JP4931130B2 - 細胞固定化方法および細胞固定化基板、ならびに検査方法 - Google Patents

細胞固定化方法および細胞固定化基板、ならびに検査方法 Download PDF

Info

Publication number
JP4931130B2
JP4931130B2 JP2007033604A JP2007033604A JP4931130B2 JP 4931130 B2 JP4931130 B2 JP 4931130B2 JP 2007033604 A JP2007033604 A JP 2007033604A JP 2007033604 A JP2007033604 A JP 2007033604A JP 4931130 B2 JP4931130 B2 JP 4931130B2
Authority
JP
Japan
Prior art keywords
cells
cell
light
flow path
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007033604A
Other languages
English (en)
Other versions
JP2007244378A (ja
Inventor
公雄 須丸
純一 枝廣
裕貴 大島
裕一 多田
慎治 杉浦
敏幸 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007033604A priority Critical patent/JP4931130B2/ja
Publication of JP2007244378A publication Critical patent/JP2007244378A/ja
Application granted granted Critical
Publication of JP4931130B2 publication Critical patent/JP4931130B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、動物細胞などの細胞に対する薬剤の影響を確認するなどの用途に使用される細胞固定化基板、その製造に適用可能な細胞固定化方法前記細胞固定化基板を用いた検査方法、細胞を分別する方法に関する。
動物細胞などの細胞を対象とする研究においては、特定の環境条件で細胞を培養し、その環境条件が細胞に与える影響を評価することが行われている。例えば、細胞に対する薬剤の影響を確認するための薬剤スクリーニングは、新薬の開発に欠くことができない技術である。
この種の技術では、基材に細胞を固定化した細胞固定化基板が用いられる(例えば特許文献1を参照)。
細胞を基材に固定化する技術としては、対象とする細胞と特異的に結合する抗体を介して細胞を基材に接着する手法や、有機化合物膜を介して基材に固定する手法がある(例えば特許文献2を参照)。
特開2005−46121号公報 特開平10−123031号公報
しかしながら、従来技術では、細胞を基材に固定化するには、予め抗体を基材に付着させたり有機化合物膜を形成する必要があるため、細胞の固定化に手間がかかるという不都合がある。
また、細胞固定化基板を薬剤スクリーニングなどに用いる場合には、細胞が生理的に正常な状態にあることが要求されるため、固定化の際に細胞に生理的にダメージを与えないことが必要となる。
抗体や有機化合物膜を用いて細胞を接着する技術では、これら抗体や有機化合物膜が細胞の生理状態に影響を与えることを原因として、細胞に対する薬剤の作用を正確に測定するのが難しくなることがあった。
また、近年では、薬剤感受性の個人差を考慮に入れたテーラーメイド医療に対する関心が高まっており、細胞固定化基板の利用が検討されているが、テーラーメイド医療を一般に普及させるには低コスト化が不可欠である。このため、効率的な細胞固定化方法が要望されている。
本発明は上記事情に鑑みてなされたもので、その目的は以下のとおりである。
(1)細胞を効率よく、かつダメージを与えずに基材上に固定化することができる細胞固定化方法、細胞固定化基板、検査方法、細胞を分別する方法を提供する。
(2)細胞に対する薬剤の作用を検査するにあたって、正確な測定が可能となる細胞固定化方法、細胞固定化基板、検査方法、細胞を分別する方法を提供する。
本発明の構成は以下の通りである。
(1)細胞を、基材表面に接着により固定化する方法であって、前記基材は、少なくとも表面がポリスチレンからなり、かつ流路が形成され、複数の前記細胞が前記基材の流路表面に当接した状態で、前記複数の細胞のうち少なくとも一部に、波長330〜410nmの光を含む光を選択的に照射することによって該細胞を前記流路に接着させる接着工程と、前記流路に液を流すことにより前記照射領域外の細胞を前記流路表面から除去することによって、前記細胞が前記流路に固定化された細胞固定化基板を得る除去工程と、を有する細胞固定化方法。
(2)前記接着工程および除去工程の後に、前記流路の、前記照射領域とは長さ方向の位置が異なる位置に、前記細胞とは異なる細胞が当接した状態で、前記複数の細胞のうち少なくとも一部に、前記波長の光を含む光を選択的に照射することによって該細胞を前記流路に接着させる第2接着工程と、前記流路に液を流すことにより前記照射領域外の細胞を前記流路表面から除去することによって、この流路に保持された前記複数の細胞のうち2以上が互いに異なる細胞固定化基板を得る第2除去工程と、を有する(1)に記載の細胞固定化方法。
(3)前記基材には複数の流路が形成され、これら複数の流路にそれぞれ複数の前記細胞を固定化する(2)記載の細胞固定化方法。
(4)前記波長範囲における前記光の照射エネルギーが1〜100J/cmである(1)〜(3)のうちいずれか1つに記載の細胞固定化方法。
(5)前記細胞への光の照射を、血清の存在下で行う(1)〜(4)のうちいずれか1つに記載の細胞固定化方法。
(6)前記細胞を前記基材の流路表面に当接させるにあたって、前記細胞を、基材の流路表面に、直接、または細胞接着成分からなるコート層を介して当接させる(1)〜(5)のうちいずれか1つに記載の細胞固定化方法。
(7)(1)〜()のうちいずれか1つに記載の方法によって細胞が基材に固定化された細胞固定化基板。
(8)()に記載の細胞固定化基板を用いて、前記細胞に対する薬剤の作用を検査する方法であって、前記薬剤を前記細胞に接触させ、前記細胞に対する前記薬剤の作用を検出する検査方法。
(9)複数の細胞から一部の細胞を分別する方法であって、前記基材は、少なくとも表面がポリスチレンからなり、かつ流路が形成され、複数の前記細胞が前記基材の流路表面に当接した状態で、前記複数の細胞のうち少なくとも一部に、波長330〜410nmの光を含む光を選択的に照射することによって該細胞を前記流路に接着させる接着工程と、前記流路に液を流すことにより前記照射領域外の細胞を前記流路表面から除去する除去工程と、を有する細胞の分別方法。
本発明の細胞固定化方法では、波長330〜410nmの光を含む光を照射することによって細胞を基材表面に接着させるので、細胞にダメージを与えずに、基材に十分に接着、固定化することができる。
従って、細胞に対する薬剤の作用を検査するにあたって正確な測定が可能となる。
また、抗体などの介在物を用いずに細胞を基材に接着することができるため、基材の前処理工程が必要ない。このため、作業工程を簡略化し、効率よく細胞を固定化できる。従って、細胞固定化基板の製造コストを低減できる。
図1は、本発明の細胞固定化基板の一例である細胞アレイ1を示すものである。
ここに示す細胞アレイ1は、基材2に4つの流路3a〜3dが形成され、これら第1〜第4流路3a〜3dに、第1〜第4細胞4a〜4dが固定化されている。
基材2の構成材料は、特に限定されないが、合成樹脂、ガラス、金属、シリコンなどを挙げることができる。
合成樹脂として好適なものとしては、ポリスチレン系樹脂、シリコーン系樹脂(例えばポリジメチルシロキサン樹脂)、アクリル系樹脂(例えばポリメタクリル酸メチル樹脂)、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂を挙げることができる。
基材2は、少なくとも表面が前記構成材料からなるものであればよく、表層部分が前記材料からなり、それ以外の部分が他の材料で構成されていてもよい。
基材2は、照射光(後述)が透過可能な材料が好ましい。
なお、光によってその分子構造等が変化する材料を光応答性材料というが、基材2の構成材料としては、光応答性のない材料(非光応答性材料)を使用できる。非光応答性材料としては、前述の材料(合成樹脂、ガラス、金属、シリコンなど)を挙げることができる。
基材2は、表面処理によって接着性を高めることができる。表面処理方法としては、極性を持つ官能基(例えば−OH、−NH、−COOHなど)を基材2の表面に形成可能な処理方法、例えばプラズマ処理、オゾン処理、コロナ放電処理、フレーム処理のうちいずれかが好ましい。
なかでも特に、プラズマ処理またはオゾン処理が施されたポリスチレンであるTCPS(tissue culture polystyrene)の使用が好ましい。
基材2の表面には、細胞接着成分からなるコート層を設けてもよい。細胞接着成分としては、例えばフィブロネクチン、ヴィトロネクチン、ラミニンのうち1または2以上が使用できる。フィブロネクチン等からなるコート層の形成によって、基材2に対する細胞の接着強度を高めることができる。コート層によって細胞接着強度が高められるのは、細胞表面の膜タンパク(例えばインテグリン)の高次構造が光により変化し、コート層の成分(例えばフィブロネクチン)のリガンドに強固に結合するためであると推察することができる。
第1〜第4流路3a〜3dの断面形状は特に限定されず、例えば矩形、三角形、台形、円形、半円形、楕円形などとすることができる。図示例では、流路3a〜3dの平面視形状は直線状とされ、互いにほぼ平行に形成されている。
流路3a〜3dは、例えば、溝が形成された基体の上にカバー材を配置することなどによって形成された流通孔であることが好ましい。流路3a〜3dは閉鎖系の流路であることが好ましい。
図1に示すように、第1流路3a内面には、第1〜第4細胞4a〜4dが流路長さ方向に並んで固定化されている。第2〜第4流路3b〜3dの内面にも、第1流路3aと同様に、第1〜第4細胞4a〜4dが固定化されている。
次に、細胞アレイ1を製造する方法を説明する。
図7は、基材2に光を照射する装置の一例を示す構成図である。
この照射装置は、基材2を保持する保持台21(保持手段)と、基材2の任意の領域に光10を照射する照射手段22と、基材2を観察可能な倒立型顕微鏡23(観察手段)と、パソコンなどの制御手段24を備えている。
照射手段22は、光源(図示略)と、DMD25(デジタルマイクロミラーデバイス(Digital Micromirror Device))(反射手段)とを備えている。DMD25は複数のマイクロミラーに分割されている。各マイクロミラーは、制御手段24からの信号により独立に角度を設定できるようにされ、光源からの光を反射することによって、前記信号に応じたパターンの光10を基材2に照射できるようになっている。DMD25は、この構成によって、基材2の任意の領域に光10を照射できる。例えば、基材2の表面の一部領域にのみ光10を照射することもできるし、全領域に光10を照射することもできる。
光源としては、汎用の紫外線ランプ等を用いることができる。
倒立型顕微鏡23は、観察光26によって基材2上の細胞を観察することができるようになっている。
図2に示すように、第1細胞4aを含む培養液を、基材2の第1〜第4流路3a〜3dに導入する。
培養液としては、細胞4a〜4dの生理状態を良好にし得る細胞培養用培地を用いることができる。この培地としては、汎用のベース培地に血清を添加したものを例示できる。ベース培地としては、D’MEM、HamF12、HamF10、RPMI1640などがある。これらは単独で使用してもよいし、これらのうち2以上を混合して使用してもよい。
血清としては、FBS(Fetal Bovine Serum)、FCS(Fetal Calf Serum)、NCS(Newborn Calf serum)、CS(Calf Serum)、HS(Horse Serum)のうち1または2以上が使用できる。
また、培地としては、無血清培地、無タンパク質培地を使用することもできる。
本発明で使用できる細胞としては、動物由来(例えばヒト細胞)、植物由来、および微生物由来のものを挙げることができる。
次いで、図2および図3に示すように、前記照射装置を用いて、流路3a〜3dの一部に光10を照射する。図示例では、流路3a〜3dに対し垂直な方向に沿う直線状の光10を照射する。図示例では、光10は、基材2の下方から照射され、下面(細胞4a〜4dがある面とは反対の面)側から流路3a〜3dの底部を透過して細胞4aに達する。
流路3a〜3dに照射する光10は、波長が短すぎると細胞4a〜4dの生理状態に悪影響が及び、波長が長すぎると細胞4a〜4dの接着が不十分となる。
このため、波長330〜410nmの光を含む光10を用いる。
波長が前記範囲である光は、細胞4a〜4dにダメージを与えずに、細胞4a〜4dを基材2に十分に接着することができる。また、光の照射によって細胞4a〜4dの細胞外マトリクスや膜タンパク質が悪影響を受けることはない。
なお、光10には、前記範囲を外れる波長の光が含まれていてもよいが、前記範囲を下回る波長(330nm未満)の光は、細胞の生理状態に悪影響を及ぼすおそれがあるため、強度が低いことが望ましい。
光10の照射エネルギーは、小さすぎると細胞4a〜4dの接着が不十分となり、大きすぎると細胞4a〜4dの生理状態に悪影響が及ぶため、前記波長範囲における光10の照射エネルギーは、1〜100J/cm(好ましくは1〜70J/cm)が好適である。
照射エネルギーを前記範囲とすることによって、細胞4a〜4dにダメージを与えることなく、細胞4a〜4dを基材2に十分に接着することができる。
光10の強度は、小さすぎると細胞4a〜4dの接着が不十分となり、大きすぎると細胞4a〜4dの生理状態に悪影響が及ぶため、0.01〜1W/cmが好ましい。
光10が照射された部分の流路3a〜3d(以下、第1照射部分6a〜6dという)では、流路3a〜3d内面(底面)に当接した状態の細胞4a〜4dは、流路3a〜3d内面に強く接着し固定化される。
細胞4a〜4dは、光10の照射による基材2の温度変化がほとんどない場合でも、流路3a〜3dに強く接着する。
図4に示すように、洗浄液により流路3a〜3dを洗浄すると、未接着の第1細胞4aが除去され、第1照射部分6a〜6dに接着された第1細胞4aのみが流路3a〜3dに残る。洗浄液としては、例えばリン酸緩衝液が使用できる。
光10の照射によって細胞4a〜4dが流路3a〜3d内面に接着される機構は不明であるが、次の推測が可能である。
流路3a〜3dに当接する細胞4a〜4dは細胞外マトリクスを分泌する。光10の照射によって細胞外マトリクスは分子構造が変化することによりその性質が変わり、細胞4a〜4dを流路3a〜3d内面に強く接着させる。
次いで、図5に示すように、流路3a〜3dの一部であり第1照射部分6a〜6dとは異なる位置(第2照射部分7a〜7d)に光10を照射するとともに、第2細胞4bを含む培養液を流路3a〜3dに流す。図示例では、第2照射部分7a〜7dは第1照射部分6a〜6dよりも薬剤流れ方向(後述)の上流側である。
これによって、第2細胞4bを第2照射部分7a〜7dに接着させ固定化させる。
図6に示すように、洗浄によって、第2照射部分7a〜7dに接着された第2細胞4bのみが流路3a〜3dに残る。
次いで、流路3a〜3dの一部であり照射部分6a〜6d、7a〜7dとは異なる位置(図示例では照射部分7a〜7dよりもやや上流側。以下、第3照射部分8a〜8dという。図1参照)に光10を照射するとともに、第3細胞4cを含む培養液を流路3a〜3dに流し、第3細胞4cを第3照射部分8a〜8dに接着させ固定化させる。
次いで、流路3a〜3dの一部であり照射部分6a〜6d、7a〜7d、8a〜8dとは異なる位置(図示例では照射部分8a〜8dよりもやや上流側。以下、第4照射部分9a〜9dという。図1参照)に光10を照射するとともに、第4細胞4dを含む培養液を流路3a〜3dに流し、第4細胞4dを第4照射部分9a〜9dに接着させ固定化させる。
第1〜第4細胞4a〜4dは、互いに異なる細胞であってよい。
以上の操作によって、4つの流路3a〜3dに、いずれも細胞4a〜4dが接着された細胞アレイ1が得られる(図1を参照)。
光10の照射は細胞4a〜4dに生理的なダメージを与えることはなく、照射後の細胞4a〜4dは、正常な状態が維持される。光10の照射後の細胞4a〜4dの生存率(バイアビリティ)は、照射前に対し、例えば90%以上となる。
次に、細胞アレイ1を用いて、細胞4a〜4dに対する薬剤の作用を検査する方法の一例を説明する。
図8に示すように、第1〜第4薬剤含有液11a〜11dを、それぞれ流路3a〜3dに流す。薬剤含有液11a〜11dは、互いに異なる薬剤を含む液が好ましい。
これによって、第1〜第4薬剤含有液11a〜11dは、いずれも第1〜第4細胞4a〜4dに接触することになるため、4種の薬剤と4種の細胞のすべての組み合わせである16通りのアッセイを同時に行うことができる。
次いで、図9に示すように、薬剤含有液11a〜11dと細胞4a〜4dとの反応を、検出手段12を用いて検出する。
検出方法は特に限定されないが、例えば、蛍光色素や放射性物質で標識した薬剤含有液11a〜11dを使用し、これらが細胞4a〜4dに取り込まれた量を、蛍光等の強度により検出する方法が採用できる。
このほか、細胞4a〜4dにGFP(Green Fluorescent Protein)遺伝子を導入し、産生したGFP量を蛍光強度に基づいて検出する方法;エステラーゼなどの酵素活性に基づいて蛍光を発する標識を用い、蛍光強度によって細胞の生存率(バイアビリティ)を検出する方法:細胞が産生した生理活性物質を抗体染色することにより細胞の生理活性を検出する方法なども採用できる。
上記細胞固定化方法では、波長330〜410nmの光を含む光10を照射することによって細胞4a〜4dを流路3a〜3d内面に接着させるので、細胞4a〜4dに生理的なダメージを与えずに、基材2に十分に接着、固定化することができる。
従って、細胞4a〜4dに対する薬剤の作用を検査するにあたって正確な測定が可能となる。
また、抗体や有機化合物膜などの介在物を用いずに細胞4a〜4dを基材2に接着することができるため、基材2の前処理工程が必要ない。このため、作業工程を簡略化し、効率よく細胞4a〜4を固定化できる。従って、細胞アレイ1の製造コストを低減できる。
また、抗体などの介在物を用いる場合には、この介在物が細胞4a〜4dの生理状態に何らかの影響を与えるおそれがあるが、上記細胞固定化方法では、細胞4a〜4dは介在物なしで基材2に接着されるため、細胞4a〜4dの生理状態に悪影響が及ぶことがない。
従って、細胞4a〜4dに対する薬剤の作用を検査するにあたって正確な測定が可能となる。
さらには、細胞4a〜4dを、直接、基材2に接着するので、作業工程数を少なくできることから、コンタミネーションが起こりにくい。
細胞アレイ1を用いる検査方法では、複数の流路3a〜3dに複数種類の細胞4a〜4dを保持させることによって、細胞4a〜4dと薬剤含有液11a〜11dの全ての組み合わせに関するアッセイを同時に行うことができる。このため、多種類のアッセイを効率よく行うことができ、多種類の薬剤含有液11a〜11dの作用を、容易かつ低コストで調べることができる。
従って、ユーザーの細胞4a〜4dを用いて細胞アレイ1を作製することによって、ユーザー個人の特性に応じた対応が可能となる。例えば、医療において、患者個人の特性(例えば薬剤感受性)に応じた治療が可能となる。
また、従来技術では、細胞をマイクロアレイチップ上に配置する操作は、開放系でスポッティングにより行われることが多く、コンタミネーションを防止するのが難しいが、細胞アレイ1を用いる方法では、一連の操作を、すべて閉鎖系の流路3a〜3d内で行うことができる。
従って、コンタミネーションを防ぎ、無菌環境下で正確なアッセイが可能である。
上記検査方法では、各流路3a〜3dに、互いに異なる細胞4a〜4dを接着させたが、本発明では、複数の流路のうち少なくとも1つにおいて、この流路に配置された複数の細胞のうち2以上が互いに異なっていればよい。
また、上記検査方法では、流路3a〜3dにそれぞれ異なる薬剤含有液11a〜11dを流したが、本発明では、流路のうち少なくとも2つに、それぞれ互いに異なる薬剤含有液を流せばよい。
次に、本発明の細胞分別方法の一例を説明する。
図10に示すように、培養ディッシュ、培養キュベットなどの基材32を用意する。基材32の構成材料としては、上記基材2に使用可能な材料として挙げたものを使用できる。
基材32表面に、複数種の異なる細胞34a〜34cを含有する細胞34を播種、培養する。細胞34a〜34cは、基材32表面で増殖する。
これに、例えば、蛍光色素等で標識したポリクローナル又はモノクローナル抗体を加え、細胞34a〜34cと結合させる。これにより、分別しようとする細胞の位置情報が検出可能となる。
次いで、細胞34a〜34cの位置情報35a〜35cを、図7に示す照射装置の制御手段24に取り込み、位置情報35a〜35cに基づいて、目的とする細胞にのみ上述の光10を照射する。
光10が照射された細胞は基材32に固定化されるため、光10を照射していない細胞を洗浄などにより基材32から回収することによって、細胞34a〜34cを分別回収することができる。例えば、細胞34aを回収する場合には、他の細胞34b、34cにのみ光10を照射してこれらを基材32に固定化した後、洗浄により細胞34aのみを回収することができる。
なお、本発明においては、蛍光標識抗体を用いる手法のみでなく、種々の標識法を採用できる。例えば、ルシフェラーゼ等の発光系酵素の遺伝子を細胞に導入する方法等が挙げられる。また、形態の違う細胞の分別においては、標識を行わなくとも顕微鏡観察下で目的とする細胞にのみ光照射して、この細胞のみを分別して回収することができる。
本発明によれば、基材上で培養した細胞から所望のものを選択して固定化し、パターニングすることができる。すなわち、予め細胞接着物質をパターンに従って担持させた培養基材を用いる従来のパターニングとは大きく異なり、固定化するべき細胞を、培養後に選択できる。
細胞は光照射後も正常な状態を維持するため、上記方法は、所定の性質を有する細胞、例えば生理活性物質の産生能が高い細胞や、遺伝子導入操作後に安定導入が認められた細胞を純化し、引き続き培養して増殖させるといった操作に適用できる。
次に、本発明の細胞分別方法の応用例を説明する。以下の説明においては、既出の構成には同一符号を付してその説明を省略する。
細胞を純粋培養する際には、雑菌の混入を防ぐ必要があるが、雑菌が混入した場合には次のようにして除去することができる。
図11に示すように、特定細胞44を基材32表面で培養する。他の細胞45a、45bが基材32に混入した場合には、前記蛍光標識法などを用いて得られた特定細胞44の位置情報44aを図7に示す照射装置の制御手段24に取り込み、位置情報44aに基づいて、特定細胞44にのみ光10を照射して基材32に固定化した後、洗浄などにより前記混入細胞45a、45bを基材32から剥離させ、除去することができる。
なお、特定細胞44と混入細胞45a、45bとを目視にて識別できる場合には、標識をしなくても、顕微鏡による観察によって光10の照射パターンを定めることができる。
光による細胞の接着作用は、時間の経過とともに弱くなる場合がある。例えば光の照射により基材に接着した細胞が、光の照射終了後、所定時間放置することにより、再び剥離可能となることがある。このため、雑菌除去などの目的でいったん基材に接着させた細胞を、上記分別方法により分別回収することができる。
図12は、細胞の増殖領域のパターニングを行う方法を示す工程図である。
第1細胞46を基材32表面に全体に増殖させ、パターン47に基いて第1領域48に光10を照射し、第1領域48に位置する第1細胞46を基材32に固定化し、それ以外の領域(第2領域49)にある第1細胞46を洗浄などにより除去する。図示例では、第1領域48は互いにほぼ平行な複数の帯状に形成されている。
第1細胞46が除去された第2領域49に第2細胞50を増殖させることによって、第1細胞46が存在する第1領域48と、第2細胞50が存在する第2領域49とは、所定方向(図中左右方向)に交互に配置される。
このような細胞の増殖領域のパターニングは、細胞どうしの情報伝達を解析したり、複数種の細胞の共存下で産生される生理活性物質を生産したりする際に有効である。
図13は、細胞の分別に使用可能な装置の一例を示すものである。
ここに示す細胞分別装置は、細胞が接着可能な基材を有する細胞培養手段、該細胞培養手段に培地を供給する手段、前記基材に光を照射する手段、基材上の細胞の位置を検出する手段、光照射により剥離された細胞を分別する手段を有し、さらに必要に応じて洗浄液供給手段が付加されて構成されたものである。
以下、この細胞分別装置の構成を詳しく説明する。
この細胞分別装置は、細胞が接着可能な基材52を有する細胞培養キュベット51(細胞培養手段)、該キュベット51に培地を供給する培地リザーバ53(培地供給手段)、該キュベット51の基材52に上述の光10を照射するプロジェクタ54(照射手段)、細胞の位置を検出し該位置情報信号を制御手段57に送出するカラーCCDカメラ55(細胞位置検出手段)、複数の回収容器56aが切り替え可能に設けられた分別回収手段56、これら各手段の動作を制御する制御手段57とを備えている。
この装置には、必要に応じて細胞培養キュベット51に洗浄液を供給するための洗浄液供給手段(図示せず)が設けられていてもよい。
細胞培養キュベット51は、底部が基材52で構成された容器であり、外部から基材52に光10を照射することができ、基材52表面の細胞を観察できる。
細胞培養キュベット51は、基材52を有する本体部51aと、本体部51aに培地を導入する導入経路51bと、培地を導出する導出経路51cとを有する。経路51b、51cには、弁などの開閉手段58が設けられている。基材52の構成材料としては、上記基材2に使用可能な材料として挙げたものを使用できる。
プロジェクタ54は、制御手段57からの信号に応じたパターンの光を照射する照射手段であり、基材52表面の任意の領域を照射できるようになっている。
プロジェクタ54は、光源(図示略)と、前記光源からの光の照射領域を前記パターンに変換する光学変換部(図示略)とを有する。光学変換部としては、DMD、透過型液晶パネルなどが使用できる。
制御手段57は、細胞の位置情報の取り込み、それに基づくプロジェクタ54からの光照射の設定、細胞培養キュベット51への培地または洗浄液の供給および停止を制御するものが望ましい。
カラーCCDカメラ55は、個々の細胞あるいは細胞群を識別するに十分な解像度、光学倍率、感度を備えるものを使用することが好ましい。また、細胞種を識別するために複数の抗体担持蛍光色素を用いる場合には、色を識別できることが望ましい。
なお、上記説明では、細胞培養キュベットで細胞を播種し、培養させるプロセスについて説明したが、本発明においては、細胞を単にキュベットに導入しこれを分別回収するというプロセスにも適用できる。このプロセスは、例えば複数種の細胞を含む組織等において、各細胞種を分別回収するために有効である。
以下、上記細胞分別装置の動作の一例について説明する。
開閉手段58の開閉により、培地リザーバ53から細胞培養キュベット51に培地を供給し、細胞を播種し培養する。
この際、目的とする細胞は予め蛍光標識されているかあるいは培養後蛍光抗体を用いて標識してもよい。細胞培養キュベット51における基材52上の細胞の位置はカラーCCDカメラ55で検出され、その位置情報信号は制御手段57に入力される。
これにより蛍光標識により分別する目的細胞を識別し、プロジェクタ54によって該目的細胞以外の細胞に光10を照射する。照射位置の設定は、制御手段57による自動制御でもよいし、細胞を観察しつつ手動操作により行ってもよい。
光10が照射された細胞は基材52に接着するが、光10が照射されなかった細胞は、基材52から剥離可能となるため、培養キュベット51に培地または洗浄液を供給することにより選択的に基材52から除去され、分別回収手段56の回収容器56aに回収される。
分別回収手段56は、複数の回収容器56aが切り替え可能に設けられているので、分別された各細胞を異なる回収容器56aに回収するのが容易である。
(実施例1)
表面をプラズマ処理したポリスチレン(TCPS)からなるプレート状の基材(96穴(ウェル))を用意し、それぞれのウェルに動物細胞を平均100個播種し23時間培養した。その後、図7に示す照射装置を用いて、いくつかの波長条件、エネルギー条件で光をウェルの底面側から照射した。細胞としては、CHO−K1を使用した。
1mMのEDTAを含むリン酸緩衝液を用いて表面を洗浄し、残った細胞の量を目視にて確認することによって、光照射によって誘起された細胞接着性の良否を判定した。表1および表2に細胞接着性の程度を、照射されない細胞を除去するのに必要十分な一定の洗浄操作を行った後の残存率80%以上(◎)、50%以上80%未満(○)、20%以上50%未満(△)、および20%未満(×)のいずれかで示す。
細胞の増殖性は、光照射から3日後に冷凍処理を施し、細胞個数に比例した強度の蛍光を発するCyQUAUTを添加し、その蛍光強度をプレートリーダーで測定し、非照射サンプルと比較することで判定した。表1および表2に、増殖性の程度を、非照射の参照条件に対し90%以上(○)、50%以上90%未満(△)、および50%未満(×)のいずれかで示す。
Figure 0004931130
Figure 0004931130
表1に示すように、波長313nmの光を用いた試験例1では、ほとんどの細胞が死滅したことを示す結果が得られた。
波長334nmの光を用いた試験例2では、基材表面への細胞接着を観察できた。細胞の死滅は見られなかったが、増殖性に若干の影響が認められた。
波長365nmの光を用いた試験例3では、増殖性に影響することなく細胞接着性が高くなった。
試験例1〜3の結果より、試験例2の場合より波長が短くなると、細胞接着性を高くできる強度の光照射によって、細胞のダメージが大きくなると考えることができる。
波長405nmの光を用いた試験例4、5のうち、照射エネルギーを70J/cmとした試験例4では、細胞増殖性に影響が見られなかったことから細胞のダメージが小さかったと考えられるが、細胞接着性は若干低い結果が得られた。照射エネルギーを試験例4より大きくした試験例5では、細胞接着性は高くなったが、増殖性に若干の影響が認められた。
このことから、波長が試験例4、5の場合を大きく上回ると、細胞増殖性に顕著な影響が現れない強度の範囲で十分な細胞接着性は得られにくいと考えることができる。
波長436nmの光を用いた試験例6では、細胞接着性は不十分であった。
以上より、細胞の増殖性に悪影響を与えることなく十分な細胞接着性を得るには、波長330〜410nmの光の照射が適当であることがわかる。
表2に示すように、照射エネルギーが0.6J/cmである試験例7では細胞の接着が不十分となり、照射エネルギーが120J/cmである試験例12では、増殖性が劣る結果となった。
光の照射エネルギーが細胞増殖性に及ぼす影響を、次のようにして調べた。
基材表面でCHO−K1細胞を培養し、所定のパターンをなす光を照射した後、1mMのEDTAを含むリン酸緩衝液で基材表面を洗浄した。光の波長は365nmとした。
図14は、光照射後の細胞数の経時変化を示すグラフである。縦軸は細胞数を示し、横軸は光照射後の経過時間を示す。光の照射エネルギーは30J/cmおよび120J/cmとした。比較のため、光照射を行わなかった場合の試験結果を合わせて示す(0J/cm)。
照射エネルギーが30J/cmである場合は光照射を行わなかった場合と同様の増殖性が得られたが、照射エネルギーが120J/cmである場合は増殖性に劣る結果となった。
図14および表2より、光の照射エネルギーを1〜100J/cm(好ましくは1〜70J/cm)とすることによって、増殖性に影響を与えることなく細胞接着性を高めることができたことがわかる。
(実施例2)
細胞アレイ61を次のようにして作製した(図15および図16を参照)。
表面をプラズマ処理したポリスチレン(TCPS)からなり、直径200μmの5箇所の円形領域66を除いて、細胞接着を阻害するシリコン樹脂で被覆された基材62を用意した。流路63は、幅600μm、深さ200μmの断面矩形に形成した。
赤い蛍光を発するCMTPXで染色したMDCK細胞を含む培養液を流路63内に導入し、5時間30分培養した。
次いで、図7に示す照射装置を用いて、光を流路63の一部に照射することによって、5箇所の円形領域66のうち2箇所(第1照射部分64)に第1細胞であるMDCK細胞65を接着させ固定化し、それ以外の、固定化されない細胞を洗浄によって除去した。
図15は、第1細胞(MDCK細胞65)を第1照射部分64に固定化した後における流路63の蛍光顕微鏡写真である。
2時間培養後、緑色の蛍光を発するCMFDAで染色したCHO細胞68を含む培養液を流路63内に導入し、5時間30分培養した。
そして再び図7に示す照射装置を用いて、光を流路の一部に照射することによって、残りの3箇所の円形領域66(第2照射部分67)に第2細胞であるCHO細胞68を接着させ固定化、それ以外の細胞を洗浄によって除去した。
図16は、第2細胞(CHO細胞68)を第2照射部分67に固定化した後における流路63の蛍光顕微鏡写真である。MDCK細胞65およびCHO細胞68は、同一流路63内のそれぞれ異なる位置に固定化されたことがわかる。
MDCK細胞65およびCHO細胞68を固定化するために用いた光の波長は365nm、強度は0.026W/cm、照射時間は150秒間とした(照射エネルギー3.9J/cm)。
(実施例3)
表面をプラズマ処理したポリスチレン(TCPS)からなる基材72を用意し、その表面にMDCK細胞73を一様に播種し、4時間培養した。図7に示す照射装置を用いて、この基材に、「AIST」という文字をなす領域74および長方形の領域75に光を照射した。光の波長は365nm、強度は0.08W/cm、照射時間は10分間とした(照射エネルギー48J/cm)。
図17は、1mMのEDTAを含むリン酸緩衝液を用いて洗浄した後の基材72表面の写真である。光照射を行った領域74、75にのみ、細胞73が固定化されたことがわかる。
(実施例4)
フィブロネクチンがコートされたポリスチレン製基材(No.354457,BD Biosciences製)に、CHO−K1細胞を一様に播種し、24時間培養した。図7に示す照射装置を用いて、所定のパターンをなす光を照射した。光の波長は365nm、照射エネルギーは18J/cmとした。
1mMのEDTAを含むリン酸緩衝液に10分間作用させた後、このリン酸緩衝液を用いて、実施例3に準じて基材表面を洗浄した。
図18は、洗浄後の基材表面の写真である。光照射を行った領域には細胞が固定化され、非照射領域では細胞がほぼ完全に除去され、コントラストが非常に高いパターンが得られたことがわかる。
(実施例5)
実施例4に準じて、基材表面にCHO−K1細胞からなる直線状のパターンを形成した。基材表面の写真を図19(a)に示す。この細胞を引き続き24時間培養した後の基材表面の写真を図19(b)に示す。
この図より、光照射を経た細胞が、その後も十分なバイアビリティを維持し、照射域を超えて増殖したことがわかる。
(実施例6)
実施例4に準じて、基材表面にCHO−K1細胞を培養し、所定のパターンをなす光を照射し、その直後に1mMのEDTAを含むリン酸緩衝液(PBS)を用いて、基板表面を洗浄(洗浄時のPBS流速:2m/s)することによって、所定のパターンを形成した(図20の符号81)。
前記パターンをなす細胞を、引き続いて8時間培養した後、上記洗浄条件(洗浄時のPBS流速:2m/s)で基板表面を洗浄した。その結果、ほとんどの細胞が基材表面から除去された。図20の符号82は洗浄後の基材表面を示すものである。
この結果は、光照射による細胞の接着強度が時間経過とともに弱まったことを示す。
このことから、細胞の接着および剥離を容易に操作できることがわかる。
(実施例7)
HeLa細胞を用いること以外は実施例5と同様にして、直線状のパターンを形成した。基材表面の写真を図21に示す。光の波長は365nm、照射エネルギーは3.5J/cmとした。
(実施例8)
HepG2細胞を用いること以外は実施例5と同様にして、直線状のパターンを形成した。基材表面の写真を図22に示す。光の波長は365nm、照射エネルギーは3.0J/cmとした。
(実施例9)
MDCK細胞を用いること以外は実施例5と同様にして、細胞が除去された部分が「S」という文字をなすようなパターンを形成した。基材表面の写真を図23に示す。光の波長は365nm、照射エネルギーは24J/cmとした。
実施例7〜9の結果より、本発明が複数種類の細胞に適用可能であったことがわかる。
(実施例10)
次に示すように、2種類の細胞を用いてパターンを形成した。
実施例4に準じて、CHO−K1細胞を用いて培養基材上にハニカム状のパターンを形成した。基材表面の写真を図24に示す。
次いで、同様にして、前記パターンを構成する6角形の中央に、それぞれドット状にHeLa細胞を接着させた。基材表面の写真を図25に示す。
このように、既に細胞が接着された基材に、光照射によって所定のパターンの細胞を追加できた。
本発明の細胞固定化基板の一例を示す構成図である。 図1に示す細胞固定化基板の製造方法を示す工程図である。 図1に示す細胞固定化基板の製造において、細胞が基材に接着することを説明する説明図である。 図2に続く工程図である。 前図に続く工程図である。 前図に続く工程図である。 本発明の細胞固定化方法に使用可能な細胞固定化装置の一例である。 図1に示す細胞固定化基板を使用する方法の一例を示す説明図である。 図1に示す細胞固定化基板を用いて、細胞と薬剤との反応を検出する方法を示す説明図である。 本発明の細胞分別方法の一例を示す説明図である。 本発明の細胞分別方法の他の例を示す説明図である。 本発明の細胞分別方法の他の例を示す説明図である。 本発明の細胞分別方法に使用可能な装置の一例を示す構成図である。 実施例において、光の照射エネルギーが細胞増殖性に及ぼす影響に関する試験結果を示すグラフである。 実施例において、光照射によって細胞を所定の位置に固定化した流路の写真である。 実施例において、前図に続く同様の工程によって別種の細胞を所定の位置に固定化した流路の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。 実施例において、光の照射により細胞を固定化した基材表面の写真である。
符号の説明
1…細胞アレイ(細胞固定化基板)、2、32、52…基材、3a〜3d…第1〜第4流路、4a〜4d、34、34a〜34c、44、46.50…細胞、6a〜6d、7a〜7d、8a〜8d、9a〜9d…照射部分、11a〜11d…第1〜第4薬剤含有液、12…検出手段、22…照射手段、25…DMD(反射手段)。

Claims (9)

  1. 細胞を、基材表面に接着により固定化する方法であって、
    前記基材は、少なくとも表面がポリスチレンからなり、かつ流路が形成され、
    複数の前記細胞が前記基材の流路表面に当接した状態で、前記複数の細胞のうち少なくとも一部に、波長330〜410nmの光を含む光を選択的に照射することによって該細胞を前記流路に接着させる接着工程と、
    前記流路に液を流すことにより前記照射領域外の細胞を前記流路表面から除去することによって、前記細胞が前記流路に固定化された細胞固定化基板を得る除去工程と、を有することを特徴とする細胞固定化方法。
  2. 前記接着工程および除去工程の後に、前記流路の、前記照射領域とは長さ方向の位置が異なる位置に、前記細胞とは異なる細胞が当接した状態で、前記複数の細胞のうち少なくとも一部に、前記波長の光を含む光を選択的に照射することによって該細胞を前記流路に接着させる第2接着工程と、
    前記流路に液を流すことにより前記照射領域外の細胞を前記流路表面から除去することによって、この流路に保持された前記複数の細胞のうち2以上が互いに異なる細胞固定化基板を得る第2除去工程と、を有することを特徴とする請求項1に記載の細胞固定化方法。
  3. 前記基材には複数の流路が形成され、これら複数の流路にそれぞれ複数の前記細胞を固定化することを特徴とする請求項2に記載の細胞固定化方法。
  4. 前記波長範囲における前記光の照射エネルギーが1〜100J/cmであることを特徴とする請求項1〜3のうちいずれか1項に記載の細胞固定化方法。
  5. 前記細胞への光の照射を、血清の存在下で行うことを特徴とする請求項1〜4のうちいずれか1項に記載の細胞固定化方法。
  6. 前記細胞を前記基材の流路表面に当接させるにあたって、
    前記細胞を、基材の流路表面に、直接、または細胞接着成分からなるコート層を介して当接させることを特徴とする請求項1〜5のうちいずれか1項に記載の細胞固定化方法。
  7. 請求項1〜のうちいずれか1項に記載の方法によって細胞が基材に固定化されたことを特徴とする細胞固定化基板。
  8. 請求項に記載の細胞固定化基板を用いて、前記細胞に対する薬剤の作用を検査する方法であって、前記薬剤を前記細胞に接触させ、前記細胞に対する前記薬剤の作用を検出することを特徴とする検査方法。
  9. 複数の細胞から一部の細胞を分別する方法であって、
    前記基材は、少なくとも表面がポリスチレンからなり、かつ流路が形成され、
    複数の前記細胞が前記基材の流路表面に当接した状態で、前記複数の細胞のうち少なくとも一部に、波長330〜410nmの光を含む光を選択的に照射することによって該細胞を前記流路に接着させる接着工程と、
    前記流路に液を流すことにより前記照射領域外の細胞を前記流路表面から除去する除去工程と、を有することを特徴とする細胞の分別方法。
JP2007033604A 2006-02-14 2007-02-14 細胞固定化方法および細胞固定化基板、ならびに検査方法 Expired - Fee Related JP4931130B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033604A JP4931130B2 (ja) 2006-02-14 2007-02-14 細胞固定化方法および細胞固定化基板、ならびに検査方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006036646 2006-02-14
JP2006036646 2006-02-14
JP2007033604A JP4931130B2 (ja) 2006-02-14 2007-02-14 細胞固定化方法および細胞固定化基板、ならびに検査方法

Publications (2)

Publication Number Publication Date
JP2007244378A JP2007244378A (ja) 2007-09-27
JP4931130B2 true JP4931130B2 (ja) 2012-05-16

Family

ID=38589320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033604A Expired - Fee Related JP4931130B2 (ja) 2006-02-14 2007-02-14 細胞固定化方法および細胞固定化基板、ならびに検査方法

Country Status (1)

Country Link
JP (1) JP4931130B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5121155B2 (ja) * 2006-03-14 2013-01-16 独立行政法人物質・材料研究機構 形質転換細胞集団の作成方法
WO2011125615A1 (ja) * 2010-04-02 2011-10-13 独立行政法人産業技術総合研究所 細胞分別方法、細胞培養基材、および細胞分別装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4113954B2 (ja) * 2004-01-28 2008-07-09 独立行政法人産業技術総合研究所 細胞培養基材、及び該基材を使用した細胞分別方法
JP4524399B2 (ja) * 2004-05-26 2010-08-18 独立行政法人産業技術総合研究所 温度・光応答性組成物及びこれから製造された細胞培養基材

Also Published As

Publication number Publication date
JP2007244378A (ja) 2007-09-27

Similar Documents

Publication Publication Date Title
JP6982327B2 (ja) マイクロ流体アッセイのための方法、組成物およびシステム
JP6106111B2 (ja) 細胞培養のためのデバイス
JP4064631B2 (ja) 細胞に基づく検定に用いる微細加工された装置
Salieb-Beugelaar et al. Latest developments in microfluidic cell biology and analysis systems
US9857356B2 (en) Muscle chips and methods of use thereof
JP3975266B2 (ja) 細胞培養装置
Heuzé et al. Cell migration in confinement: a micro-channel-based assay
JP6909370B2 (ja) バイオミメティック流体処理のためのシステム及び方法
AU2016341880A1 (en) Microfluidic model of the blood brain barrier
EA025219B1 (ru) Микролуночный чип для скрининга целевых клеток и его применение
US20200292944A1 (en) Method of making a patterned hydrogel and kit to make it
US20090035793A1 (en) Microchip for cell response evaluation
Kikuchi et al. Arraying heterotypic single cells on photoactivatable cell-culturing substrates
JP2015535344A (ja) 目的タンパク質を分泌する細胞の検出
EP3438236B1 (en) Cell culture container, cell culture system, cell culture kit and cell culture method
Govindan et al. Mass generation, neuron labeling, and 3D imaging of minibrains
JP2012506247A (ja) 多細胞配列を安定、静的かつ再現可能な空間配置に拘束する方法及び装置
JP4931130B2 (ja) 細胞固定化方法および細胞固定化基板、ならびに検査方法
WO2007029554A1 (ja) マイクロパターニング培養基板、マイクロパターニング培養構築物及びこれらの作成方法
Cabral et al. Simple, affordable, and modular patterning of cells using DNA
JP2013226112A (ja) 肝細胞の培養方法
Le Maout et al. Directing cell migration on flat substrates and in confinement with microfabrication and microfluidics
US20070243573A1 (en) Method and apparatus for immobilizing cells, and cell-immobilized substrate
WO2007063736A1 (ja) マイクロアレイチップ、これを用いた細胞アレイ、およびその製造方法
Gabrielson et al. Cell‐Laden Hydrogels in Integrated Microfluidic Devices for Long‐Term Cell Culture and Tubulogenesis Assays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

R150 Certificate of patent or registration of utility model

Ref document number: 4931130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees