper) present in the metal or on the metal surface and the metal is generated, and both members are joined directly.
[0005]
4 (A), 4 (B), and 4 (C) are a plan view, a cross-sectional view, and a rear view showing a configuration example of each conventional ceramic circuit board. Examples of the material of the ceramic substrate 2 include oxide ceramic sintered bodies such as alumina (Al 2 O 3 ), zirconia (ZrO 2 ), mullite, silicon nitride (Si 3 N 4 ), and aluminum nitride (AlN). A nitride-based sintered body is used.
[0006]
That is, a metal circuit board 4 such as a Cu circuit board is integrally bonded to the front surface side of the ceramic substrate 2 such as a Si 3 N 4 substrate, and a back metal plate 5 such as a Cu plate is bonded to the back surface side. The ceramic circuit board 1 is configured by bonding the semiconductor element 6 to a predetermined position of the metal circuit board 4.
[0007]
In the conventional ceramic circuit board 1, the volume of the metal circuit board 4 and the back copper board 5 is adjusted to be equal to 1: 1 in order to prevent warpage during heat generation.
[0008]
In addition, the amount of heat generated from the semiconductor element is increasing with the recent increase in integration and output of the semiconductor element. In order to efficiently diffuse a large amount of heat generated from the semiconductor element 6, FIG. As shown in B), in a semiconductor module, a heat sink base 7 made of copper (Cu) or an Al—SiC material is conventionally soldered to a back copper plate 5 on the side opposite to the element mounting surface of the ceramic circuit board 1 by a soldering method. They are joined together.
[0009]
[Problems to be solved by the invention]
However, in a semiconductor module using the above-described conventional ceramic circuit board, depending on the dimensions and thickness of the ceramic board and the pattern shape and thickness of the metal circuit board, the warping amount and the warping direction of the ceramic circuit board and the heat sink base may conflict with each other. In many cases, cracks occur in the solder joints due to repeated thermal history that acts after soldering the circuit board to the heat sink base, and the durability and operational reliability of the ceramic circuit board are reduced in a short period of time. There was a problem.
[0010]
In addition, due to improvements in the bonding method of ceramic substrate materials and metal circuit boards to date, repeated thermal cycle characteristics (TCT characteristics) as a circuit board have been improved to some extent with respect to bonding between ceramic substrates and metal circuit boards. Has been achieved. However, there is a problem that the effect of improving the thermal cycle characteristics of the circuit board including the bonding structure between the back metal plate and the heat sink base has not yet reached a sufficient range.
[0011]
The present invention has been made to solve the above-mentioned problems, and in particular, can effectively prevent the occurrence of cracks due to thermal stress and warpage in the solder layer and ceramic substrate of the joint portion such as a metal circuit board. It is an object of the present invention to provide a ceramic circuit board and a semiconductor module using the ceramic circuit board that can provide excellent durability and high reliability over a period of time.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a semiconductor module according to the present invention has a metal circuit board bonded to the front side of a ceramic substrate, while a back metal plate is bonded to the back side of the ceramic circuit board via a solder layer. In the semiconductor module provided with the heat sink base, the back metal plate is provided with a thermal stress relaxation portion having a depth of 10 to 90% of the thickness of the metal circuit plate, and the back of the metal circuit plate with respect to the volume. The volume ratio of the metal plate is in the range of 0.4 to 0.6, and the thickness of the back metal plate is in the range of 0.15 to 0.5 mm. The metal circuit plate and the back metal plate are while made of copper or aluminum, the ceramic substrate, silicon nitride consists of either aluminum nitride or alumina, a step in which the thermal stress alleviating portion is formed on the back metal plate, a plurality of grooves Is either recess, the proportion of the solder filled in the thermal stress absorbing portions of the backing metal plate characterized by being in the range of 10 to 90 volume%.
[0013]
In the ceramic circuit board, the thermal stress relaxation portion is preferably a step formed on the outer peripheral edge of the back metal plate. Furthermore, it is preferable that the thermal stress relaxation part is a plurality of grooves formed in the back metal plate. Further, the thermal stress relaxation portion can be formed by a recessed portion formed in the back metal plate.
[0014]
In the present invention, the back metal plate is provided with a thermal stress relaxation portion formed by steps, grooves, and recesses of a predetermined depth, so that a thick solder layer is formed in a portion between the heat sink base and the back metal plate. Therefore, even when the thermal cycle is repeatedly applied, the thermal stress is greatly relieved, solder cracks are hardly generated, and a highly reliable circuit board can be obtained.
[0015]
That is, since the thermal conductivity of the solder layer is small, it is desirable to make it as thin as possible. However, if it is too thin, thermal stress in the solder layer increases due to repeated thermal history, and solder cracks are likely to occur. . However, by providing the thermal stress relaxation part as described above, when the heat sink base and the back metal plate are soldered together, a soft and thick solder part is formed in the part of the solder layer corresponding to the thermal stress relaxation part. . The thermal stress generated in the solder layer is greatly relaxed and reduced by the solder portion, and a circuit board in which solder cracks are hardly generated can be obtained. Further, the heat sink base warp generated when heat acts is absorbed by the thermal stress relaxation portion, and the influence of the heat sink base warp on the circuit board is reduced.
[0016]
In particular, since solder cracks are likely to occur at the outer peripheral portion of the joint portion between the back metal plate and the heat sink base, which is a stress concentration portion, it is preferable that the thermal stress relaxation portion is open in the outer peripheral direction. In that respect, it is particularly preferable to form the thermal stress relaxation portion as a step on the outer peripheral edge of the back metal plate.
[0017]
Moreover, it is preferable that the depth of the thermal stress relaxation part composed of the step, the groove, and the recessed part is in the range of 10 to 90% of the thickness of the metal circuit board from the surface of the back metal board. When the depth is less than 10%, the thermal stress relaxation effect is small. On the other hand, if the depth is greater than 90%, the strength of the back metal plate is lowered, and therefore the back metal plate may be deformed by the stress generated at the joint between the ceramic substrate and the back metal plate. Therefore, the depth of the thermal stress relaxation portion is 10 to 90% of the thickness of the metal circuit board, but more preferably in the range of 30 to 70%.
[0018]
In addition, as a method for forming the thermal stress relaxation portion including the step, groove, and recessed portion, a method of joining a back metal plate, on which a step or the like has been formed in advance by pressing or the like, to the back surface of the ceramic substrate, A method may be employed in which a back metal plate material is bonded to a ceramic substrate, a metal circuit board material is etched to form a circuit, and then only the back metal plate material is soft etched to form a step or the like.
[0019]
In the ceramic circuit board of the present invention, the ratio of the volume of the back metal plate to the volume of the metal circuit plate is set to 0.6 or less, and the amount of the back metal plate is relatively reduced, so that heat acts on the circuit board. When this occurs, a predetermined amount of warpage occurs so that the back metal plate side is concavely focused. Even if the warp occurs in such a direction, the deformation caused by the warp can be alleviated only by the back metal plate because there is a thermal stress relaxation portion on the back metal plate side.
[0020]
When the metal circuit plate or the back metal plate is composed of a plurality of metal plate pieces, the volume of the metal circuit plate or the back metal plate is calculated as a total value of the volumes of the respective metal plate pieces.
[0021]
If the ratio of the volume of the back metal plate to the volume of the metal circuit plate exceeds 0.6, the direction of warpage tends to be concave on the metal circuit plate side, and the effect of providing a thermal stress relaxation portion on the back metal plate cannot be obtained. . Further, since the amount of warpage increases even if the volume of the back metal plate is too small, the volume ratio is defined as 0.6 or less, but the range of 0.4 to 0.6 is more preferable.
[0022]
Further, in the ceramic circuit board according to the present invention, X <Y, where X is the bonding area of the back metal plate to the ceramic substrate and Y is the bonding area of the metal circuit board (front metal plate) to the ceramic substrate. Is possible. In general, when the metal circuit board and the back metal plate are made of the same material, the larger the bonding area, the longer the metal plate, the larger the amount of warpage, and the larger the bonding area, the higher the warpage. However, in the ceramic circuit board according to the present invention, the volume ratio [(volume ratio of the back metal plate / volume ratio of the metal circuit board)] of the metal circuit plate and the back metal plate is set to 0.6 or less. Since the warping direction is controlled so that the back metal plate side warps in a concave shape when the occurrence of sag occurs, it is possible to take a shape such as X <Y.
[0023]
By satisfying such a shape of X <Y, heat generated from a heating element such as a semiconductor element connected on the metal circuit board is transferred through the metal circuit board and the ceramic substrate to the back metal plate, and further to the heat sink base. Heat can be released linearly. Therefore, the thermal cycle characteristics of the joint between the ceramic substrate and the front and back metal plates, and the joint between the back metal plate and the heat sink base can be improved, and a highly reliable semiconductor module can be obtained.
[0024]
Furthermore, in the ceramic circuit board according to the present invention, by setting the thickness of the back metal plate in the range of 0.15 to 0.5 mm, the influence of deformation due to the difference in thermal expansion of the constituent material of the ceramic circuit board is reduced. Can do.
[0025]
Further, the metal circuit board and the back metal board constituting the ceramic circuit board of the present invention are not particularly limited, but may be composed of at least one of copper, aluminum, tungsten, molybdenum and alloys thereof. In particular, copper and aluminum are preferable from the viewpoints of thermal conductivity, raw material cost, and conductivity.
[0026]
Also, the type of the ceramic substrate is not particularly limited, but silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), alumina (Al 2 O 3 ), zirconia (ZrO 2 ) and Al— It may be composed of any of Zr ceramics. In particular, as disclosed in JP 2000-34172, a substrate formed of a silicon nitride sintered body having high strength and a thermal conductivity of 60 W / m · K or more is preferable.
[0027]
Further, the metal circuit board is preferably bonded to the ceramic substrate by any one of a direct bonding method, an active metal bonding method and an aluminum brazing material bonding method. Note that the above Al-Zr ceramic, the total amount of Al 2 O 3 and ZrO 2, is that the ceramic sintered body and the Al 2 O 3 containing 20 to 80 wt%. It goes without saying that various ceramics may contain a sintering aid or the like as necessary.
[0028]
Here, when the direct bonding method is used and the metal circuit board is a copper circuit board, since the binder in the copper direct bonding method (DBC method) is oxygen, the copper circuit board is made of a Cu-O eutectic compound. Is bonded to the ceramic substrate. Further, when the metal circuit board is an aluminum circuit board, silicon is preferably used as the binder in the aluminum direct bonding method (DBA method), so that the aluminum circuit board is bonded to the ceramic substrate with an Al-Si eutectic compound.
[0029]
The active metal method is a method in which a metal circuit board is integrally bonded to a ceramic substrate through a brazing material containing an active metal such as Ti, Zr, or Hf, and the Al brazing material bonding method is a method that contains Al. In this method, the metal circuit board is integrally bonded to the ceramic substrate through the material.
[0030]
The semiconductor module according to the present invention is configured by disposing a heat sink base on a back metal plate of a ceramic circuit board prepared as described above via a solder layer .
[0031]
According to the ceramic circuit board and the semiconductor module using the ceramic circuit board according to the above configuration, the back metal plate is formed with the thermal stress relaxation portion including a step, a groove, and a recessed portion having a predetermined depth. A thick solder layer is formed in a part between the metal plate, and even when a thermal cycle is repeatedly applied, thermal stress is greatly relieved, solder cracks hardly occur, and a highly reliable circuit A substrate is obtained. By forming a thick solder layer on the part, a gradient composition structure of back metal plate / (back metal plate + solder) / solder layer / heat sink base is substantially formed, and the effect of reducing thermal stress is achieved. It is considered to be obtained. Further, it is not always necessary to fill the thermal stress relaxation part with solder, and the effect of the present invention is sufficient if the solder is filled with 10% by volume or more, preferably 10 to 90% by volume with respect to the volume of the stress relaxation part. can get.
[0032]
For joining the back metal plate and the heat sink base of the present invention, not only a commonly used solder but also a brazing material such as BAg-8 or an adhesive mainly composed of a polymer is used. There is no problem. In addition, the heat sink base of the present invention does not indicate only a so-called heat sink (heat radiating plate), but includes all those to which a ceramic circuit board such as a mounting board is bonded or mounted.
[0033]
In addition, the ratio of the volume of the back metal plate to the volume of the metal circuit plate is set to 0.6 or less, and the amount of the back metal plate is relatively reduced. Therefore, when the heat acts on the circuit board, the back metal plate side is important. A predetermined amount of warpage occurs so as to be concave. With this warping direction, the stress caused by the warp in the thermal stress relaxation portion of the back metal plate can be relaxed, so that the problem caused by the warp can be eliminated.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the following examples.
[0035]
Examples 1-10 and Comparative Examples 1-6
As shown in Table 1, a large number of 55 mm × 37 mm Si 3 N 4 substrates, AlN substrates, and Al 2 O 3 substrates were prepared as ceramic substrates. The thickness of each ceramic substrate is as shown in Table 1. On the other hand, a number of front metal plates (metal circuit plates) and back metal plates made of Cu or Al having the thicknesses shown in Table 1 were prepared.
[0036]
The back metal plate for each example was formed with a step, a groove, or a recessed portion as a thermal stress relaxation portion by soft etching. That is, as shown in FIG. 1, a step 3 having a depth of 0.12 mm and a width of 2 mm was formed on the outer peripheral portion of the back metal plate for Examples 1 and 4 to 10. Further, a groove 3a having a semicircular cross section with a width of 0.1 mm was formed on the back metal plate for Example 2 as shown in FIG. Furthermore, as shown in FIG. 3, the back metal plate for Example 3 was formed with a recessed portion 3b having a 5 mm square and a depth of 0.12 mm. On the other hand, as the back metal plate for each comparative example, as shown in FIG.
[0037]
Further, the circuit pattern of the front metal plate was adjusted so that the ratio of the volume of the back metal plate to the volume of the front metal plate (metal circuit plate) became the value shown in Table 1.
[0038]
The front metal plate and the back metal plate thus prepared were bonded to each ceramic substrate using the active metal method, DBC method or DBA method shown in Table 1. In the active metal method, a brazing paste made of 65% Ag-30% Cu-5% Ti (mass%) is used, and the laminate of the front and back metal plates and the ceramic substrate is vacuumed at a temperature of 850 ° C. It was held for 15 minutes and joined together.
[0039]
On the other hand, in the DBC method, the laminated body was heated and bonded at a temperature of 1075 ° C. for 5 to 15 minutes in a nitrogen gas atmosphere. In the DBA method, heating was performed at a temperature of 650 ° C. for 5 to 15 minutes, and bonding was performed integrally.
[0040]
The size of the metal circuit board was adjusted so that the joining area of the metal circuit board of each joined body was smaller than the joining area of the back metal board together with each of the examples and comparative examples.
[0041]
Then, a ceramic circuit board according to each of the examples and comparative examples is manufactured by soldering a semiconductor element (Si chip) using a low-temperature solder to a predetermined position of the metal circuit board on the front side of each joined body adjusted as described above. did. Thereafter, a heat sink base made of the material shown in Table 2 is integrally joined to the back metal plate side via a high-temperature solder so that the semiconductors for evaluation according to the examples and comparative examples as shown in FIGS. A module was produced. In addition, the ratio of the solder with which the thermal stress relaxation part of a back metal plate is filled was made into the range of 10-90 volume%.
[0042]
FIG. 1 is a diagram showing a configuration of a ceramic circuit board 1a in which a step as a thermal stress relaxation part 3 is formed on the outer peripheral edge of a back metal plate 5a, and the metal circuit board 4 is joined to the surface side of the ceramic substrate 2. The back metal plate 5a is joined to the back side. In addition, the semiconductor element 6 is bonded to a predetermined position of the metal circuit board 4, while the heat sink base 7 is integrally bonded to the back metal plate 5a to form a semiconductor module.
[0043]
FIG. 2 is a diagram showing a configuration of the ceramic circuit board 1b in which grooves as the thermal stress relaxation portions 3a are formed in the longitudinal direction of the back metal plate 5b, and the metal circuit board 4 is joined to the surface side of the ceramic substrate 2. The back metal plate 5b is joined to the back side. Further, the semiconductor element 6 is joined to a predetermined position of the metal circuit board 4, while the heat sink base 7 is joined integrally to the back metal board 5b to form a semiconductor module.
[0044]
FIG. 3 is a diagram showing a configuration of a ceramic circuit board 1c in which a recessed portion as a thermal stress relaxation part 3b is formed on the surface portion of the back metal plate 5c, and the metal circuit plate 4 is bonded to the surface side of the ceramic substrate 2. On the other hand, the back metal plate 5c is joined to the back side. Further, the semiconductor element 6 is joined to a predetermined position of the metal circuit board 4, while the heat sink base 7 is joined integrally to the back metal board 5c to form a semiconductor module.
[0045]
Then, in order to evaluate the durability and reliability of the semiconductor modules for evaluation according to the examples and comparative examples prepared as described above, the following thermal shock test (heat cycle test: TCT) was performed, and the back metal The occurrence of cracks in the solder layer between the board and the heat sink base was investigated. In the heat cycle test, each module is held at −40 ° C. for 30 minutes, then heated to room temperature (RT) and held for 10 minutes, further heated to 125 ° C. and held for 30 minutes, and then cooled to room temperature. Then, the temperature increase / decrease cycle with one cycle until holding for 10 minutes was repeated 100 times. After the end of 100 cycles, the presence or absence of cracks in the solder layer between the back metal plate and the heat sink base was examined by ultrasonic flaw detection, and the proportion of modules in which cracks occurred was investigated.
[0046]
The specifications of the ceramic circuit board used for each module are shown in Table 1, and the evaluation results of each module are shown in Table 2 below.
[0047]
[Table 1]
Figure 0004969738
[0048]
[Table 2]
Figure 0004969738
[0049]
As is clear from the results shown in Tables 1 and 2, the back metal plate is provided with a thermal stress relaxation portion of any one of a step, a groove, and a recessed portion, and the volume ratio of the front and back metal plates is defined within a predetermined range. In the semiconductor module of each example having a circuit board, it was found that cracks did not occur after the TCT test and had excellent durability and reliability.
[0050]
On the other hand, it was reconfirmed that the module according to each comparative example in which the thermal stress relaxation part was not provided and the volume ratio of the front and back metal plates was excessively caused a solder crack and the characteristics as the module were deteriorated. .
[0051]
In addition, in the ceramic circuit board which comprises the module of each Example and a comparative example, it has been confirmed that a crack does not generate | occur | produce in any ceramic board itself.
[0052]
Examples 11-16
In the semiconductor module according to Example 2, the magnitude relationship between the bonding area of the metal circuit plate provided on the front and back surfaces of the ceramic substrate and the bonding area of the back metal plate is changed, and the thickness of the back metal plate is shown in Table 3. The semiconductor module which concerns on Example 11-16 was manufactured by processing like Example 2 except the point which changed variously.
[0053]
Next, the thermal shock test (TCT) under the temperature increase / decrease conditions described above was performed on each module for 1000 cycles, and the warp direction of the ceramic substrate was investigated, and the crack generation rate in the solder layer was measured to determine the following: The results shown in Table 3 were obtained. Moreover, it displayed on the side in which a concave surface is formed according to the direction of curvature.
[0054]
[Table 3]
Figure 0004969738
[0055]
As is clear from the results shown in Table 3 above, when the joining area Y of the front metal plate (metal circuit board) satisfies the condition smaller than the joining area X of the back metal plate, the warping direction of the circuit board is the back metal. It has been found that the stress generated by warpage of the warp on the plate side is effectively relieved by the grooves formed in the back metal plate, so that the rate of occurrence of solder cracks is reduced.
[0056]
On the other hand, in the case of Example 15 where the back metal plate is thinner than 0.15 mm and in the case of Example 16 where the joining area of the front and back metal plates does not satisfy X> Y, there is an effect of providing a groove as a thermal stress relaxation part. It was confirmed that there were few.
[0057]
In particular, in Example 16 where X <Y, it was confirmed that the warping direction was reversed because the thermal contraction of the surface metal plate by the TCT test was large. Moreover, in such a form, when a semiconductor element is mounted on the front metal plate, the heat of the element is not transmitted linearly to the heat sink base, so that it can be said that the same problem occurs.
[0058]
【Effect of the invention】
As described above, according to the ceramic circuit board and the semiconductor module using the ceramic circuit board according to the present invention, the thermal stress relaxation portion including the step, the groove, and the recessed portion having a predetermined depth is formed on the back metal plate. , A thick solder layer will be formed between the heat sink base and the back metal plate, and thermal stress is greatly relieved even when repeated thermal cycles are applied, solder cracks are less likely to occur, and high A reliable circuit board can be obtained.
[0059]
In addition, the ratio of the volume of the back metal plate to the volume of the metal circuit plate is set to 0.6 or less, and the amount of the back metal plate is relatively reduced. Therefore, when the heat acts on the circuit board, the back metal plate side is important. A predetermined amount of warpage occurs so as to be concave. Since the direction and the amount of warpage of the warp coincide with the direction and the amount of warp of the heat sink base, the crack of the substrate due to the bending stress caused by the warp is eliminated.
[Brief description of the drawings]
FIGS. 1A and 1B are a sectional view and a rear view of a ceramic circuit board according to an embodiment of the present invention, respectively.
2A and 2B are a sectional view and a rear view of a ceramic circuit board according to another embodiment of the present invention, respectively.
FIGS. 3A and 3B are a sectional view and a rear view of a ceramic circuit board according to another embodiment of the present invention, respectively.
4A, 4B, and 4C are a plan view, a cross-sectional view, and a rear view showing the configuration of a conventional ceramic circuit board, respectively.
[Explanation of symbols]
1, 1a, 1b, 1c Ceramic circuit board 2 Ceramic board 3, 3a, 3b Thermal stress relaxation part (step, groove, concave part)
4 Metal circuit boards 5, 5a, 5b, 5c Back metal plate 6 Semiconductor element 7 Heat sink base

Claims (4)

セラミックス基板の表面側に金属回路板を接合する一方、裏面側に裏金属板を接合したセラミックス回路基板の裏金属板に半田層を介してヒートシンクベースを配設した半導体モジュールにおいて、上記裏金属板に、上記金属回路板の厚さの10〜90%の深さを有する熱応力緩和部を設けるとともに、上記金属回路板の体積に対する裏金属板の体積の比が0.4〜0.6の範囲であり、かつ前記裏金属板の厚さが0.15〜0.5mmの範囲であり、上記金属回路板および裏金属板は、銅またはアルミニウムから成る一方、上記セラミックス基板が、窒化けい素,窒化アルミニウムまたはアルミナのいずれかから成り、上記熱応力緩和部が裏金属板に形成された段差、複数の溝、凹陥部のいずれかであり、上記裏金属板の熱応力緩和部に充填される半田の割合が10〜90容量%の範囲内としたことを特徴とする半導体モジュール。In a semiconductor module in which a metal circuit board is bonded to the front surface side of a ceramic substrate, and a heat sink base is disposed on the back metal plate of the ceramic circuit board having a back metal plate bonded to the back surface side through a solder layer, the back metal plate In addition, a thermal stress relaxation part having a depth of 10 to 90% of the thickness of the metal circuit board is provided, and the ratio of the volume of the back metal plate to the volume of the metal circuit plate is 0.4 to 0.6. The thickness of the back metal plate is in the range of 0.15 to 0.5 mm, and the metal circuit plate and the back metal plate are made of copper or aluminum, while the ceramic substrate is made of silicon nitride. consists either of aluminum nitride or alumina, a step in which the thermal stress alleviating portion is formed on the back metal plate, a plurality of grooves, is either recess, charging the thermal stress absorbing portions of the backing metal plate Semiconductor module proportion of solder characterized by being in the range of 10 to 90 volume percent being. 前記金属回路板のセラミックス基板に対する接合面積が前記裏金属板のセラミックス基板に対する接合面積より小さいことを特徴とする請求項1記載の半導体モジュール。  2. The semiconductor module according to claim 1, wherein a bonding area of the metal circuit board to the ceramic substrate is smaller than a bonding area of the back metal plate to the ceramic substrate. セラミックス回路基板が、裏金属板側が凹になるように反っていることを特徴とする請求項1記載の半導体モジュール。  2. The semiconductor module according to claim 1, wherein the ceramic circuit board is warped so that the back metal plate side is concave. 前記金属回路板は、直接接合法,活性金属接合法およびアルミニウム系ろう材接合法のいずれかによって前記セラミックス基板に接合されていることを特徴とする請求項1記載の半導体モジュール。  2. The semiconductor module according to claim 1, wherein the metal circuit board is bonded to the ceramic substrate by any one of a direct bonding method, an active metal bonding method and an aluminum brazing material bonding method.
JP2001197165A 2001-06-28 2001-06-28 Ceramic circuit board and semiconductor module using the same Expired - Lifetime JP4969738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001197165A JP4969738B2 (en) 2001-06-28 2001-06-28 Ceramic circuit board and semiconductor module using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197165A JP4969738B2 (en) 2001-06-28 2001-06-28 Ceramic circuit board and semiconductor module using the same

Publications (2)

Publication Number Publication Date
JP2003017627A JP2003017627A (en) 2003-01-17
JP4969738B2 true JP4969738B2 (en) 2012-07-04

Family

ID=19034817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197165A Expired - Lifetime JP4969738B2 (en) 2001-06-28 2001-06-28 Ceramic circuit board and semiconductor module using the same

Country Status (1)

Country Link
JP (1) JP4969738B2 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532481B2 (en) 2004-04-05 2009-05-12 Mitsubishi Materials Corporation Al/AlN joint material, base plate for power module, power module, and manufacturing method of Al/AlN joint material
JP4621531B2 (en) * 2005-04-06 2011-01-26 株式会社豊田自動織機 Heat dissipation device
JP4617209B2 (en) * 2005-07-07 2011-01-19 株式会社豊田自動織機 Heat dissipation device
JP4759384B2 (en) 2005-12-20 2011-08-31 昭和電工株式会社 Semiconductor module
US8273993B2 (en) 2006-03-08 2012-09-25 Kabushiki Kaisha Toshiba Electronic component module
JP4957208B2 (en) * 2006-11-28 2012-06-20 三菱マテリアル株式会社 Power module substrate with heat sink and power module
EP2109138B1 (en) * 2006-12-26 2015-12-23 Kyocera Corporation Heat dissipating substrate and electronic device using the same
JP4945319B2 (en) * 2007-05-25 2012-06-06 昭和電工株式会社 Semiconductor device
JP4867793B2 (en) 2007-05-25 2012-02-01 株式会社豊田自動織機 Semiconductor device
JP2008294281A (en) * 2007-05-25 2008-12-04 Showa Denko Kk Semiconductor device and manufacturing method therefor
US8472193B2 (en) 2008-07-04 2013-06-25 Kabushiki Kaisha Toyota Jidoshokki Semiconductor device
JP2010103311A (en) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc Multilayer substrate
JP5180927B2 (en) * 2009-08-04 2013-04-10 株式会社神戸製鋼所 Composite heat sink
JP2011091135A (en) * 2009-10-21 2011-05-06 Toshiba Lighting & Technology Corp Light emitting module and lighting system
JP5375552B2 (en) * 2009-11-24 2013-12-25 東芝ライテック株式会社 LIGHT EMITTING DEVICE AND LIGHTING APPARATUS HAVING THE SAME
JP5516987B2 (en) * 2010-10-13 2014-06-11 東芝ライテック株式会社 Light emitting device and lighting apparatus
JP5282075B2 (en) * 2010-08-25 2013-09-04 株式会社豊田自動織機 Heat dissipation device
DE102010063021A1 (en) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Electronic assembly with improved sintered connection
EP2709148A4 (en) * 2011-05-13 2015-07-15 Fuji Electric Co Ltd Semiconductor device and manufacturing method thereof
WO2012157584A1 (en) * 2011-05-13 2012-11-22 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP2013115201A (en) * 2011-11-28 2013-06-10 Toyota Industries Corp Semiconductor device
JP2013115202A (en) * 2011-11-28 2013-06-10 Toyota Industries Corp Semiconductor device
JP5853724B2 (en) * 2012-01-26 2016-02-09 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP5853727B2 (en) * 2012-01-30 2016-02-09 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink
JP6267686B2 (en) * 2012-04-23 2018-01-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Integrated electronic module with cooling structure
US8941208B2 (en) * 2012-07-30 2015-01-27 General Electric Company Reliable surface mount integrated power module
JP6041262B2 (en) * 2012-11-29 2016-12-07 国立研究開発法人産業技術総合研究所 Semiconductor module
JP6221590B2 (en) * 2013-10-02 2017-11-01 日産自動車株式会社 Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP6317178B2 (en) * 2013-11-27 2018-04-25 京セラ株式会社 Circuit board and electronic device
JP6341822B2 (en) * 2014-09-26 2018-06-13 三菱電機株式会社 Semiconductor device
JP2016131237A (en) * 2015-01-08 2016-07-21 パナソニックIpマネジメント株式会社 Thermal conductor, electrical equipment and electric motor
JP6608728B2 (en) * 2016-02-23 2019-11-20 京セラ株式会社 Circuit board and electronic device
EP3675604B1 (en) * 2017-08-24 2023-02-22 Amosense Co.,Ltd Method for producing ceramic substrate, and ceramic substrate
JP2020141023A (en) * 2019-02-27 2020-09-03 株式会社 日立パワーデバイス Semiconductor device
CN114026686A (en) 2020-01-10 2022-02-08 富士电机株式会社 Semiconductor device and vehicle
US11735504B2 (en) * 2020-11-18 2023-08-22 Semiconductor Components Industries, Llc Power module package baseplate with step recess design
EP4075495A1 (en) * 2021-04-14 2022-10-19 Hitachi Energy Switzerland AG Substrate for a power module, power module and method for manufacturing a power module
JP7523419B2 (en) * 2021-10-04 2024-07-26 三菱電機株式会社 Method for manufacturing power semiconductor device
CN116496098A (en) * 2022-01-18 2023-07-28 上海富乐华半导体科技有限公司 Ceramic substrate with metal coated on both sides and preparation method thereof
CN116130469A (en) * 2023-04-19 2023-05-16 烟台台芯电子科技有限公司 Power semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136290A (en) * 1991-11-11 1993-06-01 Toshiba Corp Ceramics circuit substrate
JPH0883864A (en) * 1994-09-13 1996-03-26 Meidensha Corp Power semiconductor device
JP3176815B2 (en) * 1995-01-19 2001-06-18 富士電機株式会社 Substrate for semiconductor device
JPH0982844A (en) * 1995-09-20 1997-03-28 Mitsubishi Electric Corp Semiconductor module board and manufacture thereof
JP4293406B2 (en) * 1999-05-28 2009-07-08 電気化学工業株式会社 Circuit board

Also Published As

Publication number Publication date
JP2003017627A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
JP5598522B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
JP4664816B2 (en) Ceramic circuit board, manufacturing method thereof and power module
JPH07202063A (en) Ceramic circuit board
JP5957862B2 (en) Power module substrate
JP2002043482A (en) Member for electronic circuit, its manufacturing method and electronic component
JP2019081690A (en) Joint body and insulating circuit substrate
JP2017069275A (en) Substrate for power module with radiator plate, and power module
JP3932744B2 (en) Manufacturing method of insulated circuit board for semiconductor mounting
JP5786569B2 (en) Power module substrate manufacturing method
JPH0786703A (en) Ceramic circuit board
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP4124040B2 (en) Semiconductor device
JP5772088B2 (en) Power module substrate manufacturing method and power module substrate
JP4557398B2 (en) Electronic element
JP5047315B2 (en) Ceramic circuit board
JPH08102570A (en) Ceramic circuit board
JP5614127B2 (en) Power module substrate and manufacturing method thereof
JP4476428B2 (en) Aluminum nitride circuit board and manufacturing method thereof
JP4656126B2 (en) Semiconductor device
JP5303936B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP2001135902A (en) Ceramic circuit board
KR102363709B1 (en) Copper/Titanium/Aluminum bonding body, insulated circuit board, insulated circuit board with heatsink attached, power module, LED module, thermoelectric module
JP2004134703A (en) Circuit board with terminal
JPH01151252A (en) Ceramic package and its manufacture

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4969738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150