JP4902092B2 - 等電子コドーピング - Google Patents

等電子コドーピング Download PDF

Info

Publication number
JP4902092B2
JP4902092B2 JP2002564767A JP2002564767A JP4902092B2 JP 4902092 B2 JP4902092 B2 JP 4902092B2 JP 2002564767 A JP2002564767 A JP 2002564767A JP 2002564767 A JP2002564767 A JP 2002564767A JP 4902092 B2 JP4902092 B2 JP 4902092B2
Authority
JP
Japan
Prior art keywords
gap
cell
layer
isoelectronic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002564767A
Other languages
English (en)
Other versions
JP2004537159A (ja
Inventor
マスキャレンハス、アンジェロ
Original Assignee
ミッドウエスト リサーチ インスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミッドウエスト リサーチ インスティチュート filed Critical ミッドウエスト リサーチ インスティチュート
Publication of JP2004537159A publication Critical patent/JP2004537159A/ja
Application granted granted Critical
Publication of JP4902092B2 publication Critical patent/JP4902092B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • H01L33/285Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • H01L29/227Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/305Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、概して、ドープされた半導体材料の調製および製造に関し、とりわけ半導体材料の等電子コドーピング(isoelectronic co-doping)に関する。
結晶格子材料をドーピングし、少量の元素周期表上のある列に属している元素、すなわち、ある数の伝導電子または最外核電子を、周期表の異なる列または族、つまり、異なる数の伝導電子または最外核電子の少量の材料に置き換え(通常は、列または族を1つ移動し、すなわち、1つ多いまたは1つ少ない最外核電子に置き換える)、半導体材料を調製および製造することは、一般に行われている。たとえば、ケイ素(IV族材料)はしばしば、電子素子を作るために、少量のホウ素(III族材料)をドープされる。また、バンドギャップ、結晶格子定数、移動度などの、必要なあるいは所望のどのような半導体特性をも得るように半導体材料を形成するため、様々な合金を使用する、すなわち、周期表で同族にある元素によって格子点(lattice sites)を置換することも、一般的に行われている。太陽電池および発光半導体は、通常、直接バンドギャップ(direct bandgap)(すなわち、価電子帯と伝導エネルギー帯の間のバンドギャップを横切るために、電子に運動量変化が必要でない)をもつ半導体材料により作られている。光のエネルギーおよび通信における能力とシリコン集積回路の利点とを組み合わせるという可能性を開くために、間接バンドギャップ(indirect bandgap)材料であるシリコンを使った太陽電池、フォトダイオード、および発光半導体を製作しようとする多くの試みがなされてきており、今なおなされているが、そのような努力が実ったのは、ごく限られている。
太陽電池の領域では、1.0eVに近いバンドギャップをもち、かつ、より高いもしくはより低いバンドギャップをもつ他の半導体材料と適合、すなわち格子整合して、モノリシック4接合太陽電池に不可欠なコンポーネントを形成する半導体材料を得るために、多くの努力がなされている。たとえば、4つの太陽電池セルを使用したとき、太陽スペクトルからの最適エネルギー吸収のためには、4つのセルは、1.9eV、1.42eV、1.05eVおよび0.67eVといった一連のバンドギャップをもつべきであることが、数学的モデルから知られている。そのようなモノリシック、4接合、1.9eV/1.42eV/1.05eV/0.67eVの太陽電池構造は、40%(AM1)の太陽エネルギー変換効率を達成できるだろう。格子整合基板として使用するGaAsウェーハが容易に手に入ることから、前記のように、太陽電池は、通常、光エネルギーの吸収と電気への変換を促進する直接バンドギャップをもっているガリウム(Ga)およびヒ素(As)などのIII族およびV族の半導体材料から作られている。このように良好な電子素子特性を有する1.9eVおよび1.42eVレベル付近にバンドギャップをもつIII族およびV族の半導体材料、たとえば、InGaP(1.90eV)およびGaAs(1.42eV)が、長い間使用されてきた。0.67eVのバンドギャップをもつゲルマニウム(Ge)は、これはIV族材料であるが、それにもかかわらず、モノリシック4接合太陽電池の基板部分として使用されている。なぜならば、この基板は、間接バンドギャップにも関わらず、光エネルギーを吸収するために充分に厚くすることができるためである。
しかしながら、1.05eVバンドギャップセルのための光吸収半導体材料を作ることは、達成困難な目標であった。1.05eVバンドギャップ材料を作ることはできるが、許容できるキャリアー移動度および他の電気特性をもち、他のセル接合のために用いられる前記のGaAsおよびGeのような他の半導体材料と格子適合することのできる、適当な1.05eVバンドギャップ材料はなかった。
適当な1.05eV層として研究されていた半導体材料系のなかに、GaInNAsがある。この系についての関心は、最初は、Weyers et alのJpn.J.Appl.Physics 31(1992)pp.L853による、低濃度(dilute)のGaAs1-xx合金が巨大な伝導帯ボウイング(bowing)をもつという驚くべき観測結果によって、そして、Neugebauer,et alのPhys.Rev.B.51(1995)pp.10568、およびJ.Cryst.Growth 164(1996)pp.175の、Ga0.92In0.080.03As0.97の4元合金が1.0eVのバンドギャップをもちGaAsに格子整合して成長できるというKondow et alの1996年の発表によって、活発になった。Kondow et alは、GaAs基板と格子整合するよう、Ga、AsおよびNとともに8%Inを使用した。しかしながら、Ga0.92In0.080.03As0.97のフォトルミネセンスは、乏しいものである。低濃度のGaAs1-xx合金が望ましい1.0eVをもち、合金にInを加えることによりGaAsと格子整合する能力があるにも関わらず、このような低濃度のGaAs1-xx合金をベースとする合金中の非常に乏しい電気移動度が、モノリシック4接合太陽電池などの光電素子にそのような合金を使用するという、さらに重要な前進を妨げている。
したがって、本発明の目的は、低濃度GaAs1-xx合金を、1.05eVに近いバンドギャップを維持し、GaAsに格子整合するだけでなく、合金の電子素子特性を太陽電池半導体材料として有用かつ有益にするのに充分に向上させるように、改質することである。
本発明の全般的な目的は、理想に非常に近い設計原理を実現する素子構造の、エピタキシャル成長に適したバンドギャップ/格子定数の組み合わせをもつ半導体化合物および合金について、その選択可能なレパートリーを広げることである。
本発明のもう1つの目的は、シリコン基板に格子整合するのと同時に、2接合および3接合タンデム太陽電池にとって最適の太陽放射吸収に近いバンドギャップをもつように、GaPなどの半導体材料を調製することである。
本発明のもう1つの目的は、ファイバー光通信に特に適した波長、たとえば1.55μmまたは1.3μmの光を出すバンドギャップをもち、SiやGaAsなどの一般的な半導体基板材料に格子整合する、LEDおよびレーザダイオードの活性層のための半導体材料を製作、調製することである。
本発明のさらなる目的は、赤色および近赤外の波長領域の特定の色の光を出すバンドギャップをもち、Si、GaAsおよびGaPなどの一般的な半導体基板材料に格子整合する、LEDおよびレーザダイオードのための半導体材料を製作、調製することである。
本発明のまた別の目的は、電気を生むため、赤外放射を吸収するバンドギャップをもち、InPなどの所望の基板材料に格子整合する、半導体材料を製作、調製することである。
本発明のさらなる目的、利点および新規な特徴は、以下の記載で説明され、また、以下の記述と図面の検討により当業者にとって明らかとなり、あるいは発明を実施することにより知ることになろう。本発明の目的および利点は、添付の特許請求の範囲で特に示された手段および組み合わせにより、実現および達成されるだろう。
ここに具現化され広く記載されるとおり、前述およびその他の目的を実現するため、そして本発明の目標とするところに沿い、本発明の方法は、結晶格子中にホスト原子を有する半導体化合物または合金を改質し、改質前の半導体化合物または合金のバンドギャップよりも低いバンドギャップをもつようにすることからなる。このようにバンドギャップを低めることは、半導体化合物または合金を、ホスト結晶格子中に等電子トラップを形成する原子からなり深いアクセプター(deep acceptors)として作用する第1の等電子ドーパント、および、ホスト結晶格子中に等電子トラップを形成する原子からなり深いドナー(deep donors)として作用する第2の等電子ドーパントで、等電子的にコドーピングすることにより、達成することができる。たとえば、バンドギャップ1.42eVのGaAsなど、III族およびV族のホスト原子からなるホスト結晶格子をもつ半導体材料は、チッ素(N)およびビスマス(Bi)で等電子的にコドープすることができ、バンドギャップを1.42eVから約0.8eVのあいだの所望のバンドギャップに下げることができる。他の例としては、GaPをNとBiで、InPをNとBiで、GaInPをNとBiで、InGaAsををNとBiで、等電子的にコドープすることが含まれる。また、その他の組み合わせも実施可能である。
キャリアー移動度およびその他の特性に不利な影響を与えることなく半導体合金のバンドギャップを加減することができるので、所望のバンドギャップをもち、かつ基板および他の半導体材料と格子整合することのできる材料を製作することができるが、このような格子整合と所望のバンドギャップとの両立は、この発明より前には実現できなかった。したがって、本発明は、本発明より前には実現できなかった太陽電池およびLEDあるいはレーザダイオードなどの半導体素子を含む。たとえば、本発明によるモノリシック4接合太陽電池は、約0.67eVのバンドギャップをもつゲルマニウムからなる第1セル(ボトムセル)、約1.05eVのバンドギャップをもち、等電子的にコドープされたGaAs:N:BiであるGaAsからなる第2セル、約1.42eVのバンドギャップをもつGaAsからなる第3セル、および約1.90eVのバンドギャップをもつInGaPからなる第4セル(トップセル)を含むだろう。この構造は、所望に応じ、ゲルマニウム基板またはGaAs基板のどちらかの上に製作することができる。他の例では、1つまたは複数のセル中に等電子的にコドープされたGaPがあり、Si基板および接合(バンドギャップ1.1eV)上にGaP:N:Bi(バンドギャップ1.75eV)またはGaP:N:Bi(バンドギャップ1.55eV)とGaP:N:Bi(バンドギャップ2.04eV)の組み合わせなどを製造した例が含まれる。
たとえば等電子的にコドープされたGaAs:N:Bi:Inなどの活性(発光)MQW層およびGaAsバリア層をもつLEDおよびレーザダイオードは、GaInPクラッド層とともに、GaAs基板上に製作することができる。同様に、等電子的にコドープされたGaP:N:Biの活性領域を、GaPバリア層とともに、GaP基板上に製作することができる。もう1つの例では、等電子的にコドープされたGaAs:N:Bi:InのMQW層を複数、GaPバリアで隔てて有し、さらにAlxGa1-x-yクラッドを有しているレーザダイオードを、質を段階的に変えた複数のGaP1-x-yxBiy層とともに、Si基板上に製作することができる。格子不整合歪みを減じるため、クラッド層とSi基板との間に、質を段階的に変えて複数のGaP1-x-yxBiy層を設けている。
添付した図面は、明細書に組み入れられ、その一部となるものであり、本発明の好ましい態様を示しており、明細書の記載とともに発明の本質を説明するためのものである。
本発明の原理および方法に基づいて作られた高効率モノリシック4接合太陽電池10の例が、図1に示されている。約1.05eVのバンドギャップをもつ低濃度GaAs1-x‐yxBiy合金(GaAs:N:Biと略することがある)からなる活性な光吸収セル12は、モノリシック4接合太陽電池10のGeセル11(バンドギャップ0.67eV)とGaAsセル13(バンドギャップ1.42eV)との間に位置しており、モノリシック4接合太陽電池10はさらに、GaAsセル13上のInGaPセル14(バンドギャップ1.90eV)と、下部Geセル11として、n−p接合21を与えるためにドープされたGe基板15を有する。もちろん、前記太陽電池10はまた、セル10の電気回路(図示せず)への電気的接続を促進するよう、従来のボトムコンタクト層16と、トップグリッド17とを有している。反射防止(A.R.)コーティング19、(表面を不活化するための)ウインドウ層25、(オーミック接触を促進するための)コンタクト層18、および背面反射材(BSR)26、27、28、29、30など、その他の従来的な特徴も、この技術分野でよく知られており本発明の一部ではないけれども、図に示されている。BSR層26、27、28、29、30は、それらが取り囲む領域と格子整合し、かつ取り囲んだ領域よりも高いバンドギャップをもつように設計されている。
太陽放射30が太陽電池10を照射すると、太陽スペクトルのうち、より高エネルギーでより短波長な部分(たとえば、約652nm以下の範囲にある波長)が、大体はInGaP上部セル(第4セル)14において吸収され電気エネルギーに変換されるが、より低エネルギーでより長波長の太陽放射は、次のGaAsセル(第3のセル)へと伝えられる。太陽放射のうちエネルギーが次に高い範囲(約873nm〜652nmの波長)は、大体はGaAs第3セル13で吸収されて電気エネルギーに変換され、より低いエネルギー太陽放射は、GaAs:N:Bi第2セル12へと伝えられる。このGaAs:N:Bi第2セル12は、本発明にしたがって製作され、以下でより詳細に説明される。約1180nm〜873nmの範囲の太陽放射は、大体はこの第2セル12で吸収され電気エネルギーに変換されるが、吸収されずに残っているより低いエネルギー放射は、Ge第1セル(下部セル)11に伝えられる。下部セル11は、約1850nm〜1180nmの範囲の太陽放射を吸収し、電気エネルギーに変換する。したがって、前記のように構成されるモノリシック4接合太陽電池10は、充分に太陽放射スペクトルを吸収し、40%(AM1)の全セル効率に近づくように、電気エネルギーに変換することができる。
各p−n接合を作るために、セル11、12、13、14のそれぞれに電荷をドーピングすることは、従来の知識により遂行でき、通常は、元素周期表のより高い族またはより低い族から選ばれた不純物またはドーパント原子を加える。たとえば、限定するものではないが、本発明のGaAs:N:Bi第2セル12は、第2セル12と第3セル13の間にあるGaAs:N:Biトンネル接合32と同様、GaAs:N:Bi第2セル12のp−n接合22を形成するために、II族(たとえば、ZnまたはCd)のアクセプター原子でp型にドープでき、VI族(たとえば、S、SeまたはTe)のドナー原子でn型にドープできる。
GaAs第3セルのセルp−n接合23、および、第3セル13と第4セル(トップセル)14との間にあるGaAsトンネル接合33もまた、それぞれVI族原子およびII族原子で電荷ドーピング(charged doping)して作ることができる。
GeはIV族元素なので、第1セル11のn−p接合21およびボトムセル11と第2セル12の間にあるトンネル接合31のためのp型およびn型半導体材料を形成するために、たとえば、III族元素のアクセプター原子およびV族元素のドナーでそれぞれ電荷ドーピングできる。Ge基板15もまた、III族アクセプター原子でp型にドープできる。
しかしながら、本発明は、前記特定の太陽電池10の構造例に限定されないことは、当業者には明らかとなるだろう。以下で論じられるように、本発明の原理は、他の太陽電池のバリエーションにも、他の合金にも、n−pまたはp−nのどちらの接合についても用いることができる。
第2セルとして使用されているGaAs:N:Bi合金は、GaAs合金をチッ素(N)およびビスマス(Bi)で同時に等電子コドーピングすることにより作られる。Wayers et alによって観測されたGaAs1-xxの巨大な伝導帯ボウイングが、GaAsにNを添加することによりGaAsのバンドギャップを著しく低減できることを示しているようであり、引き続くKondow et alによるGe0.92In0.080.03As0.97合金の製造が、この考え方を、望まれている1.0eVのバンドギャップをもつ半導体材料を作るために利用したが、本発明の重要な部分およびここに開示した解決手段、方法および装置に向かう動機付けは、以下の、(i)都合悪いことに、合金中のチッ素は等電子トラップも形成し、このトラップが、伝導帯の大きなボウイングを利用しようとする試みをすべて駄目にしてきたこと、および(ii)GaAs中のNは、GaAsの伝導帯のボウイングを誘引するだけでなく、かわりに、チッ素不純物が、深いアクセプターチッ素不純物帯の形成を通じて、伝導帯の形成に直接的に関係すること、の認識にある。また、本発明のさらに重要な部分は、(i)チッ素とビスマス両方でのGaAsの等電子コドーピングは、同時に深いドナーもまた生成すること、および(ii)そのような深いドナーの価電子帯への影響は、チッ素の伝導帯への影響と鏡像関係にあり、チッ素をベースとする等電子トラップの負の影響−フォトセルとして用いられるGaAs半導体材料におけるチッ素の有益な影響(たとえば、バンドギャップ減少)を利用することを今まで挫折させてきた−を事実上排除できる、という発見にある。とくに、このようなチッ素とビスマス両方でのGaAsの等電子コドーピングは、チッ素でのみドープされたGaAsに固有の低電子移動度および飛ぶような(hopping-like)伝導特性をほぼ排除し、GaAs材料中のNの溶解度を制限するGaAs結晶格子中のチッ素の増大されたマーデルング(Madelung)エネルギー効果を消す。チッ素およびビスマスはともに元素周期表の同じ族にあるために、このようなチッ素とビスマスとのコドーピングは、等電子的である。
本発明にもとづく、このようなチッ素とビスマスでのGaAsの等電子コドーピングは、GaAsのバンドギャップを効果的に小さくする伝導帯および価電子帯の大きなボウイングとして明白な深いアクセプターおよび深いドナー不純物帯を生成するだけでなく、GaAs中のチッ素およびビスマスの溶解度を大きく(ほぼ係数10)増大させ、1.0eVに近いかそれより低いバンドギャップをもち、かつGaAsに格子整合するGaAs:Bi:N合金を、チッ素のみでドープしたGaAsすなわちGaAs1-xxまたはGaAs:Nに対して、ほぼ係数15ほど向上したキャリア(電子および正孔)移動度をもつように作ることができる。この記述の目的上、前記文中の「ほぼ係数10」とは、5倍以上を意味するが、9倍以上が達成可能である。また、「ほぼ係数15」とは、10倍以上を意味するが、13または14倍以上が達成可能である。さらに、「格子整合」とは、それぞれの格子定数の間のサイズミスマッチ(size mismatch)を0.2%以下にできることを意味する。
また、前記した本発明の説明と図解、およびさらに以下で述べる本発明の説明は、説明および理解を容易にするため、GaAs:Bi:Nを含むIII−V族半導体合金系の等電子コドーピングの例を用いるが、本発明にもとづくそのような等電子コドーピングは、すべての半導体化合物および合金に適用できる。本発明に基づいて利用するために、唯一の重要な制約は、等電子ドーパントが、以下により詳細に説明されるように、ホスト結晶中で深いアクセプターまたは深いドナーとしてふるまう等電子トラップを形成しなければならないことである。
本発明の原理を示す別の例であるZnSeは、II−VI族半導体材料である。酸素(O)は、ZnSe中の等電子トラップであり、深いアクセプターとしてふるまうのに対して、テルル(Te)は、深いドナーとしてふるまう等電子トラップである。したがって、酸素およびテルルでZnAsをコドーピングすると、各コドーパントの溶解度を高めることができ、生じる合金のふるまいを調整できる(すなわち、望ましくない低キャリアー移動度、および電子(または正孔)が、ある不純物サイトから別の不純物サイトへと飛び移り、ホスト結晶の非局在化状態(delocalized states)には属さないという飛ぶような伝導特性(hopping-like transport)を低減する。したがって、キャリアー移動度や寿命といった電気特性、および発光(PL)効率や強度といった光特性、寿命、バンドギャップの減少された尾の状態(reduced tail states)は、前記III−V族半導体の等電子コドーピングに適用されるのと同じ物理的原理にもとづいて改良されるだろう。
従来の見識は、GaAs中のチッ素のような等電子の置換物は、チッ素とAsが等電子、すなわち、ともに周期表のV族元素であるため合金を生成し、チッ素がGaAs中で欠陥準位を生じることはないと考えていたと思われる。しかしながら、Phys.Rev.B63,85205(2001)のZhang et alによる最近の実験は、GaAs1-xxが実際には合金でなく、むしろ大量にドープされた半導体であることを明らかにしている。チッ素は、V族元素のヒ素よりも非常に強く電気的に陰性なV族元素であり、短い範囲の不純物ポテンシャルをもつ、すなわち電子を捕まえる等電子トラップとして作用するチッ素ドーパントとなり、それによって、正孔は、アクセプター様の波動関数中の長い範囲の電量ポテンシャルに束縛されたままとなる。言い換えれば、そのようなチッ素不純物によるアクセプターのような電子の捕獲は、長い範囲の保護された電量ポテンシャルとなり、正孔をひきつけ、中性励起状態、すなわち、等電子トラップに束縛された励起子となる。したがって、GaAs中のチッ素は、電荷をドープされた半導体、すなわち、周期表の異なる族のホストを置換する原子でドープされた半導体中の帯電アクセプターのように、等電子の深いアクセプターとして作用する。
GaAs中のチッ素との等電子ドーピングにおいて、以下で説明されるように、高濃度のチッ素は、GaAs伝導帯と結合する不純物帯の形成を導くのに有益であり、これは、
Weyers et alによって観測されたGaAs1-xxの伝導帯の明らかで大きなボウイングの起源である。Phys.Rev.B63,85205(2001) においてZhang et alは、高いチッ素ドーピング水準(>1019cm-3または0.1%)が、GaAs伝導帯と結合する不純物帯を導くことを示した。しかしながら、チッ素は、深いアクセプターのように作用するため、GaAs1-xx中のそのような高濃度のチッ素、すなわち、約0.1%あるいはそれ以上のチッ素は、0.1%あるいはそれ以上の濃度の帯電ドーパントが従来の電荷ドープされた半導体材料中でキャリア伝導特性を妨げるのと同様に、GaAs1-xx合金中のキャリア伝導問題を引き起こす。したがって、GaAs:Nで適正な太陽電池を作ることは不可能であることは明らかであり、そうする試みはむだであろう。さらに、たとえ高濃度のチッ素が、GaAs1-xx中の伝導帯の明らかで大きなボウイングを強めても、GaAs中のチッ素の溶解度は約3%に制限されている。取るに足らないほど少量の等電子ドーパントを除き、すべての等電子ドーパントが、結晶格子のアニオンサイト上に収まるので、この発明の記載中の等電子ドーパントの含量と濃度は、全体の結晶格子ではなくて、結晶格子のアニオン副格子(anion sublattice)の原子パーセント(at.%)の単位で表されていることに注意すべきである。ごく少量の等電子ドーパントは、カチオンサイトまたは隙間に収まるだろうが、その数は、取るに足らない。
たとえば熱力学平衡外でGaAs1-xxを成長させる(Miyamoto et alのJ.Cryst.Growth 197(1999)67)などによりGaAs:Nに高濃度のチッ素を取り入れようとするいくつかの努力は、電子移動度の問題をさらに悪化させるだけであった。この溶解度の制限は、強い電気的陰性、およびホスト格子中のヒ素原子を置換すると、マーデルングエネルギーの増加を引き起こす窒素原子の小さいサイズのためである。さらに多くのチッ素をGaAs1-xxに押し込むと、格子構造に歪みが生じる。S.R.Kurtz et alのAppl.Phys.Lett.77(2000)400によって試されているように、このような格子構造の歪みを補うためにインジウム(In)を加えることは、乏しいキャリア移動度の問題解決にはならない。
本発明によるビスマスとチッ素でのGaAsの等電子コドーピングは、チッ素のみの等電子ドーピングの結果である前記の両問題を解決する。とくに、GaAsをチッ素およびビスマスで等電子ドープすると、電子をトラップし、長い範囲のクーロン場(long range Coulomb field)の結果としてキャリアばらつき問題を引き起こす強い電気的陰性のチッ素が、正孔をトラップする弱い電気的陰性のビスマスにより遮蔽される。等電子の深いアクセプターおよび深いドナーの長い範囲のクーロン場は、短い範囲の双極場に効果的に変わり、それによって、低キャリア移動度の原因が中和される。同時に、大きなビスマス原子は、格子中で、小さい窒素原子とGaとの堅い(短く強い)結合よりも緩やかに(長く弱く)ヒ素と結合し、これは、基板との格子整合を維持するだけでなく、これら異なる原子を置換的にホスト格子中に収容するという有利な効果を示す。したがって、ドープされた結晶格子のマーデルングエネルギーは低いままであり、ビスマスおよびチッ素を高濃度に、ホスト中に取り入れることができる。言い換えれば、チッ素とビスマス両方によるGaAsの等電子コドーピングは、ホストGaAs格子へのチッ素とビスマス両方の溶解度を増大し、その結果、伝導帯エネルギーおよび価電子帯エネルギーの両方に深いボウイングを生じ、バンドギャップの低下および移動度の増加を同時に実現する。
さらに説明するために、図2、3および4を参照する。図2および3は、従来の帯電ドーパントであるアクセプターおよびドナーのドーパントエネルギー準位を示している。図2には、伝導帯エネルギーEcおよび価電子帯エネルギーEvを、直接バンドギャップをもつ、すなわち最小Ecと最大Evがともに運動量ベクトルk=0で生じる半導体材料について示している。言い換えれば、バンドギャップ40を横切る電子は、バンドギャップを横切る電子がその運動量を変えなければならない間接バンドギャップ材料とは対照的に、その運動量ではなく、そのエネルギーを変えさえすればよい。従来のp型帯電ドーパントはアクセプター型原子であり、通常、周期表上でホスト元素の1つ左の族にあり、すななわち、外側エネルギー核の電子が1つ少ない。そのような従来の帯電アクセプターのドーパント帯42が、図2に示されており、従来の帯電アクセプターのドーパントエネルギー準位が、伝導エネルギー帯Ecよりも価電子エネルギー帯Evに近いことを示している。従来の、帯電ドナーのドーパント帯44は、図3に示されるように、価電子エネルギー帯Evよりも伝導エネルギー帯Ecに近い。
対照的に、図4に示されるように、チッ素によってGaAs:N:Bi中に形成された等電子ドーパント準位46は、「深いアクセプター」、すなわち、価電子エネルギー帯Evから遠く、伝導エネルギー帯Ecに近いドーパント準位46をもつアクセプターのように作用する。同時に、ビスマスによって形成されたGaAs:N:Bi中の等電子ドーパント準位48は、「深いドナー」であり、すなわち、伝導エネルギー帯Ecから遠く、価電子エネルギー帯Evに近いドーパント準位48をもつドナーである。
深いドナーおよび深いアクセプターに関する以下の説明において、深いアクセプターの物理的原理、作用および特徴を記載することは、それが極性において逆であり、大きさが同じで逆の物理的効果をもつことが当業者の理解するところであるから、繰り返しになり不必要にわずらわしい。そこで、便宜上、以下の説明は主に深いドナーについて行ない、適宜、深いドナーについての用語の後ろに、深いアクセプタに対応する逆の用語をカッコつきで記載して、深いアクセプターに対応する反対向きの原理、作用および特徴のために文章全体を繰り返すかわりとする。
非常に薄いドーピング濃度では、隣接するドナー(アクセプター)原子間の距離は大きいため、隣接するドナー(アクセプター)波動関数間の、空間的な重なり合いはなく、図2および3に示されるように、すべてのドナー(アクセプター)の不純物エネルギー準位は同じである。しかしながら、ホスト半導体中のドーパント原子の濃度が増加すると、隣接するドナー(アクセプター)間の距離が小さくなり、隣接するドナー(アクセプター)波動関数間に空間的な重なり合いが生じる。パウリ(Pauli)の禁制原理は、2つのドナー(アクセプター)に同じエネルギー準位をもつことを禁じているので、それぞれのドナー(アクセプター)のエネルギー準位の位置は、ほかのすべてのドナー(アクセプター)のエネルギー準位を考慮して少し移動される。このドナー(アクセプター)による密接に配置されたエネルギー準位の集合(set)は、ドナー(アクセプター)帯と呼ばれ、もっと一般的には、不純物帯と呼ばれる。したがって、高ドーピング濃度は、必ず不純物帯を形成し、これら不純物帯が充分に広くなると、伝導(価電子)帯の端と結合して、伝導(価電子)帯最小値(最大値)の低下を引き起こす。この伝導(価電子)帯最小値(最大値)の低下が、多量のドーピングで観測されるバンドギャップの低下、すなわちバンドギャップのボウイングを引き起こす。
不純物帯とは対照的に、ホスト半導体格子に属する隣接原子間の強い波動関数の重なりがあるので、電子(正孔)は格子中を容易に動くことができる、すなわち高移動度をもつ。不純物帯では、隣接する不純物波動関数間の空間的重なりは、ホスト原子波動関数の重なりよりもかなり小さいので、電子(正孔)は格子中を容易には動くことができない。移動度が低く、電子(正孔)がある不純物サイトから最も近隣の不純物サイトに飛び移る、いわゆるホッピング伝導(hopping conduction)がある。ホスト中の不純物の溶解度を高めることによって、不純物間の距離は小さくなり、不純物波動関数の重なりは増大し、電子(正孔)の有効質量は減少し、そして、電子(正孔)の移動度は大きく増加する。
GaAsのチッ素とビスマスでの等電子コドーピングでは、チッ素ドーピングによって生じる伝導帯Ecのボウイングによるバンドギャップ減少は、価電子帯に類似の効果を奏するビスマスの添加によって補強あるいは強化される。同時に、GaAs:N:Biは、GaAsに格子整合することができ、図1に示したモノリシック4接合太陽電池10のような多接合太陽電池において、GaAsセル構成要素13と隣り合う活性セル構成要素12として適合でき、利用できる。さらに、GaAs中のチッ素およびビスマスの溶解度は、GaAsのチッ素とビスマスでの等電子コドーピングにより、GaAs中のチッ素またはビスマスいずれか単独での溶解度に対して、ほぼ係数10で増大し、キャリア移動度は、ほぼ係数15で増大するので、本発明に従い、所望のある特定のバンドギャップおよび格子整合を得るためにチッ素とビスマスの所望の濃度および比率を選択することにより、する1.0eVより低いバンドギャップ、実際には1.42eVから0.8eVの範囲のどこでも、をもちGaAsと格子整合したGaAs:N:Biを製造することができ、これは本発明の原理を当業者がひとたび理解すれば、彼らの能力の範囲内で充分である。
それゆえ、本発明の目的のために、等電子の深いアクセプター元素またはドーパントは、それが置換するホスト格子元素よりも電気的に陰性で、そのドーパントエネルギー準位が、ホスト半導体合金の価電子エネルギー帯Evよりもホスト半導体合金の伝導帯Ecに近く、電子トラップとして作用する等電子ドーパントとして表現され得る。また、本発明の目的のために、等電子の深いドナー元素またはドーパントは、それが置換するホスト格子元素ほど電気的に陰性ではなく、そのドーパントエネルギー準位が、ホスト半導体合金の伝導帯Ecよりもホスト半導体合金の価電子エネルギー帯Evに近く、ホールトラップとして作用する等電子ドーパントとして表現され得る。
さらに説明すると、数個の等電子ドーパント原子がホスト結晶格子に導入されると、単独の分離された不純物の存在は、(i)エネルギー準位が、電子状態準位(electronic state energies)に対する他の禁制域、すなわちバンドギャップにある電子状態、または(ii)エネルギー準位が、伝導帯Ecの最小値をこえるか、または価電子帯Evの最大値を下回るかのどちらかに位置している電子状態、のいずれかを生じさせる。そのエネルギーが禁制バンドギャップに位置する不純物電子状態は、「束縛状態(bound state)」と呼ばれる。なぜならば、キャリアが、そのような電子状態の周辺に局在化、すなわち束縛されているからである。その準位が伝導帯または価電子帯に位置する不純物電子状態は、「共鳴不純物状態(resonant impurity state)」と呼ばれる。
しかしながら、多くの等電子ドーパント、すなわち約1019cm-3以上の原子がホスト結晶格子に導入されると、隣接するドーパント原子間の相互作用、すなわち、「ペア(pair)相互作用、3連(triplet)相互作用など」が、結果として不純物帯を生じさせる。GaAsやGaP中のチッ素(またはビスマス)に使用されるような大量のドーピングでは、「束縛状態」を発生する不純物相互作用により様々な不純物準位が生じ、そのエネルギー準位が伝導帯(ビスマスの場合は、価電子帯)と結合し、その結合がバンドギャップのボウイングとして現れる。
ドーパント原子と、ドーパント原子によって置換されるホスト格子原子との間には、原子価に違いがあるので、普通の、すなわち等電子的ではないドナー原子は、ホスト結晶格子の伝導帯に電子を寄付する。電子の寄付により、ドナー原子はイオン化され、正味の正電荷をもつ。このような普通のドナーイオンのクーロン場は、r-2としての距離により変化する。すなわち、距離rの2乗に反比例する。クーロンポテンシャルはr-1により変化する。このような普通の、等電子的ではないドナーは、帯電ドナー(charged donors)とよばれる。類似した状況が、等電子的ではないアクセプターと正孔においても当てはまり、これは帯電アクセプターと呼ばれる。
対照的に、GaAsまたはGaP中のチッ素(またはビスマス)不純物により生じるような、等電子ドーパントまたは不純物により発生した等電子トラップにおいて、トラップ状態(trap state)を生じるのは、等電子不純物とそれが置換するホスト格子原子との間の電気的陰性、サイズおよび擬ポテンシャルの違いである。このようなトラップ状態は、距離に応じて、r-1よりも速く変化するポテンシャルによって特徴づけられる。等電子トラップによりつくられたこのポテンシャル井戸(well)は、帯電ドナー(アクセプター)によりつくられたものより、非常に急勾配であり、この急なポテンシャル井戸ゆえに、たとえばチッ素(ビスマス)などの等電子ドーパントまたは不純物原子の周囲にトラップされた電子(正孔)は、帯電ドナー(アクセプター)の場合よりもはるかに強く、等電子ドーパントまたは不純物原子の周囲に局在する。実際、帯電すなわちイオン化ドナー(アクセプター)と電子(正孔)との間のクーロン力は、無視してよいほどに小さく、なぜ帯電ドナー(アクセプター)でドープされた結晶格子中の電子(正孔)が、自由に伝導帯(価電子帯)のなかを動くことができるのかを説明している。一方、等電子トラップによって束縛された電子(正孔)は、現実の空間で等電子トラップのまわりに局在しており、伝導帯(価電子帯)のなかを自由に動くことができない。
等電子トラップによって束縛されたこのような電子(正孔)の局在化は、k空間(k-space)の中の等電子不純物トラップの固有状態(eigenstates)、すなわち運動量ベクトル特性を不鮮明にする。それによって、不純物電子状態が、k空間の中で非局在化される。このk空間の中の不純物電子状態の非局在化は、本発明で利用される有益な効果を有している。たとえば、GaPのような間接バンドギャップ半導体材料が、チッ素などの等電子不純物でドープされると、このk空間の中の不純物電子状態の非局在化は、このような間接バンドギャップ半導体材料における放射再結合の蓋然性を増大し、それによって、それらをより直接バンドギャップ材料のように振る舞うようにさせる。GaPの等電子コドーピングと結びついたこの特徴の利益は、電子素子のための本発明にしたがって、より詳細に以下に記載される。
たとえば図2に示された不純物準位42のような、通常使用される帯電アクセプターによって導入された不純物準位は、価電子帯端Evの通常は数meV上、すなわち約20meV上に位置する。同様に、たとえば図3に示された不純物準位44のような、通常使用される帯電ドナーによって導入された不純物準位は、伝導帯端Ecの通常は数meV下である。もし、これら不純物によって導入された準位の深さが、室温ボルツマンエネルギーkT=26meVよりも大きいとしたら、ドーパントの多くは室温でイオン化されず、アクセプターまたはドナーとして作用しないだろう。帯電ドナーまたは帯電アクセプターによって導入された26meVよりも深い不純物準位は、深い準位と呼ばれる。
本発明によるコドーピングに使用される等電子ドーパントにおいては、図4に示されるように、チッ素などの電子トラップにより引き起こされた不純物準位46は、価電子帯Evに近いというよりも、むしろ伝導帯Ecに近い。したがって、電子トラップを形成し、価電子帯Evよりも伝導帯Ecに近い不純物準位46を引き起こすチッ素などの等電子ドーパントは、等電子の深いアクセプターと呼ばれる。一方、ビスマスなどの正孔トラップにより引き起こされた不純物準位48は、伝導帯Ecに近いというよりも、むしろ価電子帯Evに近い。したがって、正孔トラップを形成し、伝導帯Ecよりも価電子帯Evに近い不純物準位48を引き起こすビスマスなどの等電子ドーパントは、等電子の深いドナーと呼ばれる。
伝導帯Ec端のすぐ下に電子が局在した状態を生じさせる、等電子電子トラップによって引き起こされる不純物準位の特徴、および、価電子帯Ev端のすぐ上に正孔が局在した状態を生じさせる、等電子正孔トラップによって引き起こされる不純物準位の特徴が、半導体材料中で、大きな伝導帯のボウイングを引き起こす。たとえばチッ素やビスマスなどの等電子ドーパントのこの望ましい特徴が、本発明の態様や装置で利用される。さらに、乏しい溶解度、不純物帯形成による乏しい移動度、および短いキャリア寿命など、等電子コドーピングにおける別の固有の望ましくない特性は、本発明による等電子の深いアクセプターおよび深いドナーでのコドーピング技術を使うことによって、軽減される。
再び図1を参照すると、ゲルマニウムは、太陽電池10に望ましい0.67eVのバンドギャップを与えるために、モノリシック多接合太陽電池10の下部セル(第1セル)11に使用することができる。なぜならば、本発明の等電子コドープされたGaAs:N:Bi合金が、ゲルマニウムとほぼ格子整合して、すなわち約0.2%以内のミスフィット(不整合)歪みで成長することができ、効率的な太陽電池素子に充分な耐久性とキャリア移動度を与えるからである。ゲルマニウムは間接バンドギャップを有するが、それでもやはりゲルマニウム下部セル11を含む基板15として使用するとき、下部セルに適しているといえる。なぜならば、基板15は、ゲルマニウムセルに、1850nm〜1180nmの波長範囲にある実質上すべての光を吸収するための充分な厚さを与えるためである。
この技術分野でよく知られているどのコドーピング法、たとえばGaAs中にチッ素およびビスマスドーパントの輪郭(profiles)を重ねて注入するためのチッ素およびビスマスでのGaAsの順次照射(sequential bombardment)なども、本発明にしたがった合金の等電子コドーピングを遂行するために使用できるし、OMVPE(有機金属気相エピタキシ)成長技術を使用することによっても遂行できる。ビスマスに適した有機原料−トリメチルビスマス−は、たとえば、マサチューセッツ州ノースアンドーバーにあるローム・アンド・ハース(Rohm and Haas)社から入手可能である。チッ素は、ジメチルヒドラジンから得ることができ、これも当業者にはよく知られているし、同じ会社から手に入れることができる。前記コドーピングはまた、分子線エピタキシ(MBE)成長法、気相エピタキシ(VPE)成長法、または液相エピタキシ(LPE)成長法を使用して遂行することもできる。イオン注入技術を使用したコドーピングは、たとえば、この技術の水準を示す文献であり、コドーピングの権威であり、現在最も信頼のおけるS.P.Witrow et alの「Ion Beam Annealing of Si Co-Implanted with Ga and As」,Mat.Res.Soc.Symp.Proc.,vol.57,pp.143-148,1990に記載されており、1990年以降に出された他のいくつかの論文にも記載されている。なお、前記したとおり、本発明は、NおよびBiによるGaAsの等電子コドーピングに限られない。たとえば、これらに限られるわけではないが、InP、GaP、InGaAsおよびZnSeもまた、「深い」アクセプターおよび「深い」ドナーで等電子コドープでき、前記GaAs合金と同様の効果を奏する。
本発明による半導体合金の等電子コドーピングはまた、他にも応用できる。たとえば、間接バンドギャップをもつが、豊富にあり安価であるシリコンを基板として使用し、より効率的でより経済的なタンデム太陽電池を作るのに使用できる。2セルタンデム太陽電池について、理論的に最適な1−Sun AM1効率は、1.8eV/1.0eVの組み合わせで得られ、3セルタンデム太陽電池については、2.2eV/1.6eV/1.0eVの組み合わせで得られる。本発明より前は、最も効率的なタンデム(2または3接合)太陽電池を、それぞれ1.85eV/1.42eVまたは1.85eV/1.42eV/0.67eVのバンドギャップの組み合わせをもつGaInP/GaAsまたはGaInP/GaAs/Geを、タンデムセルの活性吸収手段をつくる格子整合半導体材料として使用して得ていた。本発明にもとづく2セルタンデム太陽電池50は、図5に示されているが、1.75eV/1.1eVのバンドギャップの組み合わせをもっており、2セルにおける理論的最適条件に非常に近い。本発明にもとづく3セルタンデム太陽電池70は、図6に示されているが、2.05eV/1.55eV/1.1eVのバンドギャップの組み合わせをもっており、3セルにおける理論的最適条件に非常に近い。これらのタンデムセル50、70はともに、基板および下部セルにシリコンを使用している。
図5を参照すると、本発明にもとづく2接合タンデム太陽電池50は、当業者によく知られているように、1.1eVのバンドギャップをもつ下部セル54として作用するために、n−p接合55を与えるようドープされているシリコン基板52を有している。また、本発明にもとづく等電子コドープされたGaP:N:Bi合金からなり、1.75eVのバンドギャップをもつ上部セル58も有している。前記GaP:N:Bi合金は、n−p接合59を形成するために、亜鉛(Zn)やカドミウム(Cd)のようなアクセプター、および硫黄(S)やセレン(Se)のようなドナーで電荷ドープされている。当業者であれば可能なように、n++およびp++ドープされたシリコンからなるトンネル接合56もまた、下部セル54と上部セル58の間に与えられている。もちろん、当業者であれば可能であるだろうが、接合55、59を逆にしてp−n接合とすることができ、p++−n++トンネル接合56をn++−p++トンネル接合へと逆にすることもできる。もちろん、当業者であれば可能なように、太陽電池50を電気回路(図示せず)へと接続するため、ボトムコンタクト60およびグリッドコンタクト62が設けられている。裏面反射材(BSR)63、反射防止コーティング(ARC)49、ウインドウ層61およびコンタクト層63は、一般的であり、当業者にとってよく知られており、本発明の部分ではない。
シリコンが1.1eVのバンドギャップをもつをもつことは、一般的に知られていることである。しかしながら、本発明より前は、(i)シリコンと格子整合することができ、(ii)2セル結合タンデム太陽電池の第2セルとして最適な、1.75eVに近いバンドギャップをあたえることができる、または3セル結合タンデム太陽電池の第2および第3(上部)セルとして最適な、それぞれ1.55eVおよび2.05eVに近いバンドギャップをあたえることのできる、直接バンドギャップ半導体材料はなかった。たとえば、GaPは、シリコンと格子整合に近い(室温で0.37%の圧縮ミスフィット歪み)こと、およびシリコンとのタンデムにおける第2および第3セル用として理論的最適値に近いどこかにバンドギャップをもってくるために、たとえばインジウム(In)と混ぜて合金にすることができることが知られているが、得られたGaInP合金は、シリコン基板に対しきわめて格子不整合となるだろう。
シリコン上にGaPを使用することのさらに悪い問題として、GaPはシリコンより極わずかに大きい格子をもっており、シリコンの約2倍の熱膨張係数をもっている。シリコン上でのGaP成長のための最適な技術は、極性または非極性成長と結びついた逆位相境界(anti-phase boundaries)を排除するためにミスカット(miscut)された非極性シリコン基板上で極性GaPの2次元の成長を達成するために、薄いGaP層を低い温度で成長させ、続いて高温でGaPを成長させるという、2段階の工程が使用される。それゆえ、高品質MOCVD(有機金属化学気相成長法)でシリコン上に成長するGaPの上層(epilayers)のために必要とされる高成長温度(>700℃)において、ミスフィット歪みは、室温の0.37%圧縮から、高成長温度では約0.65%圧縮へと変化する。0.37%圧縮の室温ミスフィット歪みよりも0.28%圧縮が大きい、成長温度におけるこのミスフィット歪みの値は、通常厚さ1μmのGaPの上層の、成長温度における大部分の緩和をもたらす結果となる。しかしながら、続いて室温にまでクールダウンすることで、結晶のクラッキング問題が生じる。
現在では本発明により、GaPのバンドギャップを、2.26eVから、シリコンの基板および/または下部セル上に作られるタンデム太陽電池50、70の第2および第3セルに適した最適に近い値まで低減すべく、高ドーピング準位において不純物帯を形成する等電子の深いアクセプターおよび深いドナー準位、たとえば、限定するものではないが、高濃度のドーピングレベルで不純物帯を形成するチッ素およびビスマスで、GaPまたはGaP合金を等電子コドーピングすることによって、図5および図6に示されるように、GaP半導体材料を、シリコンの第1セル(下部セル)と組み合わせて第2セルとして使用できる。GaPは間接ギャップ半導体なので、直接ギャップ半導体を説明するために書かれた図2、3および4は、伝導帯Ecの最小値を、価電子帯Evの最大値に関して横方向に、すなわちk方向に動かす修正をしなければならないだろうが、深いドナーおよび深いアクセプターの等電子コドーピングに関する前記の説明の残りすべては、依然としてそのまま当てはまる。本発明によるこのような等電子コドーピングにおいて、GaP中の等電子コドーパントの溶解度を6%かそれ以上のレベルにでき、約1.55eVという低さのバンドギャップにできる。このような等電子コドーピングは、1つの等電子種が単独であるときの低溶解度の問題を軽減することに加えて、1つの等電子種が単独であるときに出くわすバンドテイリング(band tailing)、ミッドギャップトラップ(mid-gap trap)状態、短い少数キャリア寿命、および低いキャリア移動度問題を、前記のとおり最小限にする。
運動量空間の波動関数の非局在化は、GaPの間接バンドギャップ問題を避けるので、本発明によるGaP:N:Bi合金の薄いフィルム層で、強い光吸収が獲得できる。基本的には、本発明以前に知られているように、GaP中のチッ素は、GaP:N LED(発光ダイオード)からの発光により証明されているように、GaPを直接バンドギャップ半導体材料のように作用させる。本発明によって、ビスマスなど等電子の深いドナードーパント、およびチッ素など等電子の深いアクセプターで、GaPを等電子コドーピングすることは、チッ素の深いアクセプターおよびビスマスの深いドナー不純物帯それぞれの間の電子移動を増大でき、コドーピングにより高濃度のチッ素を達成できるため、このような直接バンドギャップ的ふるまいをさらに増大させ、本発明の等電子的にコドープされたGaP:N:Bi合金中に、強い光吸収(a=104〜105)を引き起こす。
とくに、GaP結晶格子中で、伝導帯にある電子の波動関数は非局在化され、すなわち、電子は、格子のどの領域においても等しい蓋然性で見つけることができる。たとえ結晶中のそのような電子の正確な位置がはっきりしなくても、それは定義の明確な運動量をもっている、すなわち、k空間とも呼ばれる運動量空間に局在化している。一般原理として、実空間(real space)での局在化は、運動量空間すなわちk空間での非局在化を意味しており、逆もまた同じである。伝導帯最小値電子を説明しているどの波動関数(ブロッホ状態)も、固有の波動ベクトル(運動量ベクトル)kをもっており、これは、GaPが間接半導体であるので、決してゼロにならない。チッ素のドーピングで不純物帯が形成され、その不純物帯のエネルギー位置は、伝導帯最小値のすぐ下である。チッ素ドーピング濃度が増加するにつれ、この不純物帯は広がり、そして伝導帯と結合し、その結果として、新しい伝導帯最小値を構成する。しかし、チッ素ドーピング以前の伝導帯の非局在化波動関数とは対照的に、不純物帯の波動関数は、チッ素不純物周辺のある範囲に局在し、電子をトラップする。言い換えれば、電子は、格子のどの領域においても等しい蓋然性で見つけることができないが、かわりに、格子の他の領域よりもチッ素不純物周辺で見つかる蓋然性が高い。よって、前記の一般原理によれば、これら不純物帯波動関数は、ある程度まで、運動量(k)空間で非局在化されなければならない。このことは、不純物帯波動関数が、定義の明確な運動量をもっていないということができる。言い換えれば、その運動量は、不純物帯の電子にとってよい量子数ではない。結果として、電子が価電子帯に遷移するのを禁止するような運動量の拘束(チッ素がドープされていないGaPにあるような)は、もはや存在しないので、チッ素がドープされたGaPにおいて強い光吸収をもたらす。
よって、本発明によるチッ素およびビスマスでのGaPの等電子コドーピングによって、GaP中のチッ素ドーピング濃度を増加する能力は、GaPの光を吸収する能力を増大する。しかし、より重要なことは、本発明に基づいて等電子コドープされた他の合金に関して前記したように、等電子コドープされた合金の特性は一様化(regularized)される。たとえば、チッ素をドープされたGaPの低キャリア移動度およびホッピングライク(hopping-like)伝導特性は、本発明にもとづく等電子的にコドープされたGaP:N:Bi中で最小化されるか、排除される。
さらに、本発明にもとづく、等電子の深いアクセプターおよび深いドナー、たとえば、限定するものではないがチッ素およびビスマスでのGaPの等電子コドーピングは、GaPの熱膨張係数がシリコンと比較して高いために生じる、シリコン上で高温で成長したGaPの結晶クラッキング問題を緩和することができる。窒素原子は小さいので、チッ素がGaP中に置かれると、格子は小さくなる。実際、GaP:N中のチッ素濃度が4原子%またはそれ以上であると、その格子は、シリコン格子と整合するのに小さすぎるほどになる。しかし、本発明の等電子コドーピングにおいて、チッ素とともに大きなビスマス原子を加えることは、小さなチッ素原子を補って、シリコンによく整合する格子サイズを維持する。事実、チッ素に対するビスマスの量は、冷やされたときに、室温でのシリコンのサイズに整合するGaP:N:Bi格子を与えるように調和され得る。たとえば、本発明にもとづいて、約6原子%(5原子%〜7原子%)のチッ素と、約3.4原子%(2.4原子%〜4.4原子%)のビスマスでGaPを等電子コドーピングすることにより、GaP:N:Biの室温ミスフィット歪みを、GaPとシリコンとの間の約0.37%圧縮の室温ミスフィット歪みに対して、約0.14%引張に調整することができる。この0.14%引張のミスフィット歪みは、高温成長段階の間のGaP:N:Biとシリコンの熱膨張の違いにより生じる0.28%圧縮不整合歪みの増加を減じるだろう。言い換えれば、シリコン上でのGaP:N:Biの高温成長の間、0.65%圧縮の高温ミスフィット歪みは、ほんの0.14%圧縮歪みに低減される。その結果として、高温、すなわち少なくとも700℃でのシリコン上のGaP:N:Biのコヒーレントなエピタキシャル成長が達成され、室温にまでクールダウンしたときの結晶クラッキング問題は排除される。本発明の記載の中で、高温に関して使われている「約」というのは、プラスマイナス50℃を意味している。本発明によれば、シリコン上に成長したGaP:N:Bi合金中の他のチッ素濃度も、前記したように、ビスマス濃度と比例的に整合され得るので、シリコン上に高温で成長したGaPのミスフィット歪み、および結晶クラッキング問題は最小化される。一般に、GaP:N:Bi中のチッ素およびビスマスのコドーピングレベルを調整することによって、前記したように、約1.55eV、1.75eVおよび2.0eVのバンドギャップをつくることができ、格子不整合歪みの量を、前記補償作用のある予め調整された量の格子不整合歪みに調整することができる。
図5に示された2接合タンデム太陽電池50の例は、約1.1eVのバンドギャップをもつシリコン下部セル54(シリコン基板52上に作られている)上に、第2セル(上部セル)58を作るために、本発明にもとづく、約1.75eV(1.65eV〜1.85eV)のバンドギャップをもつ等電子コドープされたGaP:N:Biを使用している。上部セル58は、約708nmおよびそれ以下の波長範囲の光エネルギーを吸収して電気に変え、下部セル54は、約1127nm〜708nmの波長範囲の光エネルギーを吸収し、電気に変える。
図6に示された3接合タンデム太陽電池70の例は、前記太陽電池50の下部セル54と同様、シリコン基板72上に作られ、n−pまたはp−nのドープされた活性接合75をもち、約1.1eVのバンドギャップをもっているシリコン第1セル(下部セル)74を有する。また、太陽電池50のトンネル接合56と同様のp++−n++またはn++−p++のシリコントンネル接合76が、下部セル74の上に設けられている。本発明にもとづいて等電子コドープされ、約1.55eV(1.45eV〜1.65eV)のバンドギャップをもつGaP:N:Bi半導体合金は、第2セル78として使用される。一般に、等電子ドーパント濃度が高くなるほど、得られた等電子コドープ半導体合金の有効バンドギャップ(effective bandgap)は低くなる。したがって、いったん当業者が本発明を理解すれば、ここで議論されたどのような半導体合金も、所望のバンドギャップに調整できるだろう。太陽電池50の第2セル58に関して前記したように、GaP:N:Bi第2セル78は、n−pまたはp−n接合79を与えるために電荷ドープされており、当業者であれば理解できるとおり、より多量にドープされたトンネル接合80が、第2セル78およびBSR層85上に設けられている。本発明に基づいて等電子コドープされ、約2.05eV(1.95eV〜2.15eV)のバンドギャップをもつGaP:N:Bi合金の第3セル(上部セル)82が、前記第2セル78、トンネル接合80およびBSR層84の上に設けられている。当業者であれば理解できるように、GaP:N:Bi上部セルは、第2セル78の接合79のためのドーピングと同様、n−pまたはp−n接合83を形成するために電荷ドープされている。当業者であれば理解できるとおり、ボトムコンタクト90およびグリッドコンタクト92も設けられている。
太陽電池70の上部セル82は、約605nmおよびそれ以下の波長範囲の光エネルギーを吸収して電気に変え、第2セル78および下部セル75は、それぞれ、605nm〜200nmおよび800nm〜1127nmの波長範囲の光エネルギーを吸収し、電気に変える。
1.75eV/1.1eVの組み合わせに基礎を置く2セル太陽電池50および2.0eV/1.55eV/1.1eVの組み合わせに基礎を置く3セル太陽電池70のデザイン−本発明にもとづいて等電子の深いアクセプターおよび深いドナー種で等電子コドープされたGaPを使用する−は、シンプルでありながら、理想的なタンデム太陽電池デザインのキーとなる本質的要件−安価な基板および太陽スペクトルへの最適な適合−をすべて、スマートなやり方で備えている。太陽電池50、70の1.75eV/1.1eVおよび2.0eV/1.55eV/1.1eVの組み合わせはそれぞれ、そのような素子にとって最適な1.8eV/1.0eVおよび2.2eV/1.6eV/1.0eVの設計値に近い。GaAsでなくシリコンを、基板52、72として下部セル54、74に使用することができ、これは重要な利点である。なぜなら、シリコン基板はGaAsよりも非常に安価であるからである。また、APB(逆位相境界)を排除するための4?傾斜基板の使用や、非極性シリコン上に極性GaPの2次元の成長を達成するため低温でGaP層を成長させ、その後にGaPを高温で成長させる2段階成長など、シリコン上にGaPを成長させる技術はすでに発達しており、本発明の等電子的にコドープされたGaP合金の成長に使用することができる。本発明にもとづくこれら太陽電池デザインの光電変換効率は、以前から知られている2セルおよび3セルタンデムデザインよりも優れており、かつ非常に安価である。
原則として、太陽電池は、LED(発光ダイオード)が逆に作用しているだけであるので、本発明にもとづく等電子の深いアクセプターおよび深いドナー、たとえばチッ素およびビスマスでコドープされたGaAsもまた、ファイバー光伝送にとって最も効率的で好まれる波長で信号を発生するための現在技術のInGaAsP素子より、シンプルで安価なLEDおよびレーザダイオードを提供するために使用することができる。レーザダイオードは基本的にLEDであり、コヒーレント光の非常に狭くて強いビームをを作るために、量子および光閉じ込め構造を含んでいる。よって、別に示すことはしないが、ここでLEDについて触れたことは、レーザダイオードもまた含んでいることを意味する。音声、映像およびデジタルデータのファイバー光通信は、シリカ光ファイバーを基礎に置いており、シリカ光ファイバーは、単一モードの長距離伝送に適用したとき、1.55μm周辺を中心とする波長範囲内、すなわち「ウインドウ(window)」内に、最高の帯域幅および最小の低減をもつ。また、シリカ光ファイバーのこの低損失波長の伝送ウインドウは、エルビウムがドープされたファイバー増幅器の利得帯域の最大値に合致する。前記したように、本発明より前は、この1.55μm波長における光信号発生源は、InP基板上に成長したInGaAsPの4元合金をベースとする半導体レーザダイオードであった。
1.55μm光の光電変換には、約0.8eVの半導体バンドギャップが必要である。GaAs(1.42eV)は、約0.8eV(0.7eV〜0.9eV)と一致する有効バンドギャップをもつ半導体材料をつくるべくGaAsのバンドギャップを低めるために、本発明にもとづく等電子の深いアクセプターおよび深いドナーで等電子的にコドープすることができる。たとえば、GaAs(1.42eV)は、約0.8eVの有効バンドギャップをもつGaAs:N:Biをつくるために、チッ素およびビスマスで等電子的にコドープされ得る。よって、この等電子的にコドープされた材料は、、約1.55μmの波長を持つ光を発生するために構成されたLED−レーザダイオードを含む−の活性層として使用することができる。同様に、1.3μm光の光電変換には、約0.95eVの半導体バンドギャップが必要であり、これは、本発明にもとづく等電子の深いアクセプターおよび深いドナーでのGaAsの等電子コドーピングにより達成できる。
図7に示されるように、本発明にもとづく等電子コドーピングはまた、GaAs基板上に半導体ダイオード端面放射型レーザ120をつくるのに使用することができ、これは、ファイバー光ネットワーク通信のために、1.55または1.3μmの波長域で作動する。n型GaInP2クラッド層(低屈折率光閉じ込め層)126が、n型GaAs基板上に格子整合して成長し、次に、下部GaAs分離閉じ込めへテロ構造(SCH)層127が続く。活性領域128(図7の差し込み図を参照)は、等電子的にコドープされたGaAs:N:Bi:Inの一連の多重量子井戸(MQW)135からなり、それぞれの井戸は、GaAs障壁136により取り囲まれている。MQW135の等電子コドーピングの量、およびMQW135井戸の幅は、0.8〜0.93eV(1.55または1.3μm)に近い基底状態遷移エネルギーを生じるように選択される。インジウム(In)が、格子整合するための付加パラメーターを与えるために加えられるので、ビスマスとチッ素の比率を、合金の作用を最適にするために独立して調整することができる。つぎに、GaAs上部SCH層129が成長し、上部p型GaInP2クラッド層130および上部コンタクトストライプ(stripe)132が続く。全体構造120は、pinダイオードのそれである。pinダイオードにバイアスをかけるために、上部コンタクト132および下部コンタクト122に電圧がかけられると、MQW135の障壁136は、n領域(126)およびp領域(130)から、それぞれ、順バイアス下で活性域128に導入された電子および正孔のために量子閉じ込めを行う。クラッド層126、130は、MQW135での導入された電子と正孔の再結合の結果として出された放射のために、光閉じ込めを行う。上部および下部分離閉じ込めへテロ構造(SCH)層127、129の厚みは、およそ光の波長であり、それゆえ、長手方向を劈開面133、131によってそれぞれ形成された前および後ろの反射面によって仕切られた光ファブリペロー空洞共振器を、横断方向に制限する。当業者であれば理解できるとおり、前記反射面を、レーザ光ビーム134の生成および放射に必要または望ましいように、その反射性を増減するため、コートしてもよい。垂直方向のキャリアの流れは、上部コンタクト132の横縞形状によって規定される外形に従う。したがって、レーザを放出するエリアは、ゲインガイドのために、上部コンタクト132により定義されたストライプ領域の横方向に限定される。低抵抗接触のためのコンタクト層およびバッファ層など、詳細は省略し示されていない。図7の端面放射型レーザは、最も基本的な端面放射型レーザの形状を示している。リッジ導波路型レーザの構成に使用される方法、または埋め込みヘテロ構造(BH)レーザの構成のためのようなインデックスガイドを使用する方法、またはメサまたは逆メサ幾何構造を形成することによる方法など、レーザを放出するエリアの横幅を制限するためにストライプ形状を規定する他の方法も、使用され得る。横方向の電流遮断層として逆バイアスダイオードを使用することや、横方向の絶縁および寄生容量の低減のため、酸化物やポリイミド(polymide)の絶縁層あるいは深くエッチングした凹部を使用することなど、様々な技術が当業者の能力の範囲内で使用され得る。また、当業者の能力の範囲内で充分であるが、クラッド層130または126の下部または上部境界面に格子プロフィル(profile)層を挿入することによって、DFB(分布帰還型)レーザまたはDBR(分布ブラッグ反射鏡)レーザが実現され、これらは、ファイバー光通信に最適な非常に狭い周波数スペクトルをもつ。最後に、MBE、MOCVD、VPEまたはLPE(液相エピタキシ)などの従来のどのような成長技術も、前記素子の成長に使用することができ、従来技術により達成されるn型およびp型層の電荷ドーピングは、入れ換えられ得る。
前記の等電子的にコドープされたレーザ120は、次の利点をもつ。
1)チッ素により引き起こされた大きな伝導帯の偏りが、MQW135に電子を閉じ込めること、およびSCH層127、129に溢れ出る電子を最小限にすることを助け、そして、ビスマスドーピングが、障壁136を横切る適正な正孔伝達を許しつつ、MQW135中に正孔を閉じ込め流出するのを防ぐために丁度充分な量の価電子帯の偏りを与えるように調整され得る。
2)ドーピングするチッ素、ビスマスおよびインジウムの比率を、光の正孔質量(light hole mass)を低減するために、MQW領域135に少しの量の圧縮歪みまたは引張歪みを与えるよう、細かく調整することができ、それによって、しきい値電流密度、温度感受性、チャープ(chirp)および線幅を低減する。
3)素子構造はアルミニウムを使用していないので、この元素の高い反応性と関係付けられているすべての問題、および、従来のレーザの信頼性と寿命に関する有害な結果を、回避することができる。
4)レーザ放射134は、本質的に、等電子の深いドナーから深いアクセプターへの準位の再結合で起こり、深い準位はバンド端状態と独立して振る舞うので、レーザ波長の温度依存性が大きく低減される。
本発明にもとづく等電子的にコドープされたGaAsはまた、図8に示されるように、1.55μmまたは1.3μm波長帯で作動するVCSEL(垂直共振器型面発光レーザ)180を作るためにも使用される。n型GaAs/AlxGa1-xAs交番層からなるDBR(分布ブラッグ反射鏡)スタック187は、n型GaAs基板188の上に成長する。前記スタックの最上層186は、アルミニウムリッチに作られる。次の下部SCH層191は、GaAsを使って成長する。この下部SCH層191のあとに、等電子的にコドープされたGaAs:N:Bi:Inの一連の多重量子井戸(MQW)193からなる活性層185(差し込み図を参照)が成長するが、そこでは、それぞれの井戸193は、GaAs障壁194により囲まれている。MQW193の等電子コドーピングの量、およびMQW193井戸の幅は、0.8〜0.93eV(1.55μmまたは1.3μm)に近い基底状態遷移エネルギーをもたらすように選択される。次に上部SCH層190は、GaAsを使って成長し、そのあとにp型GaAs/AlxGa1-xAs交番層からなるDBRスタック183が続く。前記DBRスタック183の最下層184は、アルミニウムリッチに作られる。金属製フロントコンタクト182および金属製バックコンタクト189は、成長を完成させる。つぎに、前記素子180の垂直横断面を、400〜450℃の温度で、ある計画された時間蒸気雰囲気にさらし、DBRスタック183、187のアルミニウムリッチ層184、186を周囲から、中央に酸化されていないウインドウ領域−ここを通ってレーザ光が放射する−を残すように酸化するが、これには当業者によく知られている従来のどの方法も使用することができる。得られる酸化された開口層184、186は、電流遮断層(CBL)として働く。p型およびn型領域は、GaAsおよびAlxGa1-xAsの電荷ドーピングにより得られる。p型およびn型領域の電荷ドーピングは、従来の技術により達成される。もちろん、p型およびn型領域は入れ換えることができる。VCSELレーザの他の形状もまた、酸化層184、186の機能である電流遮断をもたらすための他の方法を必要とするが、当業者であれば使用することができる。また、2つの比較的低いn型DBRミラースタックを(図8のような1つのp型、および1つのn型のかわりに)使用することは、p型材料の長波長において過度になり得るフリーキャリア吸収を低減するので、これは、上部出力ミラー183の中の光空洞共振器185に最も近い高指数GaAs層にトンネル接合を導入することにより達成される。最後に、MBEまたはMOCVDのような従来のどのような成長技術も、前記素子の成長に使用することができる。本発明より前は、1.55μmおよび1.3μm波長の素子を作ることが非常に難しいため、800nm周辺の近赤外波長範囲で作動するVCSELレーザのみが、商業的に利用可能であった。この制約は、これらの素子が、InP基板と格子整合して成長することのできた唯一である4元系InGaAsP合金を、一般的に基礎としており、そして、この4元系合金を使用して適正なDBRスタックを成長させることが非常に難しいという事実による。よって、InGaAsPをベースとする1.55μmおよび1.3μmレーザは、一般的にVCSEL型ではなく、端面放射型である。VCSELレーザは、端面放射レーザをこえる固有の利点を有し、GaAs技術はInP技術よりも安価であるため、本発明にもとづいてVCSEL180を作るためのGaAsの等電子コドーピングは、非常に有利であることは明白である。加えて、前記の等電子的にコドープされたレーザ180は、次の利点をもつ。
1)チッ素により引き起こされた大きな伝導帯の偏りが、MQW193に電子を閉じ込めること、およびSCH層190、191に溢れ出る電子を最小限にすることを助け、そして、ビスマスドーピングが、障壁194を横切る適正な正孔伝達を許しつつ、MQW193中に正孔を閉じ込め流出するのを防ぐために丁度充分な量の価電子帯の偏りを与えるように調整され得る。
2)ドーピングするチッ素、ビスマスおよびインジウムの比率を、光の正孔質量を低減するために、MQW領域193に少しの量の圧縮歪みまたは引張歪みを与えるよう、細かく調整することができ、それによって、しきい値電流密度、温度感受性、チャープおよび線幅を低減する。
3)レーザ放射181は、本質的に、等電子の深いドナーから深いアクセプターへの準位の再結合で起こり、深い準位はバンド端状態と独立して振る舞うので、レーザ波長の温度依存性が大きく低減される。
4)1.3μmまたは1.55μmで動作するVCSELを、GaAs基板上に直接成長させることができ、GaAs基板上への高品質DBRの成長は簡単である。
本発明にもとづく深いアクセプターおよび深いドナーでの半導体材料の等電子コドーピングの別の応用は、LED半導体素子をGaPまたはシリコン基板上で成長する能力である。そのような応用の例として、図9に示された赤色/NIR(近赤外)、すなわち640〜800nm波長の高輝度LED200があり、赤色/NIR光を発生するために、1.55〜1.93eVの範囲の値をもつように選ばれたバンドギャップをもつ、本発明に基づいて等電子的にコドープされたGaPの活性層202からなる。本発明にもとづくチッ素のような深いアクセプターおよびビスマスのような深いドナーによるGaPの等電子コドーピングは、合金の特性(キャリア移動度、フォトルミネッセンス効率、キャリア寿命、およびバンドギャップの低減テイル状態の増大)を一様化するとともに、赤色/NIR光を発生するために、1.55〜1.93eV範囲の値にGaPのバンドギャップを下げるのに使用される。本発明にもとづいて等電子的にコドープされたこの系(GaP:N:Bi)は、GaP基板に格子整合して成長することができるので、DH(ダブルへテロ構造)形状206にある赤色/NIR LED200は、n−GaP障壁層205とともに、n−GaP基板204上に、直接成長することができる。当業者であれば理解できるように、活性域202は、図9に示されるように、多重量子井戸(MQW)構造とすることができ、または、より低エネルギー放射であるが、LED素子のコストをより低くするために、単一の等電子コドープされたGaP:N:Bi層(図示せず)とすることができる。前記MQW活性域202は、GaP障壁層203Aと等電子的にコドープされたGaP:N:Bi井戸層203Bとの多重交番層からなる。MQW層203A、203Bによる量子閉じ込めは、LED放射を高エネルギーに移し、また、しきい値電流を低くするのに役立つ。厚く透明なGaP204基板は、素子から光を上と横から同時に抽出するという利点を示す厚い(>200μm)上部ウインドウとして仕える。さらには、MOCVDまたはMBEによる構造の成長の後、前記素子をVPE成長系に移すことができ、そして、p−GaPの厚い(>50μm)堆積基板(スーパーストレート:superstrate)層208を、p−GaP障壁層207の上に成長させることができる。反射バックコンタクト209で、この構造は、素子から抽出される光の6つすべてのコーン(cone)(上、下、および4つの横のコーン)を可能にする。上面および下面の表面テクスチャー加工は、反射された光を任意抽出するために使用され、したがって、活性域を通ってバウンドする多重光による損失は低減する。低抵抗コンタクトのためのコンタクト層など、詳細は省略し示さない。n型およびp型領域は、従来の電荷ドーピングにより実現することができ、逆にすることもできる。最後に、この素子の幾何形状は、赤色/NIRスペクトル域の高輝度LEDを必要とする応用のため、最大の光抽出を可能にする切頭逆ピラミッド型(Truncated-Inverted Pyramid :TIP)構造(当業者であれば可能である)に容易に設計できる。
図10に示されるように、本発明にもとづく等電子コドーピングはまた、赤色/NIR、すなわち640〜800nmの波長のLED210を、シリコン上にモノリシックに成長させるために使用され得る。前記し図9に示したLED200の等電子的にコドープされた系もまた、図10に示されるように、GaPをベースとするDH構造219とシリコン基板217との間の0.37%圧縮ミスマッチ歪みに順応できるよう、階段状品質の層構造(ステップグレーデッド層構造:step-graded layer structure)216を使ってシリコン基板217上に成長させることができる。図10に示されるように、ステップグレーデッド層構造216は、GaPをベースとするダブルへテロ構造レーザ219とシリコン基板217との間の0.37%圧縮ミスマッチ歪みに順応できるように、シリコン基板217上に最初に成長される。このステップグレーデッド層構造216は、シリコン基板217上に連続して成長した4層のn−ドープされたGaP1-x-yxBiyからなり、各層のチッ素およびビスマス成分は、隣接する層間の不整合歪みが、最初の3層においては約0.1%、ステップグレーデッド層216の第3層と第4層においては約0.07%となるように調整されている。ステップグレーデッド層の最初の3層の厚さは、ざっと0.3μmであり、第4層は0.8μmである。この取り合わせは、DH形状層219内に伝わる非常に低い密度のスレッド転位のみを残し、最終の組成物のステップグレーデッドから生じているミスフィット転位の最終的なネットワークが完全に進展するのを可能にする。このLED210の活性領域214もまた、図10に示されたようにMQW構造であり得、あるいは、低いエネルギー放射であるが低コストであるLEDデバイスのために、単一の等電子コドープされたGaP:N:Bi層(図示されていない)であり得る。活性域214のためのMQW構造は、多数の、交互に並んだGaPバリアー層221および等電子コドープされたGaP:N:Bi井戸層222からなり、それは、量子の閉じこめを生じさせ、単一のGaP:N:Bi層の活性領域と比べてより高いエネルギーとより低い限界電流に向けてLED放射をシフトさせる。p−GaPスーパーストレート212と、DH形状層219−単一のGaP:N:Bi層の活性領域214(図示されていない)、またはGaP障壁層221と等電子的にコドープされたGaP:N:Bi井戸層222との多重交番層からなるMQW活性域214からなる−と、p−GaP障壁層213およびn−GaP障壁層215は、図9に関して前記したスーパーストレート層208およびDH層206と類似した方法で成長させることができる。しかし、図9の高輝度LED200とは対照的に、図10のLED210のシリコン基板は、活性域214で生じた光にとって透明ではないので、かわりにこの光を吸収するだろう。よって、DH形状219から放射される上および横の光のコーンのみがとりだされる。しかしながら、LED210に特有の利点は、シリコン上にモノリシックに成長され得ることであり、それによって、この素子が、並んでモノリシックに作られた電気回路と直接的に統合されることを可能にする。この光通信(photonics)とエレクトロニクスのモノリシックな統合は、ファイバー光通信や高詳細表示(microdisplay)のための統合化トランシーバーチップなどの用途に非常に適している。さらに、本発明にとって必須ではないが、光が光吸収シリコン基板217に到達する前にDH構造219とスーパーストレート212を通して後ろに反射するように、AlPとGaPの多重交番層からなる分布ブラッグ反射鏡(DBR)120を障壁層215とステップグレーデッド層216との間に形成することにより、シリコン基板217による光吸収の不利益は軽減され、LED210の効率は改善される。したがって、シリコン基板217に吸収され、熱として失われたりするかわりに、放射される光のエネルギーと輝度を増大するために、この反射された光がLED210の表面から放射する。また、LED210が光ファイバー(図示されていない)と連結されるなら、放射エリアをファイバーの下の領域に制限するために、フロントコンタクト211を中央から端のほうへ移動させることができ、ファイバーのための凹み(図示されていない)をスーパーストレート212に刻み付けることができ、そして酸化絶縁層(挿入されたAlP層を周囲から酸化することによって実現できる、中央に開口を有する酸化層)を層215と層216の間に挿入することができる。
前記表面放射型LEDとは対照的に、光を光ファイバー(図示されていない)に結びつけるために端面放射型LED(LED210のサイドコーンから光が放射される)形状もまた使用することができる。その時はスーパーストレート212は不必要であり、コンタクト211が上面全体を覆うように作られる。また、DH構造219は、ウェーブガイドを形成するように2層のAlxGa1-xPクラッド層(高バンドギャップ、低反射係数材料)の間に挟まれなければならない。低抵抗コンタクトのためのコンタクト層、ウインドウパシベーション層およびバッファ層など、詳細は省略され図9および10には示されていないが、当業者にはよく知られており、本発明とともに使用することができる。n型およびp型領域は、一般に行われている電荷ドープにより達成され、図10に示されたn型およびp型領域は、もちろん、逆にすることができる。
図11に示されるように、本発明にもとづく等電子コドーピングはまた、可視/NIR波長領域、すなわち640〜800nmの波長で作動する半導体ダイオード端面放射型レーザ230を、シリコン基板上に作るために使用され得る。ステップグレーデッド層235は、図10のLED素子210に行われたのと同様に、シリコン基板236と、下部GaP分離閉じ込めヘテロ構造(SCH)層243と格子整合されたn型AlxGa1-xP下部クラッド層(低抵抗係数光閉じ込め層)234との間の0.37%圧縮ミスマッチ歪みに順応するために、シリコン基板236上に成長され得る。活性域242(図11の差し込み図を参照)は、本発明に基づいて等電子コドープされた一連のGaP:N:Bi:Inの多重量子井戸(MQW)244からなり、井戸244はそれぞれ、GaP障壁245によって取り囲まれている。MQW224の等電子コドーピングの量、およびMQW224井戸の幅は、1.55〜1.93eV(640〜800nm)に近いMQW224基底状態遷移エネルギーを生じるように選択される。GaP上部SCH層233が成長され、次に上部p型AlxGa1-xPクラッド層232、GaP表面パシベーション層246および上部コンタクトストライプ231が続く。全体構造は、pinダイオードである。pinダイオードを順方向にバイアスするよう上部コンタクト231および下部コンタクト237に電圧が印加されると、MQW活性領域242の順バイアス下で、MQW244の障壁245は、それぞれn型領域234およびp型領域232から注入された電子および正孔のために量子閉じ込めを行う。クラッド層232、236は、MQW244での導入された電子と正孔の再結合の結果として出された放射のために、光閉じ込めを行う。上部および下部分離閉じ込めへテロ構造(SCH)層233、243の厚みは、およそ光の波長である。それゆえ、劈開面240および241によってそれぞれ形成された前および後ろの反射面により長さ方向が区切られた光ファブリペロー共振器は、横断方向に閉じ込められる。前記反射面240および241は、レーザ光ビーム239を作り出し、MQW活性層242の端面から発するように、その反射性を増加するまたは低減するために表面をコートされてもよい。垂直方向のキャリアの流れは、上部コンタクト231の横縞形状によって規定される外形をたどる。したがって、レーザを放出するエリアは、ゲインガイド(gain guiding)のために、上部コンタクト231により定義されたストライプ領域の横方向に限定される。低い接触抵抗のためのコンタクト層およびバッファ層など、詳細は当業者によく知られており、それゆえここでは示していない。
図11の端面放射型レーザ230は、最も基本的な端面放射型レーザの構成を示している。SCH層233、243の合金組成は、GRINSCH(段階的指数分離閉じ込めへテロ構造)レーザにおけるそれのように、直線状、放物線状、または段階的(ここでは、クラッド層232、234のためにAlxGa1-xPが使用され、組成のxが、ゼロからクラッド層232、234のxの値まで段階的に変化する)とすることができる。リッジ導波路型レーザの構成に使用される方法、または埋め込みヘテロ構造(BH)レーザの構成のためのようなインデックスガイドを使用する方法、またはメサまたは逆メサ幾何構造を形成することによる方法など、レーザを放出するエリアの横幅を制限するためにストライプ形状を規定する他の方法も、使用することができる。横方向の電流遮断層として逆バイアスダイオードを使用することや、横方向の絶縁および寄生容量の低減のため、酸化物やポリイミド(polymide)の絶縁層あるいは深くエッチングした凹部を使用することなど、様々な技術が当業者の能力の範囲内で使用され得る。また、当業者の能力の範囲内で充分であるが、クラッド層232または234の下部または上部境界面に格子プロフィル(profile)層を挿入することによって、DFB(分布帰還型)レーザまたはDBR(分布ブラッグ反射鏡)レーザが実現され、これらは、ファイバー光通信に最適な非常に狭い周波数スペクトルをもつ。最後に、MBE、MOCVD、VPEまたはLPEなどの従来のどのような成長技術も、前記素子の成長に使用することができ、従来技術により達成されるnおよびp型層の電荷ドーピングは、逆にすることもできる。
前記の等電子的にコドープされたレーザ230は、次の利点をもつ。
1)チッ素により引き起こされた大きな伝導帯の偏りが、MQW244に電子を閉じ込めること、およびSCH層233、243に溢れ出る電子を最小限にすることを助け、ビスマスドーピングは、障壁245を横切る適正な正孔伝達を許しつつ、MQW244中に正孔を閉じ込め流出するのを防ぐために丁度充分な量の価電子帯の偏りを与えるように調整され得る。
2)ドーピングするチッ素、ビスマスおよびインジウムの比率を、光の正孔質量を低減するために、MQW領域244に少しの量の圧縮歪みまたは引張歪みを与えるよう、細かく調整することができ、それによって、しきい値電流密度、温度感受性、チャープ、レーザ線幅およびオージェ(Auger)再結合を低減する。
3)レーザ放射239は、本質的に、等電子の深いドナーから深いアクセプターへの準位の再結合で起こり、深い準位はバンド端状態と独立して振る舞うので、レーザ波長の温度依存性が大きく低減される。
図9、10および11に示した素子200、210、230はすべて、等電子的にコドープされたGaP:N:BiまたはGaP:N:Bi:In活性域202、214、242を有しており、それらの活性域へのアルミニウム(Al)の付加は、バンドギャップ、それゆえ、発光エネルギーをオレンジまたは黄色帯の方へ少しもちあげるだろが、格子サイズを変えないだろう。したがって、必要ならば、アルミニウムを、MQW障壁層203A、221、245、およびMQW活性層203B、222を含むこれらセル200、210、230のすべてのGaP DH層/活性層202、214、242に加え、放射波長をオレンジまたは黄色帯の方へ少し調整することができる。MQW活性域により引き起こされる、量子閉じ込めによって引き起こされる発光エネルギーのアップシフト(upshift)もまた、放射波長を低くするために使用することができる。結果として、図11のレーザ230は、コンパクトディスク(DC)メモリー素子や多くの他の応用など、短波長レーザを必要とする用途に適用して使用することができる。したがって、活性層202、214、242のためのGaP:N:Bi、GaP:N:Bi:In、GaP:N:Bi:Al、およびGaP:N:Bi:In:Alは、本発明の目的において同等であると考えられる。
本発明にもとづく等電子コドーピングはまた、放射のエネルギー源が熱源からの黒体輻射である熱光起電力電池(TPV)の分野においても、有利に使用することができる。TPVセルの最適なバンドギャップは、1000Kの熱源からの吸収については0.5eVである。本発明より前は、ベストなTPVセルは、InxGa1-xAs合金のバンドギャップが0.5eVであるように選ばれたxをもつInP基板上に成長したInxGa1-xAsを、基礎に置くものであった。しかし、x=0.22をもつこの組成では、InxGa1-xAsは、InPに格子不整合である。よって、結果として生じた歪みの段階的変化によって不整合歪みを分配するために、InP基板とTPV素子活性層との間にステップグレーデッド層の連続を成長させるような、困難な成長手順に頼ることを必要としていた。しかし、この技術では、結果としてより厚くより複雑な構造となる。本発明にもとづく等電子コドープされた半導体材料からなる熱光起電セル(TPV)250が、図12に示されている。このセル250は、前記のInxGa1-xAs TPVセルの成長において遭遇した困難を回避する。この例においてTPVセル250は、n+InP基板257に格子整合して成長したダブルへテロ構造(DH)形状259中に等電子コドープされたInGaAs:N:Biセルを含む。活性吸収域は、等電子コドープされたInGaAs:N:Biのp型層254と等電子コドープされたInGaAs:N:Biのn型層255とから作られたp−n接合からなり、そこでは、InPと格子整合するInGaAsのバンドギャップ0.75eVを、InPとの格子整合を維持しつつ0.5eVにまで低減するため、コドーピングの量が調整されている。セルp−n接合活性層は、DH構造259中で、この合金がInPに格子整合するための組成をもつInGaAsのp+およびn+障壁層253、256によって挟まれている。上層253は、ウインドウ/パシベーション層として、上層256はBSR層として働く。低抵抗接触を促進するp+InGaAs層252、および金属製コンタクト層251(グリッド)、258は、TPVセル素子250構造を完全なものにする。すべてのエピタキシャル層252〜257は、InP基板257に格子整合して成長する。この成長は、MBE、MOCVDまたはVPE技術を使って達成され、一般に知られているドーピング技術によって達成されるn型およびp型層のための電荷ドーピングは、逆にすることもできる。また、InP基板257(1.34eVのバンドギャップをもつ)は、セル活性域254、255によって吸収される放射に対し透明であるので、上部(グリッド)コンタクト251と下部コンタクト258を入れ換えることができる。すなわち、放射線熱エネルギー260を下から、基板257を通して吸収することができる。また、上部セル259とタンデムに作動するInP:N:Biの等電子的にコドープされた下部セルを追加し、上部セル259と基板257の間にモノリシックに挿入することができる。そのような追加の下部セルは、p型InP:N:Biとn型InP:N:Bi上層からなる活性域p−n接合を有し、等電子コドーピングの量は、InP基板258への格子整合を維持しつつ、InPのバンドギャップを(最適なタンデムセル性能のために)0.6〜0.75eVの範囲の適切な値まで削減するために調節されるだろう。もちろん、トンネル接合が、上層256とInP:N:Biセルとの間に挿入されなければならないだろう。また、InP:N:Biセルを、バンドギャップを0.5eVに下げるために大量に等電子コドーピングすることもでき、そのうえ、InxGa1-xAsセルを完全に除去することができ、便利な単セルTPV素子を提供することができる。最後に、図12には示されていないが、波長がTPVセルの活性域の吸収スペクトル領域の外側にあるところの放射エネルギを反射する(そして、加熱の影響を極小化するため)ため、サーマルミラー(thermal mirror)として機能するプラズマ反射体層を、そのセルの最上層として成長させることができる。
もちろん、逆に動作しているLEDは光検出器である。二つのデバイス構造における違いは、おもにそれらの最適化にある。LED構造は光抽出のために最適化されるが、光検出器は高速動作または低ノイズ動作のために最適化され、そして、そのような独特の特徴を獲得するための設計原理は大変よく確立されている。さらに、たいへんよいInGaAsベースの光検出器が、InP基板上に、光ファイバ通信用(1.3〜1.55μm)としてすでに利用可能であるが、本発明にもとづく等電子コドーピングの独特な長所は、活性域に等電子的にドーピングされたGaAs:N:Bi:Inを用いる光検出器が、InP基板ではなくGaAs基板上に成長することができるという事実で理解されるかもしれない。たとえば、図13で図式的に示されたように、基本的なGaAs:N:B:In光検出器270はGaAs基板上に作られる。活性層274は、前記したように、たとえば1.3μmあるいは1.55μmの所望の光波長を吸収するために、等電子的にNとBiとでコドープされる。もちろん、p−n接合277のために、GaAs基板272上に堆積したn型GaAs:N:Bi:In層276およびp型GaAs:N:Bi:In層278(反対でもよい)を製造するため、前記の等電子的にコドープされたGaAs:N:BI:In活性層274を、従来の方法で電荷ドープすることができる。適切なウインドウ層280、反射防止コーティング281、上部コンタクト282および下部コンタクト284を、フォトダイオード270を完成させるために加えることができる。もちろん、このような基本的なフォトダイオード構造の他の付加的装飾物およびバリエーションは、本発明による半導体化合物または合金の等電子コドーピングを理解したなら、当業者の能力の範囲内で可能であろう。
前記すべての素子において、等電子コドーピングは、等電子ドーパントの溶解度(選ばれた最適の値に半導体バンドギャップを低減することを考慮に入れる)を増大し、キャリア移動度を増加し、キャリア有効質量を低減し、そしてフォトルミネッセンス効率および寿命を高め、高度に改良された素子性能をもたらす。また、格子サイズを調整するために、インジウムを、III−V族半導体化合物または合金のカチオン副格子に加えることができること、あるいは、ヒ素をアニオン副格子に加えることができることはよく知られている。このようなインジウムおよび/またはヒ素の付加は、通常それぞれアニオンまたはカチオン副格子の約5原子%以下であるが、たとえば、望まれる格子整合拘束を維持または達成しつつ、等電子コドーパントの独立した最適化を受け容れるために、格子サイズの調整が必要または望まれる前記した本発明のどの等電子的にコドープされたIII−V族半導体化合物または合金においても、使用することができる。したがって、前記のように、本発明の等電子的にコドープされたIII−V族半導体化合物または合金にインジウムおよび/またはヒ素を加えることは、本発明の一部であると考えられる。発明の説明および特許請求の範囲に、このようなバリエーションをすべて、それぞれの態様について記載することは、不必要に煩雑であろう。したがって、本発明の説明および特許請求において便宜上、ここでのGaAs:N:BiおよびGaP:N:Biについての言及は、GaAs:N:Bi:Inのようなバリエーションも含むと考えられ、ここでのGaP:N:Biについての言及は、GaP:N:Bi:InおよびGaP:N:Bi:Asのようなバリエーションも含むと考えられる。
とくに明記しないかぎり、単語“約”は、バンドギャップとともに使われたとき0.2eV以内であることを意味し、原子%とともに使われたとき1.0原子%以内であることを意味し、波長とともに使われたとき0.1μm以内であることを意味し、そして温度とともに使われたとき50oC以内であることを意味する。半導体化合物または合金の命名法の中で、たとえばGaAs:N:Bi中のNとBiなどのように、ある原子の種が他の原子の種とコロンによって分けられたとき、コロンで分けられたそのような原子の種は、合金または化合物中の非常に少ない割合、すなわち6原子%以下を構成すると考えられ、そして、そのような命名法は時々ここでは必ずしも限定のためではないが便宜上使われる。
前記した手法および態様について、当業者であれば、さまざまな変形および組み合わせが容易に可能であるから、本発明は、前記した構成や工程そのものには限定されない。したがって、本発明の範囲は以下の特許請求の範囲によって規定され、本発明の範囲に入るすべての適当な変形および均等物がカバーされる。用語「からなる、からなっている(comprise、comprises、comprising)」および「含む、含んでいる(include、including、includes)」は、この明細書および以下の特許請求の範囲で使われるとき、そこで述べている特徴、構造または工程が存在することを明記しようとするものであり、ほかの特徴、構造、工程あるいはそれらのグループが1つまたはそれ以上存在する、あるいは追加されることを排除するものではない。
図1は、本発明にしたがって等電子的にドープされたGaAs:N:Biのセルを含むモノリシック4接合太陽電池の断面図である。 図2は、先行技術の直接バンドギャップを、アクセプタードーパントのエネルギーレベルとともに示したグラフである。 図3は、先行技術の直接バンドギャップを、ドナードーパントのエネルギーレベルとともに示したグラフである。 図4は、本発明にしたがって、深いアクセプター不純物および深いドナー不純物で等電子的にドープされた半導体材料のバンドギャップを、深いアクセプターと深いドナーのエネルギーレベルとともに、示したグラフである。 図5は、本発明にしたがって、等電子的にドープされたGaP:N:Biのセルを、Siの基板およびセル上に使用した2接合タンデム太陽電池の断面図である。 図6は、本発明にしたがって、等電子的にドープされたGaP:N:Biのセル2つを、Siの基板およびセル上に使用した3接合タンデム太陽電池の断面図である。 図7は、好ましいファイバー光通信信号波長の光を出す、本発明を応用したGaAsをベースとする端面放射型レーザの等角図である。 図8は、好ましいファイバー光通信信号波長のレーザ光を出す、本発明を応用したGaAsをベースとするVCSELレーザダイオードの等角図である。 図9は、赤色および近赤外(NIR)のスペクトル領域の光を出す、本発明を応用したGaPをベースとする高輝度の発光ダイオード(LED)の等角図である。 図10は、赤色および近赤外(NIR)のスペクトル領域の光を出す、Si上にモノリシックに成長したGaPをベースとする発光ダイオード(LED)の等角図である。 図11は、赤色およびNIR領域の光を出す、Si上にモノリシックに成長したGaPをベースとする端面放射型レーザの等角図である。 図12は、本発明を応用した熱光起電力(TPV)電池の断面図である。 図13は、本発明を応用した光検知器(photodetector)の断面図である。

Claims (135)

  1. 改質前の半導体化合物または合金よりも低い有効バンドギャップをもつように、ホスト結晶格子中のホスト原子からなる半導体化合物または合金を改質する方法であって、
    深いアクセプターとして作用する等電子電子トラップをホスト結晶格子中に形成する原子からなる第1の等電子ドーパントを10 19 cm -3 以上の含有量で、および、深いドナーとして作用する等電子正孔トラップをホスト結晶格子中に形成する原子からなる第2の等電子ドーパントを10 19 cm -3 以上の含有量で、半導体化合物または合金を等電子的にコドーピングすることからなる方法。
  2. 半導体化合物または合金中の第1の等電子ドーパント含量が1原子%より多くなり、半導体化合物または合金中の第2の等電子的ドーパント含量が1原子%より多くなるように、半導体化合物または合金を等電子的にコドーピングすることを含む請求項1記載の方法。
  3. 前記半導体化合物または合金が、III族およびV族のホスト原子からなる請求項1または2記載の方法。
  4. 前記第1の等電子ドーパントがV族またはIII族の原子からなり、前記第2の等電子ドーパントがV族またはIII族の原子からなる請求項3記載の方法。
  5. 前記III族およびV族のホスト原子が、GaおよびAsからなる請求項3または4記載の方法。
  6. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項5記載の方法。
  7. 半導体化合物または合金中のNの含量が3原子%よりも多く、半導体化合物または合金中のBiの含量が結晶格子の3原子%よりも多い請求項6記載の方法。
  8. 前記III族およびV族のホスト原子が、InおよびPからなる請求項3または4記載の方法。
  9. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項8記載の方法。
  10. 半導体化合物または合金中のNの含量が3原子%よりも多く、半導体化合物または合金中のBiの含量が結晶格子の3原子%よりも多い請求項9記載の方法。
  11. 前記III族およびV族のホスト原子が、GaおよびPからなる請求項3または4記載の方法。
  12. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項11記載の方法。
  13. 前記III族およびV族のホスト原子が、Al、GaおよびPからなる請求項3または4記載の方法。
  14. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項13記載の方法。
  15. 前記III族およびV族のホスト原子が、In、GaおよびAsからなる請求項3または4記載の方法。
  16. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項15記載の方法。
  17. 前記半導体化合物または合金が、II族およびVI族のホスト原子からなる請求項1または2記載の方法。
  18. 前記第1の等電子ドーパントがVI族の原子からなり、前記第2の等電子ドーパントがVI族の原子からなる請求項17記載の方法。
  19. 前記半導体化合物または合金が、ZnおよびSeホスト原子からなる請求項17記載の方法。
  20. 前記第1の等電子ドーパントがOからなり、前記第2の等電子ドーパントがTeからなる請求項18記載の方法。
  21. 前記第1の等電子ドーパントがII族の原子からなり、前記第2の等電子ドーパントがVI族の原子からなる請求項17記載の方法。
  22. 改質前のIII−V族半導体化合物または合金よりも低い有効バンドギャップをもつように、III−V族半導体化合物または合金を改質する方法であって、
    1原子%よりも多い等電子の深いアクセプター元素、および、1原子%よりも多い等電子の深いドナー元素で、III−V族半導体化合物または合金を等電子的にコドーピングする方法。
  23. 3原子%よりも多い等電子の深いドナー元素、および、3原子%よりも多い等電子の深いアクセプター元素で、III−V族半導体化合物または合金を等電子的にコドーピングすることを含む請求項22記載の方法。
  24. 前記深いアクセプター元素がV族元素であり、前記深いドナー元素がV族元素である請求項22記載の方法。
  25. 前記III−V族半導体化合物または合金がGaAsからなり、前記深いアクセプター元素がNであり、前記深いドナー元素がBiである請求項22〜24のいずれか1項に記載の方法。
  26. 前記III−V族半導体化合物または合金がInPからなり、前記深いアクセプター元素がNであり、前記深いドナー元素がBiである請求項22〜24のいずれか1項に記載の方法。
  27. 前記III−V族半導体化合物または合金がGaPからなる請求項22〜24のいずれか1項に記載の方法。
  28. 前記深いアクセプター元素がNであり、前記深いドナー元素がBiである請求項27記載の方法。
  29. 改質前の半導体化合物または合金よりも低い有効ハンドギャップをもつように、ホスト結晶格子中のホスト結晶原子からなる半導体化合物または合金を改質する方法であって、
    第1の等電子原子種および第2の等電子原子種を、それぞれ10 19 cm -3 以上の含有量で、半導体化合物または合金等電子的にコドーピングすることからなり、
    前記第1の等電子原子種は、アクセプターとして作用する、不純物ポテンシャルが充分に深く非常に短範囲である等電子トラップを発生するように、該第1の等電子原子種によって置換されるホスト結晶原子と、電気的陰性、サイズ、および擬ポテンシャルの差において、充分に異なっており、
    前記第2の等電子原子種は、ドナーとして作用する、不純物ポテンシャルが充分に深く非常に短距離である等電子トラップを発生するように、該第2の等電子原子種によって置換されるホスト結晶原子と、電気的陰性、サイズ、および擬ポテンシャルの差において、充分に異なっている方法。
  30. 半導体素子中の活性セルとして使用する半導体材料であって、
    ホスト結晶格子中にホスト原子を有する半導体化合物または合金からなり、該半導体化合物または合金は、ホスト結晶格子中に深いアクセプターとして作用する等電子トラップを形成する原子からなる第1の等電子ドーパント、および、ホスト結晶格子中に深いドナーとして作用する等電子トラップを形成する原子からなる第2の等電子ドーパントを、それぞれ10 19 cm -3 以上の含有量で、等電子的にコドーピングされている半導体材料。
  31. 半導体化合物または合金中の第1の等電子ドーパント含量が1原子%よりも多く、半導体化合物または合金中の第2の等電子ドーパント含量が1原子%よりも多い請求項30記載の半導体材料。
  32. 半導体化合物または合金中の第1の等電子ドーパント含量が3原子%よりも多く、半導体化合物または合金中の第2の等電子ドーパント含量が3原子%よりも多い請求項31記載の半導体材料。
  33. 前記半導体化合物または合金が、III族およびV族のホスト原子からなる請求項30記載の半導体材料。
  34. 前記第1の等電子ドーパントがV族またはIII族の原子からなり、前記第2の等電子ドーパントがV族またはIII族の原子からなる請求項33記載の半導体材料。
  35. 前記III族およびV族のホスト原子が、GaおよびAsからなる請求項33記載の半導体材料。
  36. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項35記載の半導体材料。
  37. 前記III族およびV族のホスト原子が、InおよびPからなる請求項33記載の半導体材料。
  38. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項37記載の半導体材料。
  39. 前記III族およびV族のホスト原子が、GaおよびPからなる請求項33記載の半導体材料。
  40. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項39記載の半導体材料。
  41. 前記III族およびV族のホスト原子が、Al、GaおよびPからなる請求項33記載の半導体材料。
  42. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項41記載の半導体材料。
  43. 前記III族およびV族のホスト原子が、In、GaおよびAsからなる請求項33記載の半導体材料。
  44. 前記第1の等電子ドーパントがNからなり、前記第2の等電子ドーパントがBiからなる請求項43記載の半導体材料。
  45. 前記半導体化合物または合金が、II族およびVI族のホスト原子からなる請求項30記載の半導体材料。
  46. 前記第1の等電子ドーパントがVI族の原子からなり、前記第2の等電子ドーパントがVI族の原子からなる請求項45記載の半導体材料。
  47. 前記第1の等電子ドーパントがII族の原子からなり、前記第2の等電子ドーパントがVI族の原子からなる請求項45記載の半導体材料。
  48. 前記II族およびVI族のホスト原子が、ZnおよびSeからなる請求項45記載の半導体材料。
  49. 前記第1の等電子ドーパントがOからなり、前記第2の等電子ドーパントがTeからなる請求項48記載の半導体材料。
  50. 約0.67eVのバンドギャップをもつGeからなる第1セル、
    約1.05eVの有効バンドギャップを持つように深いアクセプタ元素および深いドナー元素がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたGaAsからなる、第1セル上の第2セル、
    約1.42eVのバンドギャップをもつGaAsからなる、第2セル上の第3セル、および
    約1.90eVのバンドギャップをもつInGaPからなる、第3セル上の第4セルからなるモノリシック4接合太陽電池。
  51. Ge基板が前記第1セルを構成する請求項50記載のモノリシック4接合太陽電池。
  52. 前記Ge第1セルが電荷ドープされたn−p接合を有し、前記等電子的にコドープされたGaAs第2セルが電荷ドープされたn−p接合を有し、前記GaAs第3セルが電荷ドープされたn−p接合を有し、前記InGaP第4セルが電荷ドープされたn−p接合を有している請求項50または51記載のモノリシック4接合太陽電池。
  53. 第1セルと第2セルの間に、p++−n++にドープされたGeトンネル接合を、第2セルと第3セルの間に、等電子的にコドープされたGaAsのp++−n++にドープされたトンネル接合を、第3セルと第4セルの間に、p++−n++にドープされたGaAsトンネル接合を含んでいる請求項52記載のモノリシック4接合太陽電池。
  54. 第2セルおよび第3セルを構成している前記n−p接合が、BSR層の間にはさまれており、各BSR層は、それが挟んでいるp−n接合よりも高いバンドギャップを有している請求項52または53記載のモノリシック4接合太陽電池。
  55. 第4セルの前記n−p接合が、n型AlInPウインドウ層とBSR層との間にはさまれている請求項52または53記載のモノリシック4接合太陽電池。
  56. 前記基板の下に導電下部コンタクトを、前記第4セルの上に導電上部コンタクトを含んでいる請求項50〜55のいずれか1項に記載のモノリシック4接合太陽電池。
  57. GaAs:N:Bi結晶格子を形成するための、前記深いアクセプター元素がNであり、前記深いドナー元素がBiである請求項52記載のモノリシック4接合太陽電池。
  58. GaAs:N:Bi結晶格子中のN含量が約2原子%、GaAs:N:Bi結晶格子中のBi含量が約3.8原子%である請求項57記載のモノリシック4接合太陽電池。
  59. 約1.1eVのバンドギャップをもつSi基板からなり、電荷ドープされた接合を有している下部セル、および
    約1.75eVの有効バンドギャップをもつように深いアクセプター元素および深いドナー元素がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたGaPからなり、電荷ドープされた接合を有している、該下部セル上の上部セル
    からなる2接合タンデム太陽電池。
  60. 前記下部セルおよび前記上部セルがモノリシックであり、前記下部セルが電荷ドープされたp−n接合を有しており、前記上部セルが電荷ドープされたp−n接合を有している請求項59記載の2接合タンデム太陽電池。
  61. Si下部セルと等電子的にコドープされたGaP上部セルとの間に、電荷ドープされたSiトンネル接合を含んでいる請求項59記載の2接合タンデム太陽電池。
  62. 上部セルのp−n接合が、上部GaPウインドウ層と、GaP:N:Biの下部BSR層との間にはさまれている請求項60記載の2接合タンデム太陽電池。
  63. 前記GaP:N:Biの下部BSR層が、上部p−n接合よりも高いバンドギャップを有している請求項62記載の2接合タンデム太陽電池。
  64. 前記Si基板の下に下部導電コンタクトを、上部セルの上に上部導電コンタクトを含んでいる請求項59〜63のいずれか1項に記載の2接合タンデム太陽電池。
  65. Si基板に格子整合している等電子的にコドープされたGaP:N:Bi結晶格子を形成するため、前記深いアクセプター元素がNであり、前記深いドナー元素がBiである請求項59〜64のいずれか1項に記載の2接合タンデム太陽電池。
  66. GaP:N:Bi結晶格子中のN含量が約5原子%、GaP:N:Bi結晶格子中のBi含量が約2.2原子%である請求項65記載の2接合タンデム太陽電池。
  67. 約1.1eVのバンドギャップをもつSi基板からなり、電荷ドープされた接合を有する第1セル、
    約1.55eVの有効バンドギャップをもつように深いアクセプター元素および深いドナー元素がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたGaPからなり、電荷ドープされたp−n接合を有する、前記第1セル上の第2セル、
    約2.05eVの有効バンドギャップをもつように深いアクセプター元素および深いドナー元素が10 19 cm -3 以上の含有量で等電子的にコドープされたGaPからなり、電荷ドープされたp−n接合を有する、前記第2セル上の第3セル
    からなる3接合タンデム太陽電池。
  68. 前記第1セルが電荷ドープされたp−n接合を有しており、第2セルが電荷ドープされたp−n接合を有している請求項67記載の3接合タンデム太陽電池。
  69. Si第1セルと等電子的にコドープされたGaP第2セルとの間に、電荷ドープされたSiトンネル接合を含んでおり、さらに、等電子的にコドープされたGaP第2セルと等電子的にコドープされたGaP第3セルとの間に、等電子的にコドープされたGaPの電荷ドープされたトンネル接合を含んでいる請求項67または68記載の3接合タンデム太陽電池。
  70. 第2セルを構成する前記p−n接合が、BSR層の間にはさまれており、第3セルを構成する前記p−n接合が、上部ウインドウ層とBSR層との間にはさまれている請求項67〜69のいずれか1項に記載の3接合タンデム太陽電池。
  71. 前記Si基板の下に下部導電コンタクトを、前記第3セルの上に上部導電コンタクトを含んでいる請求項67〜70のいずれか1項に記載の3接合タンデム太陽電池。
  72. GaP:N:Bi結晶格子を形成するための、第2セル中の深いアクセプター元素がNであり、第2セル中の深いドナー元素がBiである請求項67〜71のいずれか1項に記載の3接合タンデム太陽電池。
  73. 第2セルのGaP:N:Bi結晶格子中のN含量が約5原子%、第2セルのGaP:N:Bi結晶格子中のBi含量が、第2セルのGaP:N:Bi結晶格子の約2.2原子%である請求項72記載の3接合タンデム太陽電池。
  74. 第2セルの等電子的にコドープされたGaP:N:Bi結晶格子が、Si基板に格子整合している請求項72記載の3接合タンデム太陽電池。
  75. GaP:N:Bi結晶格子を形成するための、第3セル中の深いアクセプター元素がNであり、第3セル中の深いドナー元素がBiである請求項67〜74のいずれか1項に記載の3接合タンデム太陽電池。
  76. 第3セルのGaP:N:Bi結晶格子中のN含量が約7原子%、第3セルのGaP:N:Bi結晶格子中のBi含量が約4.5原子%である請求項75記載の3接合タンデム太陽電池。
  77. Si結晶格子上にGaP半導体材料を製作する方法であって、
    非極性Si上に極性GaPの2次元の成長を実現するために、少なくとも700℃の温度でSi結晶格子上にGaPの薄膜を堆積させること、および
    該GaPの薄膜を、ある割合の深いアクセプター元素および深いドナー元素をそれぞれ10 19 cm -3 以上の含有量で等電子的にコドーピングすること
    からなり、
    前記ある割合が、シリコン結晶格子上のGaPの圧縮ミスフィット歪みを、該シリコン結晶格子上のGaPの圧縮ミスフィット歪みよりも少ない程度である、等電子コドーピング後のシリコン結晶格子上のGaPの残留ミスフィット歪みへと減少させるものである方法。
  78. 前記Si結晶格子が、ミスカットSi結晶格子である請求項77記載の方法。
  79. シリコン結晶格子上の等電子的にコドープされたGaPの残留ミスフィット歪みが、シリコン結晶格子上のGaPの圧縮ミスフィット歪みよりも小さい請求項77記載の方法。
  80. Si結晶格子上の等電子的にコドープされたGaPの残留ミスフィット歪みが、引張である請求項77記載の方法。
  81. GaPとSiとの間の圧縮の格子不整合を、シリコン結晶格子を加熱し700℃の温度でGaPを堆積させる際に生じる追加的な圧縮の格子不整合歪みを補償するのに充分な引張の格子不整合へと変えるために、充分な深いアクセプター元素および深いドナー元素で、GaPを等電子的にコドーピングすることを含む請求項77〜79のいずれか1項に記載の方法。
  82. GaP:N:Bi結晶格子を形成するための、深いアクセプター元素がNであり、深いドナー元素がBiである請求項81記載の方法。
  83. GaP:N:Bi結晶格子中のN含量が約6原子%、GaP:N:Bi結晶格子中のBi含量が約3.5原子%である請求項82記載の方法。
  84. 間接バンドギャップGaPを、直接バンドギャップ半導体材料のようにふるまうよう改質する方法であって、
    GaP:N:Bi結晶格子を形成するために、深いアクセプター元素のNおよび深いドナー元素のBiでGaPを等電子的にコドーピングすることからなり、GaP:N:Bi結晶格子中のN含量が3原子%よりも多く、GaP:N:Bi結晶格子中のBi含量が2原子%よりも多い方法。
  85. 深いアクセプター元素および深いドナー元素がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたIII−V族半導体化合物または合金の活性層からなり、
    該活性層が、(i)n型またはp型のいずれかに電荷ドープされたIII−V族半導体化合物または合金の第1障壁層と、(ii)前記電荷ドープされた第1障壁層とは逆にn型またはp型のいずれかに電荷ドープされたIII−V族半導体化合物または合金の第2障壁層との間にはさまれている発光ダイオード。
  86. 前記III−V族半導体化合物または合金が、GaPからなる請求項85記載の発光ダイオード。
  87. 前記深いアクセプター元素がV族元素であり、前記深いドナー元素がV族元素である請求項85記載の発光ダイオード。
  88. 約1.55eV〜1.93eVの範囲の有効バンドギャップをもつGaP:N:Bi結晶格子を得るために、前記活性層のGaPが、NおよびBiで等電子的にコドープされている請求項86記載の発光ダイオード。
  89. 前記GaAs:N:Bi結晶格子中のN含量が約2〜7原子%の範囲であり、GaAs:N:Bi結晶格子中のBi含量が約2〜7原子%の範囲である請求項88記載の発光ダイオード。
  90. 前記活性層、第1障壁層および第2障壁層が、n−GaP基板ウインドウとp−GaPスーパーストレートウインドウとの間にはさまれており、スーパーストレートウインドウ上にフロントコンタクトがあり、スーパーストレートウインドウ上に反射バックコンタクトがある請求項85〜89のいずれか1項に記載の発光ダイオード。
  91. 前記活性層が、等電子的にコドープされたGaP:N:Biの井戸層およびGaPの障壁層を複数、交互に含んでいるMQW構造からなる請求項88〜90のいずれか1項に記載の発光ダイオード。
  92. 前記GaP基板ウインドウが、光を放射するためテクスチャー加工された表面を有している請求項90記載の発光ダイオード。
  93. 前記活性層、第1障壁層および第2障壁層が、Si基板とGaPスーパーストレートとの間にはさまれており、第1障壁層とSi基板との間に、ステップグレーデッド層構造が配置されている請求項85〜89のいずれか1項に記載の発光ダイオード。
  94. 前記ステップグレーデッド層構造が、GaP1-x-yxBiyの複数層を含んでおり、各層のNおよびBiが、隣接層間の不整合歪みを所望のものとするために調節されている請求項93記載の発光ダイオード。
  95. 前記ステップグレーデッド層構造が、Si基板上に連続して成長した4つのGaP1-x-yxBiy層を有しており、各層のチッ素NおよびBi含量が、隣り合うGaP1-x-yxBiy層のあいだの不整合歪みが、最初の3つのGaP1-x-yxBiy層のあいだで約0.1%になり、3番目と4番目のGaP1-x-yxBiy層のあいだで0.07%になるように調節されている請求項94記載の発光ダイオード。
  96. 第1障壁層とステップグレーデッド層構造の間に置かれた分布ブラッグ反射鏡を含んでいる請求項93〜95のいずれか1項に記載の発光ダイオード。
  97. 前記分布ブラッグ反射鏡が、複数の交互に置かれたAlPおよびGaPの層である請求項96記載の発光ダイオード。
  98. 前記活性層が、等電子的にコドープされたGaP:N:Biの井戸層およびGaPの障壁層を複数、交互に含んでいるMQW構造からなる請求項93記載の発光ダイオード。
  99. 前記Si基板上にバックコンタクトがあり、前記GaPスーパーストレート上にフロントコンタクトがある請求項93記載の発光ダイオード。
  100. 前記フロントコンタクトが、GaPスーパーストレートの表面上にあるストライプコンタクトであり、GaPスーパーストレートの表面がテクスチャー加工されている請求項99記載の発光ダイオード。
  101. 前記GaPスーパーストレートが、その表面に、光ファイバーを受け入れて結びつくように設けられた凹部を有している請求項93〜100のいずれか1項に記載の発光ダイオード。
  102. 分布ブラッグ反射鏡と第1障壁層との間に、酸化されたAlP絶縁層を含んでいる請求項96〜101のいずれか1項に記載の発光ダイオード。
  103. 前記III−V族半導体化合物または合金が、AlxGa1-xPからなる請求項85記載の発光ダイオード。
  104. 前記AlxGa1-xP活性層が、AlxGa1-xP:N:Bi結晶格子を得るために、NおよびBiで等電子的にコドープされている請求項103記載の発光ダイオード。
  105. 前記活性層が、等電子的にコドープされたAlxGa1-xP:N:Biの井戸層、およびAlxGa1-xPの障壁層を、多層、交番に含んでいるMQW構造からなる請求項104記載の発光ダイオード。
  106. 約1.45eVのバンドギャップを有するInP基板、および該InP基板上に配置された半導体セルからなる熱起電電池であって、
    該半導体セルが、InGaAs:N:Bi結晶格子を得るために、Nの深いアクセプター原子およびBiの深いドナー原子がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたInGaAs半導体化合物または合金からなる熱起電電池。
  107. 前記InGaAs:N:Biが、約0.5eVのバンドギャップを有し、InP基板に格子整合している請求項106記載の熱起電電池。
  108. GaAs中に深いアクセプターを生成する等電子原子種および深いドナーを生成する等電子原子種がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたGaAsからなる活性層、および
    前記活性層を間に挟んでいる下部クラッド層および上部クラッド層
    からなるGaAsベースのレーザ素子。
  109. 活性層と下部クラッド層との間に配置された下部分離閉じ込めヘテロ構造、および
    活性層と上部クラッド層との間に配置された上部分離閉じ込めヘテロ構造を含んでいる請求項108記載のGaAsベースのレーザ素子。
  110. 下部クラッド層がGaInPからなり、上部クラッド層がGaInPからなる請求項109記載のGaAsベースのレーザ素子。
  111. 下部分離閉じ込めヘテロ構造がGaAsからなり、上部分離閉じ込め型ヘテロ構造がGaAsからなる請求項109記載のGaAsベースのレーザ素子。
  112. 前記活性層が、GaAs障壁によって分離されている、等電子的にコドープされたGaAsの多重量子井戸からなる請求項108記載のGaAsベースのレーザ素子。
  113. 前記多重量子井戸が、チッ素およびビスマスで等電子的にコドープされたGaAsからなる請求項112記載のGaAsベースのレーザ素子。
  114. 前記多重量子井戸が、GaAs:N:Bi:Inを形成するために、チッ素およびビスマスで等電子的にコドープされたGaAs中にInを含む請求項113記載のGaAsベースのレーザ素子。
  115. GaAs基板が、下部クラッド層の下に配置されている請求項108記載のGaAsベースのレーザ素子。
  116. 前記基板の下に置かれた下部コンタクト、および、前記上部クラッド層の上に置かれた上部コンタクトを含む請求項115記載のGaAsベースのレーザ素子。
  117. 前記下部クラッド層が、交番GaAs/AlxGa1-xAs層の分布ブラッグ反射鏡スタックからなり、前記上部クラッド層が、交番GaAs/AlxGa1-xAs層の分布ブラッグ反射鏡スタックからなる請求項108記載のGaAsベースのレーザ素子。
  118. 前記下部クラッド層の分布ブラッグ反射鏡スタックが、Alリッチであり、その周囲から内側に間隔をあけて位置する非酸化の開口へと、周辺から内側に向かって酸化された層としてAlxGa1-xAsの1つをもち、前記上部クラッド層の分布ブラッグ反射鏡スタックが、その周囲から内側に間隔をあけて位置する非酸化の開口へと、周辺から内側に向かって酸化されたAlxGa1-xAs層の1つをもつ請求項117記載のGaAsベースのレーザ素子。
  119. III−V族半導体化合物または合金の障壁層によって分離され、深いアクセプター元素および深いドナー元素がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたIII−V族半導体化合物または合金MQW層からなり、III−V族半導体化合物または合金の下部SCH層と、III−V族半導体化合物または合金の上部SCH層との間にはさまれている活性領域、
    下部SCH層の下に配置されている、III−V族半導体化合物または合金の下部クラッド層、および
    上部SCH層の上に配置されている、III−V族半導体化合物または合金の上部クラッド層
    からなるレーザダイオード。
  120. 前記MQW層の等電子的にコドープされたIII−V族半導体化合物または合金が、GaP:N:Biからなり、
    前記障壁層のIII−V族半導体化合物または合金が、GaPからなり、
    前記下部SCH層のIII−V族半導体化合物または合金が、GaPからなり、
    前記上部SCH層のIII−V族半導体化合物または合金が、GaPからなる
    請求項119記載のレーザダイオード。
  121. 前記MQW井戸層のIII−V族半導体化合物または合金が、AlzGa1-zP:N:Biからなり、
    前記MQW障壁層のIII−V族半導体化合物または合金が、AlzGa1-zPからなる請求項119記載のレーザダイオード。
  122. 前記上部および下部クラッド層のIII−V族半導体化合物または合金が、AlxGa1-xPからなる請求項119記載のレーザダイオード。
  123. 前記下部クラッド層がSi基板と接合されている請求項122記載のレーザダイオード。
  124. 前記下部クラッド層が、GaP1-x-yxyの一連のステップグレーデッド層によってSi基板と接合されており、各層のNおよびBiが、前記Si基板とAlxGa1-xP下部クラッド層との間の0.37%のミスマッチ歪みを適合させるために、隣り合う層のあいだのミスマッチ歪みを所望のものとするよう調節されている請求項123記載のレーザダイオード。
  125. 前記一連のステップグレーデッド層が、Si基板上に連続して成長した4つのGaP1-x-yxBiy層からなり、各層のNおよびBi含量が、隣接するGaP1-x-yxBiy層のあいだのミスマッチ歪みが、最初の3つのGaP1-x-yxBiy層のあいだで0.1%であり、第3および第4のGaP1-x-yxBiy層のあいだで約0.07%であるように調整されている請求項124記載のレーザダイオード。
  126. 前記MQW層の等電子的にコドープされたIII−V族半導体化合物または合金が、GaP:N:Bi:Inからなる請求項119記載のレーザダイオード。
  127. 前記上部クラッド層の上に配置されたGaP表面パッシベーション層、該GaP表面パッシベーション層に付けられた上部コンタクト、およびSi基板に付けられた下部コンタクトを含む請求項126記載のレーザダイオード。
  128. 前記Si基板がn型であり、前記AlxGa1-xP下部クラッド層がn型であり、前記AlxGa1-xP上部クラッド層がp型である請求項127記載のレーザダイオード。
  129. 前記下部SCH層がn型であり、上部SCH層がp型である請求項128記載のレーザダイオード。
  130. 前記下部SCH層が、xを活性層に隣接する0から下部クラッド層に隣接する値まで変化させたAlxGa1-xPを段階的に配置してなり、下部クラッド層に隣接した下部SCH層のAlxGa1-xPが、下部クラッド層のAlxGa1-xPと適応する請求項122記載のレーザダイオード。
  131. 前記上部クラッド層のIII−V族半導体化合物または合金がAlxGa1-xPからなり、上部SCH層が、xを活性層に隣接する0から上部クラッド層に隣接する値まで変化させたAlxGa1-xPを段階的に配置してなり、上部クラッド層に隣接した上部SCH層のAlxGa1-xPが、上部クラッド層のAlxGa1-xPと適応する請求項119記載のレーザダイオード。
  132. III−V族半導体化合物または合金の基板上に製作され、深いアクセプター元素および深いドナー元素がそれぞれ10 19 cm -3 以上の含有量で等電子的にコドープされたIII−V族半導体化合物または合金の活性接合からなるフォトダイオード。
  133. 前記等電子的にコドープされたIII−V族半導体化合物または合金が、等電子的にコドープされたGaAs:N:Biからなる請求項132記載のフォトダイオード。
  134. 前記等電子的にコドープされたIII−V族半導体化合物または合金が、等電子的にコドープされたGaAs:N:Bi:Inからなる請求項133記載のフォトダイオード。
  135. 前記基板が、GaAsからなる請求項134記載のフォトダイオード。
JP2002564767A 2001-02-09 2001-02-09 等電子コドーピング Expired - Fee Related JP4902092B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2001/004416 WO2002065553A1 (en) 2001-02-09 2001-02-09 Isoelectronic co-doping

Publications (2)

Publication Number Publication Date
JP2004537159A JP2004537159A (ja) 2004-12-09
JP4902092B2 true JP4902092B2 (ja) 2012-03-21

Family

ID=21742333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002564767A Expired - Fee Related JP4902092B2 (ja) 2001-02-09 2001-02-09 等電子コドーピング

Country Status (6)

Country Link
EP (1) EP1358680B1 (ja)
JP (1) JP4902092B2 (ja)
KR (1) KR20030079988A (ja)
CA (1) CA2437124A1 (ja)
DE (1) DE60136101D1 (ja)
WO (1) WO2002065553A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035113B2 (en) 2004-04-15 2011-10-11 The Trustees Of Boston University Optical devices featuring textured semiconductor layers
WO2005104236A2 (en) 2004-04-15 2005-11-03 Trustees Of Boston University Optical devices featuring textured semiconductor layers
DE102004023856B4 (de) * 2004-05-12 2006-07-13 Rwe Space Solar Power Gmbh Solarzelle mit integrierter Schutzdiode und zusätzlich auf dieser angeordneten Tunneldiode
JP2005347402A (ja) * 2004-06-01 2005-12-15 Sharp Corp 裏面反射型化合物半導体太陽電池およびその製造方法
JP4927381B2 (ja) * 2005-11-02 2012-05-09 光照 木村 深い準位を持つテラヘルツ波発生ダイオードおよびこれを用いたテラヘルツ波放射装置
US8536445B2 (en) * 2006-06-02 2013-09-17 Emcore Solar Power, Inc. Inverted metamorphic multijunction solar cells
WO2009085601A2 (en) * 2007-12-21 2009-07-09 Qualcom Mems Technologies, Inc. Multijunction photovoltaic cells
JP2009188316A (ja) * 2008-02-08 2009-08-20 Denso Corp 受光素子
WO2009111790A1 (en) 2008-03-07 2009-09-11 Trustees Of Boston University Optical devices featuring nonpolar textured semiconductor layers
EP2345088A2 (en) 2008-10-23 2011-07-20 Alta Devices, Inc. Integration of a photovoltaic device
WO2010048543A2 (en) 2008-10-23 2010-04-29 Alta Devices, Inc. Thin absorber layer of a photovoltaic device
CN102257636A (zh) 2008-10-23 2011-11-23 奥塔装置公司 具有背侧接点的光伏器件
US20120104460A1 (en) 2010-11-03 2012-05-03 Alta Devices, Inc. Optoelectronic devices including heterojunction
TW201030998A (en) 2008-10-23 2010-08-16 Alta Devices Inc Photovoltaic device
US8686284B2 (en) 2008-10-23 2014-04-01 Alta Devices, Inc. Photovoltaic device with increased light trapping
GB0911134D0 (en) 2009-06-26 2009-08-12 Univ Surrey Optoelectronic devices
US9691921B2 (en) 2009-10-14 2017-06-27 Alta Devices, Inc. Textured metallic back reflector
US9768329B1 (en) 2009-10-23 2017-09-19 Alta Devices, Inc. Multi-junction optoelectronic device
US20170141256A1 (en) 2009-10-23 2017-05-18 Alta Devices, Inc. Multi-junction optoelectronic device with group iv semiconductor as a bottom junction
US11271128B2 (en) 2009-10-23 2022-03-08 Utica Leaseco, Llc Multi-junction optoelectronic device
US9502594B2 (en) 2012-01-19 2016-11-22 Alta Devices, Inc. Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from template layer and etching
US20150380576A1 (en) 2010-10-13 2015-12-31 Alta Devices, Inc. Optoelectronic device with dielectric layer and method of manufacture
KR101056396B1 (ko) * 2010-09-27 2011-08-11 연세대학교 산학협력단 벌크 이종접합형 태양전지 및 그 제조 방법
US11038080B2 (en) 2012-01-19 2021-06-15 Utica Leaseco, Llc Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching
TWI602315B (zh) * 2013-03-08 2017-10-11 索泰克公司 具有經組構成效能更佳之低帶隙主動層之感光元件及相關方法
US10571631B2 (en) 2015-01-05 2020-02-25 The Research Foundation For The State University Of New York Integrated photonics including waveguiding material
DE102015012007A1 (de) * 2015-09-19 2017-03-23 Azur Space Solar Power Gmbh Skalierbare Spannungsquelle
US10483306B2 (en) 2016-03-30 2019-11-19 Sony Corporation Photoelectric conversion element and photoelectric conversion device
TWI721167B (zh) 2017-05-11 2021-03-11 光環科技股份有限公司 具小垂直發射角的邊射型雷射元件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168774A (ja) * 1990-10-31 1992-06-16 Sharp Corp 炭化珪素を用いたpn接合型発光ダイオード
JP2991616B2 (ja) * 1994-06-30 1999-12-20 シャープ株式会社 半導体発光素子
JP3643665B2 (ja) * 1996-12-20 2005-04-27 シャープ株式会社 半導体発光素子
DE19824566C1 (de) * 1998-06-02 1999-12-02 Siemens Ag GaP-Halbleiteranordnung und Verfahren zur Herstellung derselben

Also Published As

Publication number Publication date
EP1358680A1 (en) 2003-11-05
JP2004537159A (ja) 2004-12-09
CA2437124A1 (en) 2002-08-22
EP1358680B1 (en) 2008-10-08
KR20030079988A (ko) 2003-10-10
WO2002065553A1 (en) 2002-08-22
DE60136101D1 (de) 2008-11-20

Similar Documents

Publication Publication Date Title
JP4902092B2 (ja) 等電子コドーピング
US6815736B2 (en) Isoelectronic co-doping
Takeuchi et al. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors
CN102484184B (zh) 发光半导体装置及其制造方法和发光半导体材料
US7863516B2 (en) Solar cell with epitaxially grown quantum dot material
US6765238B2 (en) Material systems for semiconductor tunnel-junction structures
US8410523B2 (en) Misfit dislocation forming interfacial self-assembly for growth of highly-mismatched III-SB alloys
US8901412B2 (en) Photovoltaic cell
US8148731B2 (en) Films and structures for metal oxide semiconductor light emitting devices and methods
US6653248B2 (en) Doped semiconductor material, a method of manufacturing the doped semiconductor material, and a semiconductor device
JPH0652807B2 (ja) 光子装置用の4元ii−vi族材料
US6984538B2 (en) Method for quantum well intermixing using pre-annealing enhanced defects diffusion
US7435660B2 (en) Migration enhanced epitaxy fabrication of active regions having quantum wells
CN114421283B (zh) 双掺杂量子点有源区外延结构及其制备方法和应用
US9722122B2 (en) Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices
US20210194216A1 (en) Stacked semiconductor lasers with controlled spectral emission
JP3589301B2 (ja) 量子層の構造
US6879612B1 (en) Temperature insensitive VCSEL
JPH0964386A (ja) 多接合太陽電池
US6913940B2 (en) Semiconductor laser light source with photocurrent feedback control for single mode operation
JP2004063634A (ja) 半導体分布ブラッグ反射器および面発光レーザ素子および面発光レーザアレイおよび光通信システムおよび光インターコネクションシステム
Alferov State-of-the art and prospects of AIIIBV science and technology
CN115173228A (zh) 一种垂直腔面发射激光器及其制备方法
JP2006041336A (ja) 半導体装置およびその製造方法
JP2000049091A (ja) 半導体層構造並びにその形成方法及び半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101129

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees