JP4899758B2 - 固体電解コンデンサ用リードフレーム部材 - Google Patents

固体電解コンデンサ用リードフレーム部材 Download PDF

Info

Publication number
JP4899758B2
JP4899758B2 JP2006267383A JP2006267383A JP4899758B2 JP 4899758 B2 JP4899758 B2 JP 4899758B2 JP 2006267383 A JP2006267383 A JP 2006267383A JP 2006267383 A JP2006267383 A JP 2006267383A JP 4899758 B2 JP4899758 B2 JP 4899758B2
Authority
JP
Japan
Prior art keywords
lead frame
cathode
anode
capacitor element
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006267383A
Other languages
English (en)
Other versions
JP2008091389A (ja
Inventor
博 小沼
繁樹 藤居
和弘 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006267383A priority Critical patent/JP4899758B2/ja
Publication of JP2008091389A publication Critical patent/JP2008091389A/ja
Application granted granted Critical
Publication of JP4899758B2 publication Critical patent/JP4899758B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、固体電解コンデンサに用いるためのポケット構造を有するリードフレーム部材、そのリードフレーム部材を用いた固体電解コンデンサ及びその製造方法に関する。
近年、電気機器のデジタル化、パーソナルコンピュータの高速化に伴い、小型で大容量のコンデンサ、高周波領域において低インピーダンスのコンデンサが要求されている。最近では、電子伝導性を有する導電性重合体を固体電解質として用いた固体電解コンデンサが提案されている。
一般的な固体電解コンデンサ素子は、図1に示すような構造をしており、エッチング処理したアルミニウム、タンタル、チタン等の弁作用金属表面(1)に誘電体酸化皮膜(2)を設け、その上に導電性重合体等の有機物層あるいは金属酸化物等の無機物層からなる固体電解質層(4)、導電体層(5)を設け、更に必要に応じて陰極と陽極を分離するための絶縁層(3)を設け、コンデンサ素子を形成する。
通常は、これらのコンデンサ素子を複数枚積層し、弁作用金属が露出した陽極端子(固体電解質を設けない端部表面部分)を陽極リードフレーム部(6)に接合する一方、導電層部分(陰極部分)を導電性接着材で陰極リードフレーム部(7)に接合し、全体をエポキシ樹脂等の絶縁性樹脂(8)で封止して図2に示す積層型の固体電解コンデンサ(11)を作成する。
しかし、一般にコンデンサ素子は陽極部に比べて陰極部の厚みが大きいため、複数枚の素子を積層すると陰極部側の膨らみが増す。図2に示すようにスペーサー(9)を介設してこの厚みの差を解消することも行われているが、陰極部と陽極部の厚みの差は素子ごとにバラツキがあるため、スペーサーを設けても各素子を完全に平行に配置するのは困難である。また、素子の導電層表面にも凹凸が存在する。
このため、導電性接着材を一定量ずつ塗布する製造プロセスでは、導電性接着材の過不足が生じることがある。導電性接着材が少なすぎれば集電性が悪化しESR(等価直列抵抗)が増大する。導電性接着材が多すぎれば余分な接着剤が素子間から溢れ出て広がることがある。リードフレームを用いた製造方法では、製造効率を高めるためにコンデンサ領域相互の間隔が比較的狭いため、余分な接着剤が逸出すると隣接するリードフレームやコンデンサ領域にまで至る場合もあり、この場合、ショートを起こし、集電特性を低下させる原因となる。ショートまでには至らない場合でも、封止時に導電性接着剤が露出してしまい、固体電解コンデンサの外観不良を引き起こす原因となる。
上記の問題を解消するために、特公2003−45753号公報(特許文献1)には、リードフレームにコンデンサ素子の陽極部及び陰極部を配置するための「段差を有したチリトリ状の曲げ加工部を夫々設ける」構成が記載され、また、同一出願人の特許3543489(特許文献2)には、「前記外装樹脂と接触するリードフレーム部分と外装樹脂より外部に位置するリードフレーム部分とにまたがるように穴部もしくは切欠き部を形成し、さらにこの穴部もしくは切欠き部が形成された部分における外装樹脂内部に位置する部分に階段状の曲げ加工部分を形成」することが記載されている。
前者は、ポケット状の凹部をリードフレームによって形成し、その内部にコンデンサ素子を積層させるが、「段差」と「チリトリ状の曲げ加工部」とは別個に形成されるため、コンデンサ素子搭載面の隅部分は封じられていない。一方、上記の特許文献のいずれにおいてもチリトリ状の曲げ加工部はコンデンサ素子の陽極部及び陰極部の全体にわたって設けられており、これらの曲げ加工部を陽極部及び陰極部の一部のみに設ける構成は記載されていない。
特公2003−45753号公報 特許第3543489号公報
本発明の課題は、素子の凹凸による積層ズレを解消して収率を上げるとともに、コンデンサ素子を積層した際の導電性接着剤のはみ出しや広がりに起因するESR値の低下を解消することにある。
本発明者らは、上記課題に鑑み鋭意検討した結果、積層型固体コンデンサを製造する際に用いる集電用のリードフレームの形状を工夫し、ポケット型のリードフレームを採用することで、素子の凹凸に伴う積層ズレ、及び積層時の接着用導電体のはみ出しや広がりを抑え、積層効率の高い、低ESRの固体電解コンデンサを提供することができることを見出し、本発明を完成するに至った。特に(1)リードフレーム引出し部に屈曲構造を設け、これによって形成する(コンデンサ素子搭載時に素子端面と当接ないし対向する)壁部分と前記側壁とを協同させてコンデンサ素子搭載面の隅に角型の壁構造を形成する、または(2)前記側壁をコンデンサ素子搭載面両側においては部分的に設けることにより、優れた結果が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は以下のリードフレーム部材に関する。
(1)一方の端部に陽極を有し他方の端部に陰極を有するコンデンサ素子に用いるための、コンデンサ素子の陽極と陰極に対応する陽極部と陰極部とが空隙を隔てて対向して設けられているリードフレーム部材であって、前記陽極部及び/または陰極部がコンデンサ素子搭載面両側に側壁を有することを特徴とするリードフレーム部材。
(2)前記陽極部及び/または陰極部に連続するリードフレームの引出し部に屈曲構造を有する前記1に記載のリードフレーム部材。
(3)前記側壁が陽極部及び/または陰極部の端面に回り込んでコンデンサ素子搭載面の隅に角型の壁構造を形成する前記2に記載のリードフレーム部材。
(4)前記側壁をコンデンサ素子搭載面両側において部分的に設ける前記1〜3のいずれかに記載のリードフレーム部材。
(5)前記側壁がコンデンサ素子搭載面両側の50%以上90%以下にのみ設けられてなる前記4に記載のリードフレーム部材。
(6)前記1〜5のいずれかに記載のリードフレーム部材にコンデンサ素子を搭載し全体を封止してなるチップ型固体電解コンデンサ。
(7)前記1〜5のいずれかに記載のリードフレーム部材に複数枚のコンデンサ素子を搭載し全体を封止してなる積層型固体電解コンデンサ。
(8)前記1〜5のいずれかに記載のリードフレーム部材の陰極部上にコンデンサ素子の陰極を導電性接着剤を用いて複数枚積層し、陽極を溶接したあとで全体を封止してなる積層型固体電解コンデンサの製造方法。
本発明のポケット型リードフレーム部材を用いた固体電解コンデンサは、素子の凹凸による積層ズレ、及び凹凸の少ないコンデンサ素子を積層した際の導電性接着剤のはみ出しや広がりを解消したものであり、高い積層効率と低ESRを実現することができる。
本発明は、積層型固体コンデンサを製造する際に用いる集電用のリードフレームの形状をポケット型にすることで、素子の凹凸に伴う積層ズレ、及び接着用導電体のはみ出しや広がりを抑え、積層効率の高い、低ESRの固体電解コンデンサを提供するものである。
(基本構造)
本発明のリードフレームは、一方の端部に陽極を有し他方の端部に陰極を有する平板矩型状のコンデンサ素子に用いるためのものである。このリードフレーム部材においては、コンデンサ素子の陽極と陰極に対応する陽極部と陰極部が空隙を隔てて対向して設けられており、少なくとも陽極部と陰極部の側面の両側がリードフレームのコンデンサ素子搭載面(コンデンサ素子を積層する面)に対して壁状に形成されていることを特徴とする。コンデンサ素子搭載面と側壁内面がなす角は、好ましくは70〜100度の角度、より好ましくは実質的に90度とする。角度が70度未満だと素子を搭載面に装入する際に側壁が干渉するため積層が困難となる。角度が100度より大きいと積層時の素子の位置ズレが起こったり、空間的に無駄が多くなる。
リードフレームのコンデンサ素子搭載面と引出し部との関係は、平面型、あるいは非平面型のいずれでも構わない。ここで、平面型とは、リードフレームにおける引出し部がコンデンサ素子搭載面と同一平面であることを指し、非平面型とは、リードフレームの引出し部がコンデンサ素子の陰極または陽極側端面の上部に位置する、すなわち、リードフレーム引出し部に屈曲構造を設け、これによってコンデンサ素子搭載時にその端面と当接ないし対向する壁部分を形成することを指す。前者の場合、コンデンサ素子搭載面側壁によってコの字状の溝が形成される。後者の場合、側壁と段差とによって凹部が形成される。本発明においては、コンデンサ素子を収容し得るこれらの溝と凹部を併せてポケット構造という。
リードフレームをこのようなポケット構造とすることにより、積層時の素子の位置が正確に決まるため、容量のバラツキが少なくなり、ESR値が低くなる。また、素子を囲うように壁を作ることにより、積層素子を固定するために用いられる導電性接着剤が積層プロセスにおいて逸出しても、余分の接着剤はその壁で止まり、リードフレームの外側に浸み出して広がったりすることはない。また、リードフレームが壁の役割を果たすことで、封止樹脂の充填時にコンデンサ素子が受けるダメージを緩和させ、漏れ電流を格段に減少させるという効果もある
ポケット構造としては、様々な形状が考えられる。その具体的な例を図3に挙げる。図3において、
(a)は、非平面型リードフレームを用いており、側壁のみが設けてある(すなわち、屈曲構造と側壁が協同していない)例である。
(b)は、非平面型リードフレームを用いており、側壁は屈曲構造と組み合わさってL字型(側面+端面)の角部を形成する例である。
(c)は平面型リードフレームを用いており、側壁は端面に及んでL字型(側面+端面)の角部を形成する例である。
(d-1)〜(d-4)は非平面型リードフレームを用いており、前記側壁をコンデンサ素子搭載面両側においては部分的に設ける、つまり、側壁に切り欠きを設ける例である。
(d-1)は切り欠きが陰極の端面寄りに設けてある。
(d-2)は切り欠きが陰極の端面寄りと、陽極の端面寄りとの両方に設けてある。
(d-3)は切り欠きが陽極の端面よりに設けてある。
(d-4)は切り欠きが陰極と陽極の中央部分に設けてある。
ここで挙げた例はあくまで例示であり、他にも種々のパターンが考えられる。
このようなポケット構造を取るにより、積層すべき素子の陰極部の厚みが不均一な場合や各素子が平面性を失って凸凹がある場合であっても、位置ズレすることなく積層させることが可能となり、積層形態の不良に起因する封止不良を軽減できる。
本発明においては、特に(1)前記非平面型構造における屈曲構造と前記側壁とを協同させてコンデンサ素子搭載面の隅に角型の壁構造を形成する(上記の(b)及び(c))、(2)前記側壁をコンデンサ素子搭載面両側の一部にのみ設ける(上記の(d))の少なくとも一方の構成を取ることが好ましい。
このうち、(2)については、従来の構造においても、リードフレームの陽極部と陰極部は分離しているため、コンデンサ素子の陽極と陰極との間の絶縁部に対応する位置には側壁が設けられていない。しかし、本発明においては、陰(陽)極側のリードフレームのうちコンデンサ素子の陰(陽)極部に接触する位置にも側壁が設けられていない部位(切り欠き)が存在する点が大きな特徴である。
これは、陰極側のリードフレームが素子に触れている場合に比べて、触れていない場合は封止後の収率が数%改善されているためである。この厳密な理由は明らかになってはいないが、積層時の合わせ面の平滑性やその部分の強度が、リードフレームに接触しない方が安定するために、積層時のコンデンサ素子にかかる負荷が軽くなったためと考えられる。
但し、切り欠きが大きすぎる場合は、そこから導電性接着剤が漏れて広がる可能性があるので、導電性接着剤が漏れない程度の幅とする。その具体的な割合は導電性接着剤の性質にもよるが、側壁がコンデンサ素子搭載面両側の50%以上90%以下とすることが好ましい。
リードフレームの材質としては、一般的に使用されるものであれば特に制限はなく、特に好ましくは高い電気伝導度を持つ銅系の合金(例えばCu−Ni系、Cu−Sn系、Cu−Fe系、Cu−Ni−Sn系、Cu−Co−P系、Cu−Zn−Mg系、Cu−Sn−Ni−P系合金等)の材料を用いることができる。
リードフレームの外側表面には、通常、低融点金属(例えば、スズ)のメッキを施すが、封止樹脂に覆われる内側部分については、スズの溶解が悪影響を及ぼす可能性もあるため、リフロー温度を考慮した上で銀などの300℃以上の高融点を持つ高電導度材料を用いてメッキすることが好ましい。
(固体電解コンデンサ素子のその他の構成)
固体電解コンデンサ素子のその他の構成は、当該分野で用い得るものであれば特に限定されない。
[陽極基材]
例えば、コンデンサ素子の導体部は、一般的には、表面に誘電体を有する金属が用いられる。本発明に使用できる金属は、主として弁作用を有する金属であり、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、珪素などの金属単体、またはこれらの合金である。また、多孔質の形態については、圧延箔のエッチング物、微粉焼結体などの多孔質成形体の形態であればいずれでもよい。導体の厚さは、使用目的によって異なるが、例えば、厚みが約40〜300μmの箔が使用される。金属箔の大きさ及び形状も用途により異なるが、平板状素子単位として幅約1〜50mm、長さ約1〜50mmの矩形のものが好ましく、より好ましくは幅約2〜15mm、長さ約2〜25mmである。
また、本発明のポケット状リードフレームにおいては、これらの金属の形状により電気特性に違いが生じることはなく、前述したような箔の形であっても良いし、また焼結体であっても構わない。
導体は、これら金属の多孔質焼結体、エッチング等で表面処理された板(リボン、箔等を含む。)等が使用できるが、好ましくは平板状、箔状のものである。さらに、この金属多孔体の表面に誘電体酸化皮膜を形成する方法は、公知の方法を用いることができる。例えば、アルミニウム箔を使用する場合には、ホウ酸、リン酸、アジピン酸、またはそれらのナトリウム塩、アンモニウム塩などを含む水溶液中で陽極酸化して酸化皮膜を形成することができる。また、タンタル粉末の焼結体を使用する場合には、例えば、リン酸水溶液中で陽極酸化して、焼結体に酸化皮膜を形成することができる。
[絶縁層]
絶縁層は絶縁樹脂、マスキング材を塗布して形成するか、または絶縁テープを張付けて形成してもよい。マスキング材としては一般的な耐熱性樹脂、好ましくは溶剤に可溶あるいは膨潤しうる耐熱性樹脂またはその前駆体、無機質微粉とセルロース系樹脂からなる組成物などが使用できるが、材料は制限されない。具体例としてはポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、低分子量ポリイミド及びそれらの誘導体及びその前駆体などが挙げられ、特に低分子量ポリイミド、ポリエーテルスルホン、フッ素樹脂及びそれらの前駆体が好ましい。
絶縁体の幅は1.0mm以下、好ましくは0.8mm以下とする。
[固体電解質層]
固体電解質層は、導電性重合体、導電性有機物および導電性無機酸化物等のいずれれによって形成してもよい。また複数の材料を順次形成してもよいし、複合材料を形成してもよい。好ましくは、公知の導電性重合体、例えば、ピロール、チオフェン、あるいはアニリン構造のいずれか1つの二価基、またはそれら置換誘導体の少なくとも1つを繰り返し単位として含む導電性重合体を使用できる。例えば、3,4−エチレンジオキシチオフェンモノマー及び酸化剤を好ましくは溶液の形態において、前後して別々にまたは一緒に金属箔の酸化皮膜層に塗布して形成する方法(特開平2−15611号公報、特開平10−32145号公報に記載)などが利用できる。
一般に、導電性重合体にはドーパントが使用され、ドーパントとしてはドーピング能がある化合物なら如何なるものでもよく、例えば、有機スルホン酸、無機スルホン酸、有機カルボン酸及びこれらの塩を使用できる。一般的にはアリールスルホン酸塩系ドーパントが使用される。例えば、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、アントラセンスルホン酸、アントラキノンスルホン酸またはそれらの置換誘導体などの塩を用いることができる。また、特に優れたコンデンサ性能を引き出すことができる化合物として、分子内に1つ以上のスルホン酸基とキノン構造を有する化合物、複素環式スルホン酸、及びこれらの塩を用いてもよい。
[導電体層]
導電体層は、一般的にはカーボンペーストを下地とし、その上に銀ペーストを塗布して形成されるが、銀ペーストを塗布したのみでもよく、また塗布以外の方法で導電体層を形成してもよい。
また、コンデンサ素子は、単板のコンデンサ素子でも積層コンデンサ素子の場合でも同様の効果が得られる。積層コンデンサ素子は、図2に示すように、複数枚のコンデンサ素子(図示する例では4枚)を積層し、コンデンサ素子どうしの陰極部の間は銀ペーストなどの導電性接着剤によって一体に接合して形成される。
[導電性接着剤]
導電性接着剤は、固着の役割を持つ樹脂ペーストと導電性の金属を混合したもので、電気を通す性質と物質同士を固着する性質を併せ持つ物質である。
本発明で用いられる導電性接着剤は、一般的に固体電解コンデンサに用いられるものが使用可能であり、主成分が高融点を持つ樹脂あるいは硬化型樹脂に銀を混合したペーストが好ましい。
このようなポケット型リードフレームとコンデンサ素子を接続する方法としては、陽極側は、コンデンサ素子の陽極側を接着用導電体で被覆した上でリードフレームの陽極部を抵抗溶接することにより接続する。抵抗溶接した後にさらに導電性接着剤で溶接部を完全に覆ってもよい。これにより、漏れ電流が低下し、ESR値が高くなる。
陰極は既存の導電性接着剤を素子に塗布し、順次積層して行けばよい。
なお、本発明のポケット構造を持つリードフレームは、数段の金型により順次形成し、外側の加工部分より順次内側の加工部へと移ることによりポケット構造を作ることが好ましいが、一時に一体的に形成してもよい。
本発明は、上述したようなポケット構造を有するリードフレーム、及びそのリードフレームを用いた固体電解コンデンサに関する。
かくして得られる固体電解コンデンサ素子は、通常、リード端子を接続して、例えば樹脂モールド、樹脂ケース、金属製の外装ケース、樹脂ディッピング等による外装を施すことにより、各種用途のコンデンサ製品とする。
以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための例示であって、本発明はこれらに何等制限されるものではない。
実施例1:
[酸化皮膜の形成]
アルミニウム化成箔(厚み100μm)を短軸方向3mm×長軸方向10mmに切り出し、長軸方向を5mmの部分で区切るように、両面に幅0.8mmのポリイミド溶液を周状に塗布、乾燥させて第1のマスキングを作成した。この化成箔の3×5mmの部分に10質量%のアジピン酸アンモニウム水溶液を塗布し、4Vの電圧を印加して切り口部分を化成することにより誘電体酸化皮膜を形成した。
[固体電解質層の形成]
次に、長軸方向を4mmの部分で区切るように、両面に幅0.8mmのポリイミド溶液を周状に塗布し、乾燥させて第2のマスキングを作成した。
このアルミニウム箔の3×4mmの部分を、3,4−エチレンジオキシチオフェン(2.0mol/L)を溶解させたイソプロピルアルコール(IPA)溶液に5秒間含浸後、室温で5分間乾燥し、更に2−アントラキノンスルホン酸ナトリウムが0.07質量%となるように調整した1.5mol/Lの過硫酸アンモニウム水溶液に5秒間浸漬した。続いてこのアルミニウム箔を40℃の大気中で10分間放置して酸化重合を行った。この浸漬工程及び重合工程を18回繰り返して、最終的に生成したポリ(3,4−エチレンジオキシチオフェン)を50℃温水中で洗浄し、その後100℃で30分乾燥を行うことにより、アルミニウム箔の外表面に導電性重合体の固体電解質層を形成した。
このアルミニウム箔について、膜厚計(Peacock社製,デジタルダイヤルゲージ DG-205,精度3μm)を用いて、平均膜厚と標準偏差を測定した。150素子について測定した平均膜厚は140μm、標準偏差は12μmであった。
次に、固体電解質層を形成した3mm×4mmの部分を、10質量%アジピン酸アンモニウム溶液中に浸漬し、固体電解質層を形成していない部分の弁作用金属箔に陽極リードフレームとの接点を設けて3.8Vの電圧を印加し、再化成を行った。
[導電体層の形成]
次に、図4に示すように、上記アルミニウム箔の導電性重合体組成物層を形成した部分に、導電体層としてカーボンペースト層と銀ペースト層を設けた。
ここで、第1のマスキング下の誘電体被膜が形成されていないアルミニウム箔の部分を切断した。切断した素子の陽極部分は、導電体層形成後にスペーサーを溶接し、両方の角を切欠いた。これらのアルミニウム箔を抵抗溶接により接続し、4枚積層し、図3の(B)に示すような非平面型で壁がL字型(側面+端面)に設けてあるポケット型リードフレームに接続した後、銀ペーストで角の切欠いた部分を覆った。
さらに、この積層した素子をエポキシ樹脂で封止した後、125℃で定格電圧(2V)を印加して2時間エージングを行い、合計300個のコンデンサを製造した。
これら300個のコンデンサについて、初期特性として120Hzにおける容量と損失係数(%で表示)、等価直列抵抗(ESR)、及び漏れ電流を測定した。表1にこれらの測定値の平均値、及び0.002CV以上の漏れ電流を不良品としたときの不良率を示す。
なお、漏れ電流は定格電圧を印加して1分後に測定した値であり、漏れ電流の平均値は不良品を除いて計算した値である。
実施例2:
ポケット構造を持つリードフレームを図3の(A)に示すような非平面型で側壁を陰極部の全長に沿って側面にのみ設けてあるリードフレームに変えた以外は、実施例1と同様の条件で製造したコンデンサ300個について、実施例1と同様の方法で容量と損失係数、等価直列抵抗、漏れ電流を測定した。表1にこれらの測定値の平均値と、0.002CV以上の漏れ電流を不良品としたときの不良率を示す。
実施例3:
ポケット構造を持つリードフレームを図3の(D−1)に示すような非平面型で壁が側面にのみに設けてあり、その陰極の端面寄りの側壁に切り欠きを設けたリードフレームに変えた以外は、実施例1と同様の条件で製造したコンデンサ300個について、実施例1と同様の方法で容量と損失係数、等価直列抵抗、漏れ電流を測定した。表1にこれらの測定値の平均値と、0.002CV以上の漏れ電流を不良品としたときの不良率を示す。
比較例1:
実施例1において、積層時のリードフレームを側壁のない従来型(平面型)にしたほかは同様の方法で300個のコンデンサを製造した。
これら300個のコンデンサについて、初期特性として120Hzにおける容量と損失係数(%で表示)、等価直列抵抗(ESR)及び漏れ電流を測定した。表1にこれらの測定値の平均値、及び0.002CV以上の漏れ電流を不良品としたときの不良率を示す。
なお、漏れ電流は定格電圧を印加して1分後に測定した値であり、漏れ電流の平均値は不良品を除いて計算した値である。
比較例2:
実施例において、積層時のリードフレームを側壁のない従来型(段差型)にしたほかは同様の方法で300個のコンデンサを製造した。
これら300個のコンデンサについて、初期特性として120Hzにおける容量と損失係数(%で表示)、等価直列抵抗(ESR)及び漏れ電流を測定した。表1にこれらの測定値の平均値、及び0.002CV以上の漏れ電流を不良品としたときの不良率を示す。
なお、漏れ電流は定格電圧を印加して1分後に測定した値であり、漏れ電流の平均値は不良品を除いて計算した値である。

Figure 0004899758
本発明のポケット型リードフレーム部材を用いた固体電解コンデンサは、素子の凹凸による積層ズレ、及び凹凸の少ないコンデンサ素子を積層した際の導電性接着剤のはみ出しや広がりを解消したものであり、高い積層効率と低ESRを実現することができる。
固体電解コンデンサ用コンデンサ素子の典型的な構造を示す断面図。 リードフレーム上にコンデンサ素子を積層して得られる固体電解コンデンサの典型的な構造を示す断面図。 本発明のポケット状リードフレームの例を示す図。 本発明のポケット状リードフレームの平面図。
符号の説明
1 弁作用金属
2 誘電体酸化皮膜
3 絶縁層
4 固体電解質層
5 導電体層
6 陽極リードフレーム部
7 陰極リードフレーム部
8 絶縁性樹脂
9 スペーサー
9b 抵抗溶接
10 導電性接着剤
10a 陽極側導電性接着剤
10b 陰極側導電性接着剤
11 固体電解コンデンサ

Claims (4)

  1. リードフレーム部材に複数枚のコンデンサ素子を搭載し全体を封止してなる積層型固体電解コンデンサであって、前記複数枚のコンデンサ素子は、その陰極が導電性接着剤を用いて積層されており、前記リードフレーム部材は、一方の端部に陽極を有し他方の端部に陰極を有するコンデンサ素子に用いるための、コンデンサ素子の陽極と陰極に対応する陽極部と陰極部とが空隙を隔てて対向して設けられているリードフレーム部材であって、前記陰極部がコンデンサ素子搭載面両側に側壁を有し、陰極リードフレームの側壁がコンデンサ素子搭載面両側の50%以上90%以下にのみ設けられ、前記陽極部及び/または陰極部に連続するリードフレームの引出し部に屈曲構造を有するリードフレーム部材である積層型固体電解コンデンサ
  2. リードフレーム部材の陽極部がコンデンサ素子搭載面両側に側壁を有するものである請求項1に記載の積層型固体電解コンデンサ
  3. リードフレーム部材の前記側壁が陽極部及び/または陰極部の端面に回り込んでコンデンサ素子搭載面の隅に角型の壁構造を形成するものである請求項2に記載の積層型固体電解コンデンサ
  4. 一方の端部に陽極を有し他方の端部に陰極を有するコンデンサ素子に用いるための、コンデンサ素子の陽極と陰極に対応する陽極部と陰極部とが空隙を隔てて対向して設けられているリードフレーム部材であって、前記陰極部がコンデンサ素子搭載面両側に側壁を有し、陰極リードフレームの側壁がコンデンサ素子搭載面両側の50%以上90%以下にのみ設けられ、前記陽極部及び/または陰極部に連続するリードフレームの引出し部に屈曲構造を有するリードフレーム部材を用い、前記リードフレーム部材の陰極部上にコンデンサ素子の陰極を導電性接着剤を用いて複数枚積層し、陽極を溶接したあとで全体を封止してなる積層型固体電解コンデンサの製造方法。
JP2006267383A 2006-09-29 2006-09-29 固体電解コンデンサ用リードフレーム部材 Active JP4899758B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267383A JP4899758B2 (ja) 2006-09-29 2006-09-29 固体電解コンデンサ用リードフレーム部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267383A JP4899758B2 (ja) 2006-09-29 2006-09-29 固体電解コンデンサ用リードフレーム部材

Publications (2)

Publication Number Publication Date
JP2008091389A JP2008091389A (ja) 2008-04-17
JP4899758B2 true JP4899758B2 (ja) 2012-03-21

Family

ID=39375283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267383A Active JP4899758B2 (ja) 2006-09-29 2006-09-29 固体電解コンデンサ用リードフレーム部材

Country Status (1)

Country Link
JP (1) JP4899758B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035084A (ja) * 2009-07-31 2011-02-17 Sanyo Electric Co Ltd 固体電解コンデンサ
JP5573396B2 (ja) 2010-06-15 2014-08-20 富士通株式会社 固体電解コンデンサおよび電源回路
JP5887163B2 (ja) * 2012-02-23 2016-03-16 Necトーキン株式会社 固体電解コンデンサ
WO2013128951A1 (ja) * 2012-02-29 2013-09-06 株式会社村田製作所 固体電解コンデンサおよびその製造方法
CN115298777A (zh) * 2020-03-27 2022-11-04 松下知识产权经营株式会社 电解电容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310260B1 (ja) * 1968-01-29 1978-04-12
JPH01123328A (ja) * 1987-11-09 1989-05-16 Fujitsu Ltd 計算機方式
JP3276113B1 (ja) * 2000-05-26 2002-04-22 松下電器産業株式会社 固体電解コンデンサ
JP2003045753A (ja) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd 積層型固体電解コンデンサ
JP4802550B2 (ja) * 2004-12-06 2011-10-26 パナソニック株式会社 固体電解コンデンサ

Also Published As

Publication number Publication date
JP2008091389A (ja) 2008-04-17

Similar Documents

Publication Publication Date Title
KR101142312B1 (ko) 고체 전해 콘덴서 소자 및 그 제조방법
JP4524873B2 (ja) 積層型固体電解コンデンサ
CN111383844B (zh) 电解电容器
US7122063B2 (en) Capacitor and production method of the capacitor
JPWO2018074407A1 (ja) 固体電解コンデンサ及び固体電解コンデンサの製造方法
EP3226270B1 (en) Solid electrolytic capacitor
JP4899758B2 (ja) 固体電解コンデンサ用リードフレーム部材
US11915886B2 (en) Solid electrolytic capacitor
JP4899759B2 (ja) 固体電解コンデンサ用リードフレーム部材
JP5623214B2 (ja) 固体電解コンデンサ
WO2013088845A1 (ja) 固体電解コンデンサ
JP5321964B2 (ja) 固体電解コンデンサおよびその製造方法
JP2000068158A (ja) 単板コンデンサ素子及び積層型固体電解コンデンサ
JP4688676B2 (ja) 積層型固体電解コンデンサおよびコンデンサモジュール
JP4868054B2 (ja) 積層型固体電解コンデンサ
JP7465547B2 (ja) 固体電解コンデンサおよび固体電解コンデンサの製造方法
JP2008091390A (ja) 固体電解コンデンサ用リードフレーム部材
JP2004088073A (ja) 固体電解コンデンサ
JP7200912B2 (ja) 電解コンデンサ
JP2004087713A (ja) アルミニウム固体電解コンデンサ
JPWO2006129639A1 (ja) 固体電解コンデンサ及びその製造方法
JP5754179B2 (ja) 固体電解コンデンサの製造方法
JPWO2012042950A1 (ja) 固体電解コンデンサ及びその製造方法
WO2023090141A1 (ja) 電解コンデンサ素子
JP2009059901A (ja) 積層型固体電解コンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3