JP4929399B2 - 回転機器のロータ及びその製造方法 - Google Patents

回転機器のロータ及びその製造方法 Download PDF

Info

Publication number
JP4929399B2
JP4929399B2 JP2010517953A JP2010517953A JP4929399B2 JP 4929399 B2 JP4929399 B2 JP 4929399B2 JP 2010517953 A JP2010517953 A JP 2010517953A JP 2010517953 A JP2010517953 A JP 2010517953A JP 4929399 B2 JP4929399 B2 JP 4929399B2
Authority
JP
Japan
Prior art keywords
less
members
rotor
welding
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010517953A
Other languages
English (en)
Other versions
JPWO2009154243A1 (ja
Inventor
西本  慎
隆 中野
良典 田中
立誠 藤川
憲治 川崎
好邦 角屋
隆一 山本
裕一 平川
重  隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010517953A priority Critical patent/JP4929399B2/ja
Publication of JPWO2009154243A1 publication Critical patent/JPWO2009154243A1/ja
Application granted granted Critical
Publication of JP4929399B2 publication Critical patent/JP4929399B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12937Co- or Ni-base component next to Fe-base component

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、蒸気タービンなどに用いられ、通過する蒸気など作動流体温度に応じて異なる強度の複数の部材を溶接によって接合した回転機器のロータ及びその製造方法に関する。
現在、主要な発電方法として原子力、火力、水力の3つの方法が用いられており、資源量及びエネルギー密度の観点から、今後も前記3つの発電方法が主要な発電方法として用いられていくと予想される。中でも火力発電は安全で負荷変動への対応能力の高い発電方法として利用価値が高く、発電分野において今後も引き続き重要な役割を果たしていくものと予想される。
蒸気タービンを含む石炭焚火力発電では、従来より高効率化が進められてきており、現在では一般的に600℃級以下の蒸気条件で発電が行われ、タービンロータ、動翼等の主要部材には前記蒸気温度に対する耐熱性を有する12Cr鋼などの高クロム鋼(フェライト系耐熱鋼)が用いられている。
また近年、CO排出量削減と、更なる熱効率向上のために、700℃級の蒸気条件を採用した発電技術が求められているが、700℃級の蒸気条件を採用すると前記12Cr鋼などの高クロム鋼(フェライト系耐熱鋼)では強度不足となる。
そこで、タービンロータの材料として、更に高い高温強度を有するNi基合金を適用することが考えられるが、Ni基合金は大型鋼塊の製造が難しいためタービンロータの大型化が難しく、さらに非常に高価格であるため、Ni基合金のみを用いてタービンロータを製造することは現実的ではない。
そこで、特許文献1(特開2008−88525号公報)にはNi基合金で構成することが必須な部位にのみNi基合金を用い、それ以外の部位は鉄鋼材料で構成したタービンロータとして、650℃以上の高温蒸気が導入される蒸気タービンに備えられるタービンロータであって、前記タービンロータが、蒸気温度に応じてNi基合金からなる部分とCrMoV鋼からなる部分に分割された部位をそれぞれ溶着により連結して構成され、前記Ni基合金からなる部分と前記CrMoV鋼からなる部分との連結部及び前記CrMoV鋼からなる部分の蒸気温度が580℃以下に維持されるタービンロータが開示されている。またCrMoV鋼としては、Crが重量%で0.85〜2.5%含有される低CrMoV鋼が挙げられている。
しかしながら、特許文献1に開示された技術においては、CrMoV鋼としてCrが重量%で0.85〜2.5%含有される低CrMoV鋼が挙げられており、該低CrMoV鋼ではNi基合金で構成される部位以外の部位において耐熱性が不足することが予想される。また、特許文献1に開示された技術における低CrMoV鋼を単純に高Cr鋼に置き換えると、Ni基合金と高Cr鋼の線膨張係数の差が大きく溶接継手部にかかる熱応力が大きくなり、溶接継手部での強度を維持することが困難となる。
特開2008−88525号公報
従って、本発明はかかる従来技術の問題に鑑み、Ni基合金と12Cr鋼などの他の耐熱性鉄鋼材料とを溶接によって接合しても、該接合部における強度を維持することができ、700℃級の蒸気条件でも採用可能なタービンロータ及びその製造方法を提供することを目的とする。
上記課題を解決するため本発明においては、
蒸気又は燃焼ガスが作動流体として導入される回転機器に備えられ、通過する作動流体温度に応じて異なる強度の複数の部材を溶接によって接合した回転機器のロータにおいて、
室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃であるNi基合金で形成された少なくとも2つの第1の部材と、高クロム鋼で形成された少なくとも2つの第2の部材とから構成され、
前記2つ以上の第1の部材同士を溶接によって接合し、
該第1の部材同士が接合された部材の両端部それぞれに、前記第2の部材を溶接によって接合するとともに、
前記作動流体の入口にあたる部位を前記Ni基合金で形成した第1の部材とし、
更に前記Ni基合金で形成された第1の部材同士の溶接継手に1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後熱処理とを同温度で同時に行って形成されることを特徴とする。
前記第1の部材と前記第2の部材とを溶接によって接合して構成することで、ロータの大型化にも対応することができる。
また、前記第1の部材を室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃、望ましくは14.0×10−6/℃以下であるNi基合金で形成し、前記第2の部材を高クロム鋼で形成することにより、前記第1の部材と前記第2の部材との線膨張係数の差が小さくなるため、前記第1の部材と前記第2の部材との溶接継手部にかかる熱応力も小さくなり、従って前記溶接継手部においても充分な強度を維持することができる。
また、蒸気又は燃焼ガスである作動流体の入口にあたる部位をNi基合金で形成した第1の部材とすることで作動流体のロータへの導入温度と略同温となる高温部におけるロータの強度を維持することができ、その他の部位(作動流体のロータへの導入温度未満の部位)においても高クロム鋼で形成した第2の部材とすることで充分な強度を維持することができる。
本発明は、作動流体が700℃級の蒸気であっても適用可能である。
また、それぞれNi基合金で形成された少なくとも2つの前記第1の部材と、それぞれ高クロム鋼で形成された少なくとも2つの前記第2の部材とから構成され、前記2つ以上の第1の部材同士を溶接によって接合し、該第1の部材同士が接合された部材の両端部それぞれに、前記第2の部材を溶接によって接合することで構成される。
これにより、ロータのさらなる大型化に対応することができるとともに、ロータ設計の自由度が高くなる。
また、前記高クロム鋼で形成された第2の部材の少なくとも一端側に、低合金鋼で形成された第3の部材を溶接によって接合することで構成されることが好ましい。
低合金鋼は通常ロータの軸受けに使われる金属との相性がよく、ロータの端部に低合金鋼で形成された第3の部材を溶接によって接合することにより、ロータ端部における軸受けとの接触部で溶接肉盛などの加工が不要となる。
また、室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃、望ましくは14.0×10−6/℃以下を満たすNi基合金の組成として、前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜15%、Mo、W及びReの1種又は2種以上をMo+(W+Re)/2:17〜25%、Al:0.2〜2%、Ti:0.5〜4.5%、Fe:10%以下、B:0.02%以下及びZr:0.2%以下の1種又は2種を含有し、Al+Tiの原子%が2.5〜7.0%であり、残部Niと不可避的不純物からなっていてもよい。
さらに、前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜20%、Mo:17〜26%、Al:0.1〜2.0%、Ti:0.1〜2.0%、Fe:10%以下、B:0.02%以下、Zr:0.2%以下、W及びReとを含有し、残部の成分は実質的にNiからなり、Al+Tiの原子%が1〜5.5%であり、次式:17≦Mo+(W+Re)/2≦27を満たしてもよい。
さらに、前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜20%、Mo、W及びReの1種又は2種以上をMo+(W+Re)/2:17〜27%、Al:0.1〜2%、Ti:0.1〜2%、Nb及びTaをNb+Ta/2:1.5%以下、Fe:10%以下、Co:5%以下、B:0.001〜0.02%、Zr:0.001〜0.2%を含有し、残部Niと不可避的不純物からなっていてもよい。
さらに、前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜20%未満、Mo、W及びReの1種又は2種以上をMo+(W+Re)/2:5〜20%未満、W:10%以下、Al:0.1〜2.5%、Ti:0.10〜0.95%、Nb及びTaをNb+Ta/2:1.5%以下、B:0.001〜0.02%、Zr:0.001〜0.2%、Fe:4%以下を含有し、Al+Ti+Nb+Taの原子%が2.0〜6.5%であり、残部Niと不可避的不純物からなっていてもよい。
また、前記高クロム鋼として、
前記高クロム鋼が、室温から700℃までの平均線膨張係数が11.2×10−6/℃〜12.4×10−6/℃であり、重量%で、Cr:7%を超え10.0%未満、Ni:1.5%以下、V:0.10%〜0.30%以下、Nb:0.02〜0.10%、N:0.01〜0.07%、C:0.10%以上、Si:0.10%以下、Mn:0.05〜1.5%、Al:0.02%以下、及びMo並びにWをA(1.75%Mo、0.0%W)、B(1.75%Mo、0.5%W)、C(1.53%Mo、0.5%W)、D(1.3%Mo、1.0%W)、E(2.0%Mo、1.0%W)、F(2.5%Mo、0.5%W)、G(2.5%Mo、0.0%W)、Aを結ぶ直線の内側(直線を含まず)の量を含有し、残部が鉄及び付随的不純物よりなっていてもよい。
さらに、前記高クロム鋼が、線膨張係数が11.2×10−6/℃〜12.4×10−6/℃であり、重量%で、C:0.08〜0.25%、Si:0.10%以下、Mn:0.10%以下、Ni:0.05〜1.0%、Cr:10.0〜12.5%、Mo:0.6〜1.9%、W:1.0〜1.95%、V:0.10〜0.35%、Nb:0.02〜0.10%、N:0.01〜0.08%、B:0.001〜0.01%、Co:2.0〜8.0%を含有し、残部が鉄及び付随的不純物よりなっていてもよい。
また、前記低合金鋼として、
前記低合金鋼が、2.25CrMoV鋼又はCrMoV鋼であることが好ましい。
本発明に係る回転機器のロータは、前記Ni基合金で形成された第1の部材同士の溶接継手に1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後熱処理とを同温度で同時に行って形成してもよい。
前記第1の部材同士、及び第1の部材と第2の部材との溶接部は、溶接したままでは焼き入れ状態となっており、溶接継手の強度特性を確保するためには各継手に応じた溶接後熱処理が必要である。また、Ni基合金同士の溶接部即ち第1の部材同士の溶接部では、1段目及び2段目の時効処理を行う必要があり、Ni基合金と高クロム鋼即ち第1の部材と第2の部材との溶接部は溶接後熱処理を施す必要がある。前記第1の部材がNi基合金であり、第2の部材が高クロム鋼であれば、前記2段目の時効処理条件と前記第1の部材と第2の部材との溶接部の溶接後熱処理条件とはほぼ同じである。
そこで、前記1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後熱処理とを同温度で同時に行うことで、前記2段目の時効と前記第1の部材と第2の部材との溶接部の溶接後熱処理を同時に行うことができ熱処理に係る時間を短縮することができる。
なお、このとき、前記第1の部材同士の溶接継手及び第1の部材と第2の部材との溶接部だけに局所的に熱処理を行うのではなく、ロータ全体を熱処理すると残留応力のばらつきや変形防止にも効果的である。
また、本発明に係る回転機器のロータは、前記Ni基合金で形成された第1の部材同士の溶接継手に1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、さらに前記第2の部材と第3の部材を溶接し、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを同温度で同時に行って形成してもよい。
前記第1の部材同士の溶接部の2段目の時効条件と、前記第1の部材と第2の部材との溶接部の溶接後熱処理と、前記第2の部材と第3の部材との溶接部の溶接後熱処理条件とはほぼ同じである。
そこで、前記Ni基合金で形成された第1の部材同士の溶接継手に1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、さらに前記第2の部材と第3の部材を溶接し、前記Ni基合金の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを同温度で同時に行うことで、前記2段目の時効と、前記第1の部材と第2の部材との溶接部の溶接後熱処理と、前記前記第2の部材と第3の部材との溶接部の溶接後熱処理とを同時に行うことができ熱処理に係る時間を短縮することができる。
なお、このとき、前記第1の部材同士の溶接継手、第1の部材と第2の部材との溶接部及び第2の部材と第3の部材との溶接部だけに局所的に熱処理を行うのではなく、ロータ全体を熱処理すると残留応力のばらつきや変形防止にも効果的である。
また、課題を解決するためのロータの製造方法の発明として、
室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃、望ましくは14.0×10−6/℃以下であるNi基合金で形成された少なくとも2つの第1の部材同士を溶接によって接合し、該第1の部材同士の溶接継手に1段目の時効処理を施し、前記第1の部材同士が接続された部材の両端部それぞれに、高クロム鋼で形成された第2の部材を溶接によって接合し、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理を同温度で同時に行うことを特徴とする。
さらに、前記第1の部材同士の溶接継手の1段目の時効処理を700〜1000℃で行い、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材および第2の部材の溶接部の溶接後処理とを600〜800℃で実施することが好ましい。
このような温度範囲で熱処理を実施することで、前記各溶接部に充分な強度を持たせることができる。
また、少なくとも2つの前記第1の部材同士を溶接によって接合し、該第1の部材同士の溶接継手に1段目の時効処理を施し、前記第1の部材同士が接続された部材の両端部それぞれに、高クロム鋼で形成された第2の部材を溶接によって接合し、前記第2の部材の少なくとも一端側に、低合金鋼で形成された第3の部材を溶接によって接合し、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを同温度で同時に行うことを特徴とする。
さらに、前記第1の部材同士の溶接継手の1段目の時効処理を700〜1000℃で行い、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを600〜800℃で実施することが好ましい。
このような温度範囲で熱処理を実施することで、前記各溶接部に充分な強度を持たせることができる。
以上記載のごとく本発明によれば、Ni基合金と12Cr鋼などの他の耐熱性鉄鋼材料とを溶接によって接合しても、該接合部における強度を維持することができ、700℃級の蒸気条件でも採用可能なタービンロータ及びその製造方法を提供することができる。
実施例1に係るタービンロータの構成を模式的に示した平面図である。 実施例1に係るタービンロータの製造工程を表した概略図である。
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は、実施例1に係るタービンロータ1の構成を模式的に示した平面図である。
(構成)
まず図1を用いて実施例1に係る例えば650℃以上の高温蒸気が導入される蒸気タービンに用いられるタービンロータの構成について説明する。
図1に示すように、タービンロータ1は、2つのNi基合金部11a、11b、2つの高クロム鋼部12a、12b、2つの低クロム鋼部13a、13bから構成されている。
2つのNi基合金部11aと11bは溶接によって接合されて溶接継手21を形成し、2つのNi基合金部11a、11bはそれぞれ高クロム鋼部12a、12bと溶接によって接合されてそれぞれ溶接継手22a、22bを形成し、さらに高クロム鋼部12a、12bはそれぞれ低クロム鋼部13a、13bと溶接によって接合されてそれぞれ溶接継手23aを形成することで、一端部から低クロム鋼部13a、溶接継手23a、高クロム鋼部12a、溶接継手22a、Ni基合金部11a、溶接継手21、Ni基合金部11b、溶接継手22b、高クロム鋼部12b、溶接継手23b、低クロム鋼部13bの順に一体化されたタービンロータ1を形成している。
また、前記Ni基合金部11a、11b及び溶接継手21は650℃以上の温度の蒸気に晒される位置に配置され、溶接継手22a並びに22b、及び高クロム鋼部12a並びに12bは650℃以下の温度の蒸気に晒される位置に配置され、前部溶接継手23a並びに23b、及び低クロム鋼13a並びに13bは更に低い温度の位置に配置される。これらの配置温度は前記各部位を構成する材料を安定して使用可能な高温限界温度以下であれば他の温度に設定することもできる。
(材料)
次に、タービンロータ1を構成する、Ni基合金部11a、11b、高クロム鋼部12a、12b、低クロム鋼部13a、13bの材料について説明する。
(A)Ni基合金部
Ni基合金部は、650℃以上であって好ましくは700℃程度の高温であっても安定して使用可能な耐熱性を有し、室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃、望ましくは14.0×10−6/℃以下であるNi基合金で形成されている。前記範囲の線膨張係数を有するNi基合金を用いることで、Ni基合金部11a、11bと高クロム鋼部12a、12bとの線膨張係数の差が小さくなるため、Ni基合金部11a、11bと高クロム鋼部12a、12bとの間の溶接継手22a、22bにかかる熱応力も小さくなり、従って前記溶接継手においても充分な強度を維持して、Ni基合金部11a、11bと高クロム鋼部12a、12bを接合することができる。
前記線膨張係数が12.4×10−6/℃〜14.5×10−6/℃、望ましくは14.0×10−6/℃以下であるNi基合金として表1にまとめた(1)〜(4)の化学組成範囲の材料が挙げられる。
なお、Ni基合金は、(1)〜(4)の範囲に限定されるものではなく、650℃以上の高温であっても安定して使用可能な耐熱性を有し、室温から700℃までの平均線膨張係数が前記の12.4×10−6/℃〜14.5×10−6/℃、望ましくは14.0×10−6/℃以下の範囲のNi基合金であれば他の組成であってもよい。
Figure 0004929399
表1中における%は重量%を意味する。
また、表1中における(1)〜(4)の組成のNi基合金には不可避的不純物も含まれるが、その含有率は0%に近いほど好ましい。
(B)高クロム鋼部
高クロム鋼部は、650℃程度の温度まで安定して使用可能な耐熱性を有し、室温から700℃までの平均線膨張係数が11.2×10−6/℃〜12.4×10−6/℃である高クロム鋼で形成されている。前記範囲の線膨張係数を有するNi基合金を用いることで、Ni基合金部11a、11bと高クロム鋼部12a、12bとの線膨張係数の差が小さくなるため、Ni基合金部11a、11bと高クロム鋼部12a、12bとの間の溶接継手22a、22bにかかる熱応力も小さくなり、従って前記溶接継手においても充分な強度を維持して、Ni基合金部11a、11bと高クロム鋼部12a、12bを接合することができる。
前記線膨張係数が11.2×10−6/℃〜12.4×10−6/℃である高クロム鋼として表2にまとめた(5)(6)の化学組成範囲の材料が挙げられる。
なお、高クロム鋼は、(5)(6)の範囲に限定されるものではなく、650℃程度の温度まで安定して使用可能な耐熱性を有し、室温から700℃までの平均線膨張係数が前記の11.2×10−6/℃〜12.4×10−6/℃の範囲の高クロム鋼であれば他の組成であってもよい。
このような範囲の高クロム鋼には、一般にタービンロータに使用される12Cr鋼も含まれており、従来よりタービンロータに使用されている12Cr鋼を高クロム鋼として使用できる。
Figure 0004929399
表2中における%は重量%を意味する。
また、表2中における(5)(6)の組成の高クロム鋼には不可避的不純物も含まれるが、その含有率は0%に近いほど好ましい。
(C)低クロム鋼部
低クロム鋼部は、前記高クロム鋼部よりも低温である低クロム鋼部が上昇する温度まで安定して使用可能な耐熱性を有するものであればよく、例えば2.25CrMoV鋼又はCrMoV鋼などが挙げられる。
なお、低クロム鋼部は、2.25CrMoV鋼又はCrMoV鋼に限定されるものではなく、前記高クロム鋼部よりも低温である低クロム鋼部が上昇する温度であっても安定して使用可能な耐熱性を有する低クロム鋼であれば他の組成であってもよい。
(製造方法)
次に図1及び図2を参照しながら実施例1に係るタービン1の製造方法について説明する。
図2は実施例1に係るタービン1の製造工程(製造手順)を表した概略図である。
図2においては4種類の製造工程を概略図で示しており、第1の製造工程は101→102→103→104→111→112→115→116→117の工程であり、第2の製造工程は101→102→103→104→111→112→113→114の工程であり、第3の製造工程は101→102→103→104→105→108→109→110の工程であり、第4の製造工程は101→102→103→104→105→106→107である。
以下においては第1の製造工程から順に説明していく。
(A)第1の製造工程
第1の製造工程においては、101でまずNi基合金部11a、11bの溶体化処理を行う。
次に102でNi基合金部同士を溶接し、必要に応じて103でNi基合金同士継手21の溶体化処理を実施する。次いで104でNi基合金同士継手21の1段目時効を行う(a)。1段目時効は700〜1000℃の範囲で行う。
104で前記1段目時効が終了すると、111で引き続いて、1段目時効を終えたNi基合金同士継手21(a)の2段目時効を行う。2段目時効は600〜800℃で実施する。
111で2段目時効が終了すると112でNi基合金部11a、11bと高クロム鋼部12a、12bとを溶接し(b´´)、115で該溶接部(b´´)の熱処理を実施する。該熱処理は600〜800℃で実施する。
115でNi基合金部11a、11bと高クロム鋼部12a、12bとの溶接部(b´´)の熱処理が終了すると、116で高クロム鋼部12a、12bと低クロム鋼部13a、13bとを溶接し(c´´´)、117で該溶接部(c´´´)に熱処理を施す。該熱処理は600〜800℃で実施する。
以上の101から117の工程により、Ni基合金同士の溶接部は1段目時効(104)及び2段目時効(111)が施され、Ni基合金と高クロム鋼の溶接部は溶接後に熱処理(115)が施され、高クロム鋼と低クロム鋼の溶接部は溶接後に熱処理(117)が施され、溶接継手部にも充分な強度を持たせたロータを製造することができる。
(B)第2の製造工程
第2の製造工程は、前記第1の製造工程と図2における112までは同じであるのでその説明を省略する。
112でNi基合金部11a、11bと高クロム鋼部12a、12bとを溶接(b´´)すると、次いで113で高クロム鋼部12a、12bと低クロム鋼部13a、13bとを溶接(c´´)する。
113で前記溶接(c´´)が終了すると、114でNi基合金部11a、11bと高クロム鋼部12a、12bの溶接部(b´´)と高クロム鋼部12a、12bと低クロム鋼部13a、13bとを溶接部(c´´)とに熱処理を施す。該熱処理は600〜800℃で実施する。
以上の工程によりロータ1が製造される。
第2の製造工程においては、Ni基合金部11a、11bと高クロム鋼部12a、12bの溶接部の熱処理と、高クロム鋼部12a、12bと低クロム鋼部13a、13bとの溶接部の熱処理とを同じ温度で実施できることを利用して、112、113で溶接を実施した後、114で同時に熱処理を実施した。これにより、第1の製造工程よりも短時間でタービンロータ1の製造が可能となる。
(C)第3の製造工程
第3の製造工程は、前記第1及び第2の製造工程と図2における104までは同じであるのでその説明を省略する。
104でNi基合金同士継手21の1段目の時効処理が終了すると、105でNi基合金部11a、11bと高クロム鋼部12a、12bとを溶接(b)する。該溶接が終了するとロータ全体に600〜800℃で熱処理を施す。これによりNi基同士継手21の2段時効が成立するとともに、Ni基合金部と高クロム鋼部との溶接部の溶接後の熱処理も成立する。
108で熱処理が終了すると、109で高クロム鋼部12a、12bと低クロム鋼部13a、13bとを溶接(c´)し、110で該溶接部(c´)に600〜800℃で熱処理を施す。
以上の工程によりロータ1が製造される。
第3の製造工程においては、Ni基合金部同士継手の2段目時効と、Ni基合金部11a、11bと高クロム鋼部12a、12bの溶接部の熱処理とを同じ温度で実施できることを利用して、該2段目時効と熱処理を108で同時に実施した。これにより、第1の製造工程よりも短時間でタービンロータ1の製造が可能となるとともに、108でロータ全体を熱処理することで残留応力のばらつきや変形防止にも効果的である。
(D)第4の製造工程
第4の製造工程は、前記第3の製造工程と図2における105までは同じであるのでその説明を省略する。
105でNi基合金部11a、11bと高クロム鋼部12a、12bとを溶接(b)すると、次いで106で高クロム鋼部12a、12bと低クロム鋼部13a、13bとを溶接(c)する。該溶接が終了するとロータ全体に600〜800℃で熱処理を施す。これによりNi基同士継手21の2段時効が成立するとともに、Ni基合金部と高クロム鋼部との溶接部の溶接後の熱処理も成立し、さらに高クロム鋼部と低クロム鋼部との溶接部の溶接後の熱処理も成立する。
以上の工程によりロータ1が製造される。
第4の製造工程においては、Ni基合金部同士継手の2段目時効と、Ni基合金部11a、11bと高クロム鋼部12a、12bの溶接部の熱処理と、高クロム鋼部12a、12bと低クロム鋼部13a、13bの溶接部の熱処理とを同じ温度で実施できることを利用して、該2段目時効と熱処理を107で同時に実施した。これにより、第1〜第3の何れの製造工程よりも短時間でタービンロータ1の製造が可能となるとともに、107でロータ全体を熱処理することで残留応力のばらつきや変形防止にも効果的である。
Ni基合金と12Cr鋼などの他の耐熱性鉄鋼材料とを溶接によって接合しても、該接合部における強度を維持することができ、700℃級の蒸気条件でも採用可能なタービンロータ及びその製造方法として利用することができる。

Claims (14)

  1. 蒸気又は燃焼ガスが作動流体として導入される回転機器に備えられ、通過する作動流体温度に応じて異なる強度の複数の部材を溶接によって接合した回転機器のロータにおいて、
    室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃であるNi基合金で形成された少なくとも2つの第1の部材と、高クロム鋼で形成された少なくとも2つの第2の部材とから構成され、
    記2つ以上の第1の部材同士を溶接によって接合し、
    該第1の部材同士が接合された部材の両端部それぞれに、前記第2の部材を溶接によって接合するとともに、
    前記作動流体の入口にあたる部位を前記Ni基合金で形成した第1の部材とし、
    更に前記Ni基合金で形成された第1の部材同士の溶接継手に1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後熱処理とを同温度で同時に行って形成されることを特徴とする回転機器のロータ。
  2. 前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜15%、Mo、W及びReの1種又は2種以上をMo+(W+Re)/2:17超〜25%、Al:0.2〜2%、Ti:0.5〜4.5%、Fe:10%以下、B:0.02%以下及びZr:0.2%以下の1種又は2種を含有し、Al+Tiの原子%が2.5〜7.0%であり、残部Niと不可避的不純物からなることを特徴とする請求項に記載の回転機器のロータ。
  3. 前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜20%、Mo:17〜26%、Al:0.1〜2.0%、Ti:0.1〜2.0%、Fe:10%以下、B:0.02%以下、Zr:0.2%以下、W及びReとを含有し、残部の成分は実質的にNiからなり、Al+Tiの原子%が1〜5.5%であり、次式:
    17≦Mo+(W+Re)/2≦27
    を満たすことを特徴とする請求項に記載の回転機器のロータ。
  4. 前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜20%、Mo、W及びReの1種又は2種以上をMo+(W+Re)/2:17〜27%、Al:0.1〜2%、Ti:0.1〜2%、Nb及びTaをNb+Ta/2:1.5%以下、Fe:10%以下、Co:5%以下、B:0.001〜0.02%、Zr:0.001〜0.2%を含有し、残部Niと不可避的不純物からなることを特徴とする請求項に記載の回転機器のロータ。
  5. 前記Ni基合金が、重量%で、C:0.15%以下、Si:1%以下、Mn:1%以下、Cr:5〜20%未満、Mo、W及びReの1種又は2種以上をMo+(W+Re)/2:5〜20%未満、W:10%以下、Al:0.1〜2.5%、Ti:0.10〜0.95%、Nb及びTaをNb+Ta/2:1.5%以下、B:0.001〜0.02%、Zr:0.001〜0.2%、Fe:4%以下を含有し、Al+Ti+Nb+Taの原子%が2.0〜6.5%であり、残部Niと不可避的不純物からなることを特徴とする請求項に記載の回転機器のロータ。
  6. 前記高クロム鋼が、室温から700℃までの平均線膨張係数が11.2×10−6/℃〜12.4×10−6/℃であり、重量%で、Cr:7%を超え10.0%未満、Ni:1.5%以下、V:0.10%〜0.30%以下、Nb:0.02〜0.10%、N:0.01〜0.07%、C:0.10%以上、Si:0.10%以下、Mn:0.05〜1.5%、Al:0.02%以下、及びMo並びにWをA(1.75%Mo、0.0%W)、B(1.75%Mo、0.5%W)、C(1.53%Mo、0.5%W)、D(1.3%Mo、1.0%W)、E(2.0%Mo、1.0%W)、F(2.5%Mo、0.5%W)、G(2.5%Mo、0.0%W)、Aを結ぶ直線の内側(直線を含まず)の量を含有し、残部が鉄及び付随的不純物よりなることを特徴とする請求項1〜5の何れかに記載の回転機器のロータ。
  7. 前記高クロム鋼が、室温から700℃までの平均線膨張係数が11.2×10−6/℃〜12.4×10−6/℃であり、重量%で、C:0.08〜0.25%、Si:0.10%以下、Mn:0.10%以下、Ni:0.05〜1.0%、Cr:10.0〜12.5%、Mo:0.6〜1.9%、W:1.0〜1.95%、V:0.10〜0.35%、Nb:0.02〜0.10%、N:0.01〜0.08%、B:0.001〜0.01%、Co:2.0〜8.0%を含有し、残部が鉄及び付随的不純物よりなることを特徴とする請求項1〜6の何れかに記載の回転機器のロータ。
  8. 蒸気又は燃焼ガスが作動流体として導入される回転機器に備えられ、通過する作動流体温度に応じて異なる強度の複数の部材を溶接によって接合した回転機器のロータにおいて、
    室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃であるNi基合金で形成された第1の部材と、高クロム鋼で形成された第2の部材とを溶接によって接合することで構成され、
    前記作動流体の入口にあたる部位を前記Ni基合金で形成した第1の部材で構成するとともに、
    前記高クロム鋼で形成された第2の部材の少なくとも一端側に、
    低合金鋼で形成された第3の部材を溶接によって接合し、
    前記Ni基合金で形成された第1の部材同士の溶接継手に1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、さらに前記第2の部材と第3の部材を溶接し、前記Ni基合金の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを同温度で同時に行って形成されることを特徴とする回転機器のロータ。
  9. 前記低合金鋼が、2.25CrMoV鋼又はCrMoV鋼であることを特徴とする請求項に記載の回転機器のロータ。
  10. 前記Ni基合金で形成された第1の部材同士の溶接継手に1段目の時効処理を施した後、前記第1の部材と前記第2の部材とを溶接し、さらに前記第2の部材と第3の部材を溶接し、前記Ni基合金の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを同温度で同時に行って形成されることを特徴とする請求項又はに記載の回転機器のロータ。
  11. 室温から700℃までの平均線膨張係数が12.4×10−6/℃〜14.5×10−6/℃であるNi基合金で形成された少なくとも2つの第1の部材同士を溶接によって接合し、
    該第1の部材同士の溶接継手に1段目の時効処理を施し、
    前記第1の部材同士が接続された部材の両端部それぞれに、高クロム鋼で形成された第2の部材を溶接によって接合し、
    前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理を同温度で同時に行うことを特徴とする回転機器のロータの製造方法。
  12. 前記第1の部材同士の溶接継手の1段目の時効処理を700〜1000℃で行い、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理とを600〜800℃で実施することを特徴とする請求項11記載の回転機器のロータの製造方法。
  13. 少なくとも2つの前記第1の部材同士を溶接によって接合し、
    該第1の部材同士の溶接継手に1段目の時効処理を施し、
    前記第1の部材同士が接続された部材の両端部それぞれに、高クロム鋼で形成された第2の部材を溶接によって接合し、
    前記第2の部材の少なくとも一端側に、低合金鋼で形成された第3の部材を溶接によって接合し、
    前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを同温度で同時に行うことを特徴とする請求項11記載の回転機器のロータの製造方法。
  14. 前記第1の部材同士の溶接継手の1段目の時効処理を700〜1000℃で行い、前記第1の部材同士の溶接継手の2段目の時効処理と、前記第1の部材と第2の部材の溶接部の溶接後処理と、前記第2の部材と第3の部材の溶接部の溶接後処理とを600〜800℃で実施することを特徴とする請求項13記載の回転機器のロータの製造方法。
JP2010517953A 2008-06-18 2009-06-11 回転機器のロータ及びその製造方法 Expired - Fee Related JP4929399B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010517953A JP4929399B2 (ja) 2008-06-18 2009-06-11 回転機器のロータ及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008159262 2008-06-18
JP2008159262 2008-06-18
JP2010517953A JP4929399B2 (ja) 2008-06-18 2009-06-11 回転機器のロータ及びその製造方法
PCT/JP2009/061058 WO2009154243A1 (ja) 2008-06-18 2009-06-11 回転機器のロータ及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2009154243A1 JPWO2009154243A1 (ja) 2011-12-01
JP4929399B2 true JP4929399B2 (ja) 2012-05-09

Family

ID=41434159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010517953A Expired - Fee Related JP4929399B2 (ja) 2008-06-18 2009-06-11 回転機器のロータ及びその製造方法

Country Status (6)

Country Link
US (1) US8911880B2 (ja)
EP (1) EP2180147B1 (ja)
JP (1) JP4929399B2 (ja)
KR (1) KR101193727B1 (ja)
CN (1) CN101765702B (ja)
WO (1) WO2009154243A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590508B2 (en) 2014-10-10 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing shaft body

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101207147B1 (ko) * 2008-06-18 2012-11-30 미츠비시 쥬고교 가부시키가이샤 Ni기 합금-고크롬강 구조물 및 그 제조 방법
US8944761B2 (en) * 2011-01-21 2015-02-03 General Electric Company Welded rotor, a steam turbine having a welded rotor and a method for producing a welded rotor
US20120189459A1 (en) * 2011-01-21 2012-07-26 General Electric Company Welded Rotor, a Steam Turbine having a Welded Rotor and a Method for Producing a Welded Rotor
US20120189460A1 (en) * 2011-01-21 2012-07-26 General Electric Company Welded Rotor, a Steam Turbine having a Welded Rotor and a Method for Producing a Welded Rotor
JP2012207594A (ja) 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd 回転機械のロータ及び回転機械
US9388697B2 (en) * 2012-07-17 2016-07-12 Solar Turbines Incorporated First stage compressor disk configured for balancing the compressor rotor assembly
KR20150018394A (ko) * 2013-08-08 2015-02-23 미츠비시 히타치 파워 시스템즈 가부시키가이샤 증기 터빈 로터
JP5763826B2 (ja) * 2014-10-28 2015-08-12 三菱重工業株式会社 蒸気タービンのロータ
JP5869173B2 (ja) * 2015-06-10 2016-02-24 三菱重工業株式会社 蒸気タービンのロータ
CN105112728B (zh) * 2015-09-29 2017-03-22 钢铁研究总院 一种700℃超超临界汽轮机转子用耐热合金及其制备方法
CN111250938B (zh) * 2020-03-19 2021-03-23 台州市烁达机械有限公司 一种前级泵转子qpq加工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064805A (ja) * 1998-06-09 2000-02-29 Mitsubishi Heavy Ind Ltd 蒸気タ―ビンの異材溶接ロ―タ
JP2002121654A (ja) * 2000-10-13 2002-04-26 Hitachi Ltd 蒸気タービン用ロータシャフトとそれを用いた蒸気タービン及び蒸気タービン発電プラント
JP2002307169A (ja) * 2001-03-14 2002-10-22 Alstom (Switzerland) Ltd 互いに異なる温度の熱で負荷される2つの部分を互いに溶接するための方法ならびにこのような方法により製作されたターボ機械
JP2003013161A (ja) * 2001-06-28 2003-01-15 Mitsubishi Heavy Ind Ltd オーステナイト系低熱膨張Ni基超合金およびその製造方法
JP2005121023A (ja) * 2003-10-14 2005-05-12 Alstom Technology Ltd 熱的な機械に用いられる溶接されたロータならびにこのようなロータを製作するための方法
JP2007321630A (ja) * 2006-05-31 2007-12-13 Toshiba Corp 蒸気タービンロータ及び蒸気タービン
JP2008088525A (ja) * 2006-10-04 2008-04-17 Toshiba Corp タービンロータおよび蒸気タービン
JP2008093668A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 蒸気タービン溶接ロータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103972A (ja) 1981-12-16 1983-06-21 Hitachi Ltd 超合金耐熱材料の溶接方法
JPH08170132A (ja) 1994-12-16 1996-07-02 Honda Motor Co Ltd 鉄系合金とニッケル合金との接合部材
JP2000282808A (ja) 1999-03-26 2000-10-10 Toshiba Corp 蒸気タービン設備
JP4262414B2 (ja) * 2000-12-26 2009-05-13 株式会社日本製鋼所 高Crフェライト系耐熱鋼
JP4546318B2 (ja) 2005-04-15 2010-09-15 株式会社日立製作所 Ni基合金部材とその製造法及びタービンエンジン部品並びに溶接材料とその製造法
JP2007291966A (ja) 2006-04-26 2007-11-08 Toshiba Corp 蒸気タービンおよびタービンロータ
KR101207147B1 (ko) 2008-06-18 2012-11-30 미츠비시 쥬고교 가부시키가이샤 Ni기 합금-고크롬강 구조물 및 그 제조 방법
JP4719780B2 (ja) 2008-09-09 2011-07-06 株式会社日立製作所 タービン用の溶接型ロータおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064805A (ja) * 1998-06-09 2000-02-29 Mitsubishi Heavy Ind Ltd 蒸気タ―ビンの異材溶接ロ―タ
JP2002121654A (ja) * 2000-10-13 2002-04-26 Hitachi Ltd 蒸気タービン用ロータシャフトとそれを用いた蒸気タービン及び蒸気タービン発電プラント
JP2002307169A (ja) * 2001-03-14 2002-10-22 Alstom (Switzerland) Ltd 互いに異なる温度の熱で負荷される2つの部分を互いに溶接するための方法ならびにこのような方法により製作されたターボ機械
JP2003013161A (ja) * 2001-06-28 2003-01-15 Mitsubishi Heavy Ind Ltd オーステナイト系低熱膨張Ni基超合金およびその製造方法
JP2005121023A (ja) * 2003-10-14 2005-05-12 Alstom Technology Ltd 熱的な機械に用いられる溶接されたロータならびにこのようなロータを製作するための方法
JP2007321630A (ja) * 2006-05-31 2007-12-13 Toshiba Corp 蒸気タービンロータ及び蒸気タービン
JP2008088525A (ja) * 2006-10-04 2008-04-17 Toshiba Corp タービンロータおよび蒸気タービン
JP2008093668A (ja) * 2006-10-06 2008-04-24 Hitachi Ltd 蒸気タービン溶接ロータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590508B2 (en) 2014-10-10 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing shaft body

Also Published As

Publication number Publication date
CN101765702B (zh) 2013-05-15
US8911880B2 (en) 2014-12-16
EP2180147A1 (en) 2010-04-28
US20100296938A1 (en) 2010-11-25
CN101765702A (zh) 2010-06-30
KR101193727B1 (ko) 2012-10-23
JPWO2009154243A1 (ja) 2011-12-01
EP2180147A4 (en) 2015-06-03
WO2009154243A1 (ja) 2009-12-23
KR20100024504A (ko) 2010-03-05
EP2180147B1 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP4929399B2 (ja) 回転機器のロータ及びその製造方法
JP5073051B2 (ja) Ni基合金−高クロム鋼構造物及びその製造方法
JP6266196B2 (ja) 多元合金物品及びその製造方法
JP5011931B2 (ja) 蒸気タービン溶接ロータ
JP2008088525A (ja) タービンロータおよび蒸気タービン
CN107363356A (zh) 制作构件的方法和构件
JP2009520603A (ja) 低圧タービンにおける溶接されたロータの製造方法
US7108483B2 (en) Composite gas turbine discs for increased performance and reduced cost
JP2001317301A (ja) 蒸気タービンロータおよびその製造方法
JP4839388B2 (ja) 溶接材料および溶接ロータ
EP2786827B1 (en) Turbine body
JP2006297474A (ja) Ti−Al合金と鋼材との接合体および接合方法
JP6189737B2 (ja) 蒸気タービン低圧ロータ及びその製造方法
JP4995317B2 (ja) 低圧タービン用ロータ
JP5843718B2 (ja) Ni基溶接材および異材溶接タービンロータ
WO2016111249A1 (ja) オーステナイト系耐熱鋼およびタービン部品
JP5973870B2 (ja) 蒸気タービンロータの溶接方法
US20130177431A1 (en) Multi-material rotor, a steam turbine having a multi-material rotor and a method for producing a multi-material rotor
JP7288374B2 (ja) 蒸気タービン
JP2011080107A (ja) 蒸気タービンの鍛造部品用のNi基合金、蒸気タービンのタービンロータ、蒸気タービンの動翼、蒸気タービンの静翼、蒸気タービン用螺合部材、および蒸気タービン用配管
CN115044818A (zh) 一种650°c及以上等级汽轮机用转子及其制备方法
JP2004148346A (ja) 溶接材料、これを用いた溶接方法及びタービンロータ
JP2010084550A (ja) 蒸気タービン,タービンロータ及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4929399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees