JP4917652B2 - 基板処理方法 - Google Patents

基板処理方法 Download PDF

Info

Publication number
JP4917652B2
JP4917652B2 JP2010029338A JP2010029338A JP4917652B2 JP 4917652 B2 JP4917652 B2 JP 4917652B2 JP 2010029338 A JP2010029338 A JP 2010029338A JP 2010029338 A JP2010029338 A JP 2010029338A JP 4917652 B2 JP4917652 B2 JP 4917652B2
Authority
JP
Japan
Prior art keywords
wafer
substrate
resist pattern
processing
line width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010029338A
Other languages
English (en)
Other versions
JP2011166027A (ja
Inventor
崇文 丹羽
泰之 中村
秀治 京田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010029338A priority Critical patent/JP4917652B2/ja
Priority to TW99140794A priority patent/TWI471906B/zh
Priority to KR1020110002503A priority patent/KR20110093611A/ko
Priority to US13/022,811 priority patent/US8110325B2/en
Priority to CN201110036950.6A priority patent/CN102169826B/zh
Publication of JP2011166027A publication Critical patent/JP2011166027A/ja
Application granted granted Critical
Publication of JP4917652B2 publication Critical patent/JP4917652B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/60Substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0035Multiple processes, e.g. applying a further resist layer on an already in a previously step, processed pattern or textured surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、基板を処理する基板処理方法に関する。
半導体デバイスの製造においては、被処理基板である半導体ウェハ(以下、単に「ウェハ」という)上に回路パターンを形成するためのパターニング技術としてフォトリソグラフィが用いられている。フォトリソグラフィを用いた回路パターンの形成は、ウェハ上にレジスト液を塗布してレジスト膜を形成し、このレジスト膜に光を照射して回路パターンに対応するようにレジスト膜を露光した後、これを現像処理するといった手順で行われる。
半導体デバイスは近時、動作速度の向上等の観点から高集積化の傾向にあるため、フォトリソグラフィを用いたパターニング技術においては、ウェハ上に形成される回路パターンの微細化が要求されている。このため、従来から露光に用いる光を短波長化することが進められているが、45nmノード以降の超微細な半導体デバイスに十分対応できていないのが現状である。
そこで、45nmノード以降の超微細な半導体デバイスに対応可能なパターニング技術として、一つの層のパターン形成に際して、フォトリソグラフィによるパターニングを複数回行う技術が提案されている(例えば特許文献1)。この中で、パターニング処理を2回行う技術をダブルパターニングと称している。
また、ダブルパターニングの一つの技術として、LLE(リソグラフィ−リソグラフィ−エッチング:Lithography Lithography Etching)がある。LLEは、1回目のパターニング処理を行って1回目のレジストパターンを形成し、2回目のパターニング処理を行って2回目のレジストパターンを形成し、1回目及び2回目のレジストパターンをマスクとして、エッチングを行うものである。
特開平7−147219号公報
ところが、上述したような、LLEによるダブルパターニングを行ってレジストパターンを形成する場合、次のような問題がある。
パターニング処理を1回行う通常のシングルパターニングでは、パターニング処理を行うことによって形成されるレジストパターンの線幅CD(Critical Dimension)のウェハ間又はウェハ面内におけるばらつきを低減させるためには、パターニング処理における処理条件を調整又は補正する必要がある。
一方、LLEによるダブルパターニングでは、1回目のパターニング処理を行うことによって1回目のレジストパターン(第1のレジストパターン)を形成し、次に2回目のパターニング処理を行って2回目のレジストパターン(第2のレジストパターン)を形成する。第1のレジストパターンの線幅CDのウェハ間又はウェハ面内におけるばらつきを低減させるためには、1回目のパターニング処理における処理条件を調整又は補正する必要がある。また、第2のレジストパターンの線幅CDのウェハ間又はウェハ面内におけるばらつきを低減させるためには、2回目のパターニング処理における処理条件を調整又は補正する必要がある。
しかしながら、前述した例えば45nmノード以降の超微細なパターニングを行う場合、1回目のパターニング処理における処理条件を調整又は補正するだけでは、第1のレジストパターンの線幅CDのウェハ間又はウェハ面内におけるばらつきを低減することができない。また、2回目のパターニング処理における処理条件を調整又は補正するだけでは、第2のレジストパターンの線幅CDのウェハ間又はウェハ面内におけるばらつきを低減することができない。
本発明は上記の点に鑑みてなされたものであり、LLEによるダブルパターニングを行うことによって微細なレジストパターンを形成する際に、基板間及び基板面内での1回目及び2回目のレジストパターンの線幅のばらつきを低減できる基板処理方法を提供する。
上記の課題を解決するために本発明では、次に述べる手段を講じたことを特徴とするものである。
本発明の一実施例によれば、基板を処理する基板処理方法において、第1のレジスト膜が形成された前記基板を露光し、露光された前記基板を加熱処理し、加熱処理された前記基板を現像処理することによって第1のレジストパターンを形成する第1の処理工程と、前記第1のレジストパターンが形成された前記基板上に第2のレジスト膜を形成し、前記第2のレジスト膜が形成された前記基板を露光し、露光された前記基板を加熱処理し、加熱処理された前記基板を現像処理することによって第2のレジストパターンを形成する第2の処理工程とを有し、一の基板に前記第2の処理工程を行った後、前記一の基板に形成された前記第2のレジストパターンの線幅を測定し、測定された前記第2のレジストパターンの線幅の測定値に基づいて、前記第1の処理工程の第1の処理条件を補正し、補正された前記第1の処理条件で他の基板に前記第1の処理工程を行い、前記一の基板に形成された前記第1のレジストパターンの線幅を測定し、測定された前記第1のレジストパターンの線幅の測定値に基づいて、前記第2の処理工程の第2の処理条件を補正し、補正された前記第2の処理条件で前記他の基板に前記第2の処理工程を行う、基板処理方法が提供される。
本発明によれば、LLEによるダブルパターニングを行うことによって微細なレジストパターンを形成する際に、基板間及び基板面内での1回目及び2回目のレジストパターンの線幅のばらつきを低減できる。
第1の実施の形態に係る基板処理システムの構成を示す概略斜視図である。 第1の実施の形態に係る基板処理システムのDEV層部分を示す概略水平断面図である。 第1の実施の形態に係る基板処理システムの概略を示す側面図である。 DEV層のレイアウトを示す斜視図である。 DEV層の加熱ユニットとメインアームを示す縦断面図である。 線幅測定装置の構成の概略を示す縦断面図である。 第1の実施の形態に係る基板処理方法の各工程の手順を説明するためのフローチャートである。 第1の実施の形態に係る基板処理方法の各工程におけるウェハの状態を示す断面図である。 第1又は第2のレジストパターンのスペース幅と、第1又は第2の温度との関係を示すグラフである。 スペース幅の温度に対する感度の値を比較して示すグラフである。 第2の実施の形態に係る基板処理方法の各工程の手順を説明するためのフローチャートである。 第2の実施の形態に係る基板処理方法の各工程におけるウェハの状態を示す断面図である。 第1又は第2のレジストパターンのスペース幅と、第1又は第2の温度との関係を示すグラフである。 スペース幅の温度に対する感度の値を比較して示すグラフである。
次に、本発明を実施するための形態について図面と共に説明する。
(第1の実施の形態)
始めに、図1から図10を参照し、第1の実施の形態に係る基板処理方法、その基板処理方法を行うための基板処理システムについて説明する。
最初に、本実施の形態に係る基板処理システムについて説明する。図1は、本実施の形態に係る基板処理システムの構成を示す概略斜視図である。図2は、基板処理システムのDEV層部分を示す概略水平断面図であり、図3は、基板処理システムの概略を示す側面図である。
この基板処理システム100は、ウェハWに対してフォトレジストを含む塗布膜の塗布処理および露光後の現像処理を行うものとして構成されており、2回パターニング処理を行うダブルパターニングに対応するものである。また、基板処理システム100は、大気雰囲気中のクリーンルーム内に設置されている。基板処理システム100は、キャリアブロックS1、処理ブロックS2及びインターフェイスブロックS3を備えている。キャリアブロックS1は、被処理基板であるウェハWが複数枚収納されたキャリア20を搬入出するためのものである。処理ブロックS2は、ウェハWに対して感光材料であるフォトレジスト膜を含む塗布膜を形成する塗布処理、および所定の露光パターンに露光されたフォトレジスト膜を現像する現像処理を行うためのものである。基板処理システム100は、インターフェイスブロックS3に露光装置200が接続した状態で使用される。
図1に示すように、キャリアブロックS1の下部には、基板処理装置100の全体を制御する本体制御部10が設けられている。この本体制御部10の詳細は後述する。また、露光装置200にも図示しない制御部が設けられている。
なお、図1〜3において、基板処理システム100の幅方向がX方向、それと直交するキャリアブロックS1、処理ブロックS2、インターフェイスブロックS3の配列方向がY方向、鉛直方向がZ方向である。
キャリアブロックS1には、キャリア20を複数個載置可能な載置台21と、この載置台21から見て前方の壁面に設けられる開閉部22と、開閉部22を介してキャリア20からウェハWを取り出すためのトランスファーアームCとが設けられている。このトランスファーアームCは、進退自在、昇降自在、鉛直軸回りに回転自在、キャリア20の配列方向に移動自在に構成されている。
また、図2に示すように、例えばキャリアブロックS1には、ウェハW上のレジストパターンの線幅を測定する線幅測定装置110が設けられている。
処理ブロックS2は、筐体24にて周囲を囲まれた状態とされており、キャリアブロックS1に接続されている。処理ブロックS2は、複数の処理層が積層してなる第1および第2のサブブロックSB1、SB2を有し、これらはY方向に並置されている。
第1のサブブロックSB1においては、下側に2回目の現像処理を行う第2現像処理部12が配置され、その上に1回目の塗布処理を行う第1塗布処理部11が配置されている。第2現像処理部12は、2つの同じ構造を有する現像処理層(DEV層)B1が上下に積層した状態で構成されている。第1塗布処理部11は、下部反射防止膜塗布処理層(BCT層)B2、レジスト塗布処理層(COT層)B3及び上部反射防止膜塗布処理層(TCT層)B4が下から順に積層された構造を有している。下部反射防止膜塗布処理層(BCT層)B2は、レジスト膜の下層側に形成される下部反射防止膜(Bottom Anti Reflective Coating;BARC)の塗布処理を行うためのものである。レジスト塗布処理層(COT層)B3は、レジスト液の塗布処理を行うものである。上部反射防止膜塗布処理層(TCT層)B4は、レジスト膜の上層側に形成される上部反射防止膜(Top Anti Reflective Coating;TARC)の塗布処理を行うためのものである。また、第1のサブブロックSB1は、第2現像処理部12と第1塗布処理部11との間に第1搬送層M1を有し、最下段に第2搬送層M2を有している。
第2のサブブロックSB2においては、下側に1回目の現像処理を行う第1現像処理部14が配置され、その上に2回目の塗布処理を行う第2塗布処理部13が配置されている。第1現像処理部14は、2つの同じ構造を有する現像処理層(DEV層)B5が上下に積層した状態で構成されている。DEV層B5は、DEV層B1と同じ構造を有している。第2塗布処理部13は、洗浄/表面処理層(C/S層)B6、レジスト塗布処理層(COT層)B7及び上部反射防止膜塗布処理層(TCT層)B8が下から順に積層された構造を有している。洗浄/表面処理層(C/S層)B6は、上部反射防止膜(TARC)の洗浄処理および/またはキュア処理等の表面処理を行うためのものである。洗浄/表面処理層(C/S層)B6は、1回目の塗布処理の際の最上層である上部反射防止膜(TARC)の上に2回目の塗布処理を行う際に、表面にパーティクルが付着したまま塗布処理を行うことやリーチングが生じること等を防止する観点から設けられている。レジスト塗布処理層(COT層)B7は、レジスト液の塗布処理を行うためのものである。上部反射防止膜塗布処理層(TCT層)B8は、レジスト膜の上層側に形成される反射防止膜の塗布処理を行うためのものである。また、第2のサブブロックSB2は、第1現像処理部14と第2塗布処理部13との間に第3搬送層M3を有し、最下段に第4搬送層M4を有している。なお、第1および第2のサブブロックSB1、SB2の各層間は仕切り板(ベース体)により区画されている。
また、処理ブロックS2は、そのキャリアブロックS1側部分に、第1の搬送用棚ユニットTU1を有している。第1の搬送用棚ユニットTU1は、処理層B1〜B4および搬送層M1、M2に沿って鉛直方向に複数の受け渡しステージが積層されることによって構成されている。また、処理ブロックS2は、第1のサブブロックSB1と第2のサブブロックSB2との間の部分に、第2の搬送用棚ユニットTU2を有している。第2の搬送用棚ユニットTU2は、処理層B1〜B4および搬送層M1、M2、ならびに処理層B5〜B8および搬送層M3、M4に沿って鉛直方向に複数の受け渡しステージが積層されることによって構成されている。また、処理ブロックS2は、インターフェイスブロックS3側部分に、第3の搬送用棚ユニットTU3を有している。第3の搬送用棚ユニットTU3は、処理層B5〜B8および搬送層M3、M4に沿って鉛直方向に複数の受け渡しステージが積層されることによって構成されている。
次に、図2、図4及び図5を参照し、処理層B1〜B8および搬送層M1〜M4の構成について説明する。図4は、DEV層のレイアウトを示す斜視図である。図5は、DEV層の加熱ユニットとメインアームを示す縦断面図である。
処理層B1〜B8には共通部分が多く含まれており、各処理層は略同様のレイアウトで構成されている。そこでDEV層B1を代表例として説明する。
図2及び図4に示すように、DEV層B1の中央部には、Y方向に沿ってウェハWを搬送するための主搬送アーム(メインアーム)A1が移動する搬送用通路RS1が形成されている。搬送用通路RS1の一方側には、液処理ユニットとして、現像処理を行うための現像ユニット3が、搬送用通路RS1に沿って設けられている。また、搬送用通路RS1の他方側には、加熱・冷却系の熱系処理ユニットを多段化した4個の棚ユニットU1、U2、U3、U4、排気ユニット5が搬送用通路RS1に沿って設けられている。したがって現像ユニット3と棚ユニットU1〜U4とが搬送用通路RS1を挟んで対向して配置されていることとなる。
現像ユニット3は、筐体30を有し、その内部には、ウェハ保持部として、スピンチャック31が、例えば3つ配列されている。スピンチャック31は、図示しない駆動部により、鉛直軸回りに回転可能、かつ昇降可能に構成されている。また、スピンチャック31の周囲にはカップ33が設けられている。
現像ユニット3では、ウェハWは、メインアームA1により搬送用通路RS1に面して設けられた搬送口37を介して筐体30内に搬入され、スピンチャック31に受け渡される。図5に示すように、搬送口37は、シャッタ38により開閉可能となっている。そして、ウェハWがスピンチャック31に受け渡されると、現像ユニット3において、図示しない供給ノズルから当該ウェハWの表面に現像液が供給され、ウェハWの表面に現像液の液膜を形成させる。その後、図示しない洗浄液供給機構からの洗浄液によりウェハWの表面の現像液が洗い流され、その後、ウェハWを回転させて乾燥されることにより現像処理が終了する。
棚ユニットU1〜U4は、現像ユニット3にて行われる処理の前処理および後処理を行うための熱系処理ユニットが2段に積層されており、またその棚ユニットU1〜U4の下部には排気ユニット5が設けられている。そして、熱系処理ユニットの中には、例えば露光後のウェハWを加熱処理したり、現像処理後のウェハWを乾燥させるために加熱処理したりする加熱ユニット4や、加熱ユニット4における処理の後にウェハWを所定温度に調整するための冷却ユニット等が含まれている。具体的には、DEV層B1における棚ユニットU1、U2、U3は、加熱ユニット4が2段に積層され、棚ユニットU4は冷却ユニットが2段に積層されている。
図5に示すように、加熱ユニット4は筐体40を有し、その内部には基台41が設置されている。筐体40の搬送用通路RS1に面した部分には、ウェハWの搬送口42が形成されている。筐体40の中には、粗熱取り用の冷却プレート43と、熱板44とが設けられている。冷却プレート43は、図5で図示する冷却位置と熱板44上の搬送位置との間で移動可能に構成されている。図5中45は、整流用のプレートである。昇降ピン47により冷却プレート43へのウェハWの受け渡しが行われる。また、昇降ピン48により熱板44に対するウェハWの受け渡し、及び冷却プレート43と熱板44との間のウェハWの受け渡しがなされる。
なお棚ユニットU4を構成する冷却ユニットの詳しい説明は省略するが、加熱ユニット4と同様に、搬送用通路RS1に向かって搬送口が開口された筺体を備え、その筺体内部には例えば水冷方式の冷却プレートを備えた構成の装置が用いられる。
また、図5に示すように、排気ユニット5は、筺体50において搬送用通路RS1に面して開口された吸引口51と、筺体の内部の排気室53内を吸引排気する排気管54とを備えている。排気ユニット5は、排気室53内を排気して負圧化することで搬送用通路RS1における気体を吸引してパーティクルを除去する。
メインアームA1は、棚ユニットU1〜U4の各処理ユニット、現像ユニット3、第1の搬送用棚ユニットTU1の受け渡しステージおよび第2の搬送用棚ユニットTU2の受け渡しステージとの間でウェハWの受け渡しを行うように構成されている。メインアームA1は、図5に示すように、例えばウェハWの裏面側周縁領域を支持するための2本のアーム体61、62を備えており、これらアーム体61、62は搬送基体63上を、互いに独立して進退自在に構成されている。また、アーム体61、62は、搬送口37を介し、現像ユニット3の筐体30内に進退自在である。また、搬送基体63は、昇降基体64上に鉛直軸周りに回転自在に設けられている。昇降基体64は、昇降ガイドレール67に沿って昇降可能となっている。棚ユニットU1〜U4の4つの排気ユニット5の前面にはガイドレール65が水平に配置されており、このガイドレール65に沿って昇降ガイドレール67を介してメインアームA1が水平方向に移動可能となっている。ガイドレール65には、吸引口51に対応する位置に孔66が設けられており、この孔66を介して搬送用通路RS1の排気が行われる。昇降ガイドレール67の下端部は、ガイドレール65の下端を跨いで排気ユニット5の内部に至り、昇降ガイドレール67をガイドレール65に沿って移動させるための駆動ベルト55に係止されている。
次に、他の処理層について簡単に説明する。
図3に示すように、DEV層B5は、DEV層B1と全く同様に構成され、メインアームA1と全く同じ構成のメインアームA5によりウェハWの搬送を行う。また、BCT層B2、COT層B3、B7、TCT層B4、B8は、DEV層B1の現像ユニット3の代わりに、反射防止膜用の薬液あるいはレジスト膜形成用の薬液(レジスト液)を塗布する塗布ユニットが用いられる点が異なっている。これらの塗布ユニットの基本構造は現像ユニット3とほぼ同じであるが、現像ユニット3と異なり、スピンチャックを回転させながら塗布用の薬液をウェハWの中心に滴下し、遠心力で広げて塗布膜を形成する。また、これら塗布系の処理ユニットB2〜B4、B7、B8は、棚ユニットU1〜U4を構成するユニットがDEV層B1とは一部異なっている。すなわち、DEV層B1の棚ユニットU1〜U4と同様の加熱ユニットおよび冷却ユニットが含まれている他、いずれかの処理層にウェハWの周縁部を露光する周縁露光ユニットが設けられている。そして、COT層B3、B7の棚ユニットU1〜U4には、ウェハWに対して疎水化処理を行うユニットが含まれている。なお、これら処理層B2、B3、B4、B7、B8にはメインアームA1と全く同じ構成のメインアームA2、A3、A4、A7、A8が設けられており、これらによりウェハWの搬送を行うようになっている。
洗浄/表面処理層(C/S層)B6は、DEV層B1の現像ユニット3の代わりに、洗浄ユニットが用いられる点が異なっている。洗浄ユニットの基本構造は現像ユニット3と同様、スピンチャックの周囲にカップが配置された構造を有しているが、現像ユニット3と異なり、スピンチャックを回転させながら純水または洗浄用薬液をウェハWの中心に滴下し、遠心力で広げてウェハWの表面を洗浄する。また、洗浄/表面処理層(C/S層)B6は、棚ユニットU1〜U4を構成するユニットがDEV層B1とは一部異なっている。すなわち、DEV層B1の棚ユニットU1〜U4と同様の加熱ユニットおよび冷却ユニットが含まれている他、図示しないキュアユニットが設けられている。キュアユニットは、ウェハWに紫外線を照射することによりその最上層にキュア処理を施す。なお、このC/S層B6では、メインアームA1と全く同じ構成を有するメインアームA6によりウェハWを搬送するようになっている。
第1搬送層M1は、上述したように、第1のサブブロックSB1の上側のDEV層B1とBCT層B2との間に設けられている。第1搬送層M1は、ウェハWをキャリアブロックS1に隣接する第1の搬送用棚ユニットTU1から中間の第2の搬送用棚ユニットTU2へ直行してウェハWを搬送するものである。第1搬送層M1は、シャトルアーム7を含んでいる。
第2搬送層M2は、第1のサブブロックSB1の最下段に設けられている。第2搬送層M2は、第2の搬送用棚ユニットTU2から第1の搬送用棚ユニットTU1へ直行してウェハWを搬送するものである他は、第1搬送層M1と全く同様に構成されている。
第3搬送層M3は、第2のサブブロックSB2の上側のDEV層B5とC/S層B6との間に設けられている。第3搬送層M3は、中間の第2の搬送用棚ユニットTU2からインターフェイスブロックS3に隣接する第3の搬送用棚ユニットTU3へ直行してウェハWを搬送するものである他は、第1搬送層M1と全く同様に構成されている。
第4搬送層M4は、第2のサブブロックSB2の最下段に設けられている。第4搬送層M4は、第3の搬送用棚ユニットTU3から第2の搬送用棚ユニットTU2へウェハWを搬送するものである他は、第1搬送層M1と全く同様に構成されている。
図2に示すように、第1のサブブロックSB1の処理層B1〜B4の搬送用通路RS1におけるキャリアブロックS1と隣接する領域は、第1のウェハ受け渡し領域RS2となっている。第1の搬送用棚ユニットTU1は、第1のウェハ受け渡し領域RS2に設けられている。また、第1のウェハ受け渡し領域RS2には、第1の搬送用棚ユニットTU1に対してウェハWの受け渡しを行うための昇降搬送手段である受け渡しアームD1が設けられている。
図3に示すように、第1の搬送用棚ユニットTU1は、第2搬送層M2に対応する位置に受け渡しステージTRSBを有し、各DEV層B1に対応する位置に受け渡しステージTRS1を有し、第1搬送層M1に対応する位置に受け渡しステージTRSAを有している。また、第1の搬送用棚ユニットTU1は、BCT層B2に対応する位置に2つの受け渡しステージTRS2を有し、COT層B3に対応する位置に2つの受け渡しステージTRS3を有し、TCT層B4に対応する位置に2つの受け渡しステージTRS4を有している。
トランスファーアームCは、第1の搬送用棚ユニットTU1の最下段の第2搬送層M2に対応する受け渡しステージTRSBからBCT層B2に対応する受け渡しステージTRS2までにアクセス可能となっている。また、受け渡しアームD1は、最下段の受け渡しステージTRSBからTCT層B4に対応する最上段の受け渡しステージTRS4までにアクセス可能となっている。
第1および第2搬送層M1、M2に対応する受け渡しステージTRSA、TRSBにはシャトルアーム7がアクセス可能となっている。また、DEV層B1、BCT層B2、COT層B3、TCT層B4にそれぞれ対応する受け渡しステージTRS1〜TRS4には、それぞれ各処理層のメインアームA1〜A4がアクセス可能となっている。
図2に示すように、第1のサブブロックSB1の処理層B1〜B4の搬送用通路RS1と、第2サブブロックSB2の処理層B5〜B8の搬送用通路RS1との間の領域は、第2のウェハ受け渡し領域RS3となっている。第2の搬送用棚ユニットTU2は、第2のウェハ受け渡し領域RS3に設けられている。また、第2のウェハ受け渡し領域RS3には、第2の搬送用棚ユニットTU2に対してウェハWの受け渡しを行うための昇降搬送手段である受け渡しアームD2が設けられている。
図3に示すように、第2の搬送用棚ユニットTU2は、第4搬送層M4に対応する位置に受け渡しステージTRSDを有し、各DEV層B5に対応する位置に受け渡しステージTRS5を有し、第3搬送層M3に対応する位置に受け渡しステージTRSCを有している。また、第2の搬送用棚ユニットTU2は、C/S層B6に対応する位置に2つの受け渡しステージTRS6を有し、COT層B7に対応する位置に2つの受け渡しステージTRS7を有し、TCT層B8に対応する位置に2つの受け渡しステージTRS8を有している。
受け渡しアームD2は、最下段の受け渡しステージTRSDからTCT層B8に対応する最上段の受け渡しステージTRS8までにアクセス可能となっている。
第3および第4搬送層M3、M4に対応する受け渡しステージTRSC、TRSDにはシャトルアーム7がアクセス可能となっている。また、DEV層B5、C/S層B6、COT層B7、TCT層B8にそれぞれ対応する受け渡しステージTRS5〜TRS8には、それぞれ各処理層のメインアームA5〜A8がアクセス可能となっている。
図2に示すように、DEV層B5の搬送用通路RS1におけるインターフェイスブロックS3と隣接する領域は、第3のウェハ受け渡し領域RS4となっている。第3の搬送用棚ユニットTU3は、第3のウェハ受け渡し領域RS4に設けられている。
図3に示すように、第3の搬送用棚ユニットTU3は、第4搬送層M4に対応する位置に受け渡しステージTRSFを有し、各DEV層B5に対応する位置に受け渡しステージTRS9を有し、第3搬送層M3に対応する位置に受け渡しステージTRSEを有している。
第3および第4搬送層M3、M4に対応する受け渡しステージTRSE、TRSFにはシャトルアーム7がアクセス可能となっている。また、DEV層B5に対応する受け渡しステージTRS9には、メインアームA5がアクセス可能となっている。
受け渡しステージTRS1〜TRS9およびTRSA〜TRSFは全て同じ構造を有しており、例えば直方体状の筺体を備え、当該筺体内にウェハWを載置するステージが設けられ、また当該ステージ上を突没自在なピンが設けられて構成されている。また、ステージはウェハWの温度を予定した温度に調節する機構を有している。
なお、本実施の形態では処理層B2〜B4、B6〜B8において受け渡しステージを2つずつ設け、DEV層B1、B5および搬送層M1〜M4において1つずつ設けたが、これに限られない。従って、各層の受け渡しステージの数は、予定される搬送シーケンスに応じて適宜決定すればよい。
図3に示すように、インターフェイスブロックS3には、露光装置200へウェハWを搬入する際、および露光装置200からウェハWを搬出する際に複数のウェハWを一時待機可能なバッファ部9を有している。バッファ部9は、第1搬入バッファカセット(BuIN1)91、第1搬出バッファカセット(BuOUT1)92、第2搬入バッファカセット(BuIN2)93及び第2搬出バッファカセット(BuOUT2)94を有している。第1搬入バッファカセット(BuIN1)91は、1回目の露光の際に露光装置200に搬入するウェハWを収納するものである。第1搬出バッファカセット(BuOUT1)92は、1回目の露光が終了後、露光装置200から払い出されたウェハWを収納するものである。第2搬入バッファカセット(BuIN2)93は、2回目の露光の際に露光装置200に搬入するウェハWを収納するものである。第2搬出バッファカセット(BuOUT2)94は、2回目の露光が終了後、露光装置200から払い出されたウェハWを収納するものである。また、これらは、上から第2搬入バッファカセット(BuIN2)93、第1搬入バッファカセット(BuIN1)91、第1搬出バッファカセット(BuOUT1)92、第2搬出バッファカセット(BuOUT2)94の順に、配置されている。
図2に示すように、バッファ部9の処理ブロックS2側には、搬入用インターフェイスアームE1、搬出用インターフェイスE2が設けられている。搬入用インターフェイスアームE1は、塗布後のウェハWを搬入バッファカセット91または93に搬入するためのものである。また、搬出用インターフェイスアームE2は、搬出バッファカセット92または94からウェハWを搬出するためのものである。インターフェイスアームE1、E2は、第3の搬送用棚ユニットTU3の受け渡しステージTRS9、TRSE、TRSFにもアクセス可能となっている。従って、ウェハWを搬入バッファカセット91または93に搬入する際には、第3搬送層M3のシャトルアーム7により受け渡しステージTRSEにウェハWを受け渡した後、搬入用インターフェイスアームE1により搬入する。また、搬出バッファカセット92または94から搬出したウェハWを戻す際には、搬出用インターフェイスアームE2により受け渡しステージTRS9またはTRSFに受け渡す。
図2に示すように、バッファ部9の露光装置200側には、1回目露光用インターフェイスアームE3、及び2回目露光用インターフェイスアームE4が設けられている。1回目露光用インターフェイスアームE3は、バッファ部9と露光装置200との間で1回目露光用のウェハWを搬送するものである。2回目露光用インターフェイスアームE4は、バッファ部9と露光装置200との間で2回目露光用のウェハWを搬送するものである。
次に、図6を参照し、線幅測定装置110について説明する。図6は、線幅測定装置の構成の概略を示す縦断面図である。
線幅測定装置110は、例えば図6に示すように、ウェハWを水平に載置する載置台111と、光学式表面形状測定計112を備えている。載置台111は、例えばX−Yステージになっており、水平方向の2次元方向に移動できる。光学式表面形状測定計112は、例えば、光照射部113、光検出部114及び算出部115を備えている。光照射部113は、ウェハWに対して斜方向から光を照射する。光検出部114は、光照射部113から照射されウェハWで反射した光を検出する。算出部115は、当該光検出部114の受光情報に基づいてウェハW上のレジストパターンの線幅CDを算出する。線幅測定装置110は、例えばスキャトロメトリ(Scatterometry)法を用いてレジストパターンの線幅を測定するものである。スキャトロメトリ法を用いる場合、算出部115において、光検出部114により検出されたウェハWの面内の光強度分布と、予め記憶されている仮想の光強度分布とを照合する。そして、その照合された仮想の光強度分布に対応するレジストパターンの線幅CDを求めることにより、レジストパターンの線幅CDを測定できる。
また、線幅測定装置110は、光照射部113及び光検出部114に対してウェハWを相対的に水平移動させることによって、ウェハWの面内の複数の測定点における線幅を測定することができる。
例えば、複数のウェハWよりなるウェハ群の各ウェハWに、ウェハW毎に加熱ユニット4による加熱処理の加熱温度(第1の温度T1)を変えて1回目のパターニング処理を行うことによって、1回目のレジストパターン(第1のレジストパターン)P1を形成する。その後、1回目のパターニング処理を行った各ウェハWに2回目のパターニング処理を行うことによって、2回目のレジストパターン(第2のレジストパターン)P2を形成する。そして、形成された第1及び第2のレジストパターンP1、P2の線幅CD1、CD2を、線幅測定装置110を用いて測定する。線幅測定装置110の測定結果は、例えば算出部115から後述する本体制御部10に出力される。これにより、第1の温度T1と、第2のレジストパターンP2の線幅CD2との関係を示す第1のデータ(後述する感度ST12)が準備される。
以上のように構成された塗布現像処理システム1で行われるウェハ処理は、図1に示す本体制御部10によって制御されている。本体制御部10は、線幅測定装置110によるウェハW上のレジストパターンの線幅測定も制御している。本体制御部10は、例えばCPUやメモリなどを備えた汎用コンピュータにより構成され、記憶されたプログラムを実行してウェハ処理や線幅測定を制御できる。なお、本体制御部10のプログラムは、コンピュータ読み取り可能な記録媒体により本体制御部10にインストールされたものであってもよい。
次に、図7から図10を参照し、本実施の形態に係る基板処理システムを用いた基板処理方法について説明する。図7は、本実施の形態に係る基板処理方法の各工程の手順を説明するためのフローチャートである。図8は、本実施の形態に係る基板処理方法の各工程におけるウェハの状態を示す断面図である。図9は、第1又は第2のレジストパターンのスペース幅と、第1又は第2の温度との関係を示すグラフである。図10は、スペース幅の温度に対する感度の値を比較して示すグラフである。
図7に示すように、本実施の形態に係る基板処理方法は、第1のデータ準備工程(ステップS11)、第2のデータ準備工程(ステップS12)、第1の処理工程(ステップS13〜ステップS16)、第2の処理工程(ステップS17〜ステップS20)、線幅測定工程(ステップS21)、第1の処理工程(ステップS22〜ステップS25)、及び第2の処理工程(ステップS26〜ステップS29)を有する。
第1の処理工程(ステップS13〜ステップS16)及び第2の処理工程(ステップS17〜ステップS20)は、一のウェハWについて、第1の処理工程及び第2の処理工程を行うものである。第1の処理工程(ステップS13〜ステップS16)は、第1の塗布処理工程(ステップS13)、第1の露光工程(ステップS14)、第1の加熱処理工程(ステップS15)及び第1の現像処理工程(ステップS16)を有する。第2の処理工程(ステップS17〜ステップS20)は、第2の塗布処理工程(ステップS17)、第2の露光工程(ステップS18)、第2の加熱処理工程(ステップS19)及び第2の現像処理工程(ステップS20)を有する。
また、第1の処理工程(ステップS22〜ステップS25)及び第2の処理工程(ステップS26〜ステップS29)は、他のウェハWについて、第1の処理工程及び第2の処理工程を行うものである。第1の処理工程(ステップS22〜ステップS25)は、第1の塗布処理工程(ステップS22)、第1の露光工程(ステップS23)、第1の加熱処理工程(ステップS24)及び第1の現像処理工程(ステップS25)を有する。第2の処理工程(ステップS26〜ステップS29)は、第2の塗布処理工程(ステップS26)、第2の露光工程(ステップS27)、第2の加熱処理工程(ステップS28)及び第2の現像処理工程(ステップS29)を有する。
始めに、第1のデータ準備工程(ステップS11)を行う。第1のデータ準備工程(ステップS11)では、第1の温度T1と第2のレジストパターンP2のスペース幅SP2´との関係を示す第1のデータを準備する。
複数のウェハWよりなるウェハ群の各ウェハWに、後述する第1の塗布処理工程(ステップS13)及び第1の露光工程(ステップS14)を行った後、ウェハW毎に第1の温度T1を変えて、後述する第1の加熱処理工程(ステップS15)を行う。その後、後述する第1の現像処理工程(ステップS16)から第2の現像処理工程(ステップS20)を行い、図8を用いて後述するように、ウェハW上に第1のレジストパターンP1及び第2のレジストパターンP2を形成する。そして、形成された第2のレジストパターンP2のスペース幅SP2´を、線幅測定装置110を用いて測定する。これにより、第1の温度T1と第2のレジストパターンP2のスペース幅SP2´との関係を示す第1のデータ(後述するST12に相当する)を準備する。
なお、第1のデータ準備工程(ステップS11)において、形成された第1のレジストパターンP1のスペース幅SP1´も、線幅測定装置110を用いて測定する。これにより、第1の温度T1と第1のレジストパターンP1のスペース幅SP1´との関係を示す第3のデータ(後述するST11に相当する)も準備する。
また、第1のレジストパターンP1のスペース幅SP1´及び第2のレジストパターンP2のスペース幅SP2´は、本発明におけるレジストパターンの線幅に相当する。
次に、第2のデータ準備工程(ステップS12)を行う。第2のデータ準備工程(ステップS12)では、第2の温度T2と第1のレジストパターンP1のスペース幅SP1´との関係を示す第2のデータを準備する。
複数のウェハWよりなるウェハ群の各ウェハWに、後述する第1の塗布処理工程(ステップS13)から第2の露光工程(ステップS18)を行った後、ウェハW毎に第2の温度T2を変えて、後述する第2の加熱処理工程(ステップS19)を行う。その後、後述する第2の現像処理工程(ステップS20)を行い、ウェハW上に第1のレジストパターンP1及び第2のレジストパターンP2を形成する。そして、形成された第1のレジストパターンP1のスペース幅SP1´を、線幅測定装置110を用いて測定する。これにより、第2の温度T2と第1のレジストパターンP1のスペース幅SP1´との関係を示す第2のデータ(後述するST21に相当する)を準備する。
なお、第2のデータ準備工程(ステップS12)において、形成された第2のレジストパターンP2のスペース幅SP2´も、線幅測定装置110を用いて測定する。これにより、第2の温度T2と第2のレジストパターンP2のスペース幅SP2´との関係を示す第4のデータ(後述するST22に相当する)も準備する。
また、複数のウェハWよりなる単一のウェハ群の各ウェハWに、ウェハW毎に第1の温度T1及び第2の温度T2よりなる2変数を独立に変えて2行2列のマトリクス状に設定された複数の条件で、第1の処理工程及び第2の処理工程を行ってもよい。これにより、第1のデータ準備工程(ステップS11)及び第2のデータ準備工程(ステップS12)をまとめて行うことができる。
なお、第1の温度T1及び第2の温度T2は、熱板44の設定温度としてもよい。あるいは、熱板に代え、赤外線ランプ等の熱源により、ウェハWを加熱処理してもよい。赤外線ランプ等の熱源を用いるときは、熱源の近傍の温度又は熱源に加熱処理されるウェハWの近傍の温度が、第1の温度T1及び第2の温度T2とすることができる。
次に、一のウェハWに第1の処理工程(ステップS13〜ステップS16)を行う。
まず、一のウェハWに第1の塗布処理工程(ステップS13)を行う。第1の塗布処理工程(ステップS13)では、一のウェハWにレジストを塗布処理し、第1のレジスト膜133を形成する。図8(a)は、第1の塗布処理工程(ステップS13)におけるウェハの状態を示す。
第1の塗布処理工程(ステップS13)を行う前に、予め、表面に被エッチング膜131が形成されたウェハ130(ウェハW)上に下部反射防止膜132を形成しておく。
外部から複数のウェハが収納されたキャリア20がキャリアブロックS1に搬入され、トランスファーアームCによりキャリア20内から1枚のウェハWが取り出され、処理ブロックS2へ搬入される。そして、第1のサブブロックSB1の第1塗布処理部11へ搬入される。具体的には、まず、ウェハWをトランスファーアームCから第1の搬送用棚ユニットTU1の受け渡しステージTRS2に搬送し、受け渡しステージTRS2上のウェハWをBCT層B2のメインアームA2が受け取る。そして、ウェハWを冷却ユニット→反射防止膜形成ユニット(図4の現像ユニット3に対応するユニット)→加熱ユニットの順序で搬送し、順次所定の処理を行う。これにより、表面に被エッチング膜131が形成されたウェハ130(ウェハW)上に、下部反射防止膜(BARC)132が形成される。その後、ウェハWを受け渡しステージTRS2に戻す。
続いて、受け渡しステージTRS2のウェハWを受け渡しアームD1により、第1の搬送用棚ユニットTU1の受け渡しステージTRS3に搬送し、受け渡しステージTRS3上のウェハWをCOT層B3のメインアームA3が受け取る。そして、ウェハWを冷却ユニット→レジスト塗布ユニット(図4の現像ユニット3に対応するユニット)→加熱ユニットの順序で搬送し、順次所定の処理を行う。これにより、下部反射防止膜(BARC)132の上層に第1のレジスト膜133が形成される。そして、ウェハWを周縁露光ユニットに搬送して周縁部露光処理を行い、その後、受け渡しステージTRS3に戻す。
第1のレジスト膜133を形成するのに用いられるレジストの一例は化学増幅型レジストである。具体的な一例として、本例では、ArFエキシマレーザ(波長193nm)を光源に用いた露光に対応可能な化学増幅型のポジレジストを用いることができる。
なお、第1のレジスト膜133の上層に上部反射防止膜(TARC)が形成されてもよい。そのときは、受け渡しステージTRS3のウェハWを受け渡しアームD1により、第1の搬送用棚ユニットTU1の受け渡しステージTRS4に搬送し、受け渡しステージTRS4上のウェハWをTCT層B4のメインアームA4が受け取る。そして、ウェハWを冷却ユニット→第2の反射防止膜形成ユニット(図4の現像ユニット3に対応するユニット)→加熱ユニットの順序で搬送しながら処理を行い、第1のレジスト膜133の上層に上部反射防止膜(TARC)を形成してもよい。
そして、その後、ウェハWを受け渡しステージTRS4に戻す。以上により、1回目の塗布処理が終了する。
次に、一のウェハWに第1の露光工程(ステップS14)を行う。第1の露光工程(ステップS14)では、第1のレジスト膜133が形成された一のウェハWを露光する。図8(b)は、第1の露光工程(ステップS14)におけるウェハWの状態を示す。
受け渡しステージTRS4に戻されたウェハWを受け渡しアームD1により受け渡しステージTRSAに搬送する。次いで受け渡しステージTRSA上のウェハWを第1の搬送層M1のシャトルアーム7が受け取る。そして、第2の搬送用棚ユニットTU2側に向きを変え、第2の搬送用棚ユニットTU2側に移動し、ウェハWを第2の搬送用棚ユニットTU2の受け渡しステージTRSCに搬送する。受け渡しステージTRSC上のウェハWを第2のサブブロックSB2に属する第3搬送層M3のシャトルアーム7が受け取る。そして、第3の搬送用棚ユニットTU3側に向きを変え、第3の搬送用棚ユニットTU3側へ移動し、ウェハWを第3の搬送用棚ユニットTU3の受け渡しステージTRSEに搬送する。受け渡しステージTRSE上のウェハWは、インターフェイスブロックS3の搬入用インターフェイスアームE1により、バッファ部9の第1搬入バッファカセット(BuIN1)91に搬入される。
第1搬入バッファカセット(BuIN1)91に1ロットのウェハWが溜まった時点で、その中のウェハWを1回目露光用インターフェイスアームE3により露光装置200へ搬送する。そして、露光装置200に搬送されたウェハWに1回目の露光が施される。
1回目の露光が施されるとき、図8(b)に示すように、第1のレチクルR1を用いて第1のレジスト膜133の選択された部分を露光し、例えばアルカリ性の溶剤等よりなる現像液に対して選択的に可溶化させた可溶部133aを発生させる。可溶部133aを選択的に発生させることで、第1のレジスト膜133中に、現像液に対して可溶な可溶部133a及び不溶な不溶部133bよりなる第1のパターンP1を得る。
ここでは、例えば、ラインが配列したパターンを有する第1のレチクルR1を用い、第1のパターンP1を得る。図8(b)に示すように、第1のパターンP1の線幅L1及びスペース幅SP1のそれぞれを、例えば32nm及び32nmとすることができる。
そして、1回目の露光が終了したウェハWは、インターフェイスブロックS3へ搬出される。具体的には、1回目露光用インターフェイスアームE3により第1搬出バッファカセット(BuOUT1)92に搬入される。
次に、一のウェハWに第1の加熱処理工程(ステップS15)を行う。第1の加熱処理工程(ステップS15)では、一のウェハWを第1の温度T1で加熱処理する。図8(c)は、第1の加熱処理工程(ステップS15)におけるウェハの状態を示す。
第1搬出バッファカセット(BuOUT1)92のウェハWを処理ブロックS2に搬入し、第2のサブブロックSB2の第1現像処理部14により1回目の現像処理を行う。具体的には、第1搬出バッファカセット(BuOUT1)92のウェハWを搬出用インターフェイスアームE2により取り出し、そして、第3の搬送用棚ユニットTU3のいずれかのDEV層B5に対応する受け渡しステージTRS9に搬送する。次に、受け渡しステージTRS9上のウェハWをDEV層B5のメインアームA5が受け取り、そして、当該DEV層B5にて、棚ユニットU1〜U4に含まれる加熱ユニット4に搬送し、露光後ベーク処理が行われる。
加熱ユニット4では、先ずウェハWが搬送口42から搬入され、図5に示す冷却プレート43上に載置される。続いて冷却プレート43が移動して、ウェハWが熱板44の上方に移動される。ウェハWは冷却プレート43から昇降ピン48に受け渡され、昇降ピン48によって熱板44上に載置される。こうしてウェハWの加熱処理(露光後ベーク)が開始される。そして、所定時間経過後、ウェハWが昇降ピン48によって熱板44から離隔され、ウェハWの加熱処理が終了する。その後、ウェハWは、昇降ピン48から冷却プレート43に受け渡されて冷却され、冷却プレート43から搬送口42を通じて加熱ユニット4の外部に搬送される。
第1の加熱処理工程(ステップS15)を行うことにより、不溶部133bの可溶部133aへの変化が促進される。従って、図8(c)に示すように、第1のパターンP1の線幅L1は、若干減少してL1´となり、第1のパターンP1のスペース幅SP1は、若干増大してSP1´となる。
次に、一のウェハWに第1の現像処理工程(ステップS16)を行う。第1の現像処理工程(ステップS16)では、第1の加熱処理工程(ステップS15)が行われた一のウェハWを現像処理することによって、第1のレジストパターンP1を形成する。図8(d)は、第1の現像処理工程(ステップS16)におけるウェハの状態を示す。
第1の加熱処理工程(ステップS15)が終了した一のウェハWは、現像ユニット3に搬送され、一のウェハW上の第1のレジスト膜133が現像処理される。現像処理において、例えばTMAH(TetraMethyl Ammonium Hydroxide)等のアルカリ性の溶剤を用いて、第1のレジスト膜133の可溶部133aを溶解除去することにより、図8(d)に示すように、不溶部133bのみが残り、第1のレジストパターンP1が形成される。
第1のレジストパターンP1が形成されたウェハWは、加熱ユニット4→冷却ユニットの順序で搬送され、ポストベーク処理等の所定の処理が行われる。こうして第1のレジストパターンP1が形成された一のウェハWを第2の搬送用棚ユニットTU2の受け渡しステージTRS5に搬送する。以上により、1回目の現像処理が終了する。
次に、一のウェハWに第2の処理工程(ステップS17〜ステップS20)を行う。
まず、一のウェハWに第2の塗布処理工程(ステップS17)を行う。第2の塗布処理工程(ステップS17)では、一のウェハWにレジストを塗布処理し、第2のレジスト膜135を形成する。図8(e)及び図8(f)は、第2の塗布処理工程(ステップS17)におけるウェハの状態を示す。
第2の塗布処理工程(ステップS17)では、第2のサブブロックSB2の第2塗布処理部13により2回目の塗布処理を行う。具体的には、まず、受け渡しステージTRS5上のウェハWを受け渡しアームD2により受け渡しステージTRS6へ受け渡し、受け渡しステージTRS6上のウェハWをC/S層B6のメインアームA6が受け取る。そして、ウェハWを洗浄処理ユニット(図4の現像ユニット3に対応するユニット)→加熱ユニット→冷却ユニット→キュアユニットの順序で搬送し、1回目の塗布・露光・現像処理で形成したパターンの洗浄処理および表面処理、例えば紫外線照射によるキュア処理を行う。これにより2回目の塗布処理の際にパーティクルが付着したりリーチングを引き起こしたりすることを防止する。図8(e)に示すように、キュア処理が行われた第1のレジストパターンP1では、表面134がキュア処理されている。そして、その後、ウェハWを受け渡しステージTRS6に戻す。
続いて、受け渡しステージTRS6のウェハWを受け渡しアームD2により、第2の搬送用棚ユニットTU2の受け渡しステージTRS7に搬送し、受け渡しステージTRS7上のウェハWをCOT層B7のメインアームA7が受け取る。そして、ウェハWを冷却ユニット→レジスト塗布ユニット(図4の現像ユニット3に対応するユニット)→加熱ユニットの順序で搬送し、順次所定の処理を行う。これにより、図8(f)に示すように、第1のレジストパターンP1が形成されているウェハW上に、第2のレジスト膜135が形成される。そして、ウェハWを周縁露光ユニットに搬送して周縁部露光処理を行い、その後、受け渡しステージTRS7に戻す。
第2のレジスト膜135を形成するのに用いられるレジストの一例も化学増幅型レジストであり、ArFエキシマレーザ(波長193nm)を光源に用いた露光に対応可能な化学増幅型のポジレジストを用いることができる。
なお、第2のレジスト膜135の上層にも上部反射防止膜(TARC)が形成されてもよい。そのときは、受け渡しステージTRS7のウェハWを受け渡しアームD2により、第2の搬送用棚ユニットTU2の受け渡しステージTRS8に搬送し、受け渡しステージTRS8上のウェハWをTCT層B8のメインアームA8が受けとる。そして、ウェハWを冷却ユニット→第2の反射防止膜形成ユニット(図4の現像ユニット3に対応するユニット)→加熱ユニットの順序で搬送し、第2のレジスト膜135の上層に上部反射防止膜(TARC)を形成してもよい。
そして、その後、ウェハWを受け渡しステージTRS8に戻す。以上により、2回目の塗布処理が終了する。
次に、一のウェハWに第2の露光工程(ステップS18)を行う。第2の露光工程(ステップS18)では、第2のレジスト膜135が形成された一のウェハWを露光する。図8(g)は、第2の露光工程(ステップS18)におけるウェハWの状態を示す。
受け渡しステージTRS8上のウェハWを受け渡しアームD2により受け渡しステージTRSCに搬送する。受け渡しステージTRSC上のウェハWを第2のサブブロックSB2に属する第3搬送層M3のシャトルアーム7が受け取る。そして、第3の搬送用棚ユニットTU3側に向きを変え、第3の搬送用棚ユニットTU3側へ移動し、ウェハWを第3の搬送用棚ユニットTU3の受け渡しステージTRSEに搬送する。受け渡しステージTRSE上のウェハWは、インターフェイスブロックS3の搬入用インターフェイスアームE1により、バッファ部9の第2搬入バッファカセット(BuIN2)93に搬入される。
第2搬入バッファカセット(BuIN2)93に1ロットのウェハWが溜まった時点で、その中のウェハWを2回目露光用インターフェイスアームE4により露光装置200へ搬送する。そして、露光装置200に搬送されたウェハWに2回目の露光が施される。
2回目の露光が施されるときは、図8(g)に示すように、第2のレチクルR2を用いて第2のレジスト膜135の選択された部分を露光し、例えばアルカリ性の溶剤等よりなる現像液に対して選択的に可溶化させた可溶部135aを発生させる。可溶部135aを選択的に発生させることで、第2のレジスト膜135中に、現像液に対して可溶な可溶部135a及び不溶な不溶部135bよりなる第2のパターンP2を得る。
ここでは、例えば、ラインが配列したパターンを有する第2のレチクルR2を用い、第2のパターンP2を得る。図8(g)に示すように、第2のパターンP2の線幅L2及びスペース幅SP2のそれぞれを、例えば32nm及び32nmとすることができる。
そして、2回目の露光が終了したウェハWは、インターフェイスブロックS3へ搬出される。具体的には、2回目露光用インターフェイスアームE4により第2搬出バッファカセット(BuOUT2)94に搬入される。
次に、一のウェハWに第2の加熱処理工程(ステップS19)を行う。第2の加熱処理工程(ステップS19)では、一のウェハWを第2の温度T2で加熱処理する。図8(h)は、第2の加熱処理工程(ステップS19)におけるウェハの状態を示す。
第2搬出バッファカセット(BuOUT2)94のウェハWを処理ブロックS2に搬入し、第1のサブブロックSB1の第2現像処理部12により2回目の現像処理を行う。具体的には、第2搬出バッファカセット(BuOUT2)94のウェハWを搬出用インターフェイスアームE2により取り出し、そして、第3の搬送用棚ユニットTU3の第4搬送層M4に対応する受け渡しステージTRSFに搬送する。次に、受け渡しステージTRSF上のウェハWを第4搬送層M4のシャトルアーム7が受け取り、そして、第2の搬送用棚ユニットTU2側に向きを変え、第2の搬送用棚ユニットTU2側に移動する。そして、シャトルアーム7がウェハWを第2の搬送用棚ユニットTU2の受け渡しステージTRSDに搬送する。受け渡しステージTRSD上のウェハWは受け渡しアームD2により第1のサブブロックSB1の第2現像処理部12に属するいずれかのDEV層B1に対応する受け渡しステージTRS5に搬送される。更に、受け渡しステージTRS5上のウェハWをDEV層B1のメインアームA1が受け取って、当該DEV層B1にて、棚ユニットU1〜U4に含まれる加熱ユニット4に搬送し、露光後ベーク処理が行われる。
加熱ユニット4では、先ずウェハWが搬送口42から搬入され、図5に示す冷却プレート43上に載置される。続いて冷却プレート43が移動して、ウェハWが熱板44の上方に移動される。ウェハWは冷却プレート43から昇降ピン48に受け渡され、昇降ピン48によって熱板44上に載置される。こうしてウェハWの加熱処理(露光後ベーク)が開始される。そして、所定時間経過後、ウェハWが昇降ピン48によって熱板44から離隔され、ウェハWの加熱処理が終了する。その後、ウェハWは、昇降ピン48から冷却プレート43に受け渡されて冷却され、冷却プレート43から搬送口42を通じて加熱ユニット4の外部に搬送される。
第2の加熱処理工程(ステップS19)を行うことにより、不溶部135bの可溶部135aへの変化が促進される。従って、図8(h)に示すように、第2のパターンP2の線幅L2は、若干減少してL2´となり、第2のパターンP2のスペース幅SP2は、若干増大してSP2´となる。
次に、一のウェハWに第2の現像処理工程(ステップS20)を行う。第2の現像処理工程(ステップS20)では、第2の加熱処理工程(ステップS19)が行われた一のウェハWを現像処理することによって、第2のレジストパターンP2を形成する。図8(i)は、第2の現像処理工程(ステップS20)におけるウェハの状態を示す。
第2の加熱処理工程(ステップS19)が終了した一のウェハWは、現像ユニット3に搬送され、一のウェハW上の第2のレジスト膜135が現像処理される。現像処理においても、例えばTMAH等のアルカリ性の溶剤を用いて、第2のレジスト膜135の可溶部135aを溶解除去することにより、図8(i)に示すように、不溶部135bのみが残り、第2のレジストパターンP2が形成される。
第2のレジストパターンP2が形成されたウェハWは、加熱ユニット4→冷却ユニットの順序で搬送され、ポストベーク処理等の所定の処理が行われる。こうして第2のレジストパターンP2が形成された一のウェハWを第1の搬送用棚ユニットTU1の受け渡しステージTRS1に搬送する。以上により、2回目の現像処理が終了する。
2回目の現像処理が終了した受け渡しステージTRS1上のウェハWは、トランスファーアームCによりキャリア20内に収納される。
次に、線幅測定工程(ステップS21)を行う。線幅測定工程(ステップS21)では、一のウェハWに形成された第1のレジストパターンP1の線幅CD1及び第2のレジストパターンP2の線幅CD2を測定する。
キャリア20内に収納される一のウェハWは、トランスファーアームCにより線幅測定装置110に搬送される。そして、線幅測定装置110により、図8(i)に示す第1のレジストパターンP1の線幅L1´、第1のレジストパターンP1のスペース幅SP1´、第2のレジストパターンP2の線幅L2´、及び第2のレジストパターンP2のスペース幅SP2´が測定される。
なお、本実施の形態では、便宜上、線幅CD1はスペース幅SP1´を意味するものとし、線幅CD2はスペース幅SP2´を意味するものとする。しかし、線幅CD1が線幅L1´を意味するものとし、線幅CD2が線幅L2´を意味するものとしても、感度ST11、ST12、ST21、ST22の符号が正負逆になるのみであり、本実施の形態が適用できることに変わりはない。
なお、線幅測定工程(ステップS21)では、ウェハWの面内の中心点等の代表点において測定を行うのでもよく、ウェハWの面内の複数の測定点において測定を行うのでもよい。第1及び第2の加熱処理工程(ステップS15、S19)で、第1及び第2の温度T1、T2が、ウェハWの面内の例えば中心点等の代表点における温度として制御されるときは、線幅測定工程(ステップS21)で、その代表点において線幅の測定を行うのでもよい。また、第1及び第2の加熱処理工程(ステップS15、S19)で、第1及び第2の温度T1、T2が、ウェハWの面内の複数の領域で独立に制御されるときは、線幅測定工程(ステップS21)で、対応する複数の測定点における線幅の測定を行うのでもよい。
次に、他のウェハWに第1の処理工程(ステップS22〜ステップS25)を行う。
まず、他のウェハWに第1の塗布処理工程(ステップS22)を行う。第1の塗布処理工程(ステップS22)では、他のウェハWにレジストを塗布処理し、第1のレジスト膜133を形成する。他のウェハWに対する第1の塗布処理工程(ステップS22)におけるウェハWの状態も、一のウェハWに対する第1の塗布処理工程(ステップS13)と同様に、図8(a)に示される。また、具体的な下部反射防止膜132の形成、第1のレジスト膜133の形成、及び必要に応じた上部反射防止膜の形成は、一のウェハWの第1の塗布処理工程(ステップS13)と同様にすることができる。
次に、他のウェハWに第1の露光工程(ステップS23)を行う。第1の露光工程(ステップS23)では、第1のレジスト膜133が形成された他のウェハWを露光する。他のウェハWに第1の露光工程(ステップS23)を行うときのウェハWの状態も、一のウェハWに対する第1の露光工程(ステップS14)と同様に、図8(b)に示される。また、具体的な露光は、一のウェハWの第1の露光工程(ステップS14)と同様にすることができる。
次に、他のウェハWに第1の加熱処理工程(ステップS24)を行う。第1の加熱処理工程(ステップS24)では、第1のデータST12及び第2のレジストパターンP2の線幅CD2の測定値CDc2に基づいて、第1の温度T1を補正し、補正された第1の温度T1で、他のウェハWを加熱処理する。他のウェハWに対する第1の加熱処理工程(ステップS24)におけるウェハWの状態も、一のウェハWに対する第1の加熱処理工程(ステップS15)と同様に、図8(c)に示される。
具体的な補正の方法の例は後述するが、第1から第4のデータST12、ST21、ST11、ST22、第1及び第2のレジストパターンP1、P2のスペース幅SP1´及びSP2´の、測定値CDc1、CDc2及び目標値CDt1、CDt2に基づいて、第1の温度T1を補正する。また、測定値CDc1、CDc2は、それぞれ一のウェハWに形成され、線幅測定工程(ステップS21)で測定された、第1及び第2のレジストパターンP1、P2の線幅CD1、CD2の測定値である。また、具体的な加熱処理は、一のウェハWに対する第1の加熱処理工程(ステップS15)と同様にすることができる。
第1の加熱処理工程(ステップS24)を行うことにより、不溶部133bの可溶部133aへの変化が促進される。従って、図8(c)に示すように、第1のパターンP1のスペース幅SP1は、若干増大してSP1´となる。
次に、他のウェハWに第1の現像処理工程(ステップS25)を行う。第1の現像処理工程(ステップS25)では、第1の加熱処理工程(ステップS24)が行われた他のウェハWを現像処理して、第1のレジストパターンP1を形成する。他のウェハWに対する第1の現像処理工程(ステップS25)におけるウェハWの状態は、一のウェハWに対する第1の現像処理工程(ステップS16)と同様に、図8(d)に示される。また、具体的な現像処理は、一のウェハWに対する第1の現像処理工程(ステップS16)と同様にすることができる。
次に、他のウェハWに第2の処理工程(ステップS26〜ステップS29)を行う。
まず、他のウェハWに第2の塗布処理工程(ステップS26)を行う。第2の塗布処理工程(ステップS26)では、他のウェハWにレジストを塗布処理し、第2のレジスト膜135を形成する。他のウェハWに対する第2の塗布処理工程(ステップS26)におけるウェハWの状態も、一のウェハWに対する第2の塗布処理工程(ステップS17)と同様に、図8(e)及び図8(f)に示される。また、具体的な第2のレジスト膜135の形成は、一のウェハWの第2の塗布処理工程(ステップS17)と同様にすることができる。
次に、他のウェハWに第2の露光工程(ステップS27)を行う。第2の露光工程(ステップS27)では、第2のレジスト膜135が形成された他のウェハWを露光する。他のウェハWに第2の露光工程(ステップS27)を行うときのウェハWの状態も、一のウェハWに対する第2の露光工程(ステップS18)と同様に、図8(g)に示される。また、具体的な露光は、一のウェハWに対する第2の露光工程(ステップS18)と同様にすることができる。
次に、他のウェハWに第2の加熱処理工程(ステップS28)を行う。第2の加熱処理工程(ステップS28)では、第2のデータST21及び第1のレジストパターンP1の線幅CD1の測定値CDc1に基づいて、第2の温度T2を補正し、補正された第2の温度T2で、他のウェハWを加熱処理する。他のウェハWに対する第2の加熱処理工程(ステップS28)におけるウェハWの状態も、一のウェハWに対する第2の加熱処理工程(ステップS19)と同様に、図8(h)に示される。
具体的な補正の方法の例は後述するが、第1から第4のデータST12、ST21、ST11、ST22、第1及び第2のレジストパターンP1、P2のスペース幅SP1´及びSP2´の、測定値CDc1、CDc2及び目標値CDt1、CDt2に基づいて、第2の温度T2を補正する。また、測定値CDc1、CDc2は、それぞれ一のウェハWに形成され、線幅測定工程(ステップS21)で測定された、第1及び第2のレジストパターンP1、P2の線幅CD1、CD2の測定値である。また、具体的な加熱処理は、一のウェハWの第2の加熱処理工程(ステップS19)と同様にすることができる。
第2の加熱処理工程(ステップS28)を行うことにより、不溶部135bの可溶部135aへの変化が促進される。従って、図8(h)に示すように、第2のパターンP2のスペース幅SP2は、若干増大してSP2´となる。
ただし、第1の加熱処理工程(ステップS24)において第1の温度T1が補正され、第2の加熱処理工程(ステップS28)において第2の温度T2が補正されている。その結果、第2の加熱処理工程(ステップS28)が行われた後の第1のパターンP1のスペース幅SP1´(CDc1)は、補正され、目標値CDt1に近い値となる。また、第2の加熱処理工程(ステップS28)が行われた後の第2のパターンP2のスペース幅SP2´(CDc2)も、補正され、目標値CDt2に近い値となる。
次に、他のウェハWに第2の現像処理工程(ステップS29)を行う。第2の現像処理工程(ステップS29)では、第2の加熱処理工程(ステップS28)が行われた他のウェハWを現像処理して、第2のレジストパターンP2を形成する。他のウェハWに対する第2の現像処理工程(ステップS29)におけるウェハWの状態は、一のウェハWに対する第2の現像処理工程(ステップS20)と同様に、図8(i)に示される。また、具体的な現像処理は、一のウェハWの第2の現像処理工程(ステップS20)と同様にすることができる。
そして、2回目の現像処理が終了したウェハWは、一のウェハWと同様に、トランスファーアームCによりキャリア20内に収納される。
なお、2回目の現像処理まで行った後、本実施の形態に係る基板処理方法が終了したウェハWは、図8(j)に示すように、基板処理システムと別に設けられたエッチング装置において、被エッチング膜131に対してエッチングを行うことができる。
次に、第1の加熱処理工程(ステップS24)において第1の温度T1を補正する方法、及び第2の加熱処理工程(ステップS28)において第2の温度T2を補正する方法について説明する。
ウェハWに第1の処理工程及び第2の処理工程を行った後では、第1のパターンP1のスペース幅SP1は、若干増大してSP1´となっており、第2のパターンP2のスペース幅SP2は、若干増大してSP2´となっている。
第1の温度T1が高いほど第1の加熱処理工程(ステップS24)において不溶部133bが可溶化する化学反応が早く進行するため、第1のレジストパターンP1の線幅L1´が減少し、スペース幅SP1´が増大する。すなわち、第1の温度T1と第1のレジストパターンP1のスペース幅SP1´(CD1)との関係は、図9(a)に示すように、正の傾き(感度)ST11を有する直線関係を示す。
また、第2の温度T2が高いほど第2の加熱処理工程(ステップS28)において不溶部135bが可溶化する化学反応が早く進行するため、第2のレジストパターンP2の線幅L2´が減少し、スペース幅SP2´が増大する。すなわち、第2の温度T2と第2のレジストパターンP2のスペース幅SP2´(CD2)との関係は、図9(d)に示すように、正の傾き(感度)ST22を有する直線関係を示す。
これらに加えて、第1の温度T1によって、第2のレジストパターンP2のスペース幅SP2´が影響を受けることがある。すなわち、第1の温度T1と第2のレジストパターンP2のスペース幅SP2´(CD2)との関係は、図9(b)に示すように、傾き(感度)ST12を有する直線関係を示す。これは、第1の温度T1により第1のレジストパターンP1のスペース幅SP1´が変化すると、第1のレジストパターンP1の形状が変化し、その後形成される第2のレジストパターンP2のスペース幅SP2´も変化するためと考えられる。
また、同様に、第2の温度T2によって、第1のレジストパターンP1のスペース幅SP1´が影響を受けることがある。すなわち、第2の温度T2と第1のレジストパターンP1のスペース幅SP1´(CD1)との関係は、図9(c)に示すように、傾き(感度)ST21を有する直線関係を示す。これは、第2の温度T2で第2の加熱処理工程を行うことによって、ウェハW上に既に形成されている第1のレジストパターンP1の形状が変化し、第1のレジストパターンP1のスペース幅SP1´が変化するためと考えられる。
図10のグラフに、第1のデータ準備工程及び第2のデータ準備工程を行うことによって求めた感度ST11(第3のデータ)、感度ST12(第1のデータ)、感度ST21(第2のデータ)及び感度ST22(第4のデータ)の値を示す。図10では、ST12の値をST11で規格化し、ST21の値をST22で規格化して示している。このように規格化した値においても、ST11=1.00、ST12=0.30、ST21=0.68、ST22=1.00となっており、ST11、ST22に比べ、ST12、ST21が無視できない有限の値を有していることが分かる。
従って、感度ST11(第3のデータ)のみならず、感度ST12(第1のデータ)に基づいて第1の温度T1の補正を行うことにより、レジストパターンの線幅をより精度良く補正することができる。すなわち、感度ST12(第1のデータ)及び一のウェハWの第2のレジストパターンP2の線幅CD2の測定値CDc2に基づいて第1の温度T1を補正することにより、他のウェハWのレジストパターンの線幅の測定値のばらつきを低減できる。
また、感度ST22(第4のデータ)のみならず、感度ST21(第2のデータ)に基づいて第2の温度T2の補正を行うことにより、レジストパターンの線幅をより精度良く補正することができる。すなわち、感度ST21(第2のデータ)及び一のウェハWの第1のレジストパターンP1の線幅CD1の測定値CDc1に基づいて第2の温度T2を補正することにより、他のウェハWのレジストパターンの線幅の測定値のばらつきを低減できる。
具体的には、一例として、以下の式を用いて補正することができる。図9(a)及び図9(c)に示すように、第1のレジストパターンP1のスペース幅SP1´(CD1)は、第1の温度T1及び第2の温度T2に対してそれぞれ感度ST11及びST21を有する。従って、第1のレジストパターンP1の線幅CD1の測定値CDc1と目標値CDt1との関係は、
Figure 0004917652
と表される。ただし、式(1)において、Tc1は補正前の第1の温度であり、Ti1は補正後の第1の温度であり、Tc2は補正前の第2の温度であり、Ti2は補正後の第2の温度である。
また、図9(b)及び図9(d)に示すように、第2のレジストパターンP2のスペース幅SP2´(CD2)は、第1の温度T1及び第2の温度T2に対してそれぞれ感度ST12及びST22を有する。従って、第2のレジストパターンP2の線幅CD2の測定値CDc2と目標値CDt2との関係は、
Figure 0004917652
と表される。
そして、式(1)、(2)を解くことにより、補正前の第1の温度Tc1と補正後の第1の温度Ti1との関係は、式(3)で表される。
Figure 0004917652
また、補正前の第2の温度Tc2と補正後の第2の温度Ti2との関係は、式(4)で表される。
Figure 0004917652
従って、感度ST11、ST12、ST21、ST22、線幅の測定値CDc1、CDc2、線幅の目標値CDt1、CDt2に基づいて、第1の温度T1及び第2の温度T2を補正することができる。
図9及び図10を用いて説明したように、第2のレジストパターンP2の線幅CD2には第1の温度T1に対する依存性があり、第1のレジストパターンP1の線幅CD1には第2の温度T2に対する依存性がある。従って、線幅CD1の第1の温度T1に対する感度ST11のみに基づいて第1の温度T1を補正し、線幅CD2の第2の温度T2に対する感度ST22のみに基づいて第2の温度T2を補正する場合に比べ、より精度良く補正することができる。
以上、本実施の形態に係る基板処理方法によれば、第2のレジストパターンの線幅の第1の温度に対する感度に基づいて第1の温度を補正し、第1のレジストパターンの線幅の第2の温度に対する感度に基づいて第2の温度を補正する。このような補正方法により、ウェハ間の第1及び第2のレジストパターンの線幅のばらつきを低減できる。また、ウェハ面内の各測定点における第1及び第2のレジストパターンの線幅のばらつきをウェハ間で低減できるため、ウェハ面内の線幅のばらつきを低減することができる。
また、本実施の形態では、図8に示すように、第2のレジストパターンP2の各ラインが、第1のレジストパターンP1の各ラインと略平行であり、交互に配列する場合について説明した。しかし、本実施の形態は、第2のレジストパターンP2の各ラインが、第1のレジストパターンP1の各ラインと平行でなく、平面視において第1のレジストパターンP1の各ラインと交差する場合にも適用可能である。このとき、第2のレジストパターンP2と第1のレジストパターンP1の各ラインとが交差する箇所では、第2のレジストパターンP2が第1のレジストパターンP1の各ラインの上を跨ぐように形成される。従って、第1のレジストパターンP1の形状と第2のレジストパターンP2の形状とが互いに影響を及ぼし合い、感度ST12、ST21の値が大きくなり、線幅がばらつきやすくなる。よって、本実施の形態によりウェハ間及びウェハ面内での線幅のばらつきを低減できる寄与が更に大きくなる。
(第2の実施の形態)
次に、図11から図14を参照し、第2の実施の形態に係る基板処理方法について説明する。
本実施の形態に係る基板処理方法では、第2のレジストパターンの線幅の測定値に基づいて、第1の処理工程の露光の露光量を補正し、第1のレジストパターンの線幅の測定値に基づいて、第2の処理工程の露光の露光量を補正する点で、第1の実施の形態に係る基板処理方法と相違する。
本実施の形態に係る基板処理方法を行うための基板処理システムについては、第1の実施の形態に係る基板処理システムと同様にすることができる。
一方、本実施の形態に係る基板処理方法は、第1の実施の形態に係る基板処理方法と相違する。図11は、本実施の形態に係る基板処理方法の各工程の手順を説明するためのフローチャートである。図12は、本実施の形態に係る基板処理方法の各工程におけるウェハの状態を示す断面図である。図13は、第1又は第2のレジストパターンのスペース幅と、第1又は第2の温度との関係を示すグラフである。図14は、スペース幅の温度に対する感度の値を比較して示すグラフである。なお、以下の文中では、先に説明した部分には同一の符号を付し、説明を省略する場合がある。
図11に示すように、本実施の形態に係る基板処理方法は、第1のデータ準備工程(ステップS31)、第2のデータ準備工程(ステップS32)、第1の処理工程(ステップS33〜ステップS36)、第2の処理工程(ステップS37〜ステップS40)、線幅測定工程(ステップS41)、第1の処理工程(ステップS42〜ステップS45)、及び第2の処理工程(ステップS46〜ステップS49)を有する。
また、第1の処理工程(ステップS33〜ステップS36)及び第2の処理工程(ステップS37〜ステップS40)は、一のウェハWについて、第1の処理工程及び第2の処理工程を行うものである。第1の処理工程(ステップS33〜ステップS36)は、第1の塗布処理工程(ステップS33)、第1の露光工程(ステップS34)、第1の加熱処理工程(ステップS35)及び第1の現像処理工程(ステップS36)を有する。第2の処理工程(ステップS37〜ステップS40)は、第2の塗布処理工程(ステップS37)、第2の露光工程(ステップS38)、第2の加熱処理工程(ステップS39)及び第2の現像処理工程(ステップS40)を有する。
また、第1の処理工程(ステップS42〜ステップS45)及び第2の処理工程(ステップS46〜ステップS49)は、他のウェハWについて、第1の処理工程及び第2の処理工程を行うものである。第1の処理工程(ステップS42〜ステップS45)は、第1の塗布処理工程(ステップS42)、第1の露光工程(ステップS43)、第1の加熱処理工程(ステップS44)及び第1の現像処理工程(ステップS45)を有する。第2の処理工程(ステップS46〜ステップS49)は、第2の塗布処理工程(ステップS46)、第2の露光工程(ステップS47)、第2の加熱処理工程(ステップS48)及び第2の現像処理工程(ステップS49)を有する。
始めに、第1のデータ準備工程(ステップS31)を行う。第1のデータ準備工程(ステップS31)では、第1の露光量D1と第2のレジストパターンP2のスペース幅SP2´との関係を示す第1のデータを準備する。
複数のウェハWよりなるウェハ群の各ウェハWに、後述する第1の塗布処理工程(ステップS33)を行った後、ウェハW毎に第1の露光量D1を変えて、後述する第1の露光工程(ステップS34)を行う。その後、後述する第1の加熱処理工程(ステップS35)から第2の現像処理工程(ステップS40)を行い、図12を用いて後述するように、ウェハW上に第1のレジストパターンP1及び第2のレジストパターンP2を形成する。更に、形成された第2のレジストパターンP2のスペース幅SP2´を、線幅測定装置110を用いて測定する。これにより、第1の露光量D1と第2のレジストパターンP2のスペース幅SP2´との関係を示す第1のデータ(後述するSD12に相当する)を準備する。
なお、第1の実施の形態と同様に、第1のデータ準備工程(ステップS31)において、第1の露光量D1と第1のレジストパターンP1のスペース幅SP1´との関係を示す第3のデータ(後述するST11に相当する)も準備する。
次に、第2のデータ準備工程(ステップS32)を行う。第2のデータ準備工程(ステップS32)では、第2の露光量D2と第1のレジストパターンP1のスペース幅SP1´との関係を示す第2のデータを準備する。
複数のウェハWよりなるウェハ群の各ウェハWに、後述する第1の塗布処理工程(ステップS33)から第2の塗布処理工程(ステップS37)を行った後、ウェハW毎に第2の露光量D2を変えて、後述する第2の露光工程(ステップS38)を行う。その後、後述する第2の加熱処理工程(ステップS39)及び第2の現像処理工程(ステップS40)を行い、図12を用いて後述するように、ウェハW上に第1及び第2のレジストパターンP1、P2を形成する。更に、形成された第1のレジストパターンP1のスペース幅SP1´を、線幅測定装置110を用いて測定する。これにより、第2の露光量D2と第1のレジストパターンP1のスペース幅SP1´との関係を示す第2のデータ(後述するSD21に相当する)を準備する。
なお、第2のデータ準備工程(ステップS32)において、第2の露光量D2と第2のレジストパターンP2のスペース幅SP2´との関係を示す第4のデータ(後述するST22に相当する)も準備する。
次に、一のウェハWに第1の処理工程(ステップS33〜ステップS36)を行う。
まず、一のウェハWに第1の塗布処理工程(ステップS33)を行う。第1の塗布処理工程(ステップS33)は、第1の実施の形態における第1の塗布処理工程(ステップS13)と同様である。第1の塗布処理工程(ステップS33)におけるウェハWの状態は、図12(a)に示される。図12(a)は、図8(a)と同様である。
次に、一のウェハWに第1の露光工程(ステップS34)を行う。第1の露光工程(ステップS34)では、第1のレジスト膜133が形成された一のウェハWを第1の露光量D1で露光する。図12(b)は、第1の露光工程(ステップS34)におけるウェハの状態を示す。図12(b)は、図8(b)と同様である。
第1の実施の形態における第1の露光工程(ステップS14)と同様にして、露光装置200に搬送されたウェハWに1回目の露光が施される。1回目の露光が施されるとき、図12(b)に示すように、露光量Dを第1の露光量D1として、第1のレジスト膜133を露光し、可溶部133a及び不溶部133bよりなる第1のパターンP1を得る。そして、1回目の露光が終了したウェハWは、第1の実施の形態と同様に、インターフェイスブロックS3へ搬出される。
次に、一のウェハWに第1の加熱処理工程(ステップS35)から第2の塗布処理工程(ステップS37)を行うことによって、第1のレジストパターンP1を形成し、形成した第1のレジストパターンP1上に第2のレジスト膜135を形成する。第1の加熱処理工程(ステップS35)から第2の塗布処理工程(ステップS37)の各工程は、それぞれ、第1の実施の形態における第1の加熱処理工程(ステップS15)から第2の塗布処理工程(ステップS17)の各工程と同様である。また、第1の加熱処理工程(ステップS35)から第2の塗布処理工程(ステップS37)の各工程におけるウェハWの状態は、図12(c)から図12(f)に示される。図12(c)から図12(f)の各図は、それぞれ、図8(c)から図8(f)の各図と同様である。
次に、一のウェハWに第2の露光工程(ステップS38)を行う。第2の露光工程(ステップS38)では、第2のレジスト膜135が形成された一のウェハWを第2の露光量D2で露光する。図12(g)は、第2の露光工程(ステップS38)におけるウェハの状態を示す。
第1の実施の形態における第2の露光工程(ステップS18)と同様にして、露光装置200に搬送されたウェハWに2回目の露光が施される。2回目の露光が施されるとき、図12(g)に示すように、露光量Dを第2の露光量D2として、第2のレジスト膜135を露光し、可溶部135a及び不溶部135bよりなる第2のパターンP2を得る。そして、2回目の露光が終了したウェハWは、第1の実施の形態と同様に、第2搬出バッファカセット(BuOUT2)94に搬入される。
次に、一のウェハWに第2の加熱処理工程(ステップS39)及び第2の現像処理工程(ステップS40)を行うことによって、第2のレジストパターンP2を形成する。第2の加熱処理工程(ステップS39)及び第2の現像処理工程(ステップS40)の各工程は、それぞれ、第1の実施の形態における第2の加熱処理工程(ステップS19)及び第2の現像処理工程(ステップS20)の各工程と同様である。また、第2の加熱処理工程(ステップS39)及び第2の現像処理工程(ステップS40)の各工程におけるウェハWの状態は、図12(h)及び図12(i)に示される。図12(h)及び図12(i)の各図は、それぞれ、図8(h)及び図8(i)の各図と同様である。
次に、線幅測定工程(ステップS41)を行う。線幅測定工程(ステップS41)は、第1の実施の形態における線幅測定工程(ステップS21)と同様である。
次に、他のウェハWに第1の処理工程(ステップS42〜ステップS45)を行う。
まず、他のウェハWに第1の塗布処理工程(ステップS42)を行う。第1の塗布処理工程(ステップS42)は、第1の実施の形態における第1の塗布処理工程(ステップS22)と同様である。第1の塗布処理工程(ステップS42)におけるウェハWの状態は、図12(a)に示される。
次に、他のウェハWに第1の露光工程(ステップS43)を行う。第1の露光工程(ステップS43)では、第1のデータSD12及び第2のレジストパターンP2の線幅CD2の測定値CDc2に基づいて、第1の露光量D1を補正し、補正された第1の露光量D1で、他のウェハWを露光する。図12(b)は、第1の露光工程(ステップS43)におけるウェハの状態を示す。
第1の実施の形態における第1の露光工程(ステップS23)と同様にして、露光装置200に搬送されたウェハWに1回目の露光が施される。1回目の露光が施されるとき、図12(b)に示すように、補正された第1の露光量D1で第1のレジスト膜133を露光し、可溶部133a及び不溶部133bよりなる第1のパターンP1を得る。そして、1回目の露光が終了したウェハWは、第1の実施の形態と同様に、インターフェイスブロックS3へ搬出される。
次に、他のウェハWに第1の加熱処理工程(ステップS44)から第2の塗布処理工程(ステップS46)を行うことによって、第1のレジストパターンP1を形成し、形成した第1のレジストパターンP1上に第2のレジスト膜135を形成する。第1の加熱処理工程(ステップS44)から第2の塗布処理工程(ステップS46)の各工程は、それぞれ、第1の実施の形態における第1の加熱処理工程(ステップS24)から第2の塗布処理工程(ステップS26)の各工程と同様である。また、第1の加熱処理工程(ステップS44)から第2の塗布処理工程(ステップS46)の各工程におけるウェハWの状態は、図12(c)から図12(f)に示される。
次に、他のウェハWに第2の露光工程(ステップS47)を行う。第2の露光工程(ステップS47)では、第2のデータSD21及び第1のレジストパターンP1の線幅CD1の測定値CDc1に基づいて、第2の露光量D2を補正し、補正された第2の露光量D2で、他のウェハWを露光する。図12(g)は、第2の露光工程(ステップS47)におけるウェハの状態を示す。
第1の実施の形態における第2の露光工程(ステップS27)と同様にして、露光装置200に搬送されたウェハWに2回目の露光が施される。2回目の露光が施されるとき、図12(g)に示すように、補正された第2の露光量D2で第2のレジスト膜135を露光し、可溶部135a及び不溶部135bよりなる第2のパターンP2を得る。そして、2回目の露光が終了したウェハWは、第1の実施の形態と同様に、第2搬出バッファカセット(BuOUT2)94に搬入される。
次に、他のウェハWに第2の加熱処理工程(ステップS48)及び第2の現像処理工程(ステップS49)を行うことによって、第2のレジストパターンP2を形成する。第2の加熱処理工程(ステップS48)及び第2の現像処理工程(ステップS49)の各工程は、それぞれ、第1の実施の形態における第2の加熱処理工程(ステップS28)及び第2の現像処理工程(ステップS29)の各工程と同様である。また、第2の加熱処理工程(ステップS48)及び第2の現像処理工程(ステップS49)の各工程におけるウェハWの状態は、図12(h)及び図12(i)に示される。
そして、第1の実施の形態と同様に、2回目の現像処理が終了したウェハWは、一のウェハWと同様に、トランスファーアームCによりキャリア20内に収納される。また、2回目の現像処理まで行った後、本実施の形態に係る基板処理方法が終了したウェハWは、基板処理システムと別に設けられたエッチング装置にて、図12(j)に示すように、被エッチング膜131に対してエッチングを行うことができる。
次に、第1の露光工程(ステップS43)において第1の露光量D1を補正する方法、及び第2の露光工程(ステップS47)において第2の露光量D2を補正する方法について説明する。
第1の露光量D1と第1のレジストパターンP1のスペース幅SP1´(CD1)との関係は、図13(a)に示すように、正の傾き(感度)SD11を有する直線関係を示す。また、第2の露光量D2と第2のレジストパターンP2のスペース幅SP2´(CD2)との関係は、図13(d)に示すように、正の傾き(感度)SD22を有する直線関係を示す。
一方、第1の露光量D1と第2のレジストパターンP2のスペース幅SP2´(CD2)との関係は、図13(b)に示すように、傾き(感度)SD12を有する直線関係を示す。これは、第1の露光量D1により第1のレジストパターンP1のスペース幅SP1´が変化すると、第1のレジストパターンP1の形状が変化し、その後形成される第2のレジストパターンP2のスペース幅SP2´が変化するためと考えられる。
また、同様に、第2の露光量D2と第1のレジストパターンP1のスペース幅SP1´(CD1)との関係は、図13(c)に示すように、傾き(感度)SD21を有する直線関係を示す。これは、第2の露光量D2で第2の露光工程を行うことによって、ウェハW上に既に形成されている第1のレジストパターンP1の形状が変化し、第1のレジストパターンP1のスペース幅SP1´が変化するためと考えられる。
図14のグラフに、第1のデータ準備工程及び第2のデータ準備工程を行うことによって求めた感度SD11(第3のデータ)、感度SD12(第1のデータ)、感度SD21(第2のデータ)及び感度SD22(第4のデータ)の値を示す。図14では、SD12の値をSD11で規格化し、SD21の値をSD22で規格化して示している。このように規格化した値においても、SD11=1.00、SD12=0.45、SD21=0.19、SD22=1.00となっており、SD11、SD22に比べ、SD12、SD21が無視できない有限の値を有していることが分かる。
従って、感度SD11(第3のデータ)のみならず、感度SD12(第1のデータ)に基づいて第1の露光量D1の補正を行うことにより、他のウェハWのレジストパターンの線幅の測定値のばらつきを低減できる。また、感度SD22(第4のデータ)のみならず、感度SD21(第2のデータ)に基づいて第2の露光量D2の補正を行うことにより、他のウェハWのレジストパターンの線幅の測定値のばらつきを低減できる。
また、第1の実施の形態と同様に、以下の式を用いて補正することができる。図13(a)及び図13(c)に示すように、第1のレジストパターンP1のスペース幅SP1´(CD1)は、第1の露光量D1及び第2の露光量D2に対してそれぞれ感度SD11及びSD21を有する。従って、第1のレジストパターンP1の線幅の測定値CDc1と目標値CDt1との関係は、
Figure 0004917652
と表される。ただし、式(5)において、Dc1は補正前の第1の露光量であり、Di1は補正後の第1の露光量であり、Dc2は補正前の第2の露光量であり、Di2は補正後の第2の露光量である。
また、図13(b)及び図13(d)に示すように、第2のレジストパターンP2のスペース幅SP2´(CD2)は、第1の露光量D1及び第2の露光量D2に対してそれぞれ感度SD12及びSD22を有する。従って、第2のレジストパターンP2の線幅CD2の測定値CDc2と目標値CDt2との関係は、
Figure 0004917652
と表される。
そして、式(5)、(6)を解くことにより、補正前の第1の露光量Dc1と補正後の第1の露光量Di1との関係は、式(7)で表される。
Figure 0004917652
また、補正前の第2の露光量Dc2と補正後の第2の露光量Di2との関係は、式(8)で表される。
Figure 0004917652
従って、感度SD11、SD12、SD21、SD22、線幅の測定値CDc1、CDc2、線幅の目標値CDt1、CDt2に基づいて、第1の露光量D1及び第2の露光量D2を補正することができる。
なお、露光装置において、露光量Dは、露光源の出力、露光時間等の処理条件により決定される。従って、本実施の形態において、露光量Dに代え、露光源の出力又は露光時間を補正するようにしてもよい。あるいは、露光時の温度、光源とウェハとの距離、あるいは液浸露光を行う際の液の濃度等各種の露光時の処理条件を用いてもよい。
図13及び図14を用いて説明したように、第2のレジストパターンP2の線幅CD2には第1の露光量D1に対する依存性があり、第1のレジストパターンP1の線幅CD1には第2の露光量D2に対する依存性がある。従って、線幅CD1の第1の露光量D1に対する感度SD11のみに基づいて第1の露光量D1を補正し、線幅CD2の第2の露光量D2に対する感度SD22のみに基づいて第2の露光量D2を補正する場合に比べ、より精度良く補正することができる。
以上、本実施の形態に係る基板処理方法によれば、第2のレジストパターンの線幅の第1の露光量に対する感度に基づいて第1の露光量を補正し、第1のレジストパターンの線幅の第2の露光量に対する感度に基づいて第2の露光量を補正する。このような補正方法により、ウェハ間の第1及び第2のレジストパターンの線幅のばらつきを低減できる。また、ウェハ面内の各測定点における第1及び第2のレジストパターンの線幅のばらつきをウェハ間で低減できるため、ウェハ面内の線幅のばらつきを低減することができる。
また、本実施の形態では、図12に示すように、第2のレジストパターンP2の各ラインが、第1のレジストパターンP1の各ラインと略平行であり、交互に配列する場合について説明した。しかし、本実施の形態は、第2のレジストパターンP2の各ラインが、第1のレジストパターンP1の各ラインと平行でなく、平面視において第1のレジストパターンP1の各ラインと交差する場合にも適用可能である。このとき、第2のレジストパターンP2と第1のレジストパターンP1の各ラインとが交差する箇所では、第2のレジストパターンP2が第1のレジストパターンP1の各ラインの上を跨ぐように形成される。従って、第1のレジストパターンP1の形状と第2のレジストパターンP2の形状とが互いに影響を及ぼし合い、感度SD12、SD21の値が大きくなり、線幅がばらつきやすくなる。よって、本実施の形態によりウェハ間及びウェハ面内での線幅のばらつきを低減できる寄与が更に大きくなる。
以上、本発明の好ましい実施の形態について記述したが、本発明はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
なお、第1の実施の形態では、第2のレジストパターンの線幅の測定値に基づいて、第1の処理工程の加熱処理の加熱温度を補正し、第1のレジストパターンの線幅の測定値に基づいて、第2の処理工程の加熱処理の加熱温度を補正する例について説明した。また、第2の実施の形態では、第2のレジストパターンの線幅の測定値に基づいて、第1の処理工程の露光の露光量を補正し、第1のレジストパターンの線幅の測定値に基づいて、第2の処理工程の露光の露光量を補正する例について説明した。
しかし、本発明は、第2のレジストパターンの線幅の測定値に基づいて、第1の処理工程における処理条件のうちの一の処理条件を補正し、第1のレジストパターンの線幅の測定値に基づいて、第2の処理工程におけるその一の処理条件を補正する例にも適用することができる。すなわち、本発明は、第2のレジストパターンの線幅の測定値に基づいて、第1の処理工程における第1の処理条件を補正し、第1のレジストパターンの線幅の測定値に基づいて、第2の処理工程における第2の処理条件を補正するものであってもよい。
一の条件(第1の処理条件及び第2の処理条件)を、加熱処理における加熱時間、露光が終了してから加熱処理を開始するまでの引き置き時間、加熱処理の雰囲気、塗布処理や現像処理におけるウェハ温度、ウェハ回転数、レジストや現像液の供給速度、等とすることができる。
また、本発明は、半導体基板、ガラス基板その他の各種基板を処理する工程を含む装置に適用することが可能である。
130 ウェハ
133 第1のレジスト膜
135 第2のレジスト膜
CD1、CD2 線幅
P1 第1のレジストパターン
P2 第2のレジストパターン
T1 第1の温度
T2 第2の温度

Claims (7)

  1. 基板を処理する基板処理方法において、
    第1のレジスト膜が形成された前記基板を露光し、露光された前記基板を加熱処理し、加熱処理された前記基板を現像処理することによって第1のレジストパターンを形成する第1の処理工程と、
    前記第1のレジストパターンが形成された前記基板上に第2のレジスト膜を形成し、前記第2のレジスト膜が形成された前記基板を露光し、露光された前記基板を加熱処理し、加熱処理された前記基板を現像処理することによって第2のレジストパターンを形成する第2の処理工程と
    を有し、
    一の基板に前記第2の処理工程を行った後、
    前記一の基板に形成された前記第2のレジストパターンの線幅を測定し、測定された前記第2のレジストパターンの線幅の測定値に基づいて、前記第1の処理工程の第1の処理条件を補正し、補正された前記第1の処理条件で他の基板に前記第1の処理工程を行い、
    前記一の基板に形成された前記第1のレジストパターンの線幅を測定し、測定された前記第1のレジストパターンの線幅の測定値に基づいて、前記第2の処理工程の第2の処理条件を補正し、補正された前記第2の処理条件で前記他の基板に前記第2の処理工程を行う、基板処理方法。
  2. 前記第1の処理工程は、露光された前記基板を第1の温度で加熱処理するものであり、
    前記第2の処理工程は、露光された前記基板を第2の温度で加熱処理するものであり、
    前記一の基板に前記第2の処理工程を行った後、
    前記第2のレジストパターンの線幅の測定値に基づいて、前記第1の温度を補正し、補正された前記第1の温度で前記他の基板を加熱処理し、
    前記第1のレジストパターンの線幅の測定値に基づいて、前記第2の温度を補正し、補正された前記第2の温度で前記他の基板を加熱処理する、請求項1に記載の基板処理方法。
  3. 前記第1の温度と前記第2のレジストパターンの線幅との関係を示す第1のデータを準備する第1のデータ準備工程と、
    前記第2の温度と前記第1のレジストパターンの線幅との関係を示す第2のデータを準備する第2のデータ準備工程と
    を有し、
    前記一の基板に前記第2の処理工程を行った後、
    前記第1のデータ及び前記第2のレジストパターンの線幅の測定値に基づいて、前記第1の温度を補正し、
    前記第2のデータ及び前記第1のレジストパターンの線幅の測定値に基づいて、前記第2の温度を補正する、請求項2に記載の基板処理方法。
  4. 前記第1のデータ準備工程において、複数の基板よりなる第1の基板群の各基板に、前記基板毎に前記第1の温度を変えて前記第1の処理工程を行い、前記第1の処理工程が行われた前記各基板に前記第2の処理工程を行った後、前記各基板に形成された前記第2のレジストパターンの線幅を測定することによって、前記第1のデータを準備し、
    前記第2のデータ準備工程において、複数の基板よりなる第2の基板群の各基板に、前記第1の処理工程を行い、前記第1の処理工程が行われた前記各基板に、前記基板毎に前記第2の温度を変えて前記第2の処理工程を行った後、前記各基板に形成された前記第1のレジストパターンの線幅を測定することによって、前記第2のデータを準備する、請求項3に記載の基板処理方法。
  5. 前記第1の処理工程は、前記基板を第1の露光量で露光するものであり、
    前記第2の処理工程は、前記基板を第2の露光量で露光するものであり、
    前記一の基板に前記第2の処理工程を行った後、
    前記第2のレジストパターンの線幅の測定値に基づいて、前記第1の露光量を補正し、補正された前記第1の露光量で前記他の基板を露光し、
    前記第1のレジストパターンの線幅の測定値に基づいて、前記第2の露光量を補正し、補正された前記第2の露光量で前記他の基板を露光する、請求項1に記載の基板処理方法。
  6. 前記第1の露光量と前記第2のレジストパターンの線幅との関係を示す第1のデータを準備する第1のデータ準備工程と、
    前記第2の露光量と前記第1のレジストパターンの線幅との関係を示す第2のデータを準備する第2のデータ準備工程と
    を有し、
    前記一の基板に前記第2の処理工程を行った後、
    前記第1のデータ及び前記第2のレジストパターンの線幅の測定値に基づいて、前記第1の露光量を補正し、
    前記第2のデータ及び前記第1のレジストパターンの線幅の測定値に基づいて、前記第2の露光量を補正する、請求項5に記載の基板処理方法。
  7. 前記第1のデータ準備工程において、複数の基板よりなる第1の基板群の各基板に、前記基板毎に前記第1の露光量を変えて前記第1の処理工程を行い、前記第1の処理工程が行われた前記各基板に前記第2の処理工程を行った後、前記各基板に形成された前記第2のレジストパターンの線幅を測定することによって、前記第1のデータを準備し、
    前記第2のデータ準備工程において、複数の基板よりなる第2の基板群の各基板に、前記第1の処理工程を行い、前記第1の処理工程が行われた前記各基板に、前記基板毎に前記第2の露光量を変えて前記第2の処理工程を行った後、前記各基板に形成された前記第1のレジストパターンの線幅を測定することによって、前記第2のデータを準備する、請求項6に記載の基板処理方法。
JP2010029338A 2010-02-12 2010-02-12 基板処理方法 Active JP4917652B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010029338A JP4917652B2 (ja) 2010-02-12 2010-02-12 基板処理方法
TW99140794A TWI471906B (zh) 2010-02-12 2010-11-25 基板處理方法
KR1020110002503A KR20110093611A (ko) 2010-02-12 2011-01-11 기판 처리 방법
US13/022,811 US8110325B2 (en) 2010-02-12 2011-02-08 Substrate treatment method
CN201110036950.6A CN102169826B (zh) 2010-02-12 2011-02-12 基板处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029338A JP4917652B2 (ja) 2010-02-12 2010-02-12 基板処理方法

Publications (2)

Publication Number Publication Date
JP2011166027A JP2011166027A (ja) 2011-08-25
JP4917652B2 true JP4917652B2 (ja) 2012-04-18

Family

ID=44369872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029338A Active JP4917652B2 (ja) 2010-02-12 2010-02-12 基板処理方法

Country Status (5)

Country Link
US (1) US8110325B2 (ja)
JP (1) JP4917652B2 (ja)
KR (1) KR20110093611A (ja)
CN (1) CN102169826B (ja)
TW (1) TWI471906B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501086B2 (ja) * 2010-04-30 2014-05-21 東京エレクトロン株式会社 現像処理方法
JP5806350B2 (ja) * 2014-02-13 2015-11-10 東京エレクトロン株式会社 半導体装置の製造方法
WO2016035842A1 (ja) * 2014-09-04 2016-03-10 株式会社ニコン 処理システムおよびデバイス製造方法
TWI768409B (zh) * 2015-02-23 2022-06-21 日商尼康股份有限公司 基板處理系統及基板處理方法、以及元件製造方法
TWI805389B (zh) * 2021-05-07 2023-06-11 大陸商河南烯力新材料科技有限公司 散熱結構與電子裝置
CN116053116B (zh) * 2023-01-28 2023-07-11 合肥晶合集成电路股份有限公司 一种半导体器件图形化的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134422A (ja) * 1993-09-14 1995-05-23 Oki Electric Ind Co Ltd パターン形成方法
JPH07147219A (ja) 1993-11-24 1995-06-06 Sony Corp パターンの形成方法
US5652084A (en) * 1994-12-22 1997-07-29 Cypress Semiconductor Corporation Method for reduced pitch lithography
JPH11168052A (ja) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp 半導体装置の製造方法
JP4143023B2 (ja) * 2003-11-21 2008-09-03 株式会社東芝 パターン形成方法および半導体装置の製造方法
JP4861893B2 (ja) * 2006-07-28 2012-01-25 東京エレクトロン株式会社 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板の処理システム
CN101542390A (zh) * 2006-11-14 2009-09-23 Nxp股份有限公司 用以增大特征空间密度的两次形成图案的光刻技术
KR100809717B1 (ko) * 2007-01-12 2008-03-06 삼성전자주식회사 더블 패터닝된 패턴의 전기적 특성을 콘트롤할 수 있는반도체 소자 및 그의 패턴 콘트롤방법
JP4872691B2 (ja) * 2007-02-02 2012-02-08 Jsr株式会社 レジストパターン形成方法
JP5154395B2 (ja) * 2008-02-28 2013-02-27 東京エレクトロン株式会社 半導体装置の製造方法及びレジスト塗布・現像処理システム
JP5017147B2 (ja) * 2008-03-06 2012-09-05 東京エレクトロン株式会社 基板の処理方法、プログラム及びコンピュータ記憶媒体及び基板処理システム
JP5007827B2 (ja) * 2008-04-04 2012-08-22 信越化学工業株式会社 ダブルパターン形成方法

Also Published As

Publication number Publication date
JP2011166027A (ja) 2011-08-25
US8110325B2 (en) 2012-02-07
US20110200923A1 (en) 2011-08-18
TWI471906B (zh) 2015-02-01
KR20110093611A (ko) 2011-08-18
TW201145353A (en) 2011-12-16
CN102169826B (zh) 2014-08-13
CN102169826A (zh) 2011-08-31

Similar Documents

Publication Publication Date Title
KR101422853B1 (ko) 기판 처리 시스템
JP4535489B2 (ja) 塗布・現像装置
JP4917652B2 (ja) 基板処理方法
JP4853536B2 (ja) 塗布、現像装置、塗布、現像方法及び記憶媒体
JP4654120B2 (ja) 塗布、現像装置及び塗布、現像方法並びにコンピュータプログラム
JP4861893B2 (ja) 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板の処理システム
JP5296022B2 (ja) 熱処理方法及びその熱処理方法を実行させるためのプログラムを記録した記録媒体並びに熱処理装置
TW200830060A (en) Substrate processing method and substrate processing system
JP5025231B2 (ja) 基板搬送処理装置
JP5132920B2 (ja) 塗布・現像装置および基板搬送方法、ならびにコンピュータプログラム
JP5017147B2 (ja) 基板の処理方法、プログラム及びコンピュータ記憶媒体及び基板処理システム
JP3648129B2 (ja) 塗布現像処理方法及び塗布現像処理システム
JP4965925B2 (ja) 基板の処理システム
JP4906140B2 (ja) 基板処理システム
JP4548735B2 (ja) 基板処理システム
JP4920317B2 (ja) 基板の処理方法、プログラム、コンピュータ読み取り可能な記録媒体及び基板の処理システム
JP5186264B2 (ja) 基板の処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
JP4319201B2 (ja) 基板の処理方法、プログラム及び基板処理システム
JP5501086B2 (ja) 現像処理方法
JP4906141B2 (ja) 基板処理システム
WO2011099221A1 (ja) 基板処理方法
JP2012220896A (ja) 周辺露光方法及び周辺露光装置
KR20090044423A (ko) 마스크 노광 장비

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250