JP4958146B2 - 導電性合成樹脂棒体及びその製造方法 - Google Patents

導電性合成樹脂棒体及びその製造方法 Download PDF

Info

Publication number
JP4958146B2
JP4958146B2 JP2006180582A JP2006180582A JP4958146B2 JP 4958146 B2 JP4958146 B2 JP 4958146B2 JP 2006180582 A JP2006180582 A JP 2006180582A JP 2006180582 A JP2006180582 A JP 2006180582A JP 4958146 B2 JP4958146 B2 JP 4958146B2
Authority
JP
Japan
Prior art keywords
conductive
synthetic resin
rod
layer
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006180582A
Other languages
English (en)
Other versions
JP2008010329A (ja
Inventor
博文 高瀬
秀己 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2006180582A priority Critical patent/JP4958146B2/ja
Publication of JP2008010329A publication Critical patent/JP2008010329A/ja
Application granted granted Critical
Publication of JP4958146B2 publication Critical patent/JP4958146B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、カーボンナノチューブなどの極細導電繊維を含有する導電層が形成された導電性合成樹脂棒体と、その製造方法に関する。
従来より合成樹脂に導電材を含有させた制電性棒体が製造されていて、これを制電性部材を接続する制電性溶接棒として使用したり(特許文献1,2)、切削してボルトやナットやワッシャーなどを作製したり、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器などの導電性ロールなどとして使用されている。このような制電性棒体に使用される導電材は、酸化亜鉛や酸化錫などの導電性粒子(特許文献1)、又は金属粉やカーボン繊維や金属繊維(特許文献2)などが使用されている。
一方、カーボンナノチューブを使用した制電性合成樹脂板も知られていて、該カーボンナノチューブが1本又は1束ずつに分散して制電層内に含有されて透明性に優れた樹脂板となされている。そして、この樹脂板はカーボンナノチューブ含有塗液を塗布したフィルムを樹脂基板に重ねてプレスし一体化することで得られている(特許文献3)。
特開昭60−4032号公報 特開平7−223264号公報 特開2004−230690号公報
しかしながら、上記特許文献1の金属粒子を含有する導電性棒体は、該金属粒子が使用中に摩擦により脱落する恐れがあるし、多量に含有させないと制電性能を発揮できず機械的強度が低下し、切削加工時に刃物を傷めるという問題が内在していた。また、特許文献2の金属粉を含有する制電性発泡シートであっても金属粉などが脱落したりするし、カーボン繊維であれば脱落は若干良くなるが該繊維の直径が太くて多量含有させる必要があった。
一方、特許文献3には、押出により制電性合成樹脂板を得る方法は記載がないし、棒体であればプレス方式を採用できないので導電性合成樹脂棒体を製造することはできなかった。
本発明は上記の問題に対処するためになされたもので、その目的とするところは、カーボンナノチューブなどの極細導電繊維を含有させて、良好な制電乃至導電性能を発揮する導電性合成樹脂棒体、及び該棒体の製造方法を提供することにある。
上記目的を達成するため、本発明に係る第1の導電性合成樹脂棒体は、熱可塑性合成樹脂棒体であって、該棒体の少なくとも表面に極細導電繊維が含有された導電層が形成されており、その導電層が、極細導電繊維を含有する熱可塑性合成樹脂棒体を加熱して、表面抵抗率を低下させて形成されたことを特徴とするものである。
本発明の第2の導電性合成樹脂棒体は、熱可塑性合成樹脂棒体であって、極細導電繊維を含有しない芯材層と、該芯材層を被覆する極細導電繊維が含有された導電層とからなり、その導電層が、芯材層を被覆する極細導電繊維が含有された表面層を加熱して、表面抵抗率を低下させて形成されたことを特徴とするものである。
上記の各導電性合成樹脂棒体において、極細導電繊維が導電層の表面に露出するか、又は表面から突出するか、又は表面から100nm未満の内部に含有されていることが好ましい。また、導電層が切削された表面を有することも好ましい。
本発明の第1の導電性合成樹脂棒体の製造方法は、極細導電繊維を含有する熱可塑性合成樹脂組成物を押出して熱可塑性合成樹脂棒体となし、該棒体の表面を切削した後に、少なくとも切削表面を加熱して、極細導電繊維を前記棒体の切削表面に露出させるか、又はその切削表面から突出させるか、又はその切削表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。
本発明の第2の導電性合成樹脂棒体の製造方法は、極細導電繊維を含有する熱可塑性合成樹脂組成物と極細導電繊維を含有しない熱可塑性合成樹脂組成物とを共押出して、極細導電繊維を含有しない熱可塑性合成樹脂組成物よりなる芯材層を極細導電繊維を含有する熱可塑性合成樹脂組成物よりなる表面層で被覆してなる合成樹脂多層棒体となし、該多層棒体の表面を切削した後に、少なくとも切削表面を加熱して、極細導電繊維を前記多層棒体の切削表面に露出させるか、又はその切削表面から突出させるか、又はその切削表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とするものである。
上記の各導電性合成樹脂棒体の製造方法において、前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性合成樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲で行なわれるか、又は、前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性合成樹脂組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲となる温度範囲で行われることが好ましい。
また、前記合成樹脂棒体又は前記合成樹脂多層棒体が押出された後にサイジング金型に移送されて形状が整形されると共に、該サイジング金型の前側部で前記棒体表面を加熱して表面抵抗率を低下させた導電層を形成すると共に、該サイジング金型の後側部で冷却して固化することが好ましい。
本発明において、導電層とはその表面抵抗率が10Ω/□以上1012Ω/□未満である層を示す。
また、「表面抵抗率を低下させた導電層」又は「表面抵抗率が低下した導電層」とは、押出された棒体の表面抵抗率が1012Ω/□以上であれば、これを1012Ω/□未満の表面抵抗率に低下させることを意味し、押出された棒体の表面抵抗率が1012Ω/□未満であれば、これをさらに低下させた表面抵抗率となすことを意味する。
また、上記極細導電繊維を含有する熱可塑性合成樹脂組成物のガラス転移温度と融点は、該組成物の示差走査熱量を測定することにより求めることができ、ガラス転移温度は、転移前の基線の直線部分と転移領域の変曲点の接線を外挿して得られる交点の温度を示し、融点は、融解ピークの両側の最大傾斜の点で引いた接線の交点の温度を示す。
また、上記粘度は、動的粘弾性測定装置にて剪断速度1sec−1の剪断速度で得られた値を示す。
なお、上記融点は、極細導電繊維を含有する熱可塑性樹脂合成組成物に使用される熱可塑性合成樹脂が結晶性であれば上記示差走査熱量を測定することで求めることができるが、非晶性であれば示差走査熱量で測定することができないので、合成樹脂棒体又は前記合成樹脂多層棒体の加熱は上記粘度範囲となる温度範囲でなされる。
本発明の第1の導電性合成樹脂棒体であると、該棒体の少なくとも表面に極細導電繊維を含有する導電層が形成されているので、表面抵抗率を10Ω/□以上1012Ω/□未満にすることができるし、また、該極細導電繊維が細くて長いので導電層から脱落する恐れが少なくなり、脱落による導電性能の低下や脱落した繊維による弊害をなくすことができる。そして、該導電性合成樹脂棒体の全体に極細導電繊維が含有されて導電層を形成していると、これを切削などしてボルトなどの導電性切削加工体とすることもできる。
また、本発明の第2の導電性合成樹脂棒体であると、芯材層が導電層で被覆されているので、導電性性能以外の性能を該芯材層で付与させることができる。そして、極細導電繊維の脱落する恐れが少なくて導電性能の低下や脱落した繊維による弊害をなくすことができるし、表面抵抗率を10Ω/□以上1012Ω/□未満に長期間維持することもできる。
これらの導電性合成樹脂棒体の導電層に含有される極細導電繊維が、表面に露出又は表面から突出すると該極細導電繊維により直接導電路が良好に形成されるし、極細導電繊維が表面から100nm未満の内部に含有されているとトンネル効果により静電気や印加電圧が該極細導電繊維にまで達して導電路が形成されて、表面抵抗率を10Ω/□以上1012Ω/□未満にすることが容易になされる。
また、これらの導電性合成樹脂棒体の導電層が切削された表面を有していると、切削により該棒体を真円形状になすこともできるので、例えば導電性ロールに使用すると、該ロール上を移送する物体を確実に支持して揺らすことなく搬送できるし、帯電防止機能により上記ロールで搬送される物体に付着する埃を軽減できる。
さらに、上記の本発明の第1の導電性合成樹脂棒体及び第2の導電性合成樹脂棒体は、導電層が加熱することで形成されているので、該加熱により、押出された棒体の表面抵抗率を低下させて10Ω/□以上1012Ω/□未満となされた導電性棒体とすることができる。
本発明の第1の導電性合成樹脂棒体の製造方法であると、押出された熱可塑性合成樹脂棒体(以下、押出棒体とも記す)を加熱することで、極細導電繊維を表面に露出させたり、表面から突出させたり、表面から100nm未満の内部に含有させたりすることができるので、該押出棒体の少なくとも表面部分に導電層を形成することができる。このように、表面を加熱することで極細導電繊維を上記状態になさしめる理由は、現時点では定かではないが、出願人は次のように推測している。
押出された合成樹脂棒体は、その表面近傍に含まれていた極細導電繊維が押出時に成形金型内面からの剪断力を受けて、歪を有した状態で含有されていると共に、押出方向に強制的に配列・配向させられている。そのため、極細導電繊維の含有量が少ないか又は/及び分散が悪いと、該繊維同士の接触が余り得られず1012Ω/□以上の表面抵抗率を示す。しかし、極細導電繊維の含有量が多いか又は/及び分散が良好であると、歪を有した状態で配列・配向しても該繊維同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示す。
このような表面抵抗率を示す押出棒体を、押出直後にサイジング金型などにより加熱したり、押出後直ちにサイジング金型などにより加熱したり、押出成形後に再加熱したりして、少なくとも表面近傍が極細導電繊維含有熱可塑性合成樹脂組成物のガラス転移温度の温度から融点温度より30℃高い温度の温度範囲(以下、加熱温度範囲とも記す)になされるか、又は/及び、該組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲(以下、加熱粘度範囲とも記す)となる温度範囲になされる。その結果、表面近傍の極細導電繊維含有熱可塑性合成樹脂組成物が軟化して低粘度となり、表面近傍に含有され且つ歪を有していた極細導電繊維が、この歪を解消しようとして、該組成物の内部でランダムに3次元方向に動いて無配向状態となり、近接して含有されていた極細導電繊維同士がお互いに接触する機会が増加すると共に、軟化組成物量が少なくて動きを抑制することが少ない表面方向に動いて、表面に露出するか、更に動いて表面から突出するか、又は露出乃至突出するまでの歪がなくて表面から100nm未満の内部にまで動いて固定された状態となるためである、と推測している。
そのために、該表面又は/及び表面近傍には、極細導電繊維が十分に接触して表面抵抗率を低下させた導電層が形成され、本発明の導電性合成樹脂棒体を製造することができるのである。
なお、導電層に含有されている極細導電繊維は、上記各状態が混在して導電層を形成している場合があることは当然である。
そして、極細導電繊維が表面に露出又は表面から突出すると該極細導電繊維により直接導電路が良好に形成されるし、極細導電繊維が表面から100nm未満の内部に含有されているとトンネル効果により静電気や印加電圧が該極細導電繊維にまで達して導電路が形成され、いずれの場合でも表面抵抗率が低下した導電層が形成される。そのため、加熱される前は1012Ω/□以上の高い表面抵抗率を示していても、加熱された後は表面抵抗率が低下して1012Ω/□未満の表面抵抗率を示す本発明の導電性合成樹脂棒体を製造することができる。また、加熱される前に012Ω/□未満の表面抵抗率を示したものは、加熱された後は該表面抵抗率がさらに低下した導電層が形成されて、本発明の導電性合成樹脂棒体を製造することができる。
さらに、押出棒体の内部まで加熱されて上記加熱温度範囲及び/又は加熱粘度範囲になされると、該押出棒体の内部の極細導電繊維もランダムに三次元方向に動いてお互いが接触して押出棒体全体が表面抵抗率が低下した導電層となり、表面抵抗率と共に体積抵抗率も低下した導電性合成樹脂棒体を製造することができる。
本発明の第2の導電性合成樹脂棒体の製造方法であると、熱可塑性合成樹脂からなる芯材層を極細導電繊維が含有された熱可塑性樹脂組成物の表面層で被覆した合成樹脂多層棒体(以下、押出多層棒体とも記す)を共押出しで容易に製造できる。そして、該押出多層棒体を押出直後にサイジング金型などにより加熱したり、押出後直ちにサイジング金型などにより加熱したり、押出成形後に再加熱したりして、該押出多層棒体の少なくとも表面層を加熱して上記加熱温度範囲及び/又は上記加熱粘度範囲になされると、前述のように、極細導電繊維が押出多層棒体の表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有したりして、表面又は/及び表面近傍に表面抵抗率を低下させた導電層を形成することができて、本発明の導電性合成樹脂棒体を製造することができる。
この押出多層棒体は、表面層を形成する極細導電繊維含有熱可塑性樹脂組成物が共押出成形金型からの剪断力を受けて、極細導電繊維は歪を有して含有されていると共に押出し方向に強制的に配列・配向させられ、前述の如く、極細導電繊維の含有量と分散状態とにより表面抵抗率が1012Ω/□以上になる場合とそれ以下になる場合とがある。しかし、いずれの場合であっても、この表面層を加熱することで、上記に記載したように、歪を有して表面層に含有されていた極細導電繊維がランダムに3次元方向に動き無配向状態となってお互いが接触して表面抵抗率が低下し、10Ω/□以上1012Ω/□未満の表面抵抗率となされた導電層が形成されて、本発明の導電性合成樹脂棒体を製造することができる。この押出多層棒体の加熱は、極細導電繊維が含有されている表面層のみでよいので効率よく行なうことができる。また、内部の芯材層は加熱する必要がないために、変形するほどに長時間加熱する必要がなく、押出多層棒体の形状を維持することも容易にできる。
上記の各製造方法、押出された合成樹脂棒体又は合成樹脂多層棒体の表面を切削した後に、該切削表面を加熱して表面抵抗率を低下させた導電層を形成しているので、真円形状をなした導電性合成樹脂棒体とすることができ、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器、搬送装置などの導電性ロールとしても使用することができる。
また、上記加熱が、極細導電繊維を含有する熱可塑性樹脂組成物の上記加熱温度範囲で行なわれると、押出棒体又は押出多層棒体の少なくとも表面を前記温度範囲にすることができて、樹脂組成物を十分軟化させて極細導電繊維の動きを可能ならしめることができる。また、上記加熱が上記加熱粘度範囲となるように行なわれると、極細導電繊維が低粘度となった組成物中を動くことができるようになる。このような加熱温度範囲又は/及び加熱粘度範囲に加熱されると、極細導電繊維の動きを良好に行なわせることができるので、該極細導電繊維が表面に露出、又は表面から突出、又は100nm未満の内部に含有され易くなって、表面抵抗率を低下させた導電層を形成させることが極めて容易になる。
また、上記加熱がサイジング金型で行なわれると、押出された合成樹脂棒体又は合成樹脂多層棒体の整形も同じサイジング金型内で行なわれるので、外観良好な導電性合成樹脂棒体とすることができる。そして、該サイジング金型の前側部で押出棒体又は押出多層棒体を加熱して前記加熱温度範囲及び/又は加熱粘度範囲になされると共に後側部で冷却されるので、前側部で押出棒体又は押出多層棒体に含有されている極細導電繊維が動いて、上記と同様の理由で、該表面又は/及び表面近傍に表面抵抗率が低下した導電層が形成されて、引き続いて、後側部で冷却されて極細導電繊維が上記状態で固定されて固化されるので、外観が良好で且つ表面抵抗率を低下させた導電層を有する本発明の導電性合成樹脂棒体を製造することができる。
以下、図面を参照して本発明の具体的な実施形態を詳述する。しかし、本発明はこれらに限定されるものではない。
図1は本発明の導電性合成樹脂棒体であり、(1)は斜視図を、(2)はそのX−X線断面図を示す。図2は導電性合成樹脂棒体に含有される極細導電繊維の分散状態を示す説明図である。
図1の導電性合成樹脂棒体A(以下、導電性棒体Aと記載することもある)は、極細導電繊維を含有する熱可塑性合成樹脂からなる直径が1〜300mmの断面略円形形状の長尺丸棒体であって、その外周表面の表面抵抗率は10Ω/□以上1012Ω/□未満となされている。この導電性合成樹脂棒体Aは、熱可塑性合成樹脂に、押出成形に必要な公知の添加剤を加えると共に極細導電繊維2を添加した極細導電繊維含有熱可塑性合成樹脂組成物を用いて、押出成形法にて成形された単一層からなるものであり、全体が導電層1となされている。
上記熱可塑性合成樹脂としては、例えばポリエチレン、ポリプロピレン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリビニルアセテート、ポリスチレン等のビニル系樹脂、ポリカーボネート、結晶性または非晶質ポリエチレンテレフタレート、ポリアリレート、ポリブチレンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、ポリエーテルエーテルケトン、ポリエーテルサルホン、ポリイミド、ポリアセタール、ポリエーテルイミド、ポリアミドイミド、ボリスチレン、ポリアミド、結晶ポリマー、トリアセチルセルロース、これらの樹脂の共重合体樹脂などの熱可塑性樹脂、或はこれらの樹脂が混合された混合樹脂などが用いられる。また、これらの樹脂に加えられる添加剤としては、抗酸化剤、ブロッキング防止剤、紫外線吸収剤、安定剤、抗菌剤、難燃剤、顔料、染料などの各樹脂に一般に添加されるものが使用される。
上記極細導電繊維2としては、カーボンナノチューブ、カーボンナノホーン、カーボンナノワイヤー、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、金属ナノワイヤーなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、金属酸化物ナノワイヤーなどの金属酸化物などの極細長金属酸化物繊維などの、直径が0.3〜100nmで、長さが0.1〜20μm、好ましくは長さが0.1〜10μmの各繊維が用いられる。これらの極細導電繊維は凝集することなく均一に分散されて、お互いに接触して導電層1のなかに含有されていることが好ましい。
これらの極細導電繊維2のなかで、極細長炭素繊維が好ましく、特にカーボンナノチューブが最も好ましく用いられる。該カーボンナノチューブは、繊維直径が0.3〜80nmと細く、凝集することなく分散して互いに接触させることにより導電性を良好に発揮させることができる。このカーボンナノチューブには、中心軸線の周りに直径が異なり円筒状に閉じた複数のカーボン壁を同心的に備えた多層カーボンナノチューブと、中心軸線の周りに単層の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブとがあるが、いずれのカーボンナノチューブも好ましく用いられる。そして、多層カーボンナノチューブは1本ずつ分離して分散させることができるが、単層カーボンナノチューブは現時点では1本ずつ分離して分散させることが困難で複数本が集まって束になったものを1束ずつ分離して分散させることができる。なお、単層カーボンナノチューブが1本ずつ分離して分散したものを除外するものではない。
これらの極細導電繊維2は、導電層1の中に0.01〜20.0質量%、好ましくは0.01〜10.0質量%、更に好ましくは0.1〜5.0質量%含有されて、均一に分散されている。極細導電繊維2の含有量が多くなり過ぎると、成形性や機械的強度が悪くなり、またコストも高くなる。そのため、出来るだけ分散を良くして、少ない含有量で表面抵抗率を良好に発揮させることが好ましい。このため、極細導電繊維2がカーボンナノチューブであれば、これを0.01〜10.0質量%含有させ1本ずつ又は1束ずつに分離して分散させることが望ましいのである。特に、上記単層カーボンナノチューブであれば0.01〜8.0質量%、多層カーボンナノチューブであれば0.01〜10.0質量%含有させることが望ましい。
上記極細導電繊維2は、導電層1の内部では、該繊維2の分散状態を示す図2(1)(2)(3)の説明図で明らかなように、均一に分散し且つランダムに三次元方向に向いてお互いが接触して表面抵抗率を低下させて導電層1を形成している場合と、図2(4)(5)(6)の説明図で示すように、押出方向に配列・配向して1012Ω/□以上の高い表面抵抗率を示して導電層を形成していない場合と、図2(7)(8)(9)の説明図で示すように、押出方向に配列・配向しているが或る程度接触して表面抵抗率の高い導電層を形成している場合とがある。
しかし、導電層1の表面及び/又は表面近傍では、内部とは異なり、いずれの場合であっても、図2(1)(4)(7)に示すように、極細導電繊維2が表面にランダムに露出しているか、又は/及び、図2(2)(5)(8)示すように、その表面からランダムに突出しているか、又は/及び、図2(3)(6)(9)に示すように、その表面に露出も突出もしていないが表面から100nm未満の深さtの内部に含有され、換言すれば表面から深さt(最大で100nm)までの間には極細導電繊維が含有されずにいるか、の何れかの状態で分散して、表面抵抗率が低下した導電層1を形成している。即ち、表面近傍の極細導電繊維2の端部又は中間部が配列・配向することなくランダムに三次元的に分散して湾曲して、表面に露出又は/及び表面から突出又は/及び100nm未満の内部に含有され、他の部分が導電層1の内部に埋没して固定されている。
そして、図2(1)(2)(3)の状態であると、表面及び/又は表面近傍の極細導電繊維2は内部の極細導電繊維2とも接触して導電性棒体Aの全体に導電路が形成されて、表面抵抗率を低下させた導電層1により棒体の全体が形成されていて、表面抵抗率も体積抵抗率も良好にすることができる。一方、図2(4)(5)(6)の状態であると、表面及び/又は表面近傍は表面抵抗率が低下した導電層1とすることができるが、内部は配向して接触がし難くて抵抗率が低下するので、表面抵抗率は良好であるが体積抵抗率は高いものとなる。さらに、図2(7)(8)(9)の状態であると、表面及び/又は表面近傍は表面抵抗率が低下した導電層1とすることができるが、内部は表面抵抗率が低下せずに押出棒体の値を示すこととなって、体積抵抗率は押出棒体のそれと略同じとなって向上はしない。なお、これらの各状態が混在した状態で導電層1に含有されていてもよいことは言うまでもない。
このように極細導電繊維2を分散させて良好な導電路を形成させるためには、その分散度を高め、接触頻度を高める必要がある。そのために、各極細導電繊維2が絡み合うことなく1本ずつ分離した状態で、又は/及び、複数本集まって束になったものが1束ずつ分離した状態で導電層1に分散させることが好ましく、このように分散させると、少ない含有量であっても、広い範囲に極細導電繊維2が分散して存在し、お互いが接触し易くなる。そのために、極細導電繊維2の含有量を0.01〜20.0質量%、好ましくは0.1〜10.0質量%としも、お互いが接触して十分な導電路が形成される。
この導電性棒体Aのように、極細導電繊維2が該導電性棒体Aの表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されて、10Ω/□以上1012Ω/□未満の表面抵抗率に低下した導電層1が形成することができる。そして、表面抵抗率が10Ω/□以上1012Ω/□未満であると制電機能を発揮し、表面に帯電した静電気は露出又は突出している極細導電繊維2に接触し、表面及び/又は内部の極細導電繊維同士が接触して形成された導電路を流れて導電層1の端部にまで達し、該端部で放電して除電する。また、表面抵抗率が10Ω/□以上10Ω/□未満であると導電体としての作用をなし、電気を流すことができるようになる。また、極細導電繊維2が表面から100nm未満の内部に含有されていると、トンネル効果により表面に帯電した静電気が該極細導電繊維2にまで達して制電機能を発揮するし、電気が通電されるとトンネル効果で同様に内部の該極細導電繊維2にまで通電して導電層1を流れて、導電体として作用する。
このような導電性合成樹脂棒体Aは、例えば図3に示す製造方法により製造することができる。図3(1)は全体の工程を示す説明図、(2)はそのM−M線断面図、(3)はそのN−N線断面図である。また、図4は押出された熱可塑性合成樹脂棒体内における極細導電繊維2の分散状態を示す説明図である。
まず、予め、熱可塑性合成樹脂と極細導電繊維2と、必要なら押出成形に必要な上記各添加剤を、均一に混合した極細導電繊維含有熱可塑性合成樹脂組成物を作製する。
そして、図3(1)に示すように、該極細導電繊維含有熱可塑性樹脂組成物を公知の押出機31に供し、スクリュー32で可塑化・溶融して、押出成形金型33により一定の直径を有する断面丸形状の熱可塑性合成樹脂棒体3(以下、押出棒体3とも記す)を押出す。
この押出棒体3は、押出時に、押出成形金型33の押出流路の内面からの剪断力を受けて、極細導電繊維2の含有量が少ないか又は/及び分散が悪いと、図4(1)に示すように、極細導電繊維2も押出方向Eに強制的に配列・配向させられて、歪を有して含有され、極細導電繊維2同士の接触が余り得られずに、1012Ω/□以上の表面抵抗率を示して導電性は有さない。しかし、極細導電繊維2の含有量が多いか又は/及び分散がよいと、図4(2)に示すように、極細導電繊維2が例え押出方向Eに強制的に配列・配向させられても、該繊維2同士の接触がある程度得られて、1012Ω/□未満の表面抵抗率を示す。この配列・配向の傾向は押出成形金型33の押出流路内面に接して押出される押出棒体3の外周面側ほど大きく配向させられて、大きな歪を有している。
続いて、この押出棒体3を引取ロールRで引き取ることにより、押出直後に、押出成形金型33に接触して配置されているサイジング金型4に導く。
該サイジング金型4は、図3(2)(3)に示すように、内部に設計直径寸法に合致する丸筒状のサイジング通路41が形成されている。そして、図3(2)に示すように、そのサイジング通路41の前側部44の周囲に加熱媒体供給源(不図示)に接続された加熱流路42が設けられていて、その加熱流路42に加熱油、熱水、水蒸気、加圧水蒸気などの加熱媒体を循環させて、サイジング通路41の内表面を極細導電繊維含有熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲(加熱温度範囲)に、好ましくは融点よりも30℃低い温度から融点よりも30℃高い温度の温度範囲に加熱するか、又は/及び、前記組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲となる粘度範囲(加熱粘度範囲)に、好ましくは1.0×10Pa・s以上から5.0×10Pa・s未満の粘度範囲となるように加熱されている。そして、サイジング通路41の後側部45の周囲に冷却媒体供給源(不図示)に接続された冷却流路43が設けられていて、その冷却流路43に水、冷却水、冷却ガスなどの冷却媒体を循環させてサイジング通路41の内表面が冷却されている。
このようなサイジング金型4に押出棒体3が押出直後に移送されると、該押出棒体3はサイジング通路41に接触して直径が微調整されて設計寸法にサイジングされて整形される。そして、サイジング金型4の前側部44の加熱されたサイジング通路41の内面に接して、押出棒体3の少なくとも外周表面が加熱され、前記加熱温度範囲又は/及び加熱粘度範囲となされ、外周表面が軟化して低粘度化する。この状態になると、極細導電繊維2が歪をなくそうとして動いて、配列・配向状態からランダムな三次元方向に分散した状態となって、表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されて、表面抵抗率が低下した導電層1が形成された押出棒体3となる。
なお、極細導電繊維含有熱可塑性樹脂組成物の熱可塑性樹脂が非晶質樹脂であれば、該組成物の融点温度が測定できないので、予め前記組成物の粘度が上記加熱粘度範囲となる温度範囲を事前の予備試験で調べ、この温度範囲になるように設定すればよい。また、結晶性樹脂であっても、この加熱粘度範囲となる温度範囲に設定してもよい。
また、上記加熱流路42に変えて、他の公知の手段で加熱してもよく、例えば、高周波や電気ヒーターなどにより加熱することもでき、この場合は加熱流路の代わりに高周波発生装置を設けたり、電気ヒーターを内蔵させておけばよい。
続いて、該押出棒体3をサイジング金型4の後側部45に導き、冷却流路43で冷却されたサイジング通路41の内面に接触させて冷却して押出棒体3を保形・固化すると、前記極細導電繊維2が上記状態を維持して固定され、その後、切断機Kで切断されると、10Ω/□以上1012Ω/□未満の範囲に表面抵抗率が低下した導電層1を有する本発明の導電性合成樹脂棒体Aを製造することができる。
なお、図3では、加熱流路42と冷却流路43とを連続的に設けて、押出棒体3を加熱後に直ちに冷却して急激に表面温度を冷却させているが、加熱流路42と冷却流路43との間に中間温度となるような別の流路を1つ乃至複数設けて、徐々に冷却するようにしてもよい。
このように、押出棒体3の少なくとも表面をサイジング金型4の前側部44に接触させて加熱し、上記加熱温度範囲又は/及び上記加熱粘度範囲にすることで極細導電繊維2を上記状態になさしめる理由は、前記したように、押出された押出棒体3の少なくとも表面近傍に含まれている極細導電繊維2は、押出時に押出成形金型33の押出流路面からの強い剪断力を受けて押出方向Eに強制的に配列・配向されて、歪を有した状態で含有される。そして、表面及び/又は表面近傍が加熱により軟化して低粘度化し、極細導電繊維2が動くことが可能な状態になると、極細導電繊維2が歪をなくそうとしてランダムに3次元的方向に動いて無配向状態となり、近接して含有されていた極細導電繊維2同士がお互いに接触する機会が著しく増加すると共に、動きを抑制する軟化樹脂組成物量の少ない表面方向に動いて上記状態で分散し、その後、冷却されて固定されるためである。
そのため、加熱前に1012Ω/□以上の表面抵抗率を示した押出棒体3は、加熱により1012Ω/□未満の表面抵抗率を有する導電性棒体Aを製造することができる。一方、加熱前に1012Ω/□未満の表面抵抗率を示した押出棒体3は、加熱により、これより表面抵抗率を低下させた導電性棒体Aを製造することができる。
この加熱による表面抵抗率の低下は、一般的には1桁乃至10桁の範囲でなされる。そのため、例えば、加熱前に1012Ω/□の表面抵抗率を示した押出棒体3は、加熱により1011Ω/□から10Ω/□の範囲の表面抵抗率を有する導電性棒体Aとなる。
そして、押出棒体3の加熱により上記加熱温度範囲又は/及び上記加熱粘度範囲になる部分が表面又は/及び表面近傍のみであれば、極細導電繊維2は図2(4)(5)(6)(7)(8)(9)に示すような分散状態となり、表面には表面抵抗率が低下した導電層1が形成されて押出棒体3の表面抵抗率が低下するが、内部は押出状態の配列・配向を維持した導電性棒体Aとなる。しかし、内部まで加熱されると、表面も内部も一様に軟化・低粘度化し極細導電繊維2全体が動いて、図2(1)(2)(3)に示すように、表面も内部も表面抵抗率が低下した導電層1となり、表面抵抗率も体積抵抗率も低下した導電性棒体Aとすることができる。
上記押出棒体3の少なくとも表面を、上記加熱温度範囲又は/及び上記加熱粘度範囲に曝しておく時間は、極細導電繊維2が動いて上記状態になる必要があるので、1分以上、好ましくは1〜20分間、より好ましくは5〜15分間保っておくことが望ましい。
そして、押出棒体3が加熱されても、サイジング金型4のサイジング通路41内に保持されているので、押出棒体3が例え軟化温度や融点温度以上に加熱されてもサイジング通路41により保形されて断面丸棒形状にサイジングされ整形される。そして、同じサイジング金型4の後側部45で引き続いて冷却・固化されるので、その形状を保つことができ、外観の良好な導電性棒体Aを製造することができる。
また、押出直後に、サイジング金型4で加熱されるので、表面の加熱が迅速に行なわれて上記加熱温度範囲又は/及び加熱粘度範囲となされて容易に軟化・低粘度にすることができる。そのため、表面に表面抵抗率が低下した導電層1を形成し易く、本発明の導電性合成樹脂棒体Aを容易に製造することができる。
図5は本発明の他の製造方法を示す全体の工程を示す説明図である。
本製造方法は、押出成形金型33とサイジング金型4とを僅かの間隔を隔てて配置した点で図3に示した製造方法と異なり、他の配置や押出機31やサイジング金型4や成形条件などは前記製造方法と同じであるので、同一符号を付した説明を省略する。
この製造方法によると、押出棒体3は押出された後、直ちに僅かの間隔を隔てたサイジング金型4に移送される。そして、サイジング金型4に移送された後は、前記と同様に、押出棒体4の直径が微調整されて整形される共に、前側部44で加熱されて前記加熱温度範囲又は/及び加熱粘度範囲となされて極細導電繊維2が動いて、表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されて、表面抵抗率が低下した導電層1が形成され、更に後側部45で冷却されて、本発明の導電性合成樹脂棒体Aを製造することができる。
図6は本発明の他の導電性合成樹脂棒体を示しており、(1)は斜視図、(2)はそのY−Y線断面図である。また、図7は極細導電繊維の分散状態を示す説明図である。
図6に示す導電性合成樹脂棒体B(以下、導電性棒体Bとも記す)は、熱可塑性合成樹脂からなり且つ極細導電繊維を含有しない芯材層5と、その外周面を被覆した極細導電繊維2を含有する導電層1とからなる直径1〜300mmの断面丸形状の2層構造の長尺合成樹脂多層棒体である。なお、芯材層5の外周面に極細導電繊維の含有量を変えた導電層や他の性能を発揮する機能層などを介して導電層1を被覆した多層構造としてもよい。
上記芯材層5は、熱可塑性合成樹脂、必要なら該合成樹脂の押出成形に必要な上記各添加剤が添加された組成物を押出して形成された層であり、極細導電繊維2は含有されていない。
該芯材層5に用いられる熱可塑性樹脂としては、前記導電性棒体Aに使用された樹脂が好ましく使用される。その中でも、この芯材層5は導電層1で被覆されて一体化させる必要があるので、導電層1に使用される熱可塑性樹脂と同一、或は相溶性のある樹脂を用いることが、相互の密着接合性を高めるうえで好ましい。この芯材層5の直径は、導電性棒体Bの直径から導電層1の厚さを差し引いた寸法である約1〜300mm程度となされている。
また、導電性合成樹脂棒体Bの導電層1は、前記導電性合成樹脂棒体Aの導電層1と同じであり、これに含有されている極細導電繊維2、その分散状態、表面への露出、表面からの突出、表面から100nm未満の深さtの内部に含有される各状態も同じであるので、同一符号を付して説明を省略する。しかし、該導電層1の厚さは、外周表面に被覆されて表面抵抗率を10Ω/□以上1012Ω/□未満とするためのものであるので、0.05〜5.0mm、好ましくは1〜3mmと薄くしても十分である。
そして、導電層1は、多層共押出成形法などの公知の製法により得られた多層構造の押出棒体(押出多層棒体)の極細導電繊維2を含有する表面層の少なくとも表面を、前記押出棒体3と同様に加熱して、図7(1)(2)(3)に示すように、極細導電繊維2を該押出多層棒体の表面に露出させたり、表面から突出させたり、表面から100nm未満の深さtの内部に含有させて、表面抵抗率を低下させて形成したものである。即ち、導電層1は表面層の略全厚さの極細導電繊維2の分散状態が変化して形成されたものである。しかし、表面層の表層部分のみの極細導電繊維2の状態が変化して導電層1となされたものを除外するものではない。
極細導電繊維2が加熱により上記状態となる理由は、前記押出棒体3を加熱して状態が変化する理由と同様であるので説明を省略する。
この導電性棒体Bの芯材層5は、導電層1と異なる熱可塑性樹脂を用いてもよいし、絶縁性を有しても導電性を有してもよいし、また、機械的強度を高めた組成物で形成されてもよいし、樹脂再生品を使用して形成されてもよいし、更にはガラス補強材を添加した組成物で形成されてもよいし、芯材層を多層にしてもよいし、その他の如何なる構成にしてもよいので、該芯材層5により導電性棒体Bに導電性以外の必要な性能を付与することができる。また、導電層1は該導電性棒体Bに導電性を付与するためであるので、必要以上に厚くする必要はなく、薄くできる分、極細導電繊維2の含有量を少なくでき、安価な導電性棒体Bにすることもできる。
この導電性棒体Bは、例えば図8に示す方法により製造することができる。図8(1)は全体の工程を示す説明図、(2)はそのP−P線断面図、(3)はそのQ−Q線断面図である。
まず予め、熱可塑性合成樹脂と極細導電繊維2と、必要なら該樹脂の押出成形に必要な上記各添加剤とを、均一に混合して極細導電繊維含有熱可塑性合成樹脂組成物を作製する。一方、熱可塑性合成樹脂に、必要なら上記添加剤を均一に混合した熱可塑性合成樹脂組成物を作製する。
そして、図8(1)に示すように、一方の押出機61に上記熱可塑性樹脂組成物を供すると共に、他方の押出機62に上記極細導電繊維含有熱可塑性樹脂組成物を供し、これを共押出金型63から断面丸形状に共押出して、図8(2)の断面図に示す、熱可塑性樹脂組成物から芯材層5の外周表面に極細導電繊維含有熱可塑性樹脂組成物からなる表面層11が被覆された、2層構造の長尺押出多層棒体6を押出す。
このように共押出されると、共押出金型63の押出流路内面からの剪断力を受け、特に、押出流路内面に接して押出される表面層11は、該表面層11を形成する樹脂も該表面層11に含有されている極細導電繊維2も押出方向に強い剪断力を受けて、前記押出棒体3における分散状態と同様に(図4参照)、極細導電繊維2は押出方向に強制的に配列・配向させられて、大きな歪を有した状態で含有されることとなる。そのため、前記の如く、極細導電繊維2の含有量と分散状態により、表面抵抗率が1012Ω/□以上になる場合とそれ未満になる場合とがある。
続いて、この押出多層棒体6を、共押出金型63に接して配置されている、図3に示したサイジング金型と同じ構造のサイジング金型4に移送し、サイジング通路41に接触させながら引取りロールRにて引取ると、その加熱された前側部44により少なくとも表面層11の表面が加熱されて前記加熱温度範囲又は/及び前記加熱粘度範囲となされ、軟化して低粘度化する。そのため、前記と同様に、表面層11に歪を有して含有されていた極細導電繊維2が歪を解消しようとして該低粘度化した組成物中を動いてランダムに三次元的に分散した状態となり、表面層11の表面に露出したり、表面から突出したり、表面から100nm未満の内部に含有されるようになって表面抵抗率が低下し、該表面抵抗率が10Ω/□以上1012Ω/□未満の範囲となされた導電層1に変化する。
続いて、該押出多層棒体6をサイジング金型4の後側部45に導き、前記と同様に、冷却して固化すると、前記極細導電繊維2が上記状態を維持して固定された導電層1となり、その後、切断機Kで切断されて、本発明の二層構造の断面丸形状の導電性棒体Bを製造することができる。
なお、42は加熱流路、43は冷却流路を示す。
上記の製造方法は、共押出金型63とサイジング金型4とを接触させて配置させているが、図5に示すように、これらの共押出金型63とサイジング金型4とを僅かの間隔を隔てて配置させた製造方法によっても同様に製造することができる。
図9は本発明の他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。
該導電性合成樹脂棒体C(以下、導電性棒体Cとも記す)は、その全体に極細導電繊維2を含有する熱可塑性合成樹脂の導電層1からなっていて、その外周表面は切削された切削表面12となされた単層構造の直径約1〜300mmの断面真円形状の長尺導電性棒体である。なお、図9においては、切削された部分を一点鎖線にて示している。
このような切削は、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器、搬送装置などの導電性ロールとして真円形状の導電性棒体が必要な場合や、導電性ボルトなどの他の棒状形状にする場合などに必要な加工である。
導電層1に含有されている極細導電繊維2は、前記と同様に、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100μm未満の内部に含有させられていて、その表面抵抗率を低下させて10Ω/□以上1012Ω/□未満となされている。
該導電層1に含有されている極細導電繊維2の分散状態、加熱により表面抵抗率が低下する理由などは前記導電性合成樹脂棒体A、Bの導電層1と同じであるので、同一符号を付して説明を省略する。
この導電性棒体Cは、例えば図10に示す方法により製造することができる。図10(1)は押出棒体の製造工程を示し、(2)は切削乃至加熱工程を示す。
上記極細導電繊維含有熱可塑性合成樹脂組成物を押出機71に供して、押出金型72より断面円形形状に押出した後、直ちに僅かの間隔を隔てて配置されたサイジング金型73に移送される。該サイジング金型73はサイジング通路74全長に亘り冷却流路(不図示)が設けられて冷却されていて、このサイジング通路74に移送された押出棒体は整形されると共に冷却されて、一定直径寸法になされた極細導電繊維含有熱可塑性合成樹脂棒体75(以下、押出成形棒体75ともいう)を押出成形する。
なお、Rは引取りロール、Kは切断機を示す。
この押出成形棒体75は、図10(2)に拡大して示すように、極細導電繊維2が押出方向Eに強制的に配列、配向していて、大きな歪を有した状態で含有されている。そのため、前記の如く、極細導電繊維2の含有量と分散状態により、表面抵抗率が1012Ω/□以上の場合と1012Ω/□未満の場合とがある。
続いて、該押出成形棒体75の外周面を切削して押出切削棒体7とする。この切削される寸法(厚さ)dは、押出成形棒体75全体に極細導電繊維2が含有しているために、必要とする直径寸法となるように切削することができるが、通常は0.04〜4.5mm程度である。
続いて、押出切削棒体7を上記加熱温度範囲又は/及び上記加熱粘度範囲となる温度に加熱された加熱室76に移送して、押出切削棒体7の少なくとも切削表面12を上記加熱温度範囲又は/及び上記加熱粘度範囲となす。この状態になされると、前記の如く、歪を有し配向して含有されていた極細導電繊維2が動いて、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100μm未満の内部に含有した状態となり、表面抵抗率を低下させた導電層1が形成される。この加熱室76にて加熱される時間は、押出切削棒体7の大きさにより異なるが、極細導電繊維2が動いて上記状態になる必要があるので1分以上、好ましくは1〜20分、更に好ましくは5〜15分程度加熱することが望ましい。
なお、77はヒーターなどの加熱源、78は搬送ベルトを示す。
続いて、前記加熱室76から移送されて冷却されると、極細導電繊維2が上記状態で固化して、10Ω/□以上1012Ω/□未満となされた導電層1が形成された、本発明の切削された導電性合成樹脂棒体Cを製造することができる。
上記の製造方法は、押出金型72とサイジング金型73とを僅かの間隔を隔てて配置させているが、図3に示すように、これらの押出金型72とサイジング金型73とを接触させて配置させた製造方法によっても同様に製造することができる。
図11は本発明の他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。
該導電性合成樹脂棒体D(以下、導電性棒体Dとも記す)は、熱可塑性合成樹脂からなり且つ極細導電繊維を含有しない芯材層5と、その外周面を被覆した極細導電繊維2を含有する導電層1とからなっていて、導電性棒体Dの外周表面は切削表面12となされた2層構造の直径約1〜300mmの断面真円形状の長尺導電性棒体である。なお、図11においては、切削された部分を一点鎖線にて示している。
このような切削は、電子写真機器、静電気記録機器、自動改札機、券売機、ATM、医療機器、搬送装置などの導電性ロールとして真円形状の導電性棒体が必要な場合に、導電層1の厚さの範囲内で行なわれる。
導電層1に含有されている極細導電繊維2は、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100μm未満の内部に含有させられていて、その表面抵抗率を低下させて10Ω/□以上1012Ω/□未満となされている。該導電性棒体Dは、その直径を約1〜300mmとなされ、導電層1の厚さを0.04〜4.9mm、好ましくは0.04〜2.0mmとされている。
該導電層1に含有されている極細導電繊維2、その分散状態、加熱により表面抵抗率が低下する理由などは前記導電性合成樹脂棒体A、Bの導電層1と同じであるので、同一符号を付して説明を省略する。
この導電性棒体Dは、例えば図12に示す方法により製造することができる。図12(1)は押出多層棒体の製造工程を示し、(2)は切削乃至加熱工程を示す。
上記熱可塑性合成樹脂組成物を一方の押出機81に供すると共に上記極細導電繊維含有熱可塑性合成樹脂組成物を他方の押出機82に供して、共押出金型83より共押出した後、直ちに僅かの間隔を隔てて配置されたサイジング金型84に移送される。該サイジング金型84はサイジング通路85全長に亘り冷却流路(不図示)が設けられて冷却されていて、このサイジング通路85に移送された押出多層棒体は整形されると共に冷却されて、合成樹脂よりなる芯材層5の外周表面を極細導電繊維含有熱可塑性合成樹脂組成物からなる表面層11で覆った一定直径寸法になされた二層構造の断面円形形状の長尺極細導電繊維含有熱可塑性合成樹脂棒体86(以下、押出成形多層棒体86とも記す。図12(2)の拡大断面図参照)を押出成形する。なお、Rは引取りロール、Kは切断機を示す。
この押出成形多層棒体86の表面層11は、図12(2)に拡大して示すように、極細導電繊維2が押出方向Eに強制的に配列、配向していて、大きな歪を有した状態で含有されている。そのため、該押出成形多層棒体86の表面抵抗率は、前記の如く極細導電繊維2の含有量と分散状態により1012Ω/□以上の場合と、それ未満の場合とがある。
続いて、該押出成形多層棒体86の表面層11の外周表面を切削して切削表面層13となされた押出切削多層棒体8を作製する。この切削される寸法(厚さ)dは、表面層11の厚さ寸法以内とする必要があり、通常は0.04〜4.5mm程度である。
続いて、押出切削多層棒体8を前記加熱温度範囲又は/及び前記加熱粘度範囲となる温度に保温された加熱室87に移送して1〜20分間、好ましくは5〜15分間加熱し、押出切削多層棒体8の切削表面層13の少なくとも表面を上記加熱温度範囲又は/及び上記加熱粘度範囲となす。この状態になされると、前記の如く、歪を有し配向して含有されていた極細導電繊維2が動いて、切削表面12に露出したり、切削表面12から突出したり、切削表面12から100nm未満の内部に含有されて、表面抵抗率を低下させた導電層1が形成される。
なお、88はヒーターなどの加熱源、89は搬送ベルトを示す。
続いて、前記加熱室87から移送されて冷却されると、極細導電繊維2が上記状態で固化して、10Ω/□以上1012Ω/□未満となされた導電層1が形成されて、切削された多層構造の本発明の導電性合成樹脂棒体Dを製造することができる。
なお、切削加工された導電性合成樹脂棒体C、Dは、本発明の導電性棒体A、Bの外周表面を切削などすることにより製造することもできる。この場合は、極細導電繊維2が表面に露出した状態で固定された導電層1が形成されることとなる。
上記の製造方法は、共押出金型83とサイジング金型84とを僅かの間隔を隔てて配置させているが、図8に示すように、これらの共押出金型83とサイジング金型84とを接触させて配置させた製造方法によっても同様に製造することができる。
上記各製造方法においては、サイジング金型にて加熱と冷却とを同一金型内で行なわせたが、2つまたはこれ以上の金型を採用して製造することもできる。例えば、成形金型から押出された押出棒体や押出多層棒体を加熱された加熱金型に導いて表面抵抗率が低下した導電層を形成し、続いて冷却された冷却金型に導くことにより、導電性合成樹脂棒体を製造することもできる。
次に、本発明の更に具体的な実施例を説明する。
(実施例1)
市販のポリプロピレン樹脂と、直径が10〜20nmである多層カーボンナノチューブ(CNT社製)とを均一に混合して、多層カーボンナノチューブが3.5質量%含有された多層カーボンナノチューブ含有ポリプロピレン樹脂組成物を作製した。このポリプロピレン樹脂の融点温度は172℃であった。
この組成物を丸棒押出成形機に供し、直径が50mmである断面丸形状の押出棒体を押出しし、サイジング金型に導いた。該サイジング金型は、その外周面の前側部に加熱流路を後側部に冷却流路が設けられていて、その前側部を200℃に加熱し、後側部を70℃に冷却していた。押出棒体を該サイジング金型の前側部にて約8分間接触加熱させた後に、後側部で約2分間接触冷却させて固化し、切断機で切断することにより、実施例1の導電性棒体を得た。
この多層カーボンナノチューブ含有ポリプロピレン樹脂組成物の200℃における粘度を、動的粘弾性測定装置(Pear社製Modular Compact Rheameter MCR300)にて測定したところ、剪断速度1sec−1のとき5.5×10Pa・sであった。
(比較例1)
上記組成物を、前側部も後側部も冷却された実施例1と同じサイジング金型を用いて押出棒体を冷却した以外は、実施例1と同様にして、比較例1の押出成形棒体を得た。
これらの実施例1と比較例1との各棒体について、それぞれ表面抵抗率を測定した。その結果、実施例1の棒体は2.3×10Ω/□の表面抵抗率を示し導電機能を発揮したが、比較例1の棒体は1.0×1014Ω/□以上の表面抵抗率しか示さずに、制電機能も導電機能も示さなかった。
このことより、サイジング金型で加熱した後で冷却することにより、冷却しただけの棒体に比べて11桁も表面抵抗率が低下することがわかる。
尚、表面抵抗率は三菱化学(株)製の低抵抗測定器とロレスタGPと高抵抗測定器ハイレスタUPで測定した値である。ロレスタGPは10−2〜10Ω/□の、ハイレスタUPは10〜1014の範囲の表面抵抗率の測定に用いる測定器であり、それぞれの表面抵抗率に応じて使い分けた。
(実施例2)
比較例1の押出成形体の周面を約1mm切削して、直径約48mmの切削押出棒体を作製し、該切削押出棒体を200℃に加熱保温された加熱室に10分放置した後に冷却して、実施例2の導電性切削棒体を得た。
該導電性切削棒体の表面抵抗率を測定したところ、3.3×10Ω/□の表面抵抗率を示した。
本発明に係る導電性合成樹脂棒体を示し、(1)はその斜視図、(2)はX−X線断面図である。 その導電性合成樹脂棒体内における極細導電繊維の分散状態を示す説明図である。 本発明に係る導電性合成樹脂棒体の製造方法を示し、(1)は全体の工程を示す説明図、(2)はそのM−M線断面図、(3)はそのN−N線断面図である。 その製造方法にて押出された熱可塑性合成樹脂棒体内における極細導電繊維の分散状態を示す説明図である。 本発明に係る他の導電性合成樹脂棒体の製造方法を示す全体の工程の説明図である。 本発明に係る他の導電性合成樹脂棒体を示し、(1)はその斜視図、(2)はそのY−Y線断面図である。 その導電性合成樹脂棒体内における極細導電繊維の分散状態を示す説明図である。 本発明に係る他の導電性合成樹脂棒体の製造方法を示し、(1)は全体の工程を示す説明図、(2)はそのP−P線断面図、(3)はそのQ−Q線断面図である。 本発明に係るさらに他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。 本発明に係るさらに他の導電性合成樹脂棒体の製造方法を示し、(1)は押出棒体の製造工程を示す説明図、(2)は切削乃至加熱工程を示す説明図である。 本発明に係るさらに他の導電性合成樹脂棒体を示し、(1)は縦断面図、(2)は横断面図である。 本発明に係るさらに他導電性合成樹脂棒体の製造方法を示し、(1)は押出多層棒体の製造工程を示す説明図、(2)は切削乃至加熱工程を示す説明図である。
符号の説明
A、B、C、D 導電性合成樹脂棒体
1 導電層
2 極細導電繊維
3 押出棒体
4 サイジング金型
5 芯材層
6 押出多層棒体
7 押出切削棒体
8 押出切削多層棒体
11 表面層
12 切削表面

Claims (9)

  1. 熱可塑性合成樹脂棒体であって、該棒体の少なくとも表面に極細導電繊維が含有された導電層が形成されており、その導電層が、極細導電繊維を含有する熱可塑性合成樹脂棒体を加熱して、表面抵抗率を低下させて形成されたことを特徴とする導電性合成樹脂棒体。
  2. 熱可塑性合成樹脂棒体であって、極細導電繊維を含有しない芯材層と、該芯材層を被覆する極細導電繊維が含有された導電層とからなり、その導電層が、芯材層を被覆する極細導電繊維が含有された表面層を加熱して、表面抵抗率を低下させて形成されたことを特徴とする導電性合成樹脂棒体。
  3. 導電層に含有された極細導電繊維が、導電層の表面に露出するか、又は表面から突出するか、又は表面から100nm未満の内部に含有されていることを特徴とする請求項1又は請求項2に記載の導電性合成樹脂棒体。
  4. 導電層が切削された表面を有することを特徴とする請求項1ないし請求項3のいずれかに記載の導電性合成樹脂棒体。
  5. 極細導電繊維を含有する熱可塑性合成樹脂組成物を押出して熱可塑性合成樹脂棒体となし、該棒体の表面を切削した後に、少なくとも切削表面を加熱して、極細導電繊維を前記棒体の切削表面に露出させるか、又はその切削表面から突出させるか、又はその切削表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性合成樹脂棒体の製造方法。
  6. 極細導電繊維を含有する熱可塑性合成樹脂組成物と極細導電繊維を含有しない熱可塑性合成樹脂組成物とを共押出して、極細導電繊維を含有しない熱可塑性合成樹脂組成物よりなる芯材層を極細導電繊維を含有する熱可塑性合成樹脂組成物よりなる表面層で被覆してなる合成樹脂多層棒体となし、該多層棒体の表面を切削した後に、少なくとも切削表面を加熱して、極細導電繊維を前記多層棒体の切削表面に露出させるか、又はその切削表面から突出させるか、又はその切削表面から100nm未満の内部に含有させて、表面抵抗率を低下させた導電層を形成することを特徴とする導電性合成樹脂棒体の製造方法。
  7. 前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性樹脂組成物のガラス転移温度の温度から融点温度よりも30℃高い温度の温度範囲で行なわれることを特徴とする請求項5又は請求項6に記載の導電性合成樹脂棒体の製造方法。
  8. 前記合成樹脂棒体又は前記合成樹脂多層棒体の加熱が、極細導電繊維を含有する熱可塑性樹脂組成物の粘度が5.0×10Pa・s以上1.0×10Pa・s未満の範囲となる温度範囲で行われることを特徴とする請求項5ないし請求項7のいずれかに記載の導電性合成樹脂棒体の製造方法。
  9. 前記合成樹脂棒体又は前記合成樹脂多層棒体が押出された後にサイジング金型に移送されて形状が整形されると共に、該サイジング金型の前側部で前記棒体表面を加熱して表面抵抗率を低下させた導電層を形成すると共に、該サイジング金型の後側部で冷却して固化することを特徴とする請求項5ないし請求項8のいずれかに記載の導電性合成樹脂棒体の製造方法。
JP2006180582A 2006-06-30 2006-06-30 導電性合成樹脂棒体及びその製造方法 Active JP4958146B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180582A JP4958146B2 (ja) 2006-06-30 2006-06-30 導電性合成樹脂棒体及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180582A JP4958146B2 (ja) 2006-06-30 2006-06-30 導電性合成樹脂棒体及びその製造方法

Publications (2)

Publication Number Publication Date
JP2008010329A JP2008010329A (ja) 2008-01-17
JP4958146B2 true JP4958146B2 (ja) 2012-06-20

Family

ID=39068340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180582A Active JP4958146B2 (ja) 2006-06-30 2006-06-30 導電性合成樹脂棒体及びその製造方法

Country Status (1)

Country Link
JP (1) JP4958146B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934705B1 (fr) * 2008-07-29 2015-10-02 Univ Toulouse 3 Paul Sabatier Materiau solide composite electriquement conducteur et procede d'obtention d'un tel materiau
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
BRPI1016242A2 (pt) 2009-04-24 2016-04-26 Applied Nanostructured Sols material de controle de assinatura baseado em cnt.
US9167736B2 (en) * 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
CA2782976A1 (en) 2010-09-23 2012-03-29 Applied Nanostructured Solutions, Llc Cnt-infused fiber as a self shielding wire for enhanced power transmission line
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087508B2 (ja) * 1998-06-09 2008-05-21 タキロン株式会社 制電性樹脂成形品及びその二次成形品
JP4287245B2 (ja) * 2003-10-31 2009-07-01 出光興産株式会社 サンドイッチ射出成形方法
JP2006171336A (ja) * 2004-12-15 2006-06-29 Takiron Co Ltd 画像表示用透明電極体および画像表示装置

Also Published As

Publication number Publication date
JP2008010329A (ja) 2008-01-17

Similar Documents

Publication Publication Date Title
JP4958146B2 (ja) 導電性合成樹脂棒体及びその製造方法
JP6860774B2 (ja) 熱溶解積層型3次元プリンタ用フィラメントの製造方法
JP5770962B2 (ja) ポリマーマトリックス中に埋封された配向ナノ繊維
Sanatgar et al. Morphological and electrical characterization of conductive polylactic acid based nanocomposite before and after FDM 3D printing
JP4896422B2 (ja) 微細炭素繊維含有樹脂組成物の製造方法
Jeon et al. Exfoliated graphene/thermoplastic elastomer nanocomposites with improved wear properties for 3D printing
JP2007297501A (ja) 導電性成形体及びその製造方法
TW200918282A (en) Process for the production of an electrically conducting polymer composite material
JP2008126468A (ja) 導電性網体及びその製造方法
WO2018143175A1 (ja) 線条樹脂成形体
Wu et al. The orientation and inhomogeneous distribution of carbon nanofibers and distinctive internal structure in polymer composites induced by 3D-printing enabling electromagnetic shielding regulation
US20190153209A1 (en) Electrically conductive resin composition and method of preparing the same
Mohapatra et al. The significant role of CNT-ZnO core-shell nanostructures in the development of FDM-based 3D-printed triboelectric nanogenerators
JP2008126469A (ja) 導電性樹脂成形体及びその製造方法
JP2008051241A (ja) 導電性合成樹脂成形体及びこれを用いた導電性ロール
Thomas Enhancing the electrical and mechanical properties of graphene nanoplatelet composites for 3D printed microsatellite structures
Joshi et al. Polymer-based conductive composites for 3D and 4D printing of electrical circuits
JP3959342B2 (ja) タッチパネル用シート状樹脂積層体およびタッチパネル
JP4454426B2 (ja) インモールド成形用導電性フィルム
JPS61127199A (ja) 導電性複合体の製造方法
JPS61127198A (ja) 導電性複合体
JP4589834B2 (ja) 導電性成形品の製造方法及び導電性成形品
JP2007296724A (ja) 導電性押出成形体の製造方法
ES2788052T3 (es) Polímeros potenciados con nanotubos de carbono y métodos para fabricar los mismos
JP2007296725A (ja) 導電性射出成形体の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250