JP4948772B2 - 水素製造用改質装置 - Google Patents

水素製造用改質装置 Download PDF

Info

Publication number
JP4948772B2
JP4948772B2 JP2005049307A JP2005049307A JP4948772B2 JP 4948772 B2 JP4948772 B2 JP 4948772B2 JP 2005049307 A JP2005049307 A JP 2005049307A JP 2005049307 A JP2005049307 A JP 2005049307A JP 4948772 B2 JP4948772 B2 JP 4948772B2
Authority
JP
Japan
Prior art keywords
reforming
cylindrical tube
raw material
hydrogen production
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005049307A
Other languages
English (en)
Other versions
JP2006232610A (ja
Inventor
修 千代田
紀行 新谷
彦一 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2005049307A priority Critical patent/JP4948772B2/ja
Publication of JP2006232610A publication Critical patent/JP2006232610A/ja
Application granted granted Critical
Publication of JP4948772B2 publication Critical patent/JP4948772B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、炭化水素を原料として水素を製造する水素製造用改質装置であって、特に固体高分子型燃料電池等に用いられる水素製造用改質装置に関する。
石油精製における脱硫や分解などのアップグレーディング用として、あるいは燃料電池による発電用燃料として、非常に多くの量の水素が使用されている。水素を製造するにあたり、数多くの手法が提案、検討、実証されているが、炭化水素の改質反応が最も広く用いられている手段である。
炭化水素からの水素製造は触媒を用いた水蒸気改質、自己熱改質、部分酸化法などの改質反応法が広く使用されている。それぞれの反応は下記式で表せる。
(式1)
CHn + mH2O = mCO + (n/2+m)H2 (水蒸気改質)
CHn + xH2O + (m-x)O2 = mCO + (n/2+x)H2(自己熱改質)
CHn + m/2O2 = mCO + n/2H2(部分酸化)
上記式に示すように、水蒸気改質法では、単位炭化水素あたりの水素製造量が高く、数十Nm3/h程度の小規模から数十万Nm3/h程度の大規模な工業的水素製造に広く使用されている。また自己熱改質法でも上記式のXが大きい場合の条件では、水蒸気改質方式に熱バランスが近づくため、水素製造量が高いが、反応そのものが吸熱反応となることからバーナなどによる加熱が必要となる。大規模な工業的水素製造において使用される水素製造装置は、円柱状の反応管に水蒸気改質触媒を充填し、外部からの加熱により反応に必要な熱を供給して改質触媒を400から900℃程度に昇温して反応を進行させている。
一方、近年では、低温(100℃以下)で作動する固体高分子型燃料電池(PEFC)が注目され、その特徴からPEFCを用いた小型発電装置の開発が積極的に進められている。PEFCで発電させるためには、水素と酸素が必要であり、そのための従来の小型水素製造をさらに下回る、1Nm3/h以下といった規模の高性能な水素製造装置の研究開発が精力的に進められている。
小型の水素製造装置では、大きさの制約から、高効率化のためにバーナで得られた加熱用燃焼ガスの熱を効果的に触媒床へ伝達できるようにすることを目的として,中心部にバーナを配置し、その外部へ触媒床を配置する構造が一般的であり、特に均一な伝熱を可能とする円筒管構造のバーナを使用する手法が多い。
具体的には、図13において概略を示した従来の水素製造装置1のように、中心部に配置されたバーナ2からの加熱ガスで加熱できる第1円筒管3を有し、その外部に同心円筒上となる第2円筒管4を有し、この第1円筒管3及び第2円筒管4との間に改質触媒5が充填されている。第1円筒管3と第2円筒管4との間に原料導入管6を設け、この原料導入管6から図中矢印に示すように原料ガスを導入し、改質触媒5に原料ガスである炭化水素、水蒸気及び酸素が供給されて改質反応が行われる(例えば、下記特許文献1から4)。改質触媒5で生成された水素は、水素導出管7から外部の配管に導出され、例えば燃料電池側に送られる。
また、燃焼ガスが一方向だけに流通している構造では、水蒸気改質反応に伴う吸熱反応で、触媒床入口付近が低温になり、また、出口付近が高温となり、出口側に流れるにおける熱を有効的に利用するために、生成された水素ガスを折り返して、高温水素ガスの熱を改質触媒へ伝達する手段が多く採用されている。
特開平9−2801号公報 特開2003−252604号公報 特開2002−156057号公報 特開2002−362901号公報
ところで、特開平9−2801号公報の水素製造装置では、一箇所から導入された原料ガスを、円筒形輻射板の軸方向に対して平行に改質触媒に供給する構造であるため、原料ガスが原料供給管内を周方向に循環しにくく、拡散されにくかった。このため、改質触媒の周方向に対して原料ガスが十分に行き届くことなく、該改質触媒を通過して排出されてしまうため、改質触媒のうち一部が改質反応に使用されず所望の活性を得ることができない。また、所望の活性を得る目的で、反応室全体を大きくして改質触媒を充填するスペースを拡大すると、装置全体が大型になる傾向があった。
さらに、特開平9−2801号公報の水素製造装置のように、輻射板の外方にさらに煙導管、スイープガス管、水素透過管などが配設されている構成であり、原料ガスを供給する原料ガスの導入管がこの水素透過管を貫通しつつ、改質触媒が充填された管に連通するように溶接することが非常に困難であった。改質触媒が充填された管とバーナの外壁との軸方向における位置関係を相違させることで配管溶接可能とすることができるが、改質装置の構造が複雑になるうえ、原料供給管から側面方向への放熱が発生して熱効率が低下するといった不具合が生じてしまう。
さらに、原料ガスがバーナの外壁に衝突するように導入される構成であるため、導入された原料ガスが輻射板内で周方向に十分に拡散しない間に改質触媒を通り過ぎてしまう点で改善の余地があった。また、原料ガスをバーナの外壁に吹き付けた際に、吹き付けられた原料ガスの一部が導入される原料ガスの流れに対向する逆圧の要因となる点で改善の余地があった。
上記従来の水素製造装置において、原料ガスを輻射板の周方向に拡散させるためには、配管サイズを細くするか、改質触媒床幅を広くする必要がある。しかしながら、配管サイズを細くすると、原料ガスの供給時における差圧が発生する問題があり、また、改質触媒床幅を広くするとバーナから改質触媒への熱伝導が不十分となり、所望の触媒活性が得られない問題があった。
特開2003−252604に記載されているように、中心バーナを取り囲み、単一の原料流路を第2の円筒管へ均一に供給させる方法では、バーナの加熱ガスの排出配管が原料供給口を通過する構成となり装置構成が複雑になる。特に、酸素を含有するバーナの排ガスと原料である炭化水素が混合されることは許容できないため、より確実な装置の製作が必要となり、装置のコスト上昇につながり経済的に好ましくない。
特開2002−156057に記載されているように、単一の流体導入路より供給される流体を複数の流体導出路に分配する構成では、差圧の影響から流体が均一に分散することが困難であり、流量制御弁等で制御すると装置構成が複雑になる。
特開2002−362901に記載されているように、改質触媒への均一な原料の分散を形成するために、改質触媒へ原料を円筒と水平方向に一箇所から供給し触媒床内にスパイラルフィンを設置する方法では、(1)改質触媒を円筒管内に充填させることが困難である点、(2)線速度の増加により差圧が発生する、(3)装置構成が複雑となる点、等の問題が生じる可能性があった。
本発明は、上記事情に鑑みてなされたもので、その目的は、装置の構成の複雑化を回避しつつ、触媒を有効的に使用することができる水素製造用改質装置を提供することにある。
本発明の上記目的は、下記構成によって達成される。
(1) 直径の異なる内円筒管と外円筒管を同心円上に配置した改質部と、前記内円筒管の内側に燃焼ガスを供給して前記内円筒管を加熱する加熱部と、前記内円筒管と前記外円筒管の隙間に配置された改質反応用触媒と、前記隙間に連通する原料ガス供給配管と、を備え、前記原料ガス供給配管を通じて前記改質反応用触媒に供給される原料ガスを前記加熱部からの熱により改質反応させて水素を含む改質ガスを製造する水素製造用改質装置であって、前記原料ガス供給配管が、前記内円筒管の一端面と前記外円筒管の一端面に接続された板に取り付けられるとともに、前記改質部及び前記板とは別の部材であり、前記改質部の内部の前記隙間に存在する吐出側端部及び当該吐出側端部の上流側であって前記改質部の外部に存在する上端部とを含み、前記原料ガス供給配管を通じて前記隙間に供給された前記原料ガスを、前記隙間で循環させて前記反応用触媒に供給し、少なくとも前記原料供給配管における前記吐出側端部において、前記原料ガスを前記改質反応用触媒に供給する方向である吐出軸方向が、前記改質部の軸方向に対して所定の角度で傾斜されていることを特徴とする水素製造用改質装置。
(2) 前記原料供給配管の前記吐出側端部及び前記上端部において、前記吐出軸方向が、前記改質部の軸方向に対して所定の角度で傾斜されていることを特徴とする上記(1)に記載の水素製造用改質装置。
(3) 前記原料供給配管の前記上端部において、前記吐出軸方向が、前記改質部の軸方向に対して並行であるとともに、前記吐出側端部において、前記吐出軸方向が、前記改質部の軸方向に対して所定の角度で傾斜されていることを特徴とする上記(1)に記載の水素製造用改質装置。
(4) 前記所定の角度が、前記改質部の軸方向に対して30°〜150°の範囲であることを特徴とする上記(1)から(3)のいずれか1つに記載の水素製造用改質装置。
(5) 前記所定の角度が、前記改質部の軸方向に対して80°〜100°の範囲であることを特徴とする上記(4)に記載の水素製造用改質装置。
(6) 前記外円筒管の外側に同心円上に、前記内円筒管と前記外円筒管との隙間から流れてくる前記改質ガスの熱を回収する熱交換部が設けられていることを特徴とする上記(1)から(5)のいずれか1つに記載の水素製造用改質装置。
(7) 前記外円筒管の外側に同心円上に、前記内円筒管と前記外円筒管との隙間から流れてくる前記改質ガスに含まれる一酸化炭素を水素に改質するシフト反応用触媒が設けられていることを特徴とする上記(1)から(6)のいずれか1つに記載の水素製造用改質装置。
(8) 前記原料ガスが、炭化水素と水蒸気を含むことを特徴とする上記(1)から()のいずれか1つに記載の水素製造用改質装置。
本発明にかかる水素製造用改質装置は、改質工程時に、内円筒管と外円筒管との間に配置された改質反応用触媒に原料ガスを供給するとともに、燃焼ガスを供給された内円筒管が加熱される。そして、改質反応用触媒に熱が供給されることで、改質反応用触媒において、原料ガスが改質反応を起こすことによって水素を含む改質ガスを製造する。この水素製造用改質装置では、原料ガスが、従来のように改質部の軸方向に対して平行に吹き付けられながら改質反応用触媒に供給される構成ではなく、内円筒管と外円筒管の隙間で循環させつつ改質反応用触媒に供給される構成である。すると、原料ガスが循環することで、内円筒管と外円筒管の隙間の円周方向にほぼ均一に拡散された状態となり、また、拡散された原料ガスが改質反応用触媒の円周方向全体にほぼ均一に供給されるようになる。このため、原料ガスを改質反応用触媒全体で有効に改質反応させることができ、この結果、改質ガスに含まれる水素の割合を増加させることができる。
従来の水素製造用改質装置では、改質部における内円筒管と外円筒管の隙間に導入された原料ガスが、該改質部の軸方向に改質反応用触媒に供給されるため、原料ガスが内円筒管と外円筒管の隙間の円周方向に均一に拡散されないことから、導入された位置側に近い側と遠い側とで、改質反応用触媒に供給される原料ガスの流量に偏りが生じ、充填した改質反応用触媒は均一に使用されない。その一方、本願の水素製造用改質装置では、供給する原料ガスを円周方向に循環させるため、改質反応用触媒に供給される原料ガスの流量の偏りが小さく、改質反応用触媒の全体に原料ガスをほぼ同時に均一な原料ガスを供給できるため、この結果、改質反応により生成される改質ガスに含まれる水素を効率的に得ることができるようになる。
本発明によれば、装置の構成の複雑化を回避しつつ、触媒を有効的に使用することができる水素製造装置を提供できる。
以下、本発明の実施形態を図面に基づいて詳しく説明する。
図1は、本発明にかかる水素製造用改質装置の第1の実施形態を示す一部断面図を含む全体斜視図である。図2は、本実施形態の作用を説明する断面図である。
最初に、本実施形態の水素製造用改質装置(以下、改質装置ともいう。)100の構成を説明する。
改質装置100は、中空の円筒形状を有する改質部11を備えている。改質部11には、該改質部11の中心に同心円上に配置された円筒形状を有する内円筒管13と、該内円筒管13と同心上に配置され且つ内円筒管13よりも直径が大きい円筒形状を有する外円筒管15とが備えられている。
内円筒管13は、中空に形成され、その上端面が改質部11の天板11aに接続されて、該改質部11の上方に開口し、また、下端面が改質部11の底板11bに接合されて閉じられており、上方に開口した略容器状に形成されている。
内円筒管13の底板11bには、バーナ14が設けられている。バーナ14は後述する液体燃料供給部及びエア供給部から燃料ガスが供給されて、内円筒管13の内部ではバーナ14によって燃焼が発生し、内円筒管13の内部雰囲気及び該内円筒管13が加熱され、後述する改質反応用触媒18を加熱する加熱部12として機能する。
外円筒管15は、改質部11の天板11aから下方に向って鉛直に延設され、その下端部15aが改質部11の底板11bと離間するように形成されている。こうして、内円筒管13と外円筒管15との間の環状の隙間が、外円筒管15と改質部11の側板との間の環状の隙間に連通している。
内円筒管13と外円筒管15との間の隙間には、改質部11の軸方向(図1及び図2において上下方向)にわたって所定の範囲に改質反応用触媒18が充填されている。
改質反応用触媒18は、例えば、Al2O3、SiO2、TiO2及びZrO2から選ばれる少なくとも1種以上の担体成分に、Ru、Rh、Pd、Pt及びNiから選ばれる少なくとも1種以上の活性金属が、担持もしくは共沈などの手法により調製された触媒を使用することができる。また、使用原料や反応条件によってはアルカリ金属であるLi、Na、K、Rb、Csの酸化物やアルカリ土類金属であるBe、Mg、Ca、Sr、Baの酸化物が添加されていてもよい。
改質部11の天板11aには、内円筒管13と外円筒管15との間の隙間に連通して燃焼ガスを供給する原料供給配管21が設けられている。原料供給配管21は、後述する水供給部,燃料混合部及びエア供給部に接続されている。そして、原料供給配管21は、改質反応工程時に、原料ガスを構成する炭化水素,水蒸気及び酸素を内円筒管13と外円筒管15との間の隙間に導入する原料ガス供給手段として機能する。
また、改質部11の天板11aには、外円筒管15と改質部11の側板との間の隙間に連通する導出管22が設けられている。
改質反応の際には、原料供給配管21から導入された原料ガスが、内円筒管13と外円筒管15との間の隙間を通過しつつ改質反応用触媒18に供給されるとともに、該改質反応用触媒18が加熱部であるバーナ14の燃焼によって加熱された内円筒管13と接触することによって、改質反応用触媒18に供給された原料ガスが改質反応を起こして水素を含む改質ガスを発生させる。その後、改質ガスが外円筒管15と改質部11の側板との間の隙間を通過し、導出管22から改質部11の外部へ導出される。
このように、本実施形態では、内円筒管13と外円筒管15との間の隙間を上方から下方に向って通過した水素が、外円筒管15の下端部15aと改質部11の底板11bとの間の折返部で折り返され、外円筒管15と改質部11の側板との間の隙間を下方から上方に向って通過する構成である。これは、水素製造装置100が小型であって、一方向から加熱部(バーナ14)の燃焼による触媒熱方式である装置では、水蒸気改質に伴う吸熱反応及びバーナからの距離が遠いことにより改質反応用触媒18の入口である上端部18a付近で温度低下の現象が発生しうる。これを回避するため、水素製造装置100は、改質反応用触媒18の出口(下端部)から出てきた改質ガスを改質部11の径方向外側に位置する、外円筒管15と改質部11の側板との間の隙間に、折返部によって折返させて改質部11の外部に導出することで、高温生成水素の熱を改質触媒へ供給することにより高効率化を可能にしている。
図1に示すように、本実施形態の改質装置100において、原料ガス供給手段である原料供給配管21の吐出軸方向S2が、改質部11の軸方向S1に対して所定の角度Aで傾斜するように設けられている。このとき、原料供給配管21から改質部11の内部に供給される原料ガスが内円筒管13の外壁や外円筒管15の内壁に直接吹き付けられないように配置することが好ましい。さらには、原料供給配管21の中心と、最短距離にある天板11aと外円筒管15との交線上の接点における接線方向と吐出軸方向S2が平行になることが好ましい。こうすれば、原料供給配管21から供給された原料ガスの流れに対向する逆圧を小さくすることができる。
また、本実施形態の改質装置100において、改質反応用触媒18が、その上端部18aと改質部11の天板11aとの間が離れるように設けられることで、該改質部11の周方向に連通する空間19が形成されている。この空間19には原料供給配管21が連通するように配置され、該原料供給配管21から供給された原料ガスを改質部11の円周方向にほぼ均一に拡散させる。なお、改質装置100は、上記空間19を必ずしも設ける必要はなく、導入された原料ガスを拡散させることができること前提として、改質反応用触媒18が改質部11の天板11aと接触する位置、又は、近接する位置に設けられていてもよい。
発明者らは、原料供給配管21の角度Aの設定によって、内円筒管13と外円筒管15との間の隙間に循環する原料ガスの拡散状態が変化し、改質反応の効率に影響することを見出した。そして、この結果、原料供給配管21の角度Aを30°から150°の範囲とすると改質反応の状態が好ましく、80°から100°の範囲とすることがより好ましいことを見出した。
次に、本実施形態の水素製造装置を用いた改質反応工程について説明する。図3は、本実施形態の水素製造装置を用いた改質反応システムを示す図である。
水素製造装置100に供給される原料ガスには炭化水素及び水蒸気、また、必要に応じて、酸素含有ガスが含まれて、十分に予熱及び予混合されて、完全にガス体となった状態で原料供給配管から改質部に導入される。図3に示すように水供給部104から供給された水に、液体供給部105から供給された炭化水素が燃料混合部105aで混合され、その混合物が水素製造装置100に供給される。また、必要に応じて、酸素含有ガスを供給する場合には、エア供給部103を設け、エア供給部103から酸素含有ガスを供給し、燃料混合部105aで、水と炭化水素と酸素含有ガスとを混合し、その混合物を水素製造装置100に供給してもよい。さらに、エア供給部103から燃料電池101とCO除去部107とに酸素含有ガスが供給されていてもよい。
供給される原料ガスの炭化水素量は、生成される水素ガス換算で、例えば0.1〜10Nm3/h程度である。燃料電池101で使用することを想定したとき、生成された水素ガスが0.1Nm3/h以下の水素生成量では、発電規模としても100W以下となり、燃料電池による発電が経済的にも困難となる。一方、10Nm3/h以上の水素需要に対しては、多数のバーナ及び多数の反応管を有した大型水素製造装置による対応が一般的であり、本発明にかかる水素製造装置の構造では優位性は低い。
図1から図3に示すように、改質反応工程を行う際には、加熱部であるバーナ14に、燃料電池101からオフガスが供給され、また、液体燃料供給部102から液体燃料が供給され、エア供給部103から酸素含有ガスが供給される。
バーナ14の燃焼によって内円筒管13が加熱され、この内円筒管13の熱が該内円筒管13と外円筒管15との間に配置された改質反応用触媒18に伝達される。改質反応用触媒18に供給された原料ガスが、該改質反応用触媒18の加熱によって改質反応を起こし、水素を含む改質ガスを発生する。このとき、化学平衡上、高温での炭化水素の改質反応では、水素と同時に一酸化炭素(CO)が生成される。
生成された水素及び一酸化炭素を導出管22から導出し、CO変性部106へ供給する。CO変性部106では、水素得率向上のため、下記式2のように一酸化炭素に水(H2O)を加えて、COシフト反応によって水素を生成する。
(式2) CO + H2O → H2 + CO2
上記のCOシフト工程では化学平衡が律速となり、CO残存量を数1000ppm程度までしか低減させることができないが、固体高分子型燃料電池の水素製造を目的とした場合には、改質ガス中のCO量は10ppm程度まで低減することが求められている。そこで、CO変性部106でCOシフト工程を行った後に、改質ガスをCO除去部107に供給し、下記式で示すCO選択酸化工程を設けている。
(式3) CO + 1/2O2 → CO2
CO除去部107においてCO選択酸化工程が施された改質ガスが燃料電池101に供給される。
水素製造装置100における改質反応時に発生した燃焼排ガス(排ガス)は、原料の予熱などに使用するため、熱交換された後、排出される。
次に、本実施形態の水素製造装置100の作用を説明する。
図1及び図2に示すように、改質工程時に、内円筒管13と外円筒管15との間に配置された改質反応用触媒18に原料ガスを供給するとともに、燃焼ガスを供給されたバーナ14によって内円筒管13が加熱される。そして、改質反応用触媒18に熱が供給されることで、改質反応用触媒18において、原料ガスが改質反応を起こすことによって水素を製造する。この水素製造用改質装置100では、原料ガスが、従来のように改質部11の軸方向に対して平行に吹き付けられながら改質反応用触媒18に供給される構成ではなく、改質部11の軸方向S1に対して吐出軸方向S2が傾斜するように形成された原料供給配管21によって内円筒管13と外円筒管15の隙間に導入される。導入された原料ガスは、この隙間において円周方向に循環することで略スパイラル状に流れながら、改質反応用触媒18の上端部18a側に供給される。また、原料ガスは、該改質反応用触媒18中においても円周方向に循環する。すると、原料ガスが内円筒管13と外円筒管15の隙間の円周方向にほぼ均一に拡散された状態となり、拡散された原料ガスが改質反応用触媒18の円周方向全体にほぼ均一に供給されるようになる。従って、改質反応用触媒18に供給される原料ガスの流量に偏りが生じることがなく、改質反応用触媒18の全体に原料ガスをほぼ同時に均一な原料ガスを供給できるため、この結果、改質反応により生成される改質ガスに含まれる水素の割合を増加させ且つ効率的に得ることができるようになる。
また、本発明にかかる水素製造装置は、装置の構成を複雑化することなく、その結果、製造コストの増大を抑えることができる。
本実施形態の水素製造装置100では、原料ガス供給手段として、傾斜した原料供給配管21によって原料ガスを導入することで、原料ガスを改質部11の内円筒管13と外円筒管15との間の隙間に円周方向に循環させる構成としたがこれに限定されない。原料ガス供給手段としては、原料ガスを改質部11の内円筒管13と外円筒管15との間の隙間に円周方向に循環させることができれば同様の効果を得ることができ、後述の実施形態のように他の構成や部材を適用することもできる。
図4に、本発明にかかる第2の実施形態を示す。なお、以下に説明する実施形態において、すでに説明した部材などと同等な構成・作用を有する部材等については、図中に同一符号又は相当符号を付すことにより、説明を簡略化或いは省略する。
図4に示すように、本実施形態の水素製造装置100は、上記実施形態のものと比べると、内円筒管13と外円筒管15との隙間に供給する原料ガスを、前記改質部の軸方向に対して所定の角度で傾斜させて導入する原料ガス供給手段として原料供給配管41が設けられている点で同じであるが、原料供給配管41の構成が相違している。
原料供給配管41は改質部11の天板11aに貫通するように配置されている。原料供給配管41は、改質部内部に延設された吐出側端部41aと、該吐出側端部41aと連通し且つ原料ガスの流動方向に対して上流側に位置する上端部41bとを備え、原料供給配管41が、上端部41bに対して、屈曲するように形成されている。具体的には、原料供給配管41の上端部41bが改質部11の軸方向と平行の軸方向S1となるように天板11a上方に延設されている。また、吐出側端部41aは、上端部41bの軸方向S1に対して所定の角度Bで傾斜するように形成されている。このため、原料供給配管41は、内円筒管13と外円筒管15との隙間に供給する原料ガスを、改質部11の軸方向S1に対して所定の角度Bで傾斜させて導入する。
所定の角度Bは、上記第1の実施形態の原料供給配管21の角度Aと同質の要素であり、すなわち、改質部11における内円筒管13と外円筒管15との間の隙間に原料ガスを送り込む向きに相当し、角度Aと同様に上述した範囲に設定することが好ましい。さらには、原料供給配管41の中心と、最短距離にある天板11aと外円筒管15との交線上の接点における接線方向と吐出軸方向S2が平行になることが好ましい。
また、原料供給配管41の吐出側端部41aは、上端部41bに対して吐出軸方向S2を90度以上に傾斜させることができる。
図5は、本実施形態の原料供給配管の一構成例を示す図であり、図6は、本実施形態の原料供給配管の別の構成例を示す図である。
図5に示す原料供給配管41は、吐出側端部41aの吐出軸方向S2が上端部41bの軸方向S1に対して90°となるように構成されている。こうすれば、吐出側端部41aから内円筒管13と外円筒管15との間の隙間において、原料ガスが円周方向と略平行に循環して最も効率良く拡散する。
図6に示す原料供給配管41は、吐出側端部41aの吐出軸方向S2の、上端部41bの軸方向S1に対する角度が150°となるように構成されている。こうすると、図4に示す水素製造装置100では、吐出側端部41aから導入された原料ガスの一部が改質部11の天板11aに吹き付けられてしまうものの、該天板11aや内円筒管13の外面及び外円筒管15の内面を伝って、隙間の円周方向に循環されることで、結果として原料ガスを隙間の円周方向に拡散させることができる。
後述する実施例で明らかにするように、本実施形態の原料供給配管41における所定の角度Bは、30°から150°の範囲であることが好ましく、80°から100°の範囲とすることがより好ましい。原料供給配管41において、軸方向S1に対する吐出軸方向S2の角度Bを30°より小さくすると、改質部11の軸方向に対して平行に原料ガスを供給した場合に比べて改質反応用触媒18の上端面18aに対する原料供給速度が約90%(√3/2)であることから、全触媒を有効に使用できる優位性が認められない。一方で、角度Bを150°より大きくすると、装置の製造時に配管加工が困難になるうえ、供給された原料ガスのうち改質部11の天面11aに直接噴き付けられる成分が著しく多くなり、差圧が発生する可能性があるため、現実的に好ましくない。
本実施形態の水素製造装置100においても、上記実施形態と同様に、改質反応用触媒18に供給される原料ガスの流量の偏りは小さく、改質反応用触媒18の全体に原料ガスをほぼ同時に均一な原料ガスを供給できるため、この結果、改質反応により生成される改質ガスに含まれる水素を効率的に得ることができるようになる。
図7に、本発明にかかる水素製造装置の第3の実施形態を示す。図8は、本実施形態の水素製造装置の要部を示す図である。
図7に示すように、本実施形態の水素製造装置100の構成は、上記第1の実施形態及び第2の実施形態と基本的に同じであるが、原料供給配管51の構成と、原料供給配管51の吐出側端部近傍に原料ガスを拡散させるための拡散部52が設けられている構成について、相違する。
図7及び図8に示すように、本実施形態の原料供給配管51は、吐出側端部の吐出軸方向が改質部の軸方向と略平行に形成されている。また、該吐出側端部近傍で且つ吐出軸方向における延長線上には、拡散部52が配置されている。拡散部52は、内円筒管13の外周面(又は外円筒管15の内周面)から径方向に突設されている。
拡散部52は、図8に示すように、改質部11の軸方向と吐出軸方向S2とが同一線上に重なる方向からみた状態で、略三角形状断面を有する柱状部材であって、該拡散部52における吐出側端部51a側の2つの側面52aの面方向がそれぞれ異なる方向に形成されている。これらの側面52aは、吐出軸方向に対してそれぞれ円周方向に、且つ、互いに異なる向きで傾斜するように設けられている。本実施形態では、それぞれの側面52aが吐出軸方向に対してそれぞれ円周方向に30°〜90°の範囲で傾斜するように設けられていることが好ましい。
原料供給配管51から原料ガスが導入されると、吐出側端部51aから噴出された原料ガスが、拡散部52の各側面52aに噴き付けられ、各側面52aの表面において略正反射して、吐出軸方向に対して傾斜する方向に向って流れる。こうして、原料ガスは、拡散部52によって流れの向きが変えられ、内円筒管13と外円筒管15との間の隙間において円周方向に循環するようになる。つまり、本実施形態では、拡散部52が原料ガスを隙間で循環させて改質反応用触媒18に供給する機能を有している。こうすれば、改質反応用触媒18の全体にほぼ均一に原料ガスを供給することで、原料ガスの改質反応の効率が良くなり、発生する改質ガスに含まれる水素の割合を増加させることができる。
図9に、本発明にかかる水素製造装置の第4の実施形態を示す。図10は、本実施形態の水素製造装置の要部を示す図である。
図9に示すように、本実施形態の水素製造装置100の構成は、上記第1の実施形態及び第2の実施形態と基本的に同じであるが、原料供給配管81の構成で相違する。
図9及び図10に示すように、本実施形態の原料供給配管81は、吐出側端部には二股状に分岐されてなる分岐部82と、各分岐部82の先端に二つの吐出口82aが形成されている。分岐部82は、軸方向S1に対してそれぞれ円周方向に、且つ、互いに異なる向きで傾斜するように設けられている。本実施形態では、分岐部82が軸方向S1に対してそれぞれ円周方向に30°〜150°の範囲で傾斜するように設けられていることが好ましい。
原料供給配管81から原料ガスが導入されると、分岐部82から噴出された原料ガスが、分岐部82それぞれの吐出口82aから噴射される。このとき、分岐部82の吐出口82aから軸方向S1に対して傾斜する方向に噴射された原料ガスが、内円筒管13と外円筒管15との間の隙間において円周方向に循環するようになる。つまり、本実施形態では、分岐部82が原料ガスを隙間で循環させて改質反応用触媒18に供給する機能を有している。こうすれば、改質反応用触媒18の全体にほぼ均一に原料ガスを供給することで、原料ガスの改質反応の効率が良くなり、発生する改質ガスに含まれる水素の割合を増加させることができる。
図11は、本発明にかかる水素製造装置の第5の実施形態を示す図である。
図11に示すように、水素製造装置300は、改質部61に内円筒管63と、外内円筒管63の同心円上に配置された外円筒管65とが備えられている。また、内円筒管63と外円筒管65との間の隙間に改質反応用触媒68が充填されており、改質部61の天板61aには隙間に原料ガスを供給する原料供給配管71が貫通されている。さらに内円筒管63の内側底部にはバーナ64が設けられた加熱部62が配置されている。
本実施形態の水素製造装置300においては、外円筒管65の外方側に内円筒管63及び外円筒管65に同心円上に熱交換部73が設けられている。熱交換部73は、例えば、外円筒管65の外側に同心円上に第2の外円筒管67が配置され、第2の外円筒管67の管壁内部に環状の熱交換器74を配置して構成されている。
水素製造装置300、原料供給配管71から内円筒管63と外円筒管65との間の隙間に導入された原料ガスが改質反応用触媒68で加熱されて改質反応を起こして改質ガスを発生させた後、改質ガスが外円筒管65の下端部65aと改質部61の底板61bとの間の折返部で折り返される。そして、改質ガスが、外円筒管65と第2の外円筒管67との間の隙間と、上記第2の外円筒管67の上端部67aと改質部61の天板61aとの間の折返部と、及び、改質部61の側壁と第2の外円筒管67との隙間とを順に流れる際に、改質ガスが第2の外円筒管67と接触して熱交換器74に熱を回収される。このように、本実施形態の水素製造装置300によれば、改質ガスの熱を効率的に回収できるようになる。
図12は、本発明にかかる水素製造装置の第6の実施形態を示す図である。
図12に示すように、水素製造装置400は、上記第4の実施形態と基本的に同じ構成を有しており、以下、構成上相違する点について説明する。
水素製造装置400において、改質部61には、内円筒管63及び外円筒管65に加えて、外円筒管65の外側に同心円上に第2の外円筒管76と、更に該第2の外円筒管76の外側に同心円上に第3の外円筒管77とが備えられた4重管構造を有している。
第2の外円筒管76は、その上端部76aと改質部61の天板61aとが離れるように設けられている。また、第3の外円筒管77は、その下端部77aと改質部61の底板61bとが離れるように設けられている。このため、内円筒管63と外円筒管65との間の隙間に原料供給配管71から供給された原料ガスが、内円筒管63と外円筒管65との間に配置された改質反応用触媒68で改質反応によって改質ガスを発生させ、この改質ガスが、外円筒管65と第2の外円筒管76との隙間と、第2の外円筒管76と第3の外円筒管77との隙間と、第3の外円筒管77と改質部61の側壁との間の隙間を順に流れていき、天板61aに設けられた導出管82から送り出される。
水素製造装置400には、内円筒管63と外円筒管65との隙間から流れてくる改質ガスに含まれる一酸化炭素を、二酸化炭素へシフトさせて水素を製造するシフト反応用触媒84が、外円筒管65の外側に同心円上に設けられている。本実施形態では、シフト反応用触媒84は、第2の外円筒管76と第3の外円筒管77との間の隙間に充填されている。
シフト反応用触媒84としては、Cu、Zn、Fe、Cr、Pt、Pdなどの活性金属もしくはその酸化物を担体成分であるAl2O3、SiO2、TiO2、ZrO2に担持もしくは共沈などの手法により調製されている触媒が使用でき、例えばCu/ZnO触媒、Fe/CrO2触媒、Pt/TiO2を使用することができる。
本実施形態では、シフト反応用触媒84に供給される改質ガス(H2:72.1%,CH4:0.28%,CO2:15.8%)をCu/ZnO触媒へ供給して、200℃で反応を行い、シフト反応後のガスの組成(H2:74.1%,CO:0.9%,CH4:0.28%,CO2:24.7%)を得た。
水素製造装置400では、改質反応用触媒68で発生した改質ガスが、第2の外円筒管76と第3の外円筒管77との間の隙間を通過する際に、該隙間に配置されたシフト反応用触媒84と接触し、含有する一酸化炭素にシフト反応が生じ、水素が生成される。このように、本実施形態の水素製造装置400によれば、改質ガスに含まれる一酸化炭素がシフト反応用触媒84によって上記式3に示すようなシフト反応を生じるため、改質ガスに含まれる一酸化炭素の割合をより一層低減させるとともに、水素の割合を増加させることができ、この結果、改質ガスの水素濃度を効率的に改善させることができるようになる。
本実施形態の水素製造装置400において、上記第5の実施形態の水素製造装置300に備えられた熱交換部が設けられた構成とすることができる。こうすれば、シフト反応用触媒84によって改質ガスに含まれる水素の濃度を高くすることができ、且つ、熱交換部によって改質ガスの熱を効率的に回収することができるようになる。
通常、改質反応の温度は400℃〜900℃であるのに対し、COシフト反応は200℃〜300℃で行われる。カウンターで改質ガスの予熱を行うことができるが、本発明にかかる水素製造装置のように多重管からなる一体型の構造にすることで加熱部が配置された中心部の高い温度が径方向外側へ放熱される熱量を熱交換部で有効に活用することができる。
以下、本発明にかかる水素製造装置の実施例について説明する。
本実施例では上記第2の実施形態の水素製造装置を用いた。また、実施例の効果を実証するため、比較例として従来の水素製造装置を用いた。
(実施例1)
市販の灯油を脱硫処理して、含有硫黄分が0.1wtppb以下の灯油(以下、深脱灯油)を300mL/時間で供給し、一方で水蒸気を1038g/時間で供給し、両物資の混合物を300℃にて気化させた混合気化原料(以下原料)を図4及び図5に示される外径3/8インチのステンレス製の原料供給配管によって、水素製造装置の改質部に供給した。原料供給配管は図5に示すように、改質部の軸方向に対する吐出軸方向の供給角度が90°となるように隙間の円周方向に屈曲する構成とした。原料ガスは原料供給配管の吐出側端部から隙間の円周方向に沿って略スパイラル状に循環するように供給され、改質反応用触媒を通過した。使用した改質反応用触媒は、Ru(2wt%)/Al2O3触媒である。改質反応用触媒は予め内円筒管の内部のバーナによって加熱されており、改質反応用触媒に設置されている熱伝対入口付近で550℃、出口付近で700℃の温度を示していた。原料ガスを供給することによって、入口温度が低下し始めて、供給開始後1時間後には500℃まで低下してそのまま安定した。また、原料供給配管に設置した圧力計は5kPaを示していた。原料供給開始2時間後に生成水素をガスクロマトグラフで分析した。結果を以下の表1に示す。なお、表1において、「CO+CO2選択率」は、下記式4により算出した。また、「CO2」とは、炭化水素化合物で炭素(C)の数が2以上の化合物を示す。反応が完結していれば、炭素数が10以上ある灯油留分は全て、C1(CH4、CO、CO2)まで改善され、逆に不十分な場合にはC2+流分が残存することになる。
(式4) CO+CO2選択率=(CO+CO2モル数)/(供給炭素モル数)×100
(実施例2)
次に、原料供給配管の供給角度が30°となるように隙間の円周方向に屈曲する構成とし、その以外の構成については全て上記実施例1と同一の構成,条件で生成水素の分析を行った。結果を以下の表1に示す。
(実施例3)
実施例3として、原料供給配管の供給角度が80°となるように隙間の円周方向に屈曲する構成とし、その以外の構成については全て上記実施例1と同一の構成,条件で生成水素の分析を行った。結果を以下の表1に示す。
(実施例4)
実施例4として、原料供給配管の供給角度が100°となるように隙間の円周方向に屈曲する構成とし、その以外の構成については全て上記実施例1と同一の構成,条件で生成水素の分析を行った。結果を以下の表1に示す。
(実施例5)
実施例5として、原料供給配管の供給角度が150°となるように隙間の円周方向に屈曲する構成とし、その以外の構成については全て上記実施例1と同一の構成,条件で生成水素の分析を行った。結果を以下の表1に示す。
(比較例1)
次に、比較例1として、原料供給配管が改質部の軸方向に対して吐出軸方向が平行、つまり、供給角度を0°とし、その以外の構成については全て上記実施例1及び実施例2と同一の構成,条件で生成水素の分析を行った。また、比較例2として、原料供給配管が改質部の軸方向に対して吐出軸方向が平行、つまり、供給角度を10°とし、その以外の構成については全て上記実施例1及び実施例2と同一の構成,条件で生成水素の分析を行った。結果を以下の表1に示す。なお、比較例3として、原料供給配管が改質部の軸方向に対して吐出軸方向が平行、供給角度を180°とし、同様の生成水素の分析を試みたが、構造上不可能であるため,測定不能であった。
Figure 0004948772
上記の分析結果によれば、実施例1及び2のように水素製造装置に充填された改質反応用触媒を有効的に使用することで、炭化水素からの効率的な水素製造を達成することができた。
本発明にかかる水素製造用改質装置の第1の実施形態を示す一部断面図を含む全体斜視図である。 本実施形態の作用を説明する断面図である。 本実施形態の水素製造装置を用いた改質反応システムを示す図である。 本発明にかかる第2の実施形態を示す。 本実施形態の原料供給配管の一構成例を示す図である。 本実施形態の原料供給配管の別の構成例を示す図である。 本発明にかかる水素製造装置の第3の実施形態を示す。 本実施形態の水素製造装置の要部を示す図である。 本発明にかかる水素製造装置の第4の実施形態を示す。 本実施形態の水素製造装置の要部を示す図である。 本発明にかかる水素製造装置の第5の実施形態を示す図である。 本発明にかかる水素製造装置の第6の実施形態を示す図である。 従来の水素製造装置の構成の概略を示す図である。
符号の説明
11 改質部
18,68 改質反応用触媒
21,41,71 原料供給配管
100 水素製造装置
101 燃料電池

Claims (8)

  1. 直径の異なる内円筒管と外円筒管を同心円上に配置した改質部と、
    前記内円筒管の内側に燃焼ガスを供給して前記内円筒管を加熱する加熱部と、
    前記内円筒管と前記外円筒管の隙間に配置された改質反応用触媒と、
    前記隙間に連通する原料ガス供給配管と、を備え、
    前記原料ガス供給配管を通じて前記改質反応用触媒に供給される原料ガスを前記加熱部からの熱により改質反応させて水素を含む改質ガスを製造する水素製造用改質装置であって、
    前記原料ガス供給配管が、前記内円筒管の一端面と前記外円筒管の一端面に接続された板に取り付けられるとともに、前記改質部及び前記板とは別の部材であり、前記改質部の内部の前記隙間に存在する吐出側端部及び当該吐出側端部の上流側であって前記改質部の外部に存在する上端部とを含み、
    前記原料ガス供給配管を通じて前記隙間に供給された前記原料ガスを、前記隙間で循環させて前記反応用触媒に供給し、
    少なくとも前記原料供給配管における前記吐出側端部において、前記原料ガスを前記改質反応用触媒に供給する方向である吐出軸方向が、前記改質部の軸方向に対して所定の角度で傾斜されていることを特徴とする水素製造用改質装置。
  2. 前記原料供給配管の前記吐出側端部及び前記上端部において、前記吐出軸方向が、前記改質部の軸方向に対して所定の角度で傾斜されていることを特徴とする請求項1に記載の水素製造用改質装置。
  3. 前記原料供給配管の前記上端部において、前記吐出軸方向が、前記改質部の軸方向に対して並行であるとともに、前記吐出側端部において、前記吐出軸方向が、前記改質部の軸方向に対して所定の角度で傾斜されていることを特徴とする請求項1に記載の水素製造用改質装置。
  4. 前記所定の角度が、前記改質部の軸方向に対して30°〜150°の範囲であることを特徴とする請求項1から3のいずれか1つに記載の水素製造用改質装置。
  5. 前記所定の角度が、前記改質部の軸方向に対して80°〜100°の範囲であることを特徴とする請求項4に記載の水素製造用改質装置。
  6. 前記外円筒管の外側に同心円上に、前記内円筒管と前記外円筒管との隙間から流れてくる前記改質ガスの熱を回収する熱交換部が設けられていることを特徴とする請求項1から5のいずれか1つに記載の水素製造用改質装置。
  7. 前記外円筒管の外側に同心円上に、前記内円筒管と前記外円筒管との隙間から流れてくる前記改質ガスに含まれる一酸化炭素を水素に改質するシフト反応用触媒が設けられていることを特徴とする請求項1から6のいずれか1つに記載の水素製造用改質装置。
  8. 前記原料ガスが、炭化水素と水蒸気を含むことを特徴とする請求項1から7のいずれか1つに記載の水素製造用改質装置。
JP2005049307A 2005-02-24 2005-02-24 水素製造用改質装置 Expired - Fee Related JP4948772B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049307A JP4948772B2 (ja) 2005-02-24 2005-02-24 水素製造用改質装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049307A JP4948772B2 (ja) 2005-02-24 2005-02-24 水素製造用改質装置

Publications (2)

Publication Number Publication Date
JP2006232610A JP2006232610A (ja) 2006-09-07
JP4948772B2 true JP4948772B2 (ja) 2012-06-06

Family

ID=37040673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049307A Expired - Fee Related JP4948772B2 (ja) 2005-02-24 2005-02-24 水素製造用改質装置

Country Status (1)

Country Link
JP (1) JP4948772B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120604A (ja) * 2006-11-08 2008-05-29 Idemitsu Kosan Co Ltd 改質器、改質処理方法、改質ユニットおよび燃料電池システム
JP2009062223A (ja) * 2007-09-06 2009-03-26 Fuji Electric Holdings Co Ltd 改質装置
US20090252661A1 (en) * 2008-04-07 2009-10-08 Subir Roychoudhury Fuel reformer
JP6773522B2 (ja) * 2016-11-08 2020-10-21 大阪瓦斯株式会社 燃料電池システム
CN114051430A (zh) 2019-07-24 2022-02-15 国立大学法人大阪大学 烷烃脱氢催化剂、以及使用该催化剂的氢制造方法
CN113289630B (zh) * 2021-05-19 2022-11-22 哈尔滨工业大学(深圳) 柴油重整反应用催化剂及其制备方法、制氢重整器及系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623001A (ja) * 1985-06-29 1987-01-09 Deisuko Saiyaa Japan:Kk 外部燃焼酸化装置
DE3532413A1 (de) * 1985-09-11 1987-03-12 Uhde Gmbh Vorrichtung zur erzeugung von synthesegas
JPS6389401A (ja) * 1986-10-02 1988-04-20 Makoto Ogose 水素発生装置
JPH02145401A (ja) * 1988-11-29 1990-06-04 Tokyo Gas Co Ltd 改質器
JPH0688762B2 (ja) * 1990-11-20 1994-11-09 防衛庁技術研究本部長 燃料電池電源装置用改質器
JPH08192040A (ja) * 1995-01-13 1996-07-30 Fuji Electric Co Ltd 燃料改質器
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
JP3808743B2 (ja) * 2000-10-10 2006-08-16 東京瓦斯株式会社 単管円筒式改質器
JP2002362901A (ja) * 2001-06-08 2002-12-18 Mitsubishi Heavy Ind Ltd 改質装置
JP2003054905A (ja) * 2001-08-20 2003-02-26 Aisin Seiki Co Ltd 燃料電池用改質装置
JP2003176104A (ja) * 2001-12-07 2003-06-24 Toyota Motor Corp 改質用混合気生成装置
JP2003327407A (ja) * 2002-05-09 2003-11-19 Mitsubishi Electric Corp 改質装置
JP3997476B2 (ja) * 2002-07-09 2007-10-24 富士電機ホールディングス株式会社 燃料電池発電装置
DE10247765A1 (de) * 2002-10-14 2004-04-22 Robert Bosch Gmbh Zerstäubungsanordnung
JP4207188B2 (ja) * 2002-11-22 2009-01-14 株式会社ティラド 内熱式水蒸気改質装置
JP2004262721A (ja) * 2003-03-03 2004-09-24 Nissan Motor Co Ltd 燃料電池システム用触媒反応装置

Also Published As

Publication number Publication date
JP2006232610A (ja) 2006-09-07

Similar Documents

Publication Publication Date Title
JP5015590B2 (ja) 燃料改質反応物の迅速加熱用の方法および装置
JP4948772B2 (ja) 水素製造用改質装置
EP2419375B1 (en) Process for producing a hydrogen-containing product gas
JP2010513834A (ja) 蒸気発生及びガス予熱用の熱伝達ユニット
CN107428528A (zh) 包括co2膜的重整器装置
JP2015517175A (ja) 燃料電池のための触媒を支持する置換可能な構造化支持部を含む触媒加熱式燃料処理装置
JP2010513189A (ja) 燃料処理用途において触媒プレバーナーを使用するための方法
EP3468706B1 (en) Co rich synthesis gas production
US7867411B2 (en) Method for producing synthesis gas and apparatus for producing synthesis gas
WO2019110267A1 (en) Process and system for producing synthesis gas
AU2015292237B2 (en) Method for producing hydrogen
CN101111452A (zh) 氢产生装置及方法
WO2017211885A1 (en) Co rich synthesis gas production
JP4464230B2 (ja) 改質装置および方法ならびに燃料電池システム
WO1999025649A1 (en) Hydrogen generator
EP3693338B1 (en) High-pressure auto-thermal system for reforming alcohol and producing hydrogen, and method therefor
RU113729U1 (ru) Процессор для конверсии углеводородных топлив в синтез-газ для применения в твердооксидных топливных элементах
JP5135605B2 (ja) 定置型水素製造用改質装置
JP2004267884A (ja) 膜反応装置及びこれを用いた合成ガス製造方法
JP4121761B2 (ja) 改質器および改質方法
JP4709507B2 (ja) 改質器
RU191712U1 (ru) Устройство получения синтез-газа
Uy An Exploration of Flow Deflection and Heated Length for Pelletized and Structured Catalysts in Steam-Reforming Reactors
JP2003306306A (ja) オートサーマルリフォーミング装置
KR101796071B1 (ko) 귀금속 촉매와 복합 금속 산화물 촉매를 이용한 다단의 선택적 산화 촉매 반응기

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060719

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees